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In this paper we continue our study of the groups ExtBp, Be(BP,, v 2 t BP,/I,). In [5] 
it was shown that these groups are essentially isomorphic to the cohomology of a 
certain Hopf algebra S(n) which we called the Morava stabilizer algebra since it was 
implicitly introduced in [6]. The structure of S(n) was analyzed in [8] where we 
defined a filtration on it and described the associated graded Hopf algebra EoS(n ) 
explicitly. We will use the results of[8]  in this paper extensively. Applications to the 
Novikov spectral sequence will appear in a forthcoming paper with Miller 
and Wilson. 

In w 1 we show how the machinery developed by May in [3] can be applied to 
this situation. As a trivial corollary we show that for n < p - 1 ,  H*S(n) is the 
cohomology of a certain n-stage nilpotent Lie algebra of dimension n 2. In w 2 we 
describe H1S(n) in all cases, use Theorem 2.10 of [8] to get a splitting of H*S(n) 
when pXn, and we obtain a general expression for H2S(n) for n>2.  In w we 
compute H* S(n) at all primes for n < 2 and for n = 3 with p > 5. 

w We begin by recalling the pertinent results of [5] and [8]. Recall BP, 
=Z(p)[Vl, v2,...] with [vii =2(p i -  1) (see [1] Part II) and let K(n), =lFp[v,, v2 1] 
have the obvious BP, module structure. Let K(n),K(n)=K(n),| BP, BP 
@Be, K(n),. Then the following was proved in [5]. 

(1.1) Theorem. Ext*v,~p(BP,,v21BP,/I,)~- Ext*(,),K(,)(K(n),,K(n),). [] 

We then make lFp into a K(n), module by sending v, to 1 and define S(n), = 
lFp | S(n), is a commutative Hopf algebra graded overZ/ (2( f f -1)  
and S(n) is the appropriately defined (see [8]) linear dual of S(n),. 

(1.2) Proposition. 

E * XtK(,),K(,I(K(n),, K(n),) | ~-- Ext*(,), (IFp,IFv). [] 

(1.3) Theorem. As an algebra S(n),~-IFp[tl, t 2 . . . .  ]/(tf"-ti) and the coproduct is 
vJ and that inherited from BP, BP. In particular fori<=n,A(t~)= ~ t j |  j 

O<_jNi 

Y "J tj | t, + i - j -- Cp, (ti | 1, t i_ 1 @ tt~, .., 1 | ti) 
O<j<n+i 

where t o = 1 and Cp,(Xl,..., xk) is the mod p reduction of p-  a((~ x y "  - ~(xf")). [] 
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A more comprehensive formula for the coproduct is given in Theorem 1.8 of 
[8]. 

We now describe a certain increasing filtration on S(n).. Define integers d; by 
d~ = 0 for i __< 0 and d i = max(i, pd i _ n) for i > 0. By Theorem 3.1of [8],S(n). has a unique 

pJ filtration with deg t i = d~ for all i andj. Let x~deEoS(n ) be the dual (with respect to 
the monomial basis) of the element t~,j~E ~ S(n), corresponding to W. The second 
subscript is an element of 2g/(n). 

(1.4) Theorem. EoS(n ) is the restricted enveloping algebra on primitives xi, j with 
bracket 

{~50l - J for i + k < m  [Xi, j ,  Xk, 1 ] __ i+jXi+k'J  t~k+IXi+k,l  
otherwise 

where m is the largest integer not exceeding p h i ( p -  1), and c3~ = 1 iff S - t rood n and 
(3~ = 0 otherwise. The restriction ~ is given by 

~0 if i < n / p - 1  
~(xij)= ( - x i + , d +  l otherwise. [] 

Note that x~,j has internal dimension 2pJ(p ~- 1). 
Let L(n) be the Lie algebra without restriction with basis x~,j and bracket as 

above. We now recall the main results of [3]. 

(1.5) Theorem. There are spectral sequences 

a) g 2 = H* L(n) | P(b~d ) ~ H* E o S(n); 
b) E 2 =H*EoS(n ) ~ H*S(n) 

where bid~Hz'Pd' EoS(n ) with internal degree 2p j+ l ( p l  _ 1) and P(" ) is the polynomial 
algebra on the indicated generators. [] 

Now let L(n, k) be the quotient of L(n) obtained by setting x~, i = 0 for i > k. Then 
our first result is 

(1.6) Theorem. The E 2 term of the first May spectral sequence (Theorem (5a)) may 
be replaced by H* L(n, m) | P (bl, j: i < m -  n) where m = [p n/(p - 1)] as before 

Proof. By Theorem 1.4, L(n) is the product of L(n, m) and an abelian Lie algebra, so 

H* L(n)~- H* L(m, n)|  E(hij: i>m), 

where E( . )  denotes the exterior algebra on the indicated generators and 
h~.jaH t L(n) is the element corresponding to x~,j. It also follows from Theorem 1.5 
that the appropriate differential will send h~,j to -b ;_n , j_  1 for i>  m. It follows that 
the entire spectral sequence decomposes as a tensor product of two spectral 
sequences, one with the E 2 term indicated in the statement of the Theorem, and the 
other having Ea=E(hi , j )@P(bi_, j  ) with i>m and E~=IFp. [] 

(1.7) Theorem. The second May spectral sequence (Theorem (1.5b)) collapses for 
n <=p- 1. 

