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Larry Smith [7] defined and detected elements j3f in the p-primary compo
nent of the stable homotopy of the sphere for t > 0 and p > 5. In the same 
manner, Toda's construction [11] gives elements yt f or t > 0 and p>l. We have 
the following results which are a consequence of our computation of the second 
line of the Novikov spectral sequence for a sphere at an odd prime. 

THEOREM 1. (a) p does not divide 0, G 7 r ^ 2 _ i ) f 2 ( p _ i ) _ 2 ( 5 , ° ) forp>5, 

t>0. 

(b) 0 * 7, 6 i r ^ s . , , ^ ^ , ^ ^ ^ ) forp>l,t> 0. 
(c) axpt =£0fort=£0or-l mod p,p>5. 

Partial results on the nontriviality of yt have been obtained by Thomas and 
Zahler [10], [9], Oka and Toda [6], Johnson, Miller, Wilson, and Zahler [2], and 
Ravenel (unpublished). 

These infinite families can be studied most conveniently by means of the 
Novikov spectral sequence 

E** = Ext**>sp(5P*, BP*(X)) =* 7r*(X)(p) 

for a space X [1]. BP*( ) is the Brown-Peterson homology theory [1], and 

BP* = BP*(S°) = Z(p)[vl9v2, . . . ], \vt\ = 2(pf - 1). 

Let In denote the invariant ideal (pf vt, . . . , vn_l) C BP*\ I0 = (0). For a 
BP*BP comodule M let H*M denote Ext^p BP(BP*9 M). By a theorem of Land-
web er [3] we have for n > 0 

H°BPJI„ = Fp[vn]. 

Let 8n: HlBPjIn+l —+ Hi+lBP#/In be the connecting homomorphism in 
the long exact sequence associated with 

0 - + BPjIn — % B P j I n -+ BPjIn+l - * 0. 

It is folklore (see [2]) that if p > 7, t > 0, and 0 * ô0ô1Ô2(u|) E H3BP*, then 
this class survives to yt and yt ¥= 0. Our proof of Theorem 1 involves an analysis 
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of the groups involved in computing d0d1d2(vl). For p>29 the necessary 
HlBP/In were computed by two of the authors and announced in [4]. A corol
lary of this result is that 0 =£ S ^ O ^ ) G H2BPj(p) (see [2]). Hence it remains 
to study the exact sequence 

H2BP* - ^ * H2BPj(p) —±+ H3BP*. 

The proof that &i&2(
v3) ^ *m Po r e s t s o n a c o m pl e t e calculation of H2BP*. We 

now describe this group. 
First define a sequence of elements xt G v2

lBP* by 

x0 = u2, 

xx = uf - v%v^xvz, 

x2=x?-vf-lvf-t>+1 -vP
2+P-ivÇ

2-2pv3, 

**=*£-! -2^+ 1^w"1-1>yf-p^1 + 1 for*>3. 

Also let a0 = 1 and a. = p1 + p / _ 1 - 1 for ƒ > 1. 
Now BPj(pi+1, v™pl) is a tfP^P-comodule for m > 0, and we have 

LEMMA 2. xjg+/ G H°BP*/(pi+ x, < p / ) /<" 

/p*-' *ƒ/ = o , * = l , 
0 < m < < 

ffl*-/ otherwise. 

Let 

HQBPj(pi+i,if?pi) -^HlBPj{pi+l) -^-*H2BP* 

denote the connecting homomorphisms associated with the obvious short exact se
quences. Let 

for a, i, k, m as in Lemma 2, and abbreviate Pn/(iti) = 0W/(A, £„/(!) = 0„. Then 
our main result is 

THEOREM 3. Let p>3. The graded Z^ymodule H2BP* is the direct sum 
of cyclic modules generated by )3 2/+ƒ//• / •+ y of order pi+l for k> i> 0, 
(a, p) = 1, a > 0, vv/rt w as in Lemma 2, W m > a ^ if p\m, k = i + j . 

REMARK 4. The lowest dimensional element of order pi+1 occurs when 
k = 1 and a = m = 1 in dimension 2(p2 - l)p2i - 2(p - l)p\ 

For p > 5, the stable homotopy element er(i), t > 0, 0 < r < p - 1, of L. 

Smith [8] is represented by Ptp/(P-r) a n d 0 k a ' s Ppt r t5L f > 0, 0 < r < 2(p - 1) 

t/(2p-i-r)- Smith's element j3f is represented by our pt. Thus none of 
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these elements is divisible by p 2 , and of them only p' x can possibly be divisi
ble by p. 

Our techniques lead to much new information about products in H3BP%9 

such as 1(c). This will appear elsewhere. 
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