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01. INTRODUCTION 
THE EHP SEQUENCES in the homotopy groups of spheres arise as follows. A prime p is 
fixed, and the spaces under consideration are to be localized at p. For each positive 
integer n, there is the James map 

h2,+, : fiS2”+’ - fH2”“+‘. 

The homotopy fibre of hz,+l will be denoted 9”“. There is another James map 

h2,, : fd2” - as2*p-‘. 

The homotopy fibre of h2,, turns out to be S2”-‘. Each of these fibrations gives a long 
exact sequence of homotopy groups. Using the adjointness isomorphism rr,(fIX)- 

TV+, to replace some of these groups, we obtain the two EHP exact sequences 

. . . xq(S2”) E nq+l(s2”+‘) H, x*+,(s2”p+l)) 4 Yrq_,(S2”) 4 * * * (1.1) 

. . . rr,-,(s2”-‘) A sr,($“) H, ~,(s2”p-“) & q_1(s2”-‘) E\ * * - (1.2) 

We have given the homomorphisms in these sequences their usual names: E for 
suspension, H for Hopf invariant, and P for Whitehead product. When the prime 
p = 2, it also happens that 9’” = S2n, and the EHP sequences provide a way of 
calculating the groups TV, inductive on the sphere dimension n, and on the stem 
dimension q-n. When p is an odd prime, the space 3’” (which has cells in each 

dimension 2n, 4n,. . ., 2n(p - 1)) replaces the even dimensional sphere in the EHP 
induction. The homotopy groups of the even-dimensional spheres localized at p may 
be obtained from the fibration 

s2n-I _ RS2” _ fpn-I 

which splits as a product. 
In 141, we have constructed for each simply-connected CW space X, a spectral 

sequence {E?‘(X)} which is called the unstable Adams-Novikov spectral sequence for 
X. This construction will be summarized in $5. This spectral sequence is constructed 
from X using the Brown-Peterson spectrum BP (associated with the prime p), and 
converges to the homotopy groups of X localized at p. In this paper, we shall show 
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that there are long exact sequences for the E2 terms as follows. 

. . . + ,59’(9’) - j7J+‘(S2n+1) + Ef”‘(S2”P-9 d - &“.‘(s2”) - . . . (1.3) 

. . . - EJ-‘(9’3 - E;‘(@) - Es-‘.I-‘(S?,l”-1) d _ E;+‘.‘-i(S?“-1) _ 
(1.4) 

In [4, 963, a certain non-abelian category G is constructed (in [4], this category is 
denoted M(G), and is called the category of unstable coalgebras over the BP 
Steenrod algebra). For each CW space X, we denote the homology of X with 
coefficients in the spectrum BP by H,(X; BP). In the literature, this is sometimes 
denoted BP,(X). If X is a CW space for which H,(X; BP) is free over the 
coefficient ring r.JBP), then it is shown in [4, 6.17)], that 

E?‘(X) = Exp”i;‘(H,(X; BP)) . 

Here, and throughout this paper, we use the notation 

Ext”d’( - ) 

to stand for the sth derived functor of the functor 

Hom,(H,(S’; BP), -). 

In 92, we give brief exposition of the theory of [l, 2,5] concerning derived functors on 
non-abelian categories. 

The sequence (1.3) is obtained from the James fibration 

^2n S - fLy2”” - fis2np+‘. 

The BP-homology of these spaces form an injective extension sequence of coalgebras 
(see 83). By adapting the theory of Moore-Smith[l2] and Bousfield [5] to this 
situation, we show in 04 and 07 that this leads to a long exact sequence of Ext groups, 
which when identified as the E2 terms of the spaces in the James fibration becomes 

. . . - &.@2n) - J$J(fiSZn+‘) + EJ(flS2”P+‘) & . . . . (l-5) 

In 66, we use special properties of unstable BP,-resolutions to show that 

Using this isomorphism (for S2”+’ and for SZnp+’ ) to substitute into (1.5) gives the EHP 
sequence (1.3). 

The other EHP sequence (1.4) arises from a composite functor spectral sequence 
(abbreviated CFSS) which will be constructed in 85. For each A4 in G, the CFSS in a 
purely algebraic spectral sequence converging to Extd(M), and for which 

El’= Ext:‘(R’P(M)). 
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We are suppressing the second index t in these Ext groups. Here R’P stands for the 
ith derived functors of the primitive element functor P on the category of coalgebras 
(see 83 and [S]). U is the abelian category defined in 14, 073 (in [4, 871, U is denoted 
A(U)). When M is in G, and is nice as a coalgebra (i.e. Rip(M) = 0 for i > l), the 
CFSS has only two non-zero columns, and gives an exact sequence 

. . . + Ext”“(PM) - Extc”(M) - Ext”,‘(R’PM) A - - - . (1.6) 

For the space S’“, H,(S*“; BP) = A4 is nice as a coalgebra; PA4 and RIP(M) are 
easily determined. Using isomorphisms 

Ext”‘(PM) = E2S(S2n-1) 

Ext”“-‘(R’PM) = E2s-‘(S2”p-“) 

to replace the terms in (1.6) gives (1.4). 
In $8, we also use the CFSS to study the double suspension 

. ~*SJ-I(S2n-l) _ &sJ+l(S*n+l)~ 

As a coalgebra H.&IS’““; BP) is nice, and we call 

R’PH,(RS*“+‘; BP) = W(n). 