Proof. The differentials in this spectral sequence are computed by comparing the 
0 resolution ofE S(n), with the cobar resolution ofS(n), .  The structure of the former 

is determined by the coproduct of tij for i < m. Theorems 1.3 and 1.4 show that this 
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coproduct corresponds precisely to that of t f~, i.e. the latter contains no terms of 
lower filtration. It follows that there are no nontrivial differentials in the spectral 
sequence. [] 

Note that Theorem 1.7 does not exclude the possibility of nontrivial extensions 
in the multiplicative structure of H* S(n). 

(1.8) Corollary. E~ n < p - 1 .  [] 

The computation of H* L(n, k) for k < m may be carried out using the Koszul 
complex for a Lie algebra. A straightforward consequence of Theorem 1.4 is the 
following. 

(1.9) Theorem. H*L(n, k)for k < m is the cohomology of the exterior complex E(hl,j) 
on one dimensional generators hi, ~ with i< k and j ~ / ( n ) ,  with coboundary 

dhi,j= 2 hs,~hi . . . .  +j. 
O<s<i 

The element hl, j corresponds to the element Xi, j and therefore has filtration degree i 
and internal degree 2pJ(p i -  1). 

Proof This follows from standard facts about the cohomology of Lie algebras 
([2] XIII, w [] 

Since L(n, k) is nilpotent its cohomology can be computed with a sequence of 
change of rings spectral sequences, i.e. 

(1.10) Theorem. There are spectral sequences with 

E 2 = E(hk,j) | H* L(n, k - 1) ~ H* L(n, k) 

and E 3 = E~ o. 

Proof The spectral sequence is that of Hochschild-Serre (see [21, pp. 349-351) for 
the extension of Lie algebras 

A,, k ~ L(n, k) ~ L(n, k - 1) 

where A,, k is the abelian Lie algebra on Xk, ~. Hence H*A,, k =E(hk,i). The E2-term, 
H*(L(n,k-1) ,H*A, ,k)  is isomorphic to the indicated tensor product since the 
extension is central. 

For the second statement, recall that the spectral sequence can be constructed 
by filtering the complex of Theorem 1.9 in the obvious way. Inspection of this 
filtered complex shows that E 3=Eoo. [] 

In addition to the spectral sequence of Theorem (1.5a), there is an alternative 
method of computing H*E o S(n). Define L(n, k) for k<m to be the quotient of 
PEoS(n ) by the restricted sub-Lie algebra generated by the elements xi, J for 
k<i<m,  and define F(n,k) to be the kernel of the extension 

0 --* F(n, k) ~ L(n, k) --* L(n, k -  1) ~ O. 

Let H*L(n,k) denote the cohomology of the restricted enveloping algebra of 
L(n, k). Then we have 
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(1.11) Theorem. There are change 
H* L(n, k) with 

E 2 = H* F(n, k) | H* L(n, k -  1) 

of rings spectral sequences converging to 

where 

H* F(n, l~tnkd ) | P(bk,j) for k < m - n 

and H* L(n, m)= H* EoS(n ). 

Proof Again the spectral sequence is that given in Theorem XVI, 6.1 of [2]. As 
before, the extension is central, so the E2-term is the indicated tensor product. The 
structure of H*F(n,k)  follows from Theorem 1.4 and the last statement is a 
consequence of Theorem 1.6. [] 

w We begin the computation of H1S(n) with: 

(2.1) Lemma. H 1EoS(n ) is generated by (, = V h,,j; p,= ~ h2n,j for p = 2; and for 
n> 1, hi, j for each j ~ / ( n ) .  J J 

Proof By Theorems 1.5a), and 1.6, H 1EOS(n ) = H 1L(n, m). The indicated elements 
are nontrivial cycles by Theorem 1.9. It follows from Theorem 1.4 that L(n, m) 
can have no other generators since [xl,j,  x i_l , j+l]  =xid-6i+jx~, j+ ~. [] 

In order to pass to HIS(n) we need to produce primitive elements in S(n). 
corresponding to (,  and p, (the primitive t~ J corresponds to hz,j). We will do this 
with the help of the determinant of a certain matrix. Recall that in Theorem 2.3 of 
[8] we showed that S(n). | was isomorphic to the dual group ring of a certain 
group which had a certain faithful representation over WOFp,) ([8], Proposition 
2.9). The determinant of this representation gave a homomorphism of S(n) into 2g~, 
the multiplicative group of units in the p-adic integers. We will see that in H ~ this 
map gives us (,  and p,. 

