
A Fractal-Like Algebraic Splitting of the Classifying Space for Vector Bundles

V. Giambalvo; David J. Pengelley; Douglas C. Ravenel

Transactions of the American Mathematical Society, Vol. 307, No. 2. (Jun., 1988), pp. 433-455.

Stable URL:

http://links.jstor.org/sici?sici=0002-9947%28198806%29307%3A2%3C433%3AAFASOT%3E2.0.CO%3B2-0

Transactions of the American Mathematical Society is currently published by American Mathematical Society.

Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at
http://www.jstor.org/about/terms.html. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained
prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in
the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at
http://www.jstor.org/journals/ams.html.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed
page of such transmission.

The JSTOR Archive is a trusted digital repository providing for long-term preservation and access to leading academic
journals and scholarly literature from around the world. The Archive is supported by libraries, scholarly societies, publishers,
and foundations. It is an initiative of JSTOR, a not-for-profit organization with a mission to help the scholarly community take
advantage of advances in technology. For more information regarding JSTOR, please contact support@jstor.org.

http://www.jstor.org
Thu Nov 1 15:34:57 2007

http://links.jstor.org/sici?sici=0002-9947%28198806%29307%3A2%3C433%3AAFASOT%3E2.0.CO%3B2-0
http://www.jstor.org/about/terms.html
http://www.jstor.org/journals/ams.html


TRANSACTIONS O F  T H E  
AMERICAN MATHEMATICAL SOCIETY 
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A FRACTAL-LIKE ALGEBRAIC SPJJITTING 

OF THE CLASSIFYING SPACE FOR VECTOR BUNDLES 


V. GIAMBALVO, DAVID J. PENGELLEY AND DOUGLAS C. RAVENEL 

ABSTRACT.The connected covers of the classifying space BO induce a de- 
creasing filtration {B,) of H, ( B O ;212) by sub-Hopf algebras over the Steen- 
rod algebra A. We describe a multiplicative grading on H*( B O ;212) inducing 
a direct sum splitting of B, over A,, where {A,) is the usual (increasing) fil- 
tration of A.  The pieces in the splittings are finite, and the grading extends 
that of H,R2S3 which splits it into Brown-Gitler modules. 

We also apply the grading to  the Thomifications {M,) of {B,),  where 
it induces splittings of the corresponding cobordism modules over the entire 
Steenrod algebra. These generalize algebraically the previously known topo- 
logical splittings of the connective cobordism spectra M O ,  M S O  and MSpin.  

Introduction. The classifying space for vector bundles, BO, is of longstanding 
interest in topology. We will describe a splitting of the mod 2 homology algebra 
of BO, having applications to connective cobordism Thom spectra. The splitting 
will be multiplicative; in other words it will be fully compatible with Whitney 
sums of vector bundles. It differs from other familiar splittings in topology in the 
way it interacts with the connected covers of BO and the Steenrod algebra A of 
cohomology operations. We will explain how this interaction is analogous to the 
geometric properties of the boundary of the fractal Mandelbrot set (or M-set) [PR]. 

The boundary of the M-set has two attributes: First, patterns become more 
elaborate upon magnification. Second, patterns visible at one level of magnifica- 
tion actually reappear under further magnification (self-similarity). The second 
property is Mandelbrot's idea of a fractal structure [MI,while the first is an addi- 
tional feature of certain fractals, like the boundary of the M-set. Our results about 
certain subalgebras of the algebra H, BO over the Hopf algebra A reveal precisely 
these two features. 

Specifically, consider the decreasing algebra filtration {B,) of H, BO provided 
by the images of the connected covers, and the standard increasing Hopf algebra 
filtration {A,) of A, where A, is generated by the first 2, Steenrod squares. The 
analogy to the geometric properties of the boundary of the M-set is now made 
precise by interpreting "pattern" to mean a multiplicative direct sum splitting of 
an algebra B, over the Hopf algebra A,, "magnification" as descending in the 
filtration {B,), and "more elaborate" as ascending in the filtration {A,). 
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Then the first property is that the multiplicative splitting we define on H, B O  
induces a direct sum splitting of each B, as an A,-algebra. For instance, we obtain 
an Ao-algebra splitting of H,BO, and an As-algebra splitting of H,B0(8) .  In 
[ G P R ]  we showed how to build the various levels of magnification into a fractal 
Steenrod algebra preserving a multiplicative splitting of a fractal H, BO. 

The second (fractal-like) property is that patterns reappear after further mag- 
nification. We will show that this is also a characteristic of our filtration: The 
A,-1-algebra Bn-1 (with its splitting as described above) reappears in rescaled 
form inside its own subalgebra B,. In fact, we will show precisely how the An-1- 
algebra B, is built as a tensor product, with the main role played by many rescaled 
(i.e. redimensioned, but not merely suspended) copies of the A,-1-algebra B,-l. 

Finally, since our splitting extends the well-known splitting [BP,Sn] of H,C12S3 
into Brown-Gitler modules, and our summands are also finite, they could be re- 
garded as a generalization of Brown-Gitler modules. 

The two properties we have just informally described are illustrated by Figures 
1 and 2, respectively. After we state the two main theorems precisely, the notation 
for the generators in the figures will be clear. 

These results have immediate application to cobordism Thom spectra, in par- 
ticular to the 7-connective cobordism spectrum M 0 ( 8 ) ,  an object of considerable 
interest for application in homotopy theory [BM,  D l ,  D2 ,  D3 ,  D G I M ,  D M 1 ,  
D M 2 ,  DM31. We will use the fractal structure of H,BO to describe a ladderlike 
phenomenon, in which we see that each Thom subalgebra in the ladder of connected 
covers-is built solely from copies of the connected cover from the next lower rung in 
the ladder, as follows: Let M, be the homology image in H, M O  of the nth distinct 
connective cobordism spectrum (the Thomification of B,). The coaction-quotient 
isomorphism [ K l ,  Li, PI, P 2 ]  describes M, entirely in terms of the A,-1 module 
structure of B, modulo a certain ideal J,. Our splitting results will show that 
this Anw1 algebra Bn/Jn  is essentially a product of many redimensioned copies of 
B,-l. In short, M, can be completely described just using the next lower rung in 
the ladder of connected covers of RO. For instance, since M3 is the homology of 
M 0 ( 8 ) ,  this latter result actually reduces H,M0(8)  to understanding H,BSpin 
as an A2 module. Of course H,BSpin is itself further split as an A2 module by 
our results. This should lead to greater success in exploiting MO(8) as a tool for 
understanding the stable homotopy groups of spheres. 

A brief outline of our plan is as follows: 
In $1we state our main theorems precisely, indicate connections and applications 

to  cobordism, and explain what we mean by a fractal A-splitting and a fractal A- 
map. 

In 52 we set the stage for producing the fractal splittings by introducing the 
bipolynomial Hopf algebra generators over the two-local integers, describing how 
the connected cover images B, are generated by them, and how we will manage 
the action of Steenrod operations using nice two-local lifts provided by T .  Lance. 