It is shown in 83 that W(n) is a free Ir,(BP)l@)-module with generators in degrees 
2np, 2np*, 2np3,. . . . The CFSS again has but two columns, which after identifying the 
terms, becomes 

. . - j7*sJ-I(S2n-l) _ j72SJ+7S*“+l) - j172’-‘.‘-‘(W(n)) L& . . . (1.7) 

where a has a bidegree (2,O). It follows easily that for (s, t) # (0,2n + l), the groups 
&s*‘(S2n+1), and thus all succeeding E:‘(S*“*‘), have exponent p”. We also use this 
sequence to establish vanishing lines, zones of stability, and zones of exponent p” for 
the groups Gr*‘(SZm+‘), and for the stable groups E2&‘(S”). These exact sequences are 
used by one of us [ 181 to make extensive calculations in E2’**(S2”+‘). 

There are analogous EHP sequences for the unstable Adams E2 terms based on 
mod-p homology, which are obtained in [4,6,7] by somewhat special methods. We 
leave it to the reader to see that each sequence may also be obtained by a suitable 
CFSS. 

The notations and conventions of this paper are similar to those of [3,4]. Space 
means Hausdorff topological space with base point. The homotopy relation for maps 
or for spaces is indicated by =. In an algebraic situation, a homomorphism is to 
preserve the structure; isomorphism is indicated by =. For a space X, flX stands for 
the loop-space. In any category, I stands for the identity functor; the identity map of 
an object with itself is 1 or Ix when we wish to specify the object X. If 8: S+ T is a 
natural transformation of functors, we write 

0 = 8, : S(X)+ T(X) 

to stand for the natural map. Where the meaning is clear, we may omit parentheses. 
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The ring of integers is denoted by 2, the rationals by Q, the field with p elements by 
Z,, and the ring of integers localized at p is Z,,,. We also occasionally abbreviate the 
words “long exact sequence” by LES, and “composite functor spectral sequence” by 
CFSS. 

'$Z.COTRIPLESANDDERIVEDFUNCTORS 

In this section, for the convenience of the reader, and to establish notation, we 
summarize some facts from [I, 2,5] about cotriples, triples, and non-abelian derived 
functors. 

A cotripfe (F, S, c) on a category C consists of a covariant functor F: C+ C, 

together with natural transformations 6 : F + F2 and E: F --* I such that the following 
diagrams commute. 

F”FF’F”F 

V/L 
F 

F6’ F2 

61 IbF 
F2* F3 

When (F, S, l ) is a cotriple on C, an F-structure on an object X in C is defined to 
be a map $: X+ FX such that the following diagrams commute. 

X6-X XAFX 

\I l = 
X tiX-_b* F2X * 

A map f : (X, $)+(X’, $I’) between objects with F-structure is a map f : X -+ X,’ in C 
for which #‘f = F(f)+ The category whose objects are {(X, $I)} where X is in C with 
F-structure (I, and whose maps are maps of objects with F-structure will be denoted F 
(in [4], this category is denoted C(F)). Notice that each object of the form FX has a 
canonical F-structure, namely S : FX+ F’X. The objects of the form (FX, S) will be 
called the models in F. 

We next observe that F is also the functor of a tn$le (F, CL, 7) on F. That is, there 

are natural transformations p : F2-* F and n : I + F on F which are defined by 

p = Fe : (F’X, 6) - (2% 6) 

117 = IL:(X $1 - (F-X 0 

It is easily verified that p and 71 satisfy the following commutative diagrams. 

‘;T>” 
F 

F3 & F2 

4 lp 
F2-,F . 

These are the properties which assert that (F, p, q) is a triple on F. 
In this situation, suppose that T is a functor from F to an abelian category A (it is 

enough that T be defined on the full subcategory of models in F). Then the right 
derived functors 

R’TF:F - A 
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are defined as follows. The triple (F, CL, r)) on F defines a functor KF from F to the 

category of augmented cosimplicial complexes over F: for each (X, +) in F, and for 
each non-negative integer q, 

KF(X)q = Fq+‘X. 

The coface and codegeneracy operators in KF(X) are given by 

d’ = F4-‘,,p : F’7X - Fq+‘X 

si = p-l,& : Fq+2X - F”‘X 

for each 0 d i s q. The augmentation 

d-’ : KF(X)-’ - KF(X)’ 

is the map +!I: X + FX. Let T&r(X) be the cosimplicial complex which results from 
applying the functor T to each degree of the unaugmented cosimplicial complex 
g,(X), and to each coface and codegeneracy operator. The cochain complex 

(ch TibW), 8) 

is obtained by taking 

a = x (-l)‘T(d’). 