More precisely let M = (m~,j) be the n by n matrix over 22v[t1, t2,. . .]/(t~- t p") 
given by 

2 pk p~ for i <=j tkn+ j - i  
k>=O 

mi,j= ~ pk p ~ for i>j  tkn+j--i 
k>l 

where t o = 1. 
Now define T,~S(n), to be the modp reduction of p-1 (det M - 1) and for p =2  

define U,~S(n), to be the mod 2 reduction of ~(det M 2-1) .  Then we have 

(2.2) Theorem. The elements T,~S(n), and for p = 2  U~S(n) ,  are primitive and 
represent the elements ~n and Pn + ~ ~ H1 S(n) respectively. Hence H 1 S(n) is generated 
by these elements and for n > 1 by the hl,Jor j e  T//(n). 
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Proof The statement that T,, and U. are primitive follows from Proposition 2.9 of 
[8]. That they represent (n and p , ,+( ,  follows from the fact that T~--~. t. pJ mod 
( t l ,  t 2 . . . . .  t,,_ 1) a n d  U n - ~ 2J t2n + t 2J mod (tl,  t 2 . . . . .  tn- 1 )" [ ]  J 

J 

Examples. T l=t l ,  Ul=tl  +t2, Tz=tz + t ~ - t l  +p, Uz=t4+t] +tl tZ +tZt3 +t2 + 
p2 

t22 t( t z + ta~ t 2 , and T3 = t 3 + tg + t~2 + tI + P + P2 - q tf~ - tf t 2 - tf2 t 2 . 

Moreira ([7]) has found primitive elements in BP.BP/ I ,  which reduce to our T,. 
The following result is a corollary of Theorem 2.10 of [8]. 

(2.3) Proposition. I f  pXn, then H*S(n) decomposes as a tensor product of an 
appropriate subalgebra with E(~.) for p > 2 and P(( . ) |  E(p.) for p = 2. [] 

We now turn to the computation of H2S(n) for n>2.  We will compute all of 
H*S(n) for n < 2  in w 

(2.4) Theorem. Let n> 2 

a) For p = 2, H z S(n) is generated as a vector space by the elements (2, Pn ~., ~. hi ,j, 
p~hl,j, and h~,ihl,~ for i#j+_l, where hl,~h~,i=hl,jh ~ and h a 1,14=0. 

b) For p > 2, H aS(n) is generated by the elements 

(,hl, i ,ba,i ,gi=(hl,i ,hz,i+l,hl, i>, ki=@l,i+l,hl , i+l,hl , i>, 

and hl,ihl, j for i+j+_l, where hl,lh~,j+hl,jhl,i=O. 

Both statements require a sequence of Lemmas. We treat the case p = 2 first. 

(2.5) Lemma. Let p=2,  n>2.  

a) H~ L(n, 2) is generated by hi, i for i~ / (n ) .  

b) HZL(n, 2) is generated by the elements hz,ihl, j for i + j + l ,  gi, ki and 
e3,i=@l,i,  hl,i+l,hl,i+2>. The latter elements are represented by hl,lh2,i, 
hi,i+ j. h2,1, and hi, i h2,i + 1 + h2,i hi,i+ 2 respectively. 

c) ea,~hl,i+ l =hl,ie3,~+ a +e3,iha,lh~,i+ 3=O and these are the only relations 
among the elements ha, ~ e3, J. 

Proof We use the spectral sequence of Theorem 1.10, with E z =E(h~,~,hz,~) and 
d2h2,~=h~,~hl,~+ ~. All three statements can be verified by inspection. [] 

(2.6) Lemma. L e t p = 2 ,  n>2,  and2<k=<2n  

a) HZ L(n,k) is generated by the elements h~,i, along with ~, for k >n and p, 
for k = 2n. 

