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1.2

An equivariant approach to the Riemann Hypothesis

Abstract: We start by extending the Riemann zeta function
from CP1 (the complex projective line, which is the same thing
as the Riemann sphere) to CP∞, the infinite dimensional
complex projective space, via multiplication.

We can do this
because CP∞ is the infinite symmetric product on CP1.

The object is to show that all nontrivial zeros have first
coordinate on the critical line. The group C2 acts by complex
conjugation. Using the functional equation we can modify the
zeta function to get a new function Λ that is symmetric about
the critical line. This leads to an action of G = C2 ×C2 on CP∞

for which modified zeta function is equivariant.
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1.3

An equivariant approach to the Riemann Hypothesis
(continued)

We can extend this function to the complex cobordism
spectrum MU (which also gets a G-action in this way) by
considering higher derivatives of Λ.

A theorem of Bombieri
states that a zero off the critical line leads to an essential map
from CP2i +2j−1 to the fixed point spectrum MUG, where i and j
depend on the moments of the zero in question. Subsequent
work has shown that we must have i , j ≥ 31 (all lower cases
have been excluded by machine computations done in the 90s)
and that the map must factor through the top cell.

Hence the problem is very similar to the Kervaire invariant
question except that the group involved is not cyclic. The Slice
Theorem (to be explained below) still holds, but the slices
themselves are more complicated because of the bigger group.
Using the techniques we have developed in the cyclic case,
there is a good chance we can do the necessary calculations
here and arrive at a similar proof.



A solution to the
Arf-Kervaire invariant

problem

Mike Hill
Mike Hopkins
Doug Ravenel

Background and
history
Our main result

Pontryagin’s early work

The Arf-Kervaire
formulation

Questions raised by our
theorem

Our strategy
Ingredients of the proof

The spectrum Ω

How we construct Ω

The slice spectral sequence

1.3

An equivariant approach to the Riemann Hypothesis
(continued)

We can extend this function to the complex cobordism
spectrum MU (which also gets a G-action in this way) by
considering higher derivatives of Λ. A theorem of Bombieri
states that a zero off the critical line leads to an essential map
from CP2i +2j−1 to the fixed point spectrum MUG, where i and j
depend on the moments of the zero in question.

Subsequent
work has shown that we must have i , j ≥ 31 (all lower cases
have been excluded by machine computations done in the 90s)
and that the map must factor through the top cell.

Hence the problem is very similar to the Kervaire invariant
question except that the group involved is not cyclic. The Slice
Theorem (to be explained below) still holds, but the slices
themselves are more complicated because of the bigger group.
Using the techniques we have developed in the cyclic case,
there is a good chance we can do the necessary calculations
here and arrive at a similar proof.



A solution to the
Arf-Kervaire invariant

problem

Mike Hill
Mike Hopkins
Doug Ravenel

Background and
history
Our main result

Pontryagin’s early work

The Arf-Kervaire
formulation

Questions raised by our
theorem

Our strategy
Ingredients of the proof

The spectrum Ω

How we construct Ω

The slice spectral sequence

1.3

An equivariant approach to the Riemann Hypothesis
(continued)

We can extend this function to the complex cobordism
spectrum MU (which also gets a G-action in this way) by
considering higher derivatives of Λ. A theorem of Bombieri
states that a zero off the critical line leads to an essential map
from CP2i +2j−1 to the fixed point spectrum MUG, where i and j
depend on the moments of the zero in question. Subsequent
work has shown that we must have i , j ≥ 31 (all lower cases
have been excluded by machine computations done in the 90s)
and that the map must factor through the top cell.

Hence the problem is very similar to the Kervaire invariant
question except that the group involved is not cyclic. The Slice
Theorem (to be explained below) still holds, but the slices
themselves are more complicated because of the bigger group.
Using the techniques we have developed in the cyclic case,
there is a good chance we can do the necessary calculations
here and arrive at a similar proof.



A solution to the
Arf-Kervaire invariant

problem

Mike Hill
Mike Hopkins
Doug Ravenel

Background and
history
Our main result

Pontryagin’s early work

The Arf-Kervaire
formulation

Questions raised by our
theorem

Our strategy
Ingredients of the proof

The spectrum Ω

How we construct Ω

The slice spectral sequence

1.3

An equivariant approach to the Riemann Hypothesis
(continued)

We can extend this function to the complex cobordism
spectrum MU (which also gets a G-action in this way) by
considering higher derivatives of Λ. A theorem of Bombieri
states that a zero off the critical line leads to an essential map
from CP2i +2j−1 to the fixed point spectrum MUG, where i and j
depend on the moments of the zero in question. Subsequent
work has shown that we must have i , j ≥ 31 (all lower cases
have been excluded by machine computations done in the 90s)
and that the map must factor through the top cell.

Hence the problem is very similar to the Kervaire invariant
question except that the group involved is not cyclic.