Definition (2.1). For each (X, $) in F and each non-negative integer q, the right 
derived functors are defined by 

RqT,(X) = Hq(ch T&(X), a). 

As it will be of use to us later, we give the fundamental property of derived 
functors: namely, that they may be computed from more general resolutions as 
follows. 

Definition (2.2). For X in F, a cosimplicial resolution of X by models consists of 
an augmented cosimplicial complex Y.over F such that 

(1) Y-’ = x 
(2) For each q 3 0, Yq is a model in E 
(3) For each model M in F, the chain complex 

is acyclic. Here F’ refers to the category whose objects are the same as those of F, 
and whose maps are to be formal finite sums of maps in E 

We remark that if the cosimplical complex Y is a cosimplicial complex of abelian 
groups, then condition (3) may be replaced by 

(3’) The cochain complex (ch(Y), a) is acyclic 
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THEOREM (2.3). If Y is a cosimplicial resolution of X by models, then 

RqTF(X) = H4(ch T?, a) 

The proof is in [l, 51. 

93. COALGEBRAS AND PRlMlTMS 

In this section we recall the theory of Bousfield[5] and Moore-Smith[ 121 concern- 
ing the primitive element functor P and its right derived functors R’P on the category 
of coalgebras. At the same time, we make some minor modifications so that the theory 
applies in our situation. We then use this to make calculations of R’P(C) for certain 
coalgebras C which will occur later. 

Let A be a commutative ring with a unit element. In the applications, A will be the 
coefficient ring A = w,(BP). Let M be the category of positively graded A-modules 
which are free of finite type. For each M in M, let S(M) be the cofree coassociative 
cocommutative coalgebra without counit generated by M. S is the functor of a 
cotriple (S, 8, E) on M. A module M with an S-structure will be called a coalgebra. 
Equivalently, a coalgebra M is a module M in M with a diagonal map 

which makes M a coassociative cocommutative coalgebra (without counit) in the 
usual sense. Using the notation of 82, S will denote the category of modules in M 
with S-structure; in other words, S is the category of coalgebras over A. 

For each coalgebra C in S, the group of primitives P(C) is defined by 

P(C)=kerA:C w C@,, C. 

Thus P is a functor from S to the category of abelian groups. The theory of [l, 51 
which was summarized in $2 yields right derived functors R’P on S. Our situation 
differs from that of [5] in two ways. The first difference is that [5] considers 
coalgebras over a field k, while we consider coalgebras which are free of finite type 
over the ring A. This causes no change in the theory. The second difference is that [5] 
considers connected homology coalgebras B with counit (that is, there is a counit map 
l : B+A with E: B,,= A). For such a coalgebra with counit, the primitives are defined 

by 

P(B)={x in B:A(x)=l@x+x@l}. . 

On the other hand we consider positively graded coalgebras C without counit (that is, 
C, = 0), and the primitives are taken to be ker A. The two theories are seen to be 
equivalent as follows. Let S,, be the category consisting of connected homology 
coalgebras over A, which as A-modules are free of finite type. There are natural 
equivalences of categories 

as follows. For C in S, let a(C) = A @ C, where the extra A-summand is given degree 
zero. For B in S,, let P(B) = ker E. Then a and /3 are easily seen to be natural 
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equivalences of categories. Furthermore, for C in S, I3 in SO, 

P(a(C)) = P(C) 

P(B) = W(B)). 

We also observe that the canonical cosimplicial resolutions of 02 in the categories S 

and SO are related by 

KS&(C)) = aKs(C) 

KsWBH = BK,(Bh 

Therefore, we also have 

R#P,(C) = RqP,(a(C)). 

We may suppress the subscript S or SO and write simply RqP(C) for these derived 
functors. We also note from [5, (3.2)] that 

R’P(C) = P(C). 

Following [5], we adopt the definition: 

Definition (3.1). An injective extension sequence is a sequence of maps in S 

such that 
(1) g is an epimorphism (of A-modules). 
(2) The map f is the inclusion 

(Here 0 stands for cotensor product.) 
(3) C is injective as a C”-comodule. 

PROPOSITION 3.2. Let C’+ C-, c” be an injectiue extension sequence in S. Then 
there is a long exact sequence of abelian groups: 

o-P(C)- P(C)- P(c”)-e, *a’ 

. . . b\ R’P(C’) - Rip(C) - R’P(C”) 6, . + * 

where S raises derived degree i by 1. 

Proof. Using the natural equivalence of Swith So, the proof is exactly as in [5]. 

We conclude this section with some calculations of R’P(C) which will be of use 
later. A prime number p is fixed and Z,,, refers to the ring of integers localized at p. 