In $3 we explain why and how we must modify the bipolynomial generators to see 
the fractal splitting. We give an explicit Z(2) formula for the modified generators, 
which hints at a relationship to  Brown-Gitler spectra. We also discuss and record 
the properties they possess that will be crucial to demonstrating how they produce 
a fractal splitting. We defer the proof that they have these properties to  a final 
section of the paper. 
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FIGURE1. The splittings of Theorem 1.1 are illustrated by 


the first two grades in H. B S O  = B1 over A1, 


and the first grade in H , B S p i n  = B2 over A2. 


F I G U R E2. Theorem 1.2 is illustrated by the isomorphisms f l  and f 2  


carrying the A1-algebra H. B S O  = B1 t o  the tensor factors N z ( 1 )  


and N 2 ( 2 ) of H ,  B S p i n  = B 2 .  Note that f, increases the 


dimension of a generator in grade 2m by 2m+q. 
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$4 is devoted solely to developing several Z(2) number-theoretic facts about bi- 
nomial and multinomial coefficients, and about a certain formal power series, that 
will be needed later. 

In $5 we prove our two main theorems using what we have previously assem- 
bled, and finish by showing that the fractal redimensionings in the second theorem 
actually do respect the grading of the splittings in the way one would hope. 

$6 provides the proof we deferred in $3. 

1. The spl i t t ing of H,(BO; 2/2),  a n d  i t s  implications for cobordism. To 
state our main result on the algebraic splitting of BO, we need to establish a 
little notation regarding its connected covers. The nth distinct connected cover is 
BO(4(n)) ,  where $(n) is the dimension of the nth nontrivial homotopy group [St]. 
We will study its image 

B, = Im{H, (BO(4(n));  212) +H ,  (BO; 212)) 

in the homology of BO. For n 5 3 this represents no loss, since the map in homology 
is injective for these first several connected covers, B1 = H,BSO, B2= H,BSpin, 
and B3 = H,B0(8)  [St].  For n 2 4, however, they differ, H , B o ( ~ ( ~ ) )  begins in 
dimension $(n), which is approximately 2n, while B, begins in dimension 2,. 

When reading Theorems 1.1 and 1.2, the reader should refer to Figures 1 and 
2 in the Introduction, which provide low-dimensional illustrations of the structure 
the theorems provide. 

Our first theorem will explicitly describe the Hopf subalgebras B, in a way that 
illustrates the fractal A-splitting over the Steenrod algebra. Let a ( i )  be the number 
of ones in the dyadic expansion of i. 

THEOREM 1 . 1 .  There i s  a se t  of polynomial generators {ui : i > I) ,  wi th  ui i n  
d i m e n s i o n  i ,  for  H,(BO; 2/2) ,  and a n  algebra grading 1 1  1 )  defined o n  H, (BO; 212) 
by declaring ui t o  be homogeneous of grade 2m where 2m - 1 5 i < 2m+1- 1, such  
that:  

(a) B, = ~/2[uf (" ' ": i 2 11 where e(n,i) = 2max{01n-(a(i)-1)}. 
(b) For all a E A, and  all homogeneous b E B,, )l(b)all= I)b)l. T h u s  the  grading 

induces  a direct s u m  decomposition of B, over  the  subalgebra A, of  the  Steenrod 
algebra. 

(c) T h e  grading 1 1  1 1  restricts t o  twice the  familiar weight grading [BPI o n  

since u2m-1 will be the  coalgebra primitive i n  i t s  d imens ion .  

Some comments are in order about the theorem: 
(1) The description in part (a) of polynomial generators for B, is much more 

transparent when one encapsulates it by noting that ui lies in but not in 
B,(i), and that (B,)~ C Bn+l.  

(2) The obvious fact that the grading as defined on H,BO actually induces a 
grading on all the Bnls  could be phrased by saying that the grading 1 )  ) I  based on 
the uils is parallel to  the filtration {B,). 

(3) Part (b) is what we call a fractal ac t ion  of the Steenrod algebra, where the 
splitting of the B, into finite summands according to the grading ) I  ) I  is respected by 
ever more of the Steenrod algebra as n grows [GPR] .  This is the fractal A-spl i t t ing 
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that is analogous to the first geometric M-set property, namely more elaborate 
patterns under magnification. 

This leads to  the following useful terminology. 
DEFINITION.An algebra homomorphism f : H, (BO; 212) + H, (BO; 212) is 

called a fractal A - m a p  if f 1 B, is an A,-module homomorphism. 
Our second major theorem will utilize the generators u, from Theorem 1.1 to 

demonstrate the second (fractal) property for the filtration {B,), namely the 
rescaled reappearance of each A,- l-algebra B,- inside its own subalgebra B,. 
This is the result which we will then apply to  cobordism. 

To state the theorem, we need some terminology regarding two particular sub- 
algebras of H,BO. One is 

the other is 
P = Z/2[u2m : m 2 I].  

Recalling from l . l ( a )  that the u,'s are parallel to {B,), we have the intersections 

and 
P, = P n B, = ~ /2 [u ;L: m > 11. 

THEOREM 1 . 2 .  H, B O  has  a t ensor  product decomposition L@P@[@,21 N(q)] 
i n t o  polynofnial subalgebras which satisfies: 

(a) N(q) has  i t s  polynomial generators precisely in d imens ions  i + 2m(Z)+qfor 
all i > 1, where m(i) = [log2(i+ I)]; i n  other words, 2m - 1 < i < 2m+1- 1, as i n  
Theorem 1.1. 

(b) Let N,(q) = N(q) n B, for n > 0. T h e n  the  subalgebra B, actually decom- 
poses i n t o  L, @ P, @ [@Iq2, N,(q)] as  a product o f  A,-1 -algebras. 

(c) For every  q 2 1 there is  a n  i somorph i sm fq :  Bo -+ N(q) o f  polynomial alge- 
bras, sending u, t o  a generator i n  d imens ion  i+2m(i)+q ( n o t  necessarily ~ , + ~ m ( t ) + q ) ,  
a n d  i ts  restriction induces  a n  A,-1-algebra i somorph i sm f, : B,-1 -+ N,(q) for  ev- 
e r y  n 2 1. 

Two comments are in order about this theorem. 
(1) Part (b) could be phrased by saying that the tensor product decomposition 

of H,BO is parallel to the filtration {B,), and fractal over {A,-1). 
(2) Part (c) asserts the second (fractal) property, the rescaled reappearance of 

each A,- l-algebra B,- inside its subalgebra B,, via fractal A-isomorphisms f,. 
The alert reader will realize that the mere existence of the fractal redimensioning 

isomorphisms fq of Theorem 1.2 ensures that a grading with the properties of 
Theorem 1.1 must exist, since fq increases the dimension of u,by 2q . 2m(i), which 
is a constant times the underlying fractal grading. We will be using the bigrading 
provided by considering both dimension and fractal grading, and we can refer to 
elements as being homogeneous in either sense. In Theorem 1.2(c) we remarked 
that f,(u,) is not necessarily u , + ~ ~ ( , ) + ~ .  Nevertheless, we will prove in Lemma 
5.13 that fq(ui)  is homogeneous with respect to the fractal grading as well as with 
respect to dimension. While we could in principle obtain Theorem 1.1 as a slick 
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corollary to Theorem 1.2, this would undesirably obscure the nature of the grading, 
so we will provide a direct proof with explicit formulae for the ui's. 