b) H2L(n,k) is generated by products of elements in H~L(n,k) subject 
to h~,~h~,i+~=0, along with gi=(h~,~,ha,~,h~,i+~), k~=(h~,i,h~,i+~,h~,~+~>, 
o : i = ( h l , l , h l , i + l , h l , i + 2 , h l , i + l )  and e~+~.~=(h~,~,h~,i+ ~ . . . .  ,hl , i+k>. The 
last two families of elements can be represented by h3,~ht,~+~ +h2,ihz, i+~ and 

h~,~ hk+ ~ -s,i+ ~ respectively. 
s 

c) h~, ieg + ~, ~ + ~ + e~ + 1, i h~,i+l + k = 0 and no other relations hold among products 
of the e~+ ~,i with elements of H ~. 
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Proof Again we use Theorem 1.10 and argue by induction on k, using [emma 2.5 to 
start the induction. We have Ez=E(hk, i ) |  ) with dzhg, i=ek, i. The 
existence of the c h follows from the relation e3,~hl,~+ 1 =OeH3L(n,2) and that of 
ek+a, i from h l , i % i + l + % i h l , i + k = O ~ H a L ( n , k - 1 ) .  The relation c) for k > 2  is 
formal; it follows from a Massey product identity (Corollary 3.2 of [4]) or can be 
verified by direct calculation in the complex of Theorem 1.9. No combination of 
these products can be in the image of d 2 for degree reasons. [] 

(2.7) Lemma. Let p=2 ,  n>2.  Then HZ EoS(n) is generated by the elements p , ( , ,  
p, hl,i, (,hl,i, hl,ihl, j for i+j++_ 1, cq, and h2j=bi,j for 1 <_ inn ,  jeZ/(n).  

Proof We use the modified first May spectral sequence of Theorem 1.6. We have m 
=2n  and H2L(n, m) is given by Lemma 2.6. By easy direct computation one sees 
that d2g i = bl, i hi,i+ 1 and d2k i =hi, i bl,i+ 1" We will show that d2e2, + 1,i =hl,i bn, i 
+hl,~+,b,,~_ 1. We need a slight refinement of Theorem 1.3, i.e. that 

PJ C2,(tn+ | 1 7 4  2- A(tZn+l)=2t j@t;n+l- j  + 1 t l  , ' " ,  l @ t n + l )  

modulo terms of lower filtration. This can be derived from Theorem 1.9 of [8]. Then 
by direct computation in the cobar construction one can show that 

2n-1 dCa, ( t ,+l |  tn |  2", .... l | 1 7 4 1 7 4  t n _ l |  .... , l |  

+ C2n(tn@l , . . . ,  l | 1 7 4  1 

modulo terms of lower filtration and the nontriviality of d 2e2b + 1,~ follows. [] 

Proof of Theorem 2.4a).We now consider the second May spectral sequence 
(Theorem 1.5b)). By a direct computation in the filtered cobar construction similar 
to that of the above proof, one can show that d2b~, ~ = h l, j+ a bi-l,  j+ 1 ~- h a,~+j 4:0 
for i>  1. The remaining elements of H2EoS(n) survive either for degree reasons 
or by Theorem 2.2. [] 

For p > 2 we need an analogous sequence of Lemmas. We leave the proofs to the 
reader. 

(2.8) Lemma. Let n > 2  and p>2.  

a) H1L(n,2) is generated by hi, ~. 
b) HZL(n, 2) is generated by the elements h l , i h l j  (with hl,ihl,i+~=O), 

gi=hl,ih2,i, ki=hl,i+ l h2,1, e3,i=hl,ihz,i+ l +hz, ihl,i+ 2. 
c) The only relations among the elements hl,ie3, j are hl,ie3,~+i-e3,~hl,i+ 3 

=0. [] 

(2.9) Lemma. Let n > 2, p > 2, and 2 < k < m. Then 

a) H1L(n,k) is generated by ha, i and for k >=n, (,. 
b) HZL(n,k) is generated by ha, ihl j  (with hl,ihl,i+ 1 =0), 

gi,ki, ek+a,i = 2 hj, ihk+l-j,i+j, 
0 < j < k + l  

and, for k >=n, ( ,hi ,  i. 
c) The only relations among products of elements in H a with the ek+l, i are 

hl,iek+a,i+l--ek+l,lhLk+l=O. [] 
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(2.10) Lemma. Let n > 2 and p > 2. Then H 2 E o S(n) is generated by the elements b~,j 
for i < m - n  and by the elements of H2L(n,m). [] 

Proof of Theorem 2.4b. Again we look at the spectral sequence of Theorem 1.5b). By 
arguments similar to those for p = 2  one can show that dvbi,j=hl,~+jb~_l, j 
- h i , j +  1 b~_ 1,j+ 1 for i>  1 and dsem+l,i=hl,m+i_,b . . . .  i-1 -h l , lb  . . . .  / where s=  1 
+ p n - ( p - 1 )  m, and the remaining elements of H2EoS(n) survive as before. [] 

w In this section we will compute H*S(n) at all primes for n=<2 and at p > 3  for 
n=3.  