TOP Vol. 21. No 4-D 
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BP is the Brown-Peterson spectrum for the prime p, and A = ?r,(BP), which is the 
polynomial algebra 

A = z(,,[vl, 02,. . .I 

with degree (Vi) = 2(p’ - 1). We shall consider certain coalgebras over A, for which we 
need some notation. First, let M(n,, n2,. . . ) stand for the free A-module with genera- 
tors of degree n,, n2,. . . . 

(1) For each positive integer m, let C(x,,,) be the coalgebra which as an A-module 
is freely generated by x,,,, and with x,,, primitive. Evidently PC(x,,,) = M(m). 

(2) For each positive integer n, let D(x2.) be the coalgebra which as an A-module 
is freely generated by {x~~, s 2 1). The diagonal map A is given by 

A(x2n.t) = 2 Xtni @xtnp 
i+j=s 

It is immediate that PD(x2,)= M(2n). The coalgebra D(x2.) is the A-dual of the 
polynomial algebra on a generator of degree 2n; thus D(x2.) is cofree as a coalgebra. 
D(xzn) also has a Hopf algebra structure; as an algebra D(xz,) is a divided power 
algebra, which explains the notation. 

(3) For each positive integer n, let T(x2”) be the coalgebra, which as an A-module 
is freely generated by {xZns, s 3 1). The diagonal A is given by 

A(x2ns) = 
= 0 ’ X2ni @x2+ 

i+j=s i 

Then PT(x,,) = M(2n). T(x2J also has a Hopf algebra structure, the algebra structure 
being that of a polynomial algebra on one generator x2”. 

(4) For each positive integer n, let T,(x2,) be the sub-coalgebra of T(x2.), which as 
an A-module is freely generated by {xtns, 1 d s s p - 1). Then also PT,(x2,) = M(2n). 

(5) For each positive integer n, let B(x2”) be the coalgebra of the bipolynomial 
algebra over A defined as follows. As an algebra, B(x2”) is the polynomial algebra 
over A generated by {x2+ x 2 0). For each s 2 0, the element 

xi, + p(x2J-’ + * * * + pSXznp’ 

is to be primitive. It can be verified (see [lo]) that this well-defines the map A making 
B(x2”) a Hopf algebra. The A-dual of B(x2,) is another Hopf algebra of the same form 
which explains the notation. From the definition 

P(B(x2,)) = M(2n, 2np,. . . ,2np”, . . .) 

PROPOSITION (3.3). For these coafgebras, the right derived functors R’P are as 

follows. 
(i) R’PC(x2,_,) = 0 

(ii) R’PC(x2.) = M(4n) 
(iii) R’PD(x2,) = 0 
(iv) R’PT(x2.) = M(2np, 2np2, . . .) @zZ, 

(v) R’PB(x2,) = 0 
(vi) R’PT,(x,,) = M(2np) 

Also, each of these coalgebras C(x,,,), D(x2,), T(x2.), B(x2,) is nice; that is, R’P 
vanishes for i > 1. 
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Proof. First, II&,,), B(xzn) and C(X& are cofree as coalgebras (because their 
A-duals are free (anti-commutative) algebras). For C(x,,), there is an injective 
extension sequence: 

W,,) f, WY2.) A mZ4") 

where f(sZn) = yzn and g(yzmS) = z2ns for s even. Then the LES of (3.2) becomes a four 

term exact sequence: 

0 - PC(&) - PD(Y2.) - PD(z4.) - R’PC(x2.) - 0. 

We have 

PC(x,,) = M(2n) 

PD(Y2,) = M(h) 

PD(z4,) = M(4n). 

Hence 

RlPC(x2,) = M(4n) 

R’PC(x2,) = 0, for i > 1. 

For T,(x&, there is an injective extension sequence: 

TdX2”) f, D(Y2.J 8, WZ2”J 

where f(x2.) = ~2.~ and g(y2,~) = zZn,+ for s 3 1. The LES of (3.2) becomes a four term 

sequence: 

0 - P~‘,(x,,) - PD(y2.)- PW,,,) - R’PTdx2.) - 0 

We have 

PT’(x2.) * M(2n) 

PmY2”) = M(2n) 

PW2nJ = M(w7). 

Hence 

R’PT,(xz,) = M(2np) 

R’PT,(x2.) = 0, for i > 1. 

For T(x,,), there is an injective extension sequence: 

f T(X2”) - B(Y2”) 8, W2”J 
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where fh) = YZ", and gh,s) = zZn,,s for s z 1. The LES of (3.2) becomes a four term 
sequence 

0 - PT(x2,) f. PB(y,,) * PB(z2,J + R’PT(X2,) b 0 

We have 

PT(x,,) J M(2n) 

PB(y2,) = M(2n, 2np, 2np*, . . .) 

PB(z2,p) = M(2np, 2np*, 2np3,. . .). 