Now we will provide an application of Theorem 1.2 to cobordism, to obtain a 
ladderlike decomposition of the A-algebras 

M, = Im{H* (MO(4(n)))  -t H, (MO)),  

which correspond to the B,'s under the Thom isomorphism H,(MO) S H,(BO). 
As before, M, actually coincides with the homology H, (MO(4(n)))  of the cobor- 
dism Thom spectrum provided n 5 3 (i.e. through MO(8)). 

The analysis of Mn is simplified by the coaction-quotient method [Kl , Li, PI, 
P2] ,  which provides A-algebra isomorphisms 

Mn "= A* OA* (B,/J,) "= (A* OA:-~212) @ (BnlJn) ,n - 1 

where J is the ideal (ul ,  ~ 3 , .  . . , u2"-1,. . . )  generated by the subalgebra L = 
H , ( R ~ S ~ )C H*(BO), and J, is the intersection ideal 

generated by the subalgebra L,. Note that A denotes the Steenrod algebra, while 
A* is its dual. 

Thus the main task in understanding the A-algebra Mn is to describe the An-1- 
algebra B,/ J,. It is toward this goal that our application can aim, since Theorem 
1.2 provides precisely an A,-l-decomposition of B,/J,. So we have 

where P, is trivial over A,-1, and every N,(q) is isomorphic as an A,-I-algebra 
(up to redimensioning) to BnP1. 

COROLLARY1 . 4 .  

H, (MO(8))S A* ma; H, (BSpin) 

as A-algebras. 

These corollaries provide the ladderlike description of the cobordism algebras 
that we alluded to in the Introduction. It was through empirical observation [GP]  
of these corollaries that we actually came to suspect the fractal structure for H,BO 
embodied in the two main theorems. 

2. Lifting t o  t h e  two-local bipolynomial generators. The main purpose 
of this section is to develop aspects of the bipolynomial Hopf algebra generators for 
H,(BO). Then we will be equipped to define the fractal generators ui which will 
enable us to prove the theorems of $1. 

We will synthesize various features of the bipolynomial Hopf algebra generators 
{x,) developed by Husemoller [Hu], Baker [Ba], Kochman [K2], and Lance [La]. 
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To do this, we must consider coefficients in Z(z) ,  the integers localized at 2, as well 
as 212. 

The doubling map [Sw,p. 4941 gives an A-Hopf-algebra isomorphism 

H,(BO; 212) -+ H, (BU; 212). 

Let Bo be H,(BU; Z(Z))  with the dimensions of the generators halved. Then Bo 
is a bipolynomial Hopf algebra [Ba],and Bo 8 212 S Bo = H, (BO; 212). Let 
d, E Bo be the coalgebra primitive in dimension i dual to the Chern class c,. A set 
of polynomial generators {s , :  i 2 1) for Bo can be obtained from the primitives 
by the Witt polynomials 

where i = j .2k,  j odd. Then Bo = 2 ( z 1[x,] and H, (BO; 212) = B o 8 2 / 2  Z/2[s,]. 
A simple proof that the s t ' s  are polynomial generators for Bo can be found in [La]. 
Note that x, = d, precisely when i is odd. These generators are very well behaved 
with respect to the inclusions Bn c Bo. In fact the work of Baker [Ba]and 
Kochman [K2] implies the following 

LEMMA 2 . 2 .  B, = 2/2[x,e ( n , 2 ) .. i 2 11, where e (n ,  i )  = 2ma~{O>n-(ff(~)-'))a s  

i n  T h e o r e m  1.1. 

To fully exploit this we need to describe the Steenrod algebra action on H, (BO) 
in terms of the st 's .  Lance [La] has constructed a Z(Z1 lift of the total dual square 
Sq = CtloSqt. This lift, also denoted by Sq, satisfies the Cartan formula over 2(2) 
(Sq is a ring homomorphism) and has a particularly simple formula when evaluated 
on the primitives: 

We will denote by yi,t the coefficient 

It is possible in theory to compute the action of the dual squares on the s t ' s  from this 
formula and (2.1), but the computations rapidly become intractible. Fortunately 
we can do most of the computations on the primitives. It is essential to observe 
that the nature of the Witt polynomials ensures that,  to compute xj.2k Sq mod 2, 
we need not know the d j . 2~  Sq exactly for 1 < k, but only mod 2l+'. The next 
lemma gives an example of how this idea will be applied. 

LEMMA 2 .4 .  Let  j :  Bo -+ Bo be a n  algebra m a p ,  and  f = f $212.  T h e n  
f ( X ~ . ~ I  = Sqt for all 1 5 k, t < N, if and on ly  if f (d j .2~Sqt) =Sqt) f ( X ~ . ~ I )  

f(dj.21) Sqt mod 2'+' for all 15 k, t 5 N. 

PROOF.Since we need to relate the polynomial generators to the primitives 
we must use the Witt polynomials (2.1). First note that the Z(2)-Cartan formula 
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gives the following congruence, which we will henceforth use frequently and without 
further comment. If y E B ~ ,and j (y  sqt)= j (y)  sqtmod 2k for all t 5 N ,  then 
j (y2  sqt)= f (y2)sqtmod 2k+1 for a11 t 5 N.  Now proceed by induction on k as 
follows (k = 0 is not special). We will compare 

with 

For either desired implication, the two summations are congruent mod2"' by 
induction and the above remark, so both implications are now immediate. 

Many computations with the mod2 Steenrod algebra are simplified by use of 
the Adem relations. While these do not lift, the integral two power squares on the 
integral primitives nevertheless do determine the entire mod 2 action. In particular 

LEMMA2.5 .  Let f,j be as in Lemma 2.4. Then f is a fractal A-map if and 
only if j (di)  sq2'= j(di sq2')mod 2V(i)+1for all s < cu(i). 

PROOF. The forward implication is just a specialization from Lemma 2.4. In 
the other direction, to show that f is a fractal A-map, it is clear from the mod2 
Adem Eelations and Lemma 2.2 that we need only show the mod2 statement 

f (xi sq2')= f (xi)sq2' for s < a(i). 

Proceeding by induction on u(i),  we consider the hypothesis 

j (d ,  sq2')= f(di) sq2' mod 2u(i)+1. 