(3.1) Theorem. 

a) H*S(1)=P(hl,o)| for p=2 ;  
b) H*S(1)=E(hl,o) for p > 2  

(note that S(1) is commutative and that ~1 =hi, o). 

Proof This follows immediately from Theorems 1.4, 1.6, and 1.7. [] 

(3.2) Theorem. For p>3 ,  H'S(2)  is the tensor product of E(~z) with the sub- 
algebra with basis {1, hi,o, h1,1, go, gl, go h1,1} where g i=(h l , i ,  hi,i+1, hi , i )  ; 
hl,0gl=gohl,1, h 1 ogo=hl  lg1=0 ,  and h I oh1 1 - h  2 - h  2 =0. In particular . . . .  - -  1 , 0 - -  1 , 1  

the Poincar~ series is (1 + t) 2 (1 + t + t2). 

Proof The computation of H 'L(2 ,  2) by Propositions 1.9 or 1.10 is elementary, and 
there are no algebra extension problems for the spectral sequences of Proposition 
1.10 or Theorem 1.5b). [] 

We will now compute H* S(2) for p = 3. First we need some notation. Let 

R=E(hl,o,hl . . . .  1) | P(b~ o,bl 1)~(hi,oh1 1, b21,o + b2,1,hl,o bl, o 
- h l , l  bl,l,hl, l bl,o +hl,obl, 1) 

and define a class 4~H2S(2) as a matric Massey product (see [4]) 

(hl ,o-hl , l~ [h1, l -hl ,o~ hi 
4 = / (h l ,oht ,  1), khl, 1 hl,o/' \11,o h1,1/' (hl:~)) 

That this class is well defined will become evident in the proof of the following 
result. 

(3.3) Theorem. For p = 3, H* S(2) is isomorphic as an algebra to E((2, 4) | R, where 
R and 4 are as defined above, and ~2 is as defined in Theorem 2.2. In particular the 
Poincar~ series is 

(1 + 0 2 (1 + t2)/(1 - t). 

Proof Our basic tools are the spectral sequences of Proposition 1.11 and some 
Massey product identities from [4]. We have H*L(2,1)~-E(hl.o, hl, 0 
| bl, 1), and a spectral sequence converging to H'L(2,  2) with E2=E(~2,q) 
|  where (2=hz, o+h2,x and /7=h2,1-h2, o, d2(2=0, dzrl=hl ,ohl ,  1 
and Es=Eoo. Hence E~ is a free module over E((z)| o,bl, a) on generators 
1, hi,o, h1,1, go, gl, and h l , og l=h l ,  lgo, where gi=(hl.l, hl,i+l,hl,i). This 
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determines the additive structure of H'L(2,2) ,  but there are some nontrivial ex- 
tensions in the multiplicative structure. We know by Proposition 2.3 that we can 
factor out E(~2) , and we can write bl, i as the Massey product - @ 1 ,  i, hi, i, hi, i). 
Then by Corollary3.2 of [4] we have hl, i g i = - b l ,  lhl, i+l, hl, igi+l=hl,  i+lbl, ig~ 
= -b l , i g i+ l ,  glgi+ 1= bl , ibl , i+l .  These facts along with the usual h zl,i =hl ,  o h1,1 
= 0 determine H* L(2,2) as an algebra. 

Next we have a spectral sequence converging to H* L(2, 3)~-H*E~ (by 
Theorem 1.6) with E2=E(h3,o ,h3 ,1) |  and dz(h3,1)=gi-bl , i+a and 
E 3 = E~. The computat ion of E 3 is essentially routine and there are no ambiguities 
in the algebra structure of/-/*L(2, 3). The spectral sequence of Theorem 1.5b) 
collapses by Theorem 1.7, and the only ambiguity in the multiplicative structure of 
H 'S(2 )  is the value of c in the expression ~2=cb l ,ob l ,  1. We will show below 
that c = 0. 

The computat ion of H* L(2~ 3) is clarified by the following construction. The 
subring of H* L(2, 2) generated by bl, o, go, gl, and bl, 1 can be mapped isomorphi- 
cally to the subring of IF 3 [s 0, s t ] generated by - s ~ ,  s~ s 1 , s o s 2 , and - s~ respectively. 
Multiplication of these elements in H ' L (2 ,  2) by hi, ~ corresponds to multiplication 
of the corresponding polynomials by s i. At this point it is convenient to tensor with 
IF 9 and perform a change of basis. Let x = s o + is I , y = s o - is~,where i 2 = - 1. Then 
the elements x a, x2y, x y  2, and ya correspond t o_b l , o+ ib l ,~  ' _ b ~ , o + i g o + g  ~ 
- i b l ,  1 , - b l , o - i g o + g l  +iba, 1, a n d - b a , o - i b l ,  1 respectively. In the spectral 
sequence for H* L(2, 3) | the elements d2(h3, o + ih3,1) and dz(h3, o -  ih3,1) 
correspond to i x2y and - i y 2 x  respectively, and the element ~ is represented by 
hl ,oh3 ,o+h3,1h l ,1 .  Over IF9, ~ is the ordinary Massey product ( u , v , u , v )  
= (v, u, v, u) where u = ha, o + ihl, 1 and v = hi, o - ihl, 1. By Proposition 2.9 of [4], 
can be rewritten as 