The map g* is easily seen to be multiplication by p on the primitives of degrees 2np, 
2np*, . . . . Hence 

R1PT(x2,) = MQnp, 2np2,. . .) @lzZp. 

In $8, we shall write W(n) for R’PT(x2,). 

54. THE UNSTABLE ADAMS-NOVIKOV SPECTRAL SEQUENCE 

In this section, we summarize the results of [4], which gives the construction and 
properties of the unstable Adams-Novikov spectral sequence {E:‘(X; BP)} for a 
space X. When H,(X; BP) is free over the coefficient ring rr,(BP), the E2-term is 
isomorphic to an Ext group in a certain non-abelian category G. We show that an 
injective extension sequence in G gives rise to a long exact sequence of Ext groups. 
In 07, this will be used to give one of the EHP sequences. 

As in 03, BP refers to the Brown-Peterson spectrum for a fixed prime p, and 
A = r,(BP) is the coefficient ring. For each space X, the (reduced) homology of X 
with coefficients in the spectrum BP is denoted H,(X; BP). We consider spaces X 
for which H,(X; BP) is A-free of finite type. The category of positively graded free 
A-modules of finite type will be denoted M. Of great importance to the theory in [4] is 
the construction of a certain cotriple (G, 6, e) on M. ‘As in 02, the category of modules 
in M with G-structure will be denoted G (in [5], this category G is denoted M(G), 
and is called the category of unstable I-coalgebras, where I’ is the BP-analogue of the 
dual of the Steenrod algebra). Let A[t] = H,(S’; BP) which is the free A-module on 
one generator of degree t, considered in the category G, with the trivial G-structure. 
As in 02, the derived functors of Homo(A[t], -) will be denoted ExtoS.‘(-_). One of the 
main theorems in [4] is the following. 

THEOREM (4.1). Let X be a simply connected CW space which is p-local. Then there 
is a spectral sequence E$‘(X; BP) which converges to r,(X). If HJX; BP) is A-free 
of finite type, then 

E2YX; BP) = Ext$s’(H*(X; BP)) 

The proof is in [4,§6]. This spectral sequence is called the unstable Adams- 
Novikov spectral sequence for X, and for the remainder of this paper we simplify the 
notation to Ezs.‘(X), with BP understood. 

It sometimes happens that we are led to consider groups Extu (M), where U is a 
simpler (abelian) category as follows. For each M in M, let U(M) = PG(M), where 
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the functor G is as above, and P is the primitive element functor as in 82. In [4], U is 
shown to be the functor of a cotriple (V, 6, E) on M which is then extended to a 
cotriple on the abelian category A of all positively graded A-modules (free or not). On 
A, U is an exact functor. The category of modules in A with U-structure will be 
denoted U (in [4], this category U is denoted A(U), and is called the category of 
unstable I-comodules). We also note from [4], that if M is in G, then M is in 
particular a coalgebra, and the group of primitives P(M) is in U. Thus P may be 
considered as a functor from G to U. Another of the main results of [4] is the 
following. 

PROPOSITION (4.2). Let M be in G, with M cofree as a coalgebra. Then 

Extc”.‘(M) = Ext$‘(PM) 

This is proven in [4,§7] by means of the CFSS, which will be discussed more fully 
in §5 of this paper. 

We also point out for future reference that for M in U, the groups Extt*(M) may 
be computed as the homology groups of the unstable cobar complex C%*(M) which is 
the cochain complex of the cosimplicial complex 

HomdA[tl, k(M)). 

Thus, for each pair of non-negative integers (4, t), 

CC*‘(M) = V(M)*. 

We proceed with a general result concerning Extd(-) groups, which is very 

analogous to (3.2) and to [5, (3.6)]. 

THEOREM 4.3. Let CIA CA c” be a sequence of maps in G, which, considered as a 
sequence in S (coafgebras), forms an injective extension sequence. Then there is a long 
exact sequence: 

. . . - ExtGS,‘(C’) f, Ext,‘*‘(C) + ExtGS*‘(C”) A . . . 

where a has bidegree (1,O). 

Proof. We prove this theorem by adapting the theory of [5] and 02 to the category 
G. First, we construct a category Go naturally equivalent to G, just as S, is naturally 
equivalent to S. The objects in Go are to be of the form A @ M, where M is in G; the 
generator of the summand A is given degree zero. Observe that if both M and M’ are 
models in G,, then so is M @1A M’. Also, if M is a model in Go then the diagonal map 
A : M + M @QA M is a map in Go. Thus, the theory of [5] applies. Let f : X + Y be a map 
of cosimplicial objects over Go. Then the mapping cone M(f) is the cosimplicial object 
over Go defined by the formulas of [5, (3.7)]. Using also the notation of [5,§3], we 
obtain a sequence of mapping cones 

M(n)+M(&j)+M(a) = tic. 