Just as in the proof of (2.4), we consider the Witt sum for di on each side, and 
note that by induction all but the first terms are pairwise congruent since, on all 
the bipolynomial generators in question, a is identical to cu(i),but v is less than 
u(i). Thus the first pair matches also, i.e. 

so we are done. 
We mention in passing that the second author has developed an alternative 

approach to some of what follows using a lift of the total dual x Sq. For the record 
we give its formula here: 

This approach would eliminate the need for Lemma 4.7 and simplify the proof of 
Theorem 3.2(4). However, to  use it here we would first need to develop its validity 
as a Z(2) lift, something Lance has already provided for the total dual Sq. 
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3. The homogeneous splitting generators. Now that we have some infor- 
mation about Bo we can define the polynomial generators u, which will induce the 
splitting we want to demonstrate. Given the nice description of the B,'s in terms 
of the xi's, it would be fortunate if the x,'s themselves could simply be declared 
homogeneous, and our task completed. Perhaps the reader has already guessed, 
though, that things are not this easy. For instance, the relations 2 2  sql = X I ,  

23  Sq1 = x:, 2 4  Sq1 = 23  +x2x1, 2 5  Sq1 = x j ,  xg sq2= 2 3  aptly illustrate the need 
both for corrections to  the x,'s and for the use of 2m(i) (with m(i) = [log2(i+ I)])  
to define the grading as a function of dimension of homogeneous generator. In 
particular, it seems we must correct 2 5  to u5 = x5 +x3x:, SO that u:, sq2= 23 and 
US sql= 0, and thus the grading is preserved on u5 by both sqland sq2,which is 
required since a(5)= 2. 

We will actually "correct" the x,'s to produce our ui's by providing explicit 
elements ?(di) to  LLcorrect" the integral primitives d,. These corrections will in fact 
be chosen just from 1= Z(2) [x2'-1: r >_ I] c BO,as follows. 

Let 1 = C,,,
-

X ~ Y - ~ ,i.e. the formal sum of the generators in t .  We begin by 
defining an algebra homomorphism 7: Bo -+ 2 (which we think of as the correction 
to the d,'s) as follows: 

where m = m(i) = [log2(i)], i.e. m is the integer satisfying 2" 5 i < 2"+l , and 1 %  
means prqjection to dimension i .  The reader should note the subtle (but crucial for 
our purposes) distinction between the function m(i)  defined and used here and the 
function m(i) = [log2(i+ I)]  in Theorems 1.1 and 1.2. They of course differ only 
when i is one less than a power of 2. In the future, if we write just m or m, the 
reader should carefully note its value from the context, particularly since it may be 
applied to various dimensions in the course of a single argument. 

It is far from obvious that (3.1) even defines an algebra map as claimed, since 
the d, are only rational (not Z(2))  algebra generators, and t is only a Z(2)-algebra. 
However, our next theorem will alleviate this concern. 

Before continuing we pause to give an alternative formulation of (3.1) that hints 
at an explicit connection to Brown-Gitler spectra. Recall that (twice) the weight 
grading [BPI on H,R2S3 (which our grading will extend) is the algebra grading 
defined by 1 1 ~ ~ m - ~ l l2m, and that it induces a splitting over the Steenrod algebra = 
heralding the stable splitting of R2S3 into Brown-Gitler spectra. Moreover, note 
that the grading extends naturally to i,and that the grade of a monomial equals 
its dimension plus its total exponent. This basic fact (grade = dim+exp on i) 
enables one to rewrite (3.1) as 

where the subscript 1 1  indicates projection to grade (not dimension) 2"(')+'. More-
over, in terms of d = C,,, d, we can go even further and write -



442 V.  GIAMBALVO, D. J .  PENGELLEY AND D. C.  RAVENEL 

in other words, 1/(1 + 1) is followed by projection to all the Brown-Gitler modules 
of precisely two-power weight in L (which do not, in fact, overlap in dimensions). 

It is difficult for us to offer extensive further motivation for our formula for 
7. Suffice it to say that its crucial features will be "fractal compatibility" with the 
Steenrod algebra combined with . ? . ( ~ ~ r - ~ )  -x2.-l, the latter ensuring that x21-1 = 
will be "corrected" into oblivion. This key correction is necessary since the grading 
must be based on dimension via m(i) = [log2(i+I)],  not m(i) = [log2 (i)]. However, 
this "shift" to m(i) from m(i) means that the Witt polynomials would no longer 
always show that homogeneous xi's correspond to homogeneous di's, since the 
x ~ ~ - ~ ' swould have the wrong grade. But Lance's Z(2) squaring operation formulae 
make homogeneous di's appear most promising. Thus 7 is designed to "homogenize" 
the d,'s by annihilating this obstruction without destroying the essence of Lance's 
formulae for the action of the integral squares. Much of the rest of the paper is 
devoted to showing that this vague strategy actually succeeds. 

Our next step toward defining the u,'s is to define p": go+ go,the algebra 
map that will send x, to its "corrected" form u, (except when i = 2' - 1, in which 
case we will make no correction). We want p"(di) = d, + 7(di), but merely defining 
p" = identity + 7 will not produce an algebra map. We can, however, accomplish 
both purposes by defining p" to be the composition of algebra maps j i ( l @ ? ) ~ ,  where 
A is the diagonal, and ji the multiplication, in the Hopf algebra BO. Finally we 
define ui by letting uz7-1 = x2.-1 for all r ,  and u, = j(xi) if i # 2' - 1. 

We pause here to define important terminology for two qualitatively different 
types qf Steenrod operations we will need to consider. Suppose 2" 5 i 5 2"+' -

2. We will be considering operations sq2'acting from dimension i downward to 
dimension i - 2', where s < cu(i). If i - 2' > 2", in other words i - 2' lies in 
the same range we specified for i ,  then we say the action of sq2'on (dimension) i 
is strict, because it remained between the same pair of two powers. On the other 
hand, if i- 2' < 2", again with s < cu(i),we say sq2'is final on (dimension) i. We 
say this because a final operation can occur only in a very special way, as follows. 
Since a ( i )  > S, and 2" 5 i 5 2"+l - 2, clearly i > 2" +2' - 1, i.e. i -2' > 2" - 1. 
Thus the only way a final operation can occur is if it lands in precisely dimension 
2" - 1, and if s actually equals a ( i )  - 1, i.e. s~~~is the largest, or final, operation 
allowed (not every largest allowable operation is final, however). 

The following theorem, establishing the crucial features of r and 7, will be proved 
in 56, after we develop some requisite number theory. 

Recalling from $1 that L = L @ 212, we let r = 7 @ 212: Bo + L. As usual, 
denote by v( i )the exponent of the largest two-power dividing i. 

THEOREM 3 . 2 .  Let 6 = m(i) as above. Then the homomorphisms r and 7 
satisfy the following: 

(1) 7 extends uniquely to an algebra map go-+ L .  
(2) 7(x27-1) = -xzr-l for all r > 1. 
(3) r (Bn) c Bn. 
(4) 7(d,) sq2'= 7(di sq2')mod 2V(i)+' if sq2'is strict on i, i.e. if s < a ( i )  and 

2" S i - 2 '  < i s2"+' - 2 .  
(5) ?(di)s~~~= 0 mod 2"(')+' if sq2'is final on i ,  i.e. if s < a(i)and 2" - 1 = 

i - 2' < i 5 2"+' - 2 .  
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The following corollary records resulting important properties of 

COROLLARY3 . 3 .  ( 1 )  = 0 for all r > 1.  
( 2 )  p ( x i )  i s  indecomposable if i # 2" - 1. 
( 3 )  d B , )  c B n .  
( 4 )  j (d,)  s~~~ @(d,s ~ ~ ~ )mod 2"(')+l if s < a(;)and sq2" is strict on  i 

PROOF.Since x 2 ~ - 1= d2r-1, and pd, = d,  + i d , ,  part ( 1 )  follows from (3 .2) (2) .  
The formula p" = b ( 1 @?)ashows that p" = identity +i mod decomposables, and 

if i # 2" - I ,  clearly, i d ,  is decomposable from (3.1) .  This proves ( 2 ) .  
Part ( 3 )  follows from (3 .2) (3)since p is just the mod 2 reduction of j = b ( l @ i ) a ,  

which preserves B, (recall B ,  is a Hopf-subalgebra, being the image of a space). 
For part ( 4 ) ,we may use (3 .2 ) (4 )to compute 

2 s
?(dz S q  = yi,2ap"(dz-23) = yz,2a(dz-2a + ?dz-23) 

= d, sq2* + i ( d ,  sq2*)= d, sq2"+ ( i d i )sq2* 
= (p"di)s~~~ mod 2"(4+l .  