The Slice
Theorem (to be explained below) still holds, but the slices
themselves are more complicated because of the bigger group.
Using the techniques we have developed in the cyclic case,
there is a good chance we can do the necessary calculations
here and arrive at a similar proof.



A solution to the
Arf-Kervaire invariant

problem

Mike Hill
Mike Hopkins
Doug Ravenel

Background and
history
Our main result

Pontryagin’s early work

The Arf-Kervaire
formulation

Questions raised by our
theorem

Our strategy
Ingredients of the proof

The spectrum Ω

How we construct Ω

The slice spectral sequence

1.3

An equivariant approach to the Riemann Hypothesis
(continued)

We can extend this function to the complex cobordism
spectrum MU (which also gets a G-action in this way) by
considering higher derivatives of Λ. A theorem of Bombieri
states that a zero off the critical line leads to an essential map
from CP2i +2j−1 to the fixed point spectrum MUG, where i and j
depend on the moments of the zero in question. Subsequent
work has shown that we must have i , j ≥ 31 (all lower cases
have been excluded by machine computations done in the 90s)
and that the map must factor through the top cell.

Hence the problem is very similar to the Kervaire invariant
question except that the group involved is not cyclic. The Slice
Theorem (to be explained below) still holds, but the slices
themselves are more complicated because of the bigger group.

Using the techniques we have developed in the cyclic case,
there is a good chance we can do the necessary calculations
here and arrive at a similar proof.



A solution to the
Arf-Kervaire invariant

problem

Mike Hill
Mike Hopkins
Doug Ravenel

Background and
history
Our main result

Pontryagin’s early work

The Arf-Kervaire
formulation

Questions raised by our
theorem

Our strategy
Ingredients of the proof

The spectrum Ω

How we construct Ω

The slice spectral sequence

1.3

An equivariant approach to the Riemann Hypothesis
(continued)

We can extend this function to the complex cobordism
spectrum MU (which also gets a G-action in this way) by
considering higher derivatives of Λ. A theorem of Bombieri
states that a zero off the critical line leads to an essential map
from CP2i +2j−1 to the fixed point spectrum MUG, where i and j
depend on the moments of the zero in question. Subsequent
work has shown that we must have i , j ≥ 31 (all lower cases
have been excluded by machine computations done in the 90s)
and that the map must factor through the top cell.

Hence the problem is very similar to the Kervaire invariant
question except that the group involved is not cyclic. The Slice
Theorem (to be explained below) still holds, but the slices
themselves are more complicated because of the bigger group.
Using the techniques we have developed in the cyclic case,
there is a good chance we can do the necessary calculations
here and arrive at a similar proof.



A solution to the
Arf-Kervaire invariant

problem

Mike Hill
Mike Hopkins
Doug Ravenel

Background and
history
Our main result

Pontryagin’s early work

The Arf-Kervaire
formulation

Questions raised by our
theorem

Our strategy
Ingredients of the proof

The spectrum Ω

How we construct Ω

The slice spectral sequence

1.4



A solution to the
Arf-Kervaire invariant

problem

Mike Hill
Mike Hopkins
Doug Ravenel

Background and
history
Our main result

Pontryagin’s early work

The Arf-Kervaire
formulation

Questions raised by our
theorem

Our strategy
Ingredients of the proof

The spectrum Ω

How we construct Ω

The slice spectral sequence

1.5

A solution to the Arf-Kervaire
invariant problem I:
History and background

Unni Namboodiri Lectures
University of Chicago

April 1, 2011

Mike Hill
University of Virginia

Mike Hopkins
Harvard University

Doug Ravenel
University of Rochester



A solution to the
Arf-Kervaire invariant

problem

Mike Hill
Mike Hopkins
Doug Ravenel

Background and
history
Our main result

Pontryagin’s early work

The Arf-Kervaire
formulation

Questions raised by our
theorem

Our strategy
Ingredients of the proof

The spectrum Ω

How we construct Ω

The slice spectral sequence

1.6

Vic Snaith and Bill Browder in 1981
Photo by Clarence Wilkerson
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A wildly popular dance craze

Drawing by Carolyn Snaith 1981
London, Ontario
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Mike Hill, myself and Mike Hopkins
Photo taken by Bill Browder

February 11, 2010
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1.9

Our main result

Our main theorem can be stated in three different but
equivalent ways:

• Manifold formulation: It says that a certain geometrically
defined invariant Φ(M) (the Arf-Kervaire invariant, to be
defined later) on certain manifolds M is always zero.

• Stable homotopy theoretic formulation: It says that certain
long sought hypothetical maps between high dimensional
spheres do not exist.

• Unstable homotopy theoretic formulation: It says
something about the EHP sequence, which has to do with
unstable homotopy groups of spheres.