After application of the primitive element functor P : G + U, we obtain a short exact 
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sequence of cosimplicial objects over U: 

The 

idSO 

0 - PM(a) - PM&j) - PkC - 0. 

functor Horn&A, -) applied to this sequence gives another sequence which is 
short exact because PM(a) is injective in U. Using the isomorphism 

Homo(A, -) = Horn&A, P(-)) 

we then obtain a short exact sequence of cosimplicial abelian groups: 

0 - HOW&% Mtrl)) - HOmG(A, M(gj)) - HomG(A, kc) + 0 

H”(ch HomG(A, M(7))) = ExtGS-‘(CM) 

H’tch HOIT&(A, M&j))) = Ext&(C’) 

H”(ch HOm&i, ik)) = Ext&(C). 

Passing to the homology groups of the chain complexes of the cosimplicial groups in the 
short exact sequence above, and using these isomorphisms, we obtain the long exact 
sequence of (4.3) as asserted. 

$5. THE COMPOSITE FUNCTOR SPECTRAL SEQUENCE 

As noted in 85, if A4 is in G, then the group of primitives P(M) is in V, and 

HOmo(A, M) = Horn&A, P(M)). 

Thus the functor HOII’&(A, -) from G to the category Ab of abelian groups factors as 
the composite 

G Homo(A, -) 
l -Ah 

\/ . 

P Hom&4, -) 

u 
Let A be the category of positively graded A-modules, not necessarily free. As will be 
shown below, the functor U is an exact functor on A, and the category U is an 
abelian category. By construction, the models in U (that is, the objects of the form 
U(M) for some M in A) are injective in U. Therefore, for each M in G, there is a 
composite functor spectral sequence (abbreviated CFSS) converging to ExtG(M), and 
for which 

Ep = EXtJ(RPP&f)). 

In each of these Ext groups, the notation Ext”*‘(-) refers 
functor of Hom(A[t], -). For convenience, we suppress the 

to the s-th right derived 
second index t. 

For completeness, and because our situation has some special features not present 
in the general case, we show how the CFSS comes about. 

First, we show that U is an exact functor on A. To see this, let 

O-M’- M- M”-0 
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be a short exact sequence in A. Then 

o- r@‘AM’- r@AM-r@‘AM”-O 

is also short exact, because I is flat over A. Here I = I~,(BP A BP) is the BP 

analogue of the dual of the Steenrod algebra. In [4], it is shown that U(M) is 
isomorphic to a certain subgroup of I @1A M in such a way that 

0 - U(W) - U(M) - U(W) - 0 

is also short exact. 
Next, we form a double complex D***(M) as follows. For each p 2 0, 4 3 0, let 

DP.q(M) = UqPGp+'(M) 

= U4+‘GP(M). 

The latter equality occurs because U = PG. For each fixed q B 0, we have 

D*qM) = UqP(I&(M)) 

which gives D**q(M) the structure of a cosimplicial complex. For each fixed integer 
p L 0, we also have 

D”*(M) = Clt( UGPM) 

which gives D”‘*(M) the structure of a cosimplicial complex. The differentials of 

D**q(M) and Dp-*(A4) commute, and D***(M) becomes a double complex. There are 
two spectral sequences converging to the homology of the total complex of D***(M). 

(1) Filter D***(M) by the first index p. Using the exactness of the functor Uq, we 
have 

Efq = U%PP&4). 

Then for each fixed integer p 3 0, 

(Er* , d,) = (C~TXRPP&L4)) a) , 

and therefore, 

E p*q = Extuq(RPPo(M)). .z 

(2) Filter D*“(M) by the second index q. This spectral sequence will be dis- 
tinguished from (1) by tildes. From the fact that UGP(M) is injective in V, we have 

jpq = 0 
9 for q>O 

l?,pvo J Gp(M). 

Then 

(El*“, d,) J (ch Horn&A, k%;(M), ~9) 

= (CWW, 8) 
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and therefore 
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- E2 p*” = ExtcP(M). 

From the second (tilde) spectral sequence, we conclude that the homology of the 
total complex of O***(M) is ExtMM). The first spectral sequence (1) is called the 
composite functor spectral sequence. 

Remark (5.1). As noted in ([4], §7), each model in G is cofree as a coalgebra, and 
so is a model in S. Therefore, a cosimplicial resolution by models in G-is a fortiori a 
cosimplicial resolution by models in S. Thus, by (2.3), for each M in G, 

RPP&M) J RPPs(M) 

and we may write RPP(M) unambiguously for these derived functors. 

THEOREM (5.2). (i) Let M be in G, and suppose that M is cofree. Then 

Extq”‘(M) = Ext,“‘(P(M)) 

(ii) Let M be in G, and suppose that as a coalgebra, M is nice (02). Then there is a 
LES 

. . . w Ext;*‘(PM) w Extc”*‘(M) __* Ext;-*s’(R’PM) d\ - - . 

where ~9 has bidegree (2,O). 