PROOF.If i = 2" -1 we have u,= x,. Otherwise u,= p ( r i )  - z, mod decompos-
ables by ( 3 . 3 ) ( 2 ) ,and u,E B,(i)- ,  by ( 3 . 3 ) ( 3 )  Thus u;("'" is an indecomposable 
in B,. 

4. Some number theoretic lemmas. In this section we prove several dis-
parate results of a purely number theoretic nature which we will need shortly. 

The first lemma is a collection of facts, all of which are both well known and easily 
proved. We restate them here simply to allow the reader to follow the succeeding 
proofs more quickly. Proofs and/or references may be found in [Si]. Most date 
back to Legendre [Le]. 

LEMMA4 . 1  . For any positive integers n, a ,  j 
( 1 )  ~ ( a+ j )  I a ( a )  + a ( j ) .  
( 2 )  a (n+  I )  = a(n)+ 1 - u ( n +  1 ) .  
( 3 )  I f  a < 2, then a ( a )  + u ( a )  I n .  
( 4 )  a ( 2 ,  - j )  = n - ~ ( j )- u ( j )  + 1.  
( 5 )  u ( y )  = n - u ( j ) .  

The next lemma is a special case of more general congruence results about bi-
nomial coefficients which will appear in [GMP]. 

LEMMA4 . 2 .  Let N and s be positive integers. For any  integer a (positive or 
negative!) 

if either u ( a  + 1)  I N - s - 1 or s 5 N - s 
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PROOF. The binomial coefficient formula 

obtained by expanding ( 1  + c)"+Y = ( 1  + ~ ) ~ ( 1+ c)Y yields 

We will show that each term in the sum is divisible by 2'+'. Since t 5 2' - 1 we 
must have u ( t )  5 s - 1. Now if s 5 N - s, we have 

On the other hand if s > N - s and u ( a  + 1 )  5 N - s - 1 we need to look at  both 
factors. For the second factor we have 

We will need two more specialized consequences of this: 

COROLLARY4 . 3 .  If i < 2N and s < a( i )  then 

23+1 + 2N - i 2N  - i  i i - 2 '  
- ) ( 28 2N + 28+1 - i =- ( - 1 ) i - 2~ - - 28 ( 28 ) mod 2"(')+1. 

PROOF. We begin by applying the previous lemma with a = -2N + i - 2' - 1. 
To do this we must first verify that either s 5 N - s or u ( a  + 1 )  5 N - s - 1. SO 
suppose s > N - s. Then i < 2N says a( i )+ u ( i )  5 N ,  and a( i )  2 s + 1 gives 
u ( i )  5 N - s - 1 5 s - 2. Hence u ( a  + 1 )  = u(-2N + i - 2') = u ( i )  5 N - s - 1. 
The lemma now gives 

on the left side we can rewrite this as 

Now 2 N / 2 s  0 mod 2"( i )S1 ,  since from above v( i )  5 N - s - 1. With this 
information the reader may check that the congruence we seek now follows from 
(4.4) .  
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COROLLARY4 . 5 .  I f  i < 2 N  and s < a ( i ) ,  then  there is  a congruence of Lance 
coef icients  

Yi,2* E Y i + 2 ~ , 2 *  mod 2 ~ ( ~ ) + l .  

PROOF.This is similar in many ways to the previous corollary. We again apply 
Lemma 4 . 2 ,  this time to obtain 

by letting a = i - 2' - 1. Our hypothesis again ensures that those of Lemma 4 . 2  
are satisfied. Moreover as in the proof of ( 4 . 3 ) ,  we have 2 N / 2 s  E 0 mod 2"( i )+1 ,  
and thus the congruence above is equivalent to 

which is the desired congruence among Lance coefficients. 
When we prove Theorem 3 .2  we will need 

LEMMA4 . 6 .  T h e  mult inomial  coef icient  

,:: 7Z, r 8 )  E 0 mod 2"(')+' 

if C,"=, 2 tr t  = 2 N ,  i < 2 N ,  and v ( r l )< a ( i )  - 1 for some 1 .  

PROOF.Let i = j . 2 k ,  j odd. Then we need to show under the above conditions 
that 

Now 

Our final lemma will allow us to compute with an alternate Z ( 2 )  lift of the 
Steenrod squares that we will define in 56. 
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LEMMA4 . 7 .  Let  f (x) be the  formal  power series 

T h e n  for all positive q, 

PROOF. The series f(x) is familiar to combinatorists, the coefficients being the 
Catalan numbers. Many properties of the series are well known, including that it 
satisfies the quadratic equation ( f ( ~ ) ) ~= f (x )  - x [Br, p. 143fl. Thus we have 
(f(x))q = ((fx))'J-' - x(f ( x ) ) " ~ .  Inductively we have 

Letting v = t - 1, the coefficient of xq+" is 

5. Proofs  of t h e  main theorems.  In this section the proofs of Theorems 1.1 
and 1.2 are completed. First consider Theorem 1.1, restated here for convenience. 

THEOREM 1 . 1 .  There  i s  a set of polynomial generators {u, : i 2 I ) ,  with u, in 
d i m e n s i o n  i ,  for H,(BO; 2 /2 ) ,  a n d  a n  algebra grading 1 1  1 1  defined o n  H,(BO; 212) 
by declaring u, t o  be homogeneous of grade 2m where 2m - 1 5 i < 2m+1- 1, such  
that: 

(a) B, = 2/2[u,"("'4 i >- 11) where e (n ,i )= 2m"x{O>n-(a(z)-')),. 
(b) For all a E A, and  all homogeneous b E B,, 1 1  (b)all = Ilbll. T h u s  the  grading 

induces  a direct s u m  decomposi t ion of B, over the subalgebra A, of the  Steenrod 
algebra. 

(c) T h e  grading 1 1  1 1  restricts t o  twice the familiar weight grading [BPI o n  

H,(R2s3)  c H.(BO), 

since u2m-1 will be the  coalgebra primi t ive  in i t s  d imens ion .  