The problem solved by our theorem is nearly 50 years old.
There were several unsuccessful attempts to solve it in the
1970s. They were all aimed at proving the opposite of what we
have proved.
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1.10

Snaith’s book

Stable Homotopy Around the Arf-Kervaire Invariant, published
in early 2009,

just before we proved our theorem.

“As ideas for progress on a particular mathematics problem
atrophy it can disappear. Accordingly I wrote this book to stem
the tide of oblivion.”
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1.11

Snaith’s book (continued)

“For a brief period overnight we were convinced that we had
the method to make all the sought after framed manifolds

- a
feeling which must have been shared by many topologists
working on this problem. All in all, the temporary high of
believing that one had the construction was sufficient to
maintain in me at least an enthusiastic spectator’s interest in
the problem.”



A solution to the
Arf-Kervaire invariant

problem

Mike Hill
Mike Hopkins
Doug Ravenel

Background and
history
Our main result

Pontryagin’s early work

The Arf-Kervaire
formulation

Questions raised by our
theorem

Our strategy
Ingredients of the proof

The spectrum Ω

How we construct Ω

The slice spectral sequence

1.11

Snaith’s book (continued)

“For a brief period overnight we were convinced that we had
the method to make all the sought after framed manifolds- a
feeling which must have been shared by many topologists
working on this problem.

All in all, the temporary high of
believing that one had the construction was sufficient to
maintain in me at least an enthusiastic spectator’s interest in
the problem.”



A solution to the
Arf-Kervaire invariant

problem

Mike Hill
Mike Hopkins
Doug Ravenel

Background and
history
Our main result

Pontryagin’s early work

The Arf-Kervaire
formulation

Questions raised by our
theorem

Our strategy
Ingredients of the proof

The spectrum Ω

How we construct Ω

The slice spectral sequence

1.11

Snaith’s book (continued)

“For a brief period overnight we were convinced that we had
the method to make all the sought after framed manifolds- a
feeling which must have been shared by many topologists
working on this problem. All in all, the temporary high of
believing that one had the construction

was sufficient to
maintain in me at least an enthusiastic spectator’s interest in
the problem.”



A solution to the
Arf-Kervaire invariant

problem

Mike Hill
Mike Hopkins
Doug Ravenel

Background and
history
Our main result

Pontryagin’s early work

The Arf-Kervaire
formulation

Questions raised by our
theorem

Our strategy
Ingredients of the proof

The spectrum Ω

How we construct Ω

The slice spectral sequence

1.11

Snaith’s book (continued)

“For a brief period overnight we were convinced that we had
the method to make all the sought after framed manifolds- a
feeling which must have been shared by many topologists
working on this problem. All in all, the temporary high of
believing that one had the construction was sufficient to
maintain in me at least an enthusiastic spectator’s interest in
the problem.”



A solution to the
Arf-Kervaire invariant

problem

Mike Hill
Mike Hopkins
Doug Ravenel

Background and
history
Our main result

Pontryagin’s early work

The Arf-Kervaire
formulation

Questions raised by our
theorem

Our strategy
Ingredients of the proof

The spectrum Ω

How we construct Ω

The slice spectral sequence

1.12

Snaith’s book (continued)

“In the light of the above conjecture and the failure over fifty
years to construct framed manifolds of Arf-Kervaire invariant
one

this might turn out to be a book about things which do not
exist. This [is] why the quotations which preface each chapter
contain a preponderance of utterances from the pen of Lewis
Carroll.”
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1.13

Our main result (continued)

Here is the stable homotopy theoretic formulation.

Main Theorem

The Arf-Kervaire elements θj ∈ π2j+1−2+n(Sn) for large n do not
exist for j ≥ 7.

The θj in the theorem is the name given to a hypothetical map
between spheres for which the Arf-Kervaire invariant is
nontrivial. It follows from Browder’s theorem of 1969 that such
things can exist only in dimensions that are 2 less than a power
of 2.
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1.14

Our main result (continued)

Mark Mahowald

Some homotopy theorists, most notably Ma-
howald, speculated about what would hap-
pen if θj existed for all j .

He derived numer-
ous consequences about homotopy groups
of spheres. The possible nonexistence of the
θj for large j was known as the Doomsday
Hypothesis.

After 1980, the problem faded into the background because it
was thought to be too hard. Our proof is two giant steps away
from anything that was attempted in the 70s. We now know
that the world of homotopy theory is very different from what
they had envisioned then.
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1.15

Pontryagin’s early work on homotopy groups of spheres

Lev Pontryagin 1908-1988

Pontryagin’s approach to maps f : Sn+k → Sn was

• Assume f is smooth. We know that any such map is can
be continuously deformed to a smooth one.

• Pick a regular value y ∈ Sn. Its inverse image will be a
smooth k -manifold M in Sn+k .