The appropriate change of coordinates in each matrix yields the expression 
indicated preceding the statement of the Theorem. 

With these observations in mind it is easy to see that H ' L ( 2 ,  3)= H* EoS(2) 
has the indicated structure. 

It remains to be shown that ~2=0 in H'S(2) .  For degree reasons we have 
~2 = cb~, o bl, 1. We will construct a Hopf  algebra Tand a map f:  T ~  S(2) |  9 guch 
that f * ( ~ ) = 0  and f * (b l , ob l ,  0+O.  Recall (Theorem 2.3 of [8]) that S(2) |  
IF 9 [$2] where S 2 is a certain compact  3-adic Lie group. S 2 is the group of proper 
(congruent to 1 modulo the maximal ideal) units of the noncommutat ive degree 4 
extension E2 of Z 3 obtained by adjoining i and S with Si = - iS, i 2 = - 1, and S 2 = 3. 

1 ( l + i ) l f - 2 S ,  s o w e h a v e a m a p f :  $2 has elements of order 3, e . g . - ~  4 

IF 9 [~/(3)] ~ S(2) |  9 and dually a map f ,  : S(2), | ----~]F 9 [ z ] / ( z  3 - -  Z) where z is 
primitive and f , ( t O = ( l + i ) z .  Hence f , ( q - i t 3 ) = O ,  so f* (~ )=0 .  On the other 
hand it is easy to check that f*(bl ,oba,1)+O, so c=0 .  [] 

We now turn to the case n - - p = 2 .  We will only compute E ~  * S(2), so there 
will be some ambiguity in the multiplicative structure of H* S(2). In order to state 
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our result we need to define some classes. Recall (Theorem 2.2) that H I S(2) is theIF 2- 
vector space generated by h l ,0 ,ha ,1 ,  ~2 and P2. Let ~ o E ( ~ 2 , h l , 0 , h l , 1 ) ,  
/3E(hl,o,~2,~2,hl, l), g=(h ,  h 2, h, h 2) where h=h~,o+ha,~, Yc+(x, h, h 2) for 
x =  ~2, %, {2, ~o, ~2 (more precise definitions of eo and 13 will be given in the 
proof). 

(3.4) Theorem. E~ for p = 2  is a free module over P(g)| on 20 
z h 2 3 , /3 1,0,/3 h2, ~a,0~o, generators: 1, hl,o, hl 1,hl,o, 1,1,hl,o,fi, flhl,o,/3hl,1, h2 1,/3h31,o, 

~, ~o~2, C2, G,  ~2 ~ 2, ~-%, where c% ell2 S(2) and has filtration degree 4,/3~H3 S(2) and 
has filtration degree 8, g~H4 S(2) and has filtration degree 8, and the cohomological 
and filtration degrees ofYc exceed those of x by 2 and 4 respectively. Moreover h~o 

(1 + 0  2 (1 - t ~) 
= ~2, and all other products are zero. The Poincard series is 

( 1  - 0 2 (1 + t2 )"  

Proof. We will use the same notation for corresponding classes in the various 
cohomology groups we will be considering along the way. 

Again our basic tool is Proposition 1.11. It follows from Remark 10 of [3] that 
H*EoS(2 ) is the cohomology of the complex P(hl,0,ha,a,~2,h2,0)| 
E(h3,0, h3,1, P2, h4, o) with dha. i=d~.z=dp2=O, dh3, i=hl, i~2, dh2. o=hl, oha, 1, 
and dh4, o = hi, o h3,1 + ha, 1 h3, o + ~2. This fact will enable us to solve the algebra 
extension problems in the spectral sequences of Proposition 1.11. 