PROOF. In $2 we defined u, as 

j(x,) for i f 2" - 1, 

x2~-1 for i = 2" - 1, 

and Corollary 3.4 gives part (a) of the theorem. 
We define a grading on BO by 

where m = m(i) = [log2(i+ 1)) )  i.e., 2m - 1 5 i < 2m+1 - 1, as usual. Since 
7 ~ 2 ~ - 1= ~ 2 ~ ~ 1 , we have part (c) of the theorem. and H,R2S3 c BOis 2 / 2 [ ~ ~ ~ - ~ ] ,  
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To prove part (b) we need to  show that A, respects the grading on B,, i.e., for 
all a E A, and homogeneous b E B,, 1 1  (b)all = 1 1  bll. From the Cartan formula and 
Corollary 3.4 we see that it is sufficient to show that 

To do this we need to go back to Bo = Z(2, [u,]. Since we are abusing notation by . , 

considering u, both in Bo and BO, we will be careful to make statements "mod2" 
if this is all we claim. Our present goal is to prove (5.2) mod 2. 

It is worthwhile a t  this point to consider again why this may work. First, simple 
facts like x2 sql= z l  mod 2 show that one must define the grading using m( i )  
(shifted two-power blocks) rather than m( i )  as in (3.1). On the other hand, if we 
were to  define the grading using m(i)  as in (5.1), but making the generators x, 
homogeneous (rather than the u,), then the primitives 

would not be homogeneous (even though Lance's Steenrod squares (2.3) suggest 
trying to  do this) if k is positive and j is one less than a power of 2. For example, 
consider d12 = 4x12 + 2x2 + x i .  Then zlz and x i  would have grade 8, but x i  
would have grade 16. The map p is designed to remedy these incompatibilities. In 

~k 21 2k- 'particular, if j = 2' - 1, then j(x,) = 0 from (3.3)(1), so jd, 2i = u , , ~ ~  
(note 1 now starts a t  I ) ,  and this is homogeneous. Now, according to our guidlng 
principle, as long as the appropriate Steenrod operations preserve homogeneity on 
the j(d,)'s (and the U ~ ~ - ~ ' S ) ,  "solve" for the u,'s, which are just p(x,)'s, we can 
and retain homogeneity under the fractal A-action. We now proceed to prove (5.2). 

First consider z = 2' - 1. recalling that u2~-1  = xz7-1 = d27-1. Then (5.2) 
holds. since the Lance coefficients in (2.3) yield u2~-1  sql= u?j-,-, mod 2 and 

u2r-1 sq2'= 0 mod 2 for s > 0. 
Now for i f 2' - 1, let i = j . 2" j odd, and m = [log2(i+ I ) ]  as usual, and 

proceed by induction on i .  We have 

where b = 1 if j = 2' - 1 and b = 0 otherwise. 
Note that a ( j  . 2') = a ( j )  = a ( i )  for all 1, so the values of s relevant in (5.2) 

are identical for all the u's in (5.3). Therefore from the induction assumption, the 
mod2 Adem relations, the Cartan formula, and the fact that j . 2' # 2' - 1, we 
have 

u , . ~ ISqt is homogeneous of grade 2m-k .2 '  mod 2 

for 1 < k\  t 5 2'. Thus so is ~ : l ~sqt 28 Sqt )2 k - I  isu 2 . 2 ~  , and hence ( C t T O  u ~ . ~ I  
homogc~~cousof grade 2" mod 2"l-l. Thus the Z(2) Cartan formula ensures that 

u:;;' sq2' is honiogeneous of grade 2 " ~ '  mod 2k+1. 
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Now applying sq2' to (5 .3 )  we get 

From above we know the summation is homogeneous of grade 2m mod 2"', and 
we will show that the left-hand side enjoys the same feature. There are two cases: 

If the operation is strict, then by ( 3 . 3 ) ( 4 )we have 

J ( d i )  sq2' = J (d i  sqZs)= r i ,2sJ(di-2s)  mod 2"l, 

and the latter is homogeneous of grade 2m mod 2"' since in this case m(i- 2') = 
m(i)= m. 

On the other hand, if the operation is final, then 

by ( 3 . 2 ) ( 5 )  and our discussion when we defined final operations. Of course u2m-1  

is homogeneous of grade 2m by definition. 
So 2ku j .2k  sqZsmust also be homogeneous of grade 2m mod 2 k S 1 ,  and therefore 

'uj.2k sq2' is homogeneous of grade 2m mod 2. This completes the proof of Theorem 
1.1. 

We-now turn our attention to the proof of 

THEOREM1 . 2 .  H ,  BO has  a t ensor  product decomposition L B P @ [ @ , ~ ~N ( q ) ]  
i n t o  polynomial subalgebras which satisfies: 

(a) N ( q )  h a s  i t s  polynomial generators precisely i n  d imens ions  i + 2 m ( i ) S ~for 
all i 2 1 ,  where m(i)= [log2(i+ I ) ] ;  i n  other words, 2m - 1 5 i < 2mS1 - 1 ,  as  i n  
Theorem 1.1. 

(b) Let N,(q) = N ( q )  nB, for n 2 0. T h e n  the  subalgebra B, actually decom-
poses i n t o  L, 8 P, 8 N,(q)]  as  a product of A,-l-algebras. 

(c) For every  q > 1 there i s  a n  i somorph i sm f,: Bo -,N ( q )  of  polynomial alge-
bras, sending vi t o  a generator in d imens ion  i + 2 m ( i ) + ~( n o t  necessarily ~ ~ + ~ m ( t ) + q ) ,  

a n d  i t s  restriction induces  a n  A,-1-algebra i somorph i sm f ,  : B,-1 -,N,(q) for ev-
e r y n  2 1.  

To construct the decomposition we explicitly construct the isomorphisms in-
volved, as follows. 

LEMMA5 . 4 .  There  are fractal A-algebra m a p s  f ,  : Bo -,Bo for q > 1 sat is fy-
ing: 

( 1 )  E a c h  f q ( u i )  i s  a n  indecomposable in d i m e n s i o n  i + 2 m ( i ) S ~ ,and  thus  f ,  i s  a 
m o n o m o r p h i s m .  

( 2 )  fq(Bn)c 
PROOF. In order to define f,, we need a map that looks very similar, but is in 

fact quite different. The idea is to try to send ui to ui+zm+q,  but this will not work 
if q > 1 .  We need to correct the generators in the image, just as we corrected the 
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xi's to get ui's. AS usual, m = m(i) is given by 2m - 1 5 i 5 2mS1 - 2. Define 
ij,: Bo + Bo by 

ui+2m+q for i # 2' - 1 
Gq(xi) = if q > 1, 

~ i + z m + q - l  for i = 2' - 1 

91(xi) = 0 

on the generators xi and extend as an algebra map. Then define 
-

(5.6) fq(ui)= Ui+2m+q + Gq(ui- xi). 

This can be written as 

~ i + 2 m + q  for i = 2"' - 1 or q = 1: 

'q(Ua) = { Bq(ui) otherwise. 

Let g, = ij,@ 212 and f, = f,@ 212 be the mod 2 reductions, as usual. (Note that 
for q > 1 g , ( ~ ~ ~ - ~ )  since g, usesis very different from f , ( ~ ~ ' - ~ )  uses m, while f, 
m, in determining the two-power added to the dimension.) 

Since xi,u, E B,(i)-l for all i, (5.5) shows that gq(Bn) C Bn+l,  and thus the 
same is true of f,, so (2) holds. 