Proof. (i) If M is a cofree as a coalgebra, Rip(M) = 0 for i >O, so the CFSS 

collapses, and (i) follows. 
(ii) The condition that coalgebra iU be nice means that R’P(M) = 0 for i > 1. In 

this case, the CFSS has only two columns; that is, Ezis = 0 for i# 0,l. The abuttment 
of the CFSS to Ex&***(M) gives the LES as asserted. 

In 07, for M = H,(S’“; BP), this LES will be interpreted as one of the EHP 

sequences. In 08, for M = H,(RS2”“; BP), this LES will be used to study the double 
suspension. 

96. E@p+‘) 

In this section, we prove the following theorem for the E2-terms of the unstable 
Adams-Novikov spectral sequences. 

THEOREM (6.1). For each odd-dimensional sphere Stn+‘, 

Proof. We shall show that a complex which computes E2(S2”+‘) is also a complex 
which computes E2(ClS2”+‘). Let M = M(2n + 1) be the free A-module on one genera- 
tor x2”+, of degree 2n + 1. We also regard M with the trivial U-structure as an object 
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in the category U. Recall that from §S and 82 

E2***(S2n+‘) = Extu*,*(M) 

= H*(cy;*(M)) 

where Cc*(M) is the canonical cobar complex for M in U (see 84). 
For each module N in M, let a-‘(N) denote the isomorphic A-module, but with 

degrees shifted downward by one: a-‘(N), = N,,‘. The results of Wilson[l7] imply 
that if N is a free A-module on odd-dimensional generators, then 

a-‘( U(N)) = @(u-'(N)) 

where Q(-) stands for the indecomposables under the *-product (i.e. loop-product). It 
then follows that for M = M(2n + I), 

a-‘( U4( N)) = QG(o-’ U”-‘(N)) 

for each positive integer q. 
From (4.1) we also know that 

E2s*‘(s1S2”+‘) = ExtGS~‘(H@S2”+‘; BP)). 

Recall that 

H*(RS2”+‘; BP) = m2n1 

where T(x,,) is the Hopf algebra over A, which as an algebra is the polynomial 
algebra over A generated by x2”, with x2” primitive. Let Y be the cosimplicial complex 
where for each q z= 0, 

Yq = G(a-‘U‘YM)) 

Y is augmented by 

T(x2,J = Y-’ A P = G(u-'CM)) 

where l is the algebra homomorphism which sends x2” in 7(x2”) to gF1(x2”+‘) in 

G(a-‘(M)). Then E is also a coalgebra map, and is a I-comodule map; by ([4], (7.3)), 
E is a map in G. By construction, each Y“ is a model in G. To show that Y is a 
cosimplicial resolution of T(x,,), it remains only to show that the cochain complex of 
Y is acyclic. Note that each Y“ is an algebra under the *-product, and the coface 
operators are algebra homomorphisms. Each Yq is filtered by powers of its aug- 
mentation ideal, and the quotients of this filtration are denoted Eo( Y’). Then 

Thus 

Ed Yq) = T( Q(a_’ ITPAl)) 

= no-’ uq+‘lq 

Ed Y) = T(a-‘K&tf)). 

That is, Eo( Y) is the result of applying the polynomial algebra functor T(-) to the 
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acyclic cosimplicial complex cr-'Ku(M). Hence E,,(Y) is acyclic, and then Y itself is 
acyclic also. 

07. THE EIip SEQUENCESOF&-TERMS 

THEOREM (7.1). For each positive integer n, there are long exact sequences: 

(i) - - . - E2','( 9’“) _ ~*sJ+l(cJ2n+l) + E2’.f+~(S*~P+9___5 ,52s+1.f(9n)-. . . 

(3 . . . - J&J.‘-1(S*‘--9_+ E2S*f(9*n)+ 

Proof. For (i), we consider the fibration 

,2$-1.t-1(‘J2”P-1)$ E;+I.t-1(S2,,-1) _ . . . 

where h = h2”+, is the James map as in 01, and i is the inclusion of the homotopy fibre 
of h. The BP,-homology of these spaces are as follows. 

H*(S2”) = TAX*“) 

I 

i* 

H*(Qs*“+‘) = T(x*,) 

1 

ha 

H*(cwP+‘) = T(X*,P) 

where Tt(xt,,), T(x2”) and T(x*,,~) are the coalgebras of 83. The maps i, and h, are 
induced from maps of spaces, and are therefore maps in G. Considered as maps in S, 
i, and h, form an injective extension sequence (recall (3.1)). Hence by (4.3), there is a 
LES 

(7.2) * . * - ExtGSsr( T,(xz,)) - Extd’.I ( Z-(x2”)) - Exto”( T(x2,,p)) - - . . 

From (4.1) and (6.1), we have 

Extd’*‘( T(xzn)) = E2’,*(RS2”+9 

J &s.l+l(S*n+l)* 

Similarly, 

and 

ExtGS*‘T(xZnp) = E2’,‘+‘( S2”p+‘) 

Extd’*‘( Z-,(x*,,)) = &S*‘(S2n). 