For H* L(2, 2) we have a spectral sequence with E 2 = P(hl, o, ha, a, ~2, h2, o) with 
d2~ 2 = 0 and d2 h2, o = ha, 0 ha, 1. It follows easily that 

H* L(2, 2) = P(hl, o, ha, a, ~2, b2, o)/(h,, o ha, 1) 

where b 2 o - h  2 =(ha,o,  hl 1,ha o,ha 1). , --s 2 ,0  , , , 
For H* L(2, 3) we have a spectral sequence with E 2 = E(h3, O, h3,1) @ H *  g(2,  2) 

and dzh3, i = hi, i ~2. Let ei = hi,i+ a h3i + ~2 h2,iE(~2, hi,i, hi,i+ 1)' Then H* L(2, 3) 
as a module over H* L(2, 2) is generated by 1, c% and % with ~2 hi, i = ~2(0{0 -~ ~1 -}- ~2) 

:~o = ~2 ~22(~o + b2, o). ~ . h l , i o ~ i = ~ 2 h x , i + i o ~ i = - O ,  and 2 2bz, o ,e2_ 2 2 - -  ~2(~2  q- b2 ,0 ) ,  0~0 0{1 = 
The Poincar6 series for H* L(2, 3) is (1 + t + t2)/(1- t) 2. 

For H*/,(2, 4) we have a spectral sequence with E 2 =E(h< o, P2)| H* L(2, 3) 
and d i P 2 = 0 ,  deh4,  o=Cgoq-C~l. Define /3eH3/,(2,4) by f i=h<o(eo+Cq+~2 2) 
+{2h3,oh3,aefha,o,~2,~2,hl,a). Then H*/,(2,4) is a free module over 
E(p2) | P(b2, o) on generators 1, hl, i, (2, ~2 2, ~o, eo {2, fl, and/3 h~,i where t > 0. As 
a module over H*/,(2, 3)| E(p2) it is generated by 1 and/3, with (~o + cq)1 = ~23(1) 
=c%~22(1)=0. To solve the algebra extension problem we observe that /3{2=0 
for degree r e a sons ;  /3o:i=/3(~2,hl,i, hl,i+l)=(fi,~2,ha,i)hl,i+l=O since 
(fl, ffz,ha,~)=0 for degree reasons; and E(p2) splits off multiplicatively by the 
remarks at the beginning of the proof. 

This completes the computation of H*EoS(2 ). Its Poincar6 series is (1 +t)2/ 
(1  - 0 2. We now use the second May spectral sequence (Theorem (1.5 b)) to pass to 
E~ H*EoS(2 ) is generated as an algebra by the elements ha, o, h~, ~, ~2, P2, 
%, b2, o and ft. The first four of these are premanent cycles by Theorem 2.2. 

By direct computation in the cobar resolution we have 

(3.4.1) d(t3+ q t 2 ) = ~ 2 @ t 1 ,  
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so the Massey product for % is defined in H 'S(2)  and the c% is a permanent cycle. 
We also have d( t  2 @ t z + t 1 | t 2 t 2 q- t 1 t 2 @ t 2) = t 1 @ t 1 @ t i q- t 2 @ t21 @ t 2, SO d 2 b2, 0 

- h  3 +h  3 Inspection of the E 3 term shows that b 2 = (h, h 2, h, hZ), (where - -  1 , 0  , 1 '  2 , 0  

h = hi, o + hi, 1) is a permanent cycle for degree reasons. 
We now show that fl = @1, o, (2, (~, ha, 1) is a permanent cycle by showing that 

its Massey product expression is defined in E~ The products hl, 0 (z and 
(2 hi , 1 are zero by (3.4.1), and we have 

(3.4.2) d(t3@t2 + T2/`3@t2 +T2@t4 + T2@t3 + T2@t3(l +t2 +t2)= T2@ T2@ T2, 

where/'3 = t3 + tx t2 and T 2 = t 2 + t 2 + t~, so (3 = 0e l l*  S(2). Inspection of H a E 0 S(2) 
shows there are no elements of internal degree 2 or 4 and filtration degree > 7, so the 
triple products @1,o,(2,(2) and 2 ( (z ,  (2, hi, 1> must vanish and fl is a permanent 
cycle. 

Now the E 3 term is a free module over E(p2) | P(b 2 o) on 20 generators: 1, hi, o, 
h 2 , h 2 3 3 h 2 h 2 hi, i, 1, o, i , i ,  hi ,o=hl ,  l, fl, flhl,o, flhi, l, fl 1,1'fl 1,0, f l h ~ , o , ( 2 , 1 2 o , ( 2 , ~  

2 (2 b2, o, eo b2, 0, (2 b2, o, and (2 c% b2, o- The last 4 in the list now have Massey product 
expressions ((2,h,  h2>, (eo,h,  h2), ((2,h,  h2>, and ( % ( : , h , h  2) respectively. 
These elements have to be permanent cycles for degree reasons, so E 3 =Eoo, and 
we have determined E~ [] 

We now describe an alternate method of computing H*S(2) |  4, which is 
quicker than the previous one, but yields less information about the multiplicative 
structure. By Corollary 2.7 of [8], this group is isomorphic to H*(S2; IF4), the 
continuous cohomology of certain 2-adic Lie group with trivial coefficients inlF 4. S 2 
is the group of units in the degree 4 extension E 2 of 2g 2 obtained by adjoining 
co and S with 0 ) 2 + O ) + 1 = 0 ,  $ 2 = 2 ,  and Sco=co2S. 