Now we will work to show that each f, is a fractal A-map. To do this we will 
show 

(5.8) f q ( ~ d i )sq2'= f,((?di) sq2') mod 2"(i)s1 

for s < a( i ) ,  i # 2"' - 1, and then apply Lemma 2.5, or rather a slight variation of 
it, as we now explain. The point is that we wish to replace di by jidi in Lemma 2.5. 
This is no great problem, since /5dj.2k with j odd is also built via Witt sums from 
the P x , . ~ ~  , with the exception 's, which play the same role in the Bn's as the X j . 2 '  'S 

of the X ~ T - ~ ' S(recall Px21.-1 = 0). Therefore, all we need to do, in addition to 
proving (5.8), is show that f, commutes with the appropriate (i.e. fractal) Steenrod 
operations on the generators X ~ Y - ~= U ~ T - ~ .We will do this straightforward mod2 
computation first. We have, for all q, 

2* 2 2
fq(x2'-1 Sq ) = fq(60,sx~r-1-1)= S0,s~2r+s-1+27-1-1, 

with the Kronecker So,, nonzero only for s = 0. On the other hand, we can compute 

(fqx2T-1) Sq 2* = ~ 2 7 + s + 2 7 - 1  Sq2* = ~ ( ~ 2 r + q + 2 7 - 1 )Sq2* = Sq2s .~ ( d 2 ~ + q + 2 ~ - 1 )  

To the latter we may apply (3.3)(4) (since s 5 r - 1 implies (2'+, + 2' - 1) - 2' L 
2"'+4, i.e. the operation is strict), so it equals 

2 
7 2 7 + q + 2 7 - 1 , 2 s ~ ( d 2 7 + q + 2 7 - 2 5 4 )  = -1& , s ~ ~ r + q - l + ~ T - ~  mod 2, 

as claimed, since s 5 r - 1 ensures that the Lance coefficient is SO,, mod 2. 
Now we turn to proving (5.8). If i = 2' - I ,  both sides are zero. If, however, 

i # 2' - 1, we first claim that 

(5.9) .fq(@i) = ?(di+Zm+q)+ gq(j(di)- di) = j(di+zm+q)+ Bq(fdz), 

where 2m 5 i < 2m+1- 1. 
The subtlety of this claim is illustrated by the fact that it is clearly false for 

i = 2' - 1, but we assert it nevertheless holds for all other differences of two two- 
powers. We will sketch the four cases to consider: 
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First, if i is not a difference of two two-powers, then neither is i + 2m+Q. So a 
Witt sum may be formed using (5.7) to obtain either f ; jdi  = jdi+2m+~as desired, 
if q = 1, or if q > 1, &jd,  = gqjdi = gq(di + ?di), which in turn by (5.5) is 
jd,+2m+o + ijq?dz. 

On the other hand, if i is a difference of two two-powers, and q = 1, but i f 2' -1, 
then i +2m+1 is also a difference of two two-powers, but not one less than a power 
of 2, and one can check that both jd, and j d i+2m+~  are Witt sums with a term 
missing at  the bottom, so by (5.7) $1 carries the one sum to the other, as desired 
(this fails for i = 2' - 1 because of the difference between m and m). Finally, if i 
is a difference of two two-powers, but q > 1 and i f 2r - 1, then i + 2m+Q is not 
a difference of two two-powers, and we proceed rather carefully, as follows. In this 
case. clearly fq( jd , )  = ijq(jd,), so we only need show that j(d,+2m+s) - gqdz= 0. 
This follows from the definition of g, in (5.5). taking special note that the two 
bottom terms in the Witt sums both in effect use m ( j )  rather than m ( j ) ,  and 
hence match. (This too would fail i f  i = 2' - 1, due to the difference between m(i)  
and m (i) .) 

We now prove (5.8) by using formula (5.9). As a first step we show that 

(5.10) g,(?(d,)) sq2'= g,(?(d,) sq2') mod 2"l 

for s < cr(i). 
To prove this, first note that g, is a fractal A-map when restricted to  L, i.e. 

To see this. observe that if q = = 0, so gl commutes with all Steenrod 1, gl ( x ~ ~ - ~ )  
operations, while if q > 1, gq(x27-1) = and the calculation is now u ~ ~ - ~ + ~ ~ + ~ - I ,  
similar to the mod 2 calculation we already made earlier in the proof for fq  on x27 -1 

(the requisite application of (3.3)(4) requires q > 1though, in this case). Kow since 
r(B,) c L nB, = L, by (3.2)(3). ?(d,) is actually a Witt polynomial in L, (not 
just in L) mod zk+', so (5.10) holds since gq is fractal on L. 

From this point on we must consider strict and final operations separately: 
Case I. sq2'is strict on dimension i. 
With sq2'strict on i ,  we can take (5.10) one step further using (3.2)(4) to obtain 

(5.11) gq(?(dz))sq2'= ijq(?(d, sq2 ' ) )  mod 2'"+'. 

Kow we are ready to  complete the verification of (5.8) in this case. Using (5.9) 
and (5.11) the left side of (5.8) is 

But the right side of (5.8) is jq(j(d,)  sq2') ,  which (using (3.3)(4) since sq2'is strict 
on i) is congruent mod 2"+' to fq  ( j (d ,  sq2'))  = fq(j(7z,23d,-23)). Again using the 
fact that sq2'is strict on i ,  so that m( i  - 2Y)= m(i )  = m, we may use (5.9) to  
write the latter as 
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Thus the desired congruence holds provided we show that 

But since sq2'is strict on i, it is also strict on i + 2m+'J, so again by (3.3)(4) 

2fi(d2+2m+q)sq2' /j(d2+2m+q Sq ) = yi+2m+q,2sj(di-2s+~m+q) mod 2k+1. 

The only remaining ingredient now is yi+2m+q,2s G y2,2a mod 2"'. But this follows 
from the number theoretic Corollary 4.5. 

Case 11. sq2'is final on dimension i .  
In this case, recall i - 2" = 2m - 1. 
We begin with the left side of (5.8). By (5.9), jq(?di) sq2'= F(di+2m+q)sq2'+ 

jq(?di) sq2' .  Now although sq2'is final on i, it will be strict on i + 2m+q, so we 
may apply (3.3)(4), along with (5.10) (which we proved for both Cases I and 11), 
to  see that the latter is congruent to  

However, the second term here is congruent to 0 by (3.2)(5) since sq2'is final on i .  
Moving now to the right side of (5.8), we have 

jq((?dt) sq2')  = .fq(dt sq2' + ('7d2) sq2')  E Y t , 2 ~fq(dz-2s) f 0, 

again by (3.2)(5). The latter is 

since 2m - 1+ 2m+q is odd. Now Corollary 4.5 completes the proof of (5.8) since 
it shows that the Lance coefficients are congruent mod 2"l. 

This completes the proof that each fq is a fractal A-map. 
It only remains to show ( I ) ,  that fq(ui)  is an indecomposable in dimension 

i ~ 2 ~ ( ' ) + ~ .While it is clear from (5.6) that fq(u,) is indecomposable, it is far from 
clear that it is homogeneous of dimension i + 2 m ( i ) + ~ .However, from (5.7) and the 
Witt polynomial form of the terms of (5.9), it is clear this will hold (inductively) 
provided we show that for q > 1 gq(?di) is homogeneous of dimension i + 2m+Q, 
where 2m 5 i 5 2m+1 - 2. 