Using these isomorphisms to replace the groups in the sequence (7.2), we obtain the 
first of the EHP sequences (7.1(i)). 

For (7.l(ii)), we consider H,(S*” ; BP) in the category G, and as a coalgebra. As a 
coalgebra, 

H*(P; BP) = T*(X*n) ) 
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From (4.1) we also have 

Ext,“*‘( T(xzn)) = w’(nS*“+‘) 

z j!7$.I+l(SZn+l)~ 

Using these isomorphisms to replace the terms in (8.2) gives the sequence (8.1). 
Remark (8.3). In [18], it will be shown that the U-structure (that is, the unstable 

I-coaction) on W(n) is the following. Let hi be the elements of I defined in [3, (2.9)]. 
Then, the coaction 

I& W(n)- VW(n) 

is given by 

This formula for the unstable I-coaction in W(n) will not be needed in this paper. 
An abelian group is said to have exponent m if rr~~ = 0 for each element x in the 

group. 

COROLLARY (8.4). For (s, t) f (0,2n + l), the group EI,‘(S2”+‘) has exponent p”. 

Proof. The group W(n) has exponent p. Then the cobar complex for computing 
Ext$*( W(n)) has exponent p, and thus Ext$*‘( W(n)) has exponent p also. From the 
exactness of (8.2), both the kernel and cokernel of double suspension have exponent 
p. The statement of (8.4) follows from the fact that ErL’(S’) = 0 for (s, t) # (0, l), and 
simple induction on n. 

Let functions f(s) be defined as follows. For each positive integer k, 

f(2k) = 2@ - 1)pk 

f(2k + 1) = 2(p - I)(pk + 1). 

COROLLARY (8.5). The double suspension map 

E2S.t-1(S2n-1) _ &,1+1(S2l+1) 

is an isomorphism for t C f(s - 2) + 2np, and is onto for t < f(s - 1) + 2np. 

Proof. Recall from [3, (5.8)] that for m 2 2p - 1, Ext”%‘(M(m)) has a vanishing 
line: 

Extvs*‘(M(m)) = 0, for t <f(s) + m. 

If M is any module in U with Mi = 0 for i <2p - 1,’ then Ext”“*‘(M) also has a 
vanishing line (from the lower non-zero degree in M). In particular, W(n)i = 0 for 
i < 2pn, so 

Ext;.'( W(n)) = 0, for t< f(s)+2np. 

The assertions in the corollary then follow from the LES (8.1). 
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which is nice; that is, R’PT(x2,) = 0 for i > 1. From P3, 

PTl(X2”) = Mm) 

R’PT’(X2,) = M(2np). 

In this case, the LES of (5.2) becomes 

- - . + Ext;*‘(M(2n))- ExtcisVdx2,N - Ext,,‘-‘.‘(M(2np))- - - . (7.3) 

From [4], we have isomorphisms 

Similarly, 

ExtU’*$%f(2n)) = Ext;*‘-‘(M(2n - 1)) 

z E24.‘-‘(S2n-‘)* 

ExtU”-‘*‘(M(2np)) = E2r-‘V1-‘(S2np-‘). 

Substituting these terms into the LES (7.3) gives the second EHP sequence (7.1(C)). 

OS. THE DOUBLE SUSPENSION 

THEOREM (8.1). For each positive integer n, there is a long exact sequence: 

a 
. . . + E2V-‘(S2J3-‘) - E2’.‘+‘(S2”+‘~EXtrrS-‘.‘( W(n))- . . . 

where W(n) = R’PT(x~~). The boundary homomorphism a has bidegree (2,O). 

Proof. We consider (5.2(ii)) applied to M = H,(s1S2”“; BP) in the category G. As 
a coalgebra, in the notation of 83, 

H*(Rs2”+‘; BP) = T(x2”). 

Recall from (3.3) that 

PT(x2,) = M(2n) 

R’PT(x2,) = W(n) 

RiPT(x2,) = 0, for i> 1. 

Here, W(n) is the free A&&-module generated by elements yk of degree 2npk, for 
k=l,2,.... By (5.2(u)), we have 

. . . - Ext;,‘(M(2n)) - ExtGI”( T(x,,)) - Extu E_-l,l( W(n)) _Y_+ . . . (8.2) 

From [4, (8.6)], (4.1) and (4.2), we have 

Ext;*‘(MQn)) = Extb”‘-‘(M(2n - 1)) 

= Extq”*‘-‘(M(2n - 1)) 

= E2 s*‘-‘(S2n-‘). 
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COROLLARY (8.6). For 2n + 1 # t < f(s - 1) + 2kp + 2n + 1, the group E2”(S2”+‘) has 

exponent pk. Also, for the stable groups (indexed in the usual way: t - s = stem 
degree) the group E,“.‘(p) has exponent pk for 0 # t < f(s - 1) + 2kp. 
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