Let Q denote the quaternion group, i.e. the multiplicative group (with 8 
elements) of quaternionic integers of modulus 1. 

(3.5) Proposition. There is a split short exact sequence of groups 
i j (3.5.1) 1--, 6--,s2 ~ Q  -, 1. 

The corresponding extension of dual group algebras over IF 4 is 
i ,  

~ - +  (2, ~*, s(2),----, ~ ,  - ~  

where Q, ~-IF 4 Ix, y]/(x 4 - x ,  y 2 _  y) and G, ~ S(2) , / (q,  t2 + N t 2) as algebras where 
j ,  (x) = tl, j ,  (y) = (5 t 2 + (52 t22 and c5 is the residue class of co. 

Proof The splitting follows the theory of division algebras over local fields ([9], 
pp. 137-138) which implies that E 2 | 11)2 is isomorphic to the 2-adic quaternions. 
We leave the remaining datails to the reader. [] 

(3.6) Proposition. a) H*(Q; ]F2)=P[hl,  3 3 o,hi, l,g]/(hi oh l , i ,h l  o+hLO. 
b) H* (G;IF2) = E((2, P2, h3, o, ha, 2). 

Proof a) is an easy calculation with the change of rings spectral sequence ([2], 
p. 349) for IF 2 [x]/(x 4 + x) ~ Q, ~IF  2 [y]/(y2 + y). For b) the filtration on S(2), 
induces one on G,.  It is easy to see that E~ is cocommutative and the result 
follows with no difficulty. [] 
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(3.7) Proposition. In the Cartan-Eilenberg spectral sequence for (3.5.1), E 3 = E ~  

and we get the same additive structure for H* S(2) as in Theorem 3.4. 

Proof We can take H*G| as our Ex-term. Each term is a free module over 
E(P2)| P(g). We leave the evaluation of the differentials to the reader. [] 

Finally we consider the case n = 3 and p > 5. We will not make any attempt to 
describe the multiplicative structure as it is quite tedious and of little interest. An 
explicit basis of E ~ H* S(3) will be given in the proof, from which the multiplication 
can be read off by the interested reader. It seems unlikely that there are any 
nontrivial multiplicative extensions. 

(3.8) Theorem. For p> 5, H'S(3)  has the following Poincar~ series: (1 + 0 3 ( 1 + t  
+6tz  + 3t3 +6t4  +ts  +t6). 

Proof We use the spectral sequences of Proposition 1.10 to compute H* L(3, 2) and 
H* L(3, 3). For  the former the Ez-term is E(hl,i) | E(h2,i) with iE2~/(3), d 2 hl,i = 0 
and  d z h2, i =hi,  i hi,i+ 1' T h e  P o i n c a r 6  series for H* L(3, 2) is (1 + t) 2 (1 + t +  5 t 2 + t 3 

+ d) and it is generated as a vector space by the following elements and their 
Poincar6 duals: 1, ht, i, gi=hl,ih2,1, ki=hz, ihl,i+l, e3,1=hl,ihzi+lq-h2,ihl,i+2 
(where ~ e3 , i=0) ,  gihl , i+l=hl , ik i=hl , lh2,1hl , i+l  and hl,iea,i=gihl, i+2 = 

i 
hl,ih2,ihl,i+ 2. 

For H* L(3, 3) we have E 2 = E(h3.i)| H* L(3, 2) with d 2 h3, i=  e3,i, so d 2 ~ h3, i 
=0. H 'L(3 ,  3) has the indicated Poincare series and is a free module over E(~3) , 
where (3 -- ~ ha. i, on the following 38 elements and the duals of their products with 
~3:1,  hi,i, gi, ki, bl , i+2=hl, ih3, i+l+h2,ih2,i+2+h3,ihl , i ,  g ih l , i+l=hl , ik i ,  
hl,ih2,ih2,i+2, hl,ih2,ih2,i+l Whl,ihl, i+lh3,i ,  hl,ih2,ih3,i, hl,ih2,i+2h3,1+l, 
~.(ha,i h2,i + 1 -ha, i+ 1 h2,i+2) h3,i, hl,i ki h3,j (where hi, i k i ~ h3, j is d iv i s ib le  by (a), 
i J 

and ha,i+zhl,ih2,i(h3,1+h3,i+a)+hl,ih2,0h2,1h2,2. [] 
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