We let dim denote the dimension of an element which is homogeneous with 
respect to dimension, and let exp, (respectively exp,) denote the total exponent of 
a monomial in the x's (respectively u's). Of course dim and exp are both additive 
on products. Now since i jq (~2m-l )  = ~ 2 ~ ( 2 ~ - 1 + l ) - l ,we have 

(dim + expU)(Gqx2m-1)= 2m(2q-1 + 1)= (2q-1 + 1) . (dim + e ~ p , ) ( x ~ m - ~ ) .  

Thus 

(5.12) (dim + exp,) o jq= (2q-1 + 1) . (dim + exp,) 

on the generators of i ,  and hence (by additivity on product,^) on all of i .  Of 
course dim + exp, is just the weight grading on i ,  and we know from (3.1) that 
since exp,(l) = 1, ?d2 has weight i + (2m+1- i )  = 2m+1 (since i # 2m - 1, so 
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m(i)  = m(i)) .  Also, by the definition of g, in (5.5))exp, 0 g, = exp, since q > 1. 
Using these facts we can solve in (5.12) for 

as claimed. 
This completes the proof of Lemma 5.4. 
To complete the proof of Theorem 1.2 from Lemma 5.4, merely note Ln and 

Pn are An-1 subalgebras of Bn, and looking at dimensions shows that the tensor 
product of the inclusions and the fqlsgive the desired isomorphism. 

We will finish this section by showing that the maps f, have a rather comforting 
feature. Since our fractal grading using homogeneous generators ui apparently 
underlies the ability to redimension the fractal A-algebra Bo with the f,'s, one 
would hope that f, carries u, to an element which is homogeneous with respect to 
the grading as well as with respect to dimension. 

LEMMA5 . 1 3 .  fq(ui) i s  homogeneous of grade 2m(i)+'4 

PROOF.As with the proof of ( I )  in Lemma 5.4, this will follow inductively from 
(5.7) and (5.9) if we show that gq(?di) has this grade for q > 1 and 2m 5 i < 
2"+' - 2. Now on the generators 5 2 ~ ~ 1of i, 

provided q > I ,  so by additivity grade o g, = 29-I . grade on all of i .  Thus 
grade(gq($di))= 2,-I . grade(?di) = 24-I . 2m(i)+1= 2m(i)+qas claimed. 

6. Proof of Theorem 3.2. 

THEOREM3 . 2 .  Let  m = m(i)  as  above. T h e n  the  h o m o m o r p h i s m s  r and  7 
sat is fy  the  following: 

(1) ? extends  uniquely  t o  a n  algebra m a p  Bo -+ i .  
(2) ? ( X ~ T - ~ )= -x2.-1 for all r > 1. 
(3) r (Bn) c Bn. 
(4) ?(di)sq2' ?(di sq2')mod 2"(')+l if sq2'i s  strict  o n  i, i.e. if s < a(i)and  

2m 5 i - 28 < i 5 27n+1- 2. 
(5) ?(di)sq2'= 0 mod 2V(i)+1if sq2'i s  final o n  i ,  i .e.  if s < a(i)and  2" - 1 = 

i - 2S < i 5 2"+' - 2 .  

PROOF.The first step is to show that ?, which was defined only on the integral 
primitives, actually produces ? ( s t )  with integral coefficients. This will follow from 
Lemma 2.1 of [La], provided we verify the required hypothesis. This reduces to 
showing that for any odd j ,  if we let 

then 
2 2hk (x l , .. . ,x2r- l , .  . . )  = hk- l (x l , . .  . ,~ 2 ' - ~ , .. . )  m 0 d 2 ~ .  

Letting m = m ( j  . 2k )and S l  = C,,, x:,-,, the reader can verify that this means 
-

we must show 
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Since S1 = l2 mod 2, when we work mod 2k we have 

and the result follows. 
The second claim of the theorem follows immediately from the definition in (3.1), 

since xzl-l = d2.-1, and 2fi(2r-1)+1 - (2r - 1) = I .  
To prove the third claim, r(B,) C B,, it is sufficient to show that r(x,) E 

B,(i)-l. Looking at the Witt sum, for this it is sufficient by an inductive argument 
to show that ?(d,) E mod 2"(i)+1. Looking at the formula for ?(d,) we see 

where the sum is over all R = ( r l ,  r2 , .  . . ,r,) such that C r1(2' - 1) = i and 
C rl = 2fi+1- i. We will show that if x;' . . .x;: does not lie in B,(i) -1 then the 
coefficient is divisible by 2"(i)+1. Now a monomial xi1 . . . xi", lies in B,(i) -1 only 
if all its terms xi:-1 do, and is in B,(,)-l provided v(rl) 2 e(a( i)- l ,2 '  -1) 2 
a ( i )  - 1. Thus it will suffice to  show that 

if v(r1) < a ( i )  - 1 for some 1. This is assured by Lemma 4.6, which was proved in 
our number theory section. 

Now we turn to  part (4). Note in this case that m(i) = M(i) = m(i  - 2") = 
m(i  - 2"), all of which we will call m here. To evaluate the left side we need to 
compute the action of the Steenrod algebra in L. It is convenient to use a different 
lift of the total Steenrod square Sq to c Bo. This lift will also obey the integral 
Cartan formula, and agree with the usual Sq mod 2, and therefore agree with the 
Lance lift on ?(di) mod 2"(')+'. Let 1 = C,,, xzr-1 as usual. Now mod2, -

so the lift defined by 

will be correct mod2, since (2t:1) is odd precisely if t + 1 is a power of 2. In L 
the action of the Steenrod algebra preserves the weight grading, which is dimension 
+ exponent. Since in this grading ?(d,) is homogeneous of grade 2m+1, we must 
have ?(dZ) sq2'also homogeneous of grade 2"+l mod 2"(Z)+1. We are now ready to 
compute carefully the left side of (3.2)(4), freely using (6.1), Lemma 4.7, the Z(2) 
Cartan formula, the fact that ?d, is a Witt polynomial in L, the subscript 1 )  for 
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weight projection, I for dimension projection, and the fact that 1 has exponent 1: 

The right side of (3.2)(4) is 

Note that here the hypothesis 2m I i - 23 is crucial to the validity of this formula 
for ?(diPzs).Thus to complete the proof we need to show that 

Corollary 4.3 guarantees the validity of this final congruence, completing the proof 
of part (4). 

Finally, we prove part (5). Since all of A preserves the weight grading mod2 
on i,Lance's squares must preserve it mod 2"(')+' on ?d,. Now Tdi has weight 
2m+1, so the element (?di) sq2'has weight 2m+1mod 2"(i)+1. But since sqZ8is 
final on i, it also lies in dimension 2m - 1, and we claim no nonzero element in 
this dimension can have weight that large. This is because in terms of the x27-l's, 
weight = dimension + exponent on i,and exponent 5 dimension, so weight 5 
2 . dimension, 
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