• By studying such manifolds, Pontryagin was able to
deduce things about maps between spheres.
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1.16

Pontryagin’s early work (continued)

Let Dn be the closure of an open ball around a regular value
y ∈ Sn.

If it is sufficiently small, then V n+k = f−1(Dn) ⊂ Sn+k is
an (n + k)-manifold homeomorphic to M × Dn with boundary
homeomorphic to M × Sn−1.

A local coordinate system around around the point y ∈ Sn pulls
back to one around M called a framing.

There is a way to reverse this procedure. A framed manifold
Mk ⊂ Sn+k determines a map f : Sn+k → Sn.
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Pontryagin’s early work (continued)

Let Dn be the closure of an open ball around a regular value
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1.17

Pontryagin’s early work (continued)

To proceed further, we need to be more precise about what we
mean by continuous deformation.

Two maps f1, f2 : Sn+k → Sn are homotopic if there is a
continuous map h : Sn+k × [0,1]→ Sn (called a homotopy
between f1 and f2) such that

h(x ,0) = f1(x) and h(x ,1) = f2(x).

If y ∈ Sn is a regular value of h, then h−1(y) is a framed
(k + 1)-manifold N ⊂ Sn+k × [0,1] whose boundary is the
disjoint union of M1 = f−1

1 (y) and M2 = f−1
2 (y). This N is called

a framed cobordism between M1 and M2. When it exists the
two closed manifolds are said to be framed cobordant.
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Pontryagin’s early work (continued)
Here is an example of a framed cobordism for n = k = 1.

Pontryagin (1930’s)

M1

M2

N

Framed cobordism
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Pontryagin’s early work (continued)

Pontryagin (1930’s)

!k := {stably framed k-manifolds}/cobordism

M1

M2

N

!k"n+k(Sn) #

Theorem:  The above construction gives a bijection

"n+k(Sn) := {maps Sn+k ! Sn}/homotopy

where
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Pontryagin’s early work (continued)

Pontryagin (1930’s)

k=0
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Pontryagin’s early work (continued)

Pontryagin (1930’s)

k=0
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Pontryagin’s early work (continued)

Pontryagin (1930’s)

k=0
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Pontryagin’s early work (continued)

Pontryagin (1930’s)

k=0
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Pontryagin’s early work (continued)

Pontryagin (1930’s)

k=0 "n(Sn) = Z
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Pontryagin’s early work (continued)

Pontryagin (1930’s)

k=0 "n(Sn) = Z

(the degree)
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Pontryagin’s early work (continued)

Pontryagin (1930’s)

k=0

k=1

"n(Sn) = Z

(the degree)
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Pontryagin’s early work (continued)

Pontryagin (1930’s)

k=0

k=1

"n(Sn) = Z

"n+1(Sn) = Z/2

(the degree)
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Pontryagin’s early work (continued)

Pontryagin (1930’s)

k=2
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Pontryagin’s early work (continued)

Pontryagin (1930’s)

k=2 genus M = 0   ⇒   M is a boundary

(since S2 bounds a disk and 
"2(GLn(R))=0)
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Pontryagin’s early work (continued)

Pontryagin (1930’s)

k=2 genus M = 0   ⇒   M is a boundary

(since S2 bounds a disk and 
"2(GLn(R))=0)

Suppose the genus of M is 
greater than 0.
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Pontryagin’s early work (continued)

Pontryagin (1930’s)

k=2
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Pontryagin’s early work (continued)

Pontryagin (1930’s)

k=2
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Pontryagin’s early work (continued)

Pontryagin (1930’s)

k=2

choose an 
embedded arc
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Pontryagin’s early work (continued)

Pontryagin (1930’s)

k=2

choose an 
embedded arc

cut the surface open 
and glue in disks
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Pontryagin’s early work (continued)

Pontryagin (1930’s)

k=2

framed surgery
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Pontryagin’s early work (continued)

Pontryagin (1930’s)

" : H1(M; Z/2) ! Z/2Obstruction:
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Pontryagin’s early work (continued)

Pontryagin (1930’s)

" : H1(M; Z/2) ! Z/2Obstruction:

Argument:  Since the dimension of H1(M; Z/2) is 
even, there is always a non-zero element in the 
kernel of ", and so surgery can be performed.  
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Pontryagin’s early work (continued)

Pontryagin (1930’s)

" : H1(M; Z/2) ! Z/2Obstruction:

Argument:  Since the dimension of H1(M; Z/2) is 
even, there is always a non-zero element in the 
kernel of ", and so surgery can be performed.  

Conclusion:  !2 = "n+2(Sn) = 0.  
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1.39

Pontryagin’s mistake for k = 2

The map ϕ : H1(M; Z/2)→ Z/2 is not a homomorphism!

Pontryagin (1930s) k=2

Tuesday, April 21, 2009
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1.40

The Arf invariant of a quadratic form in characteristic 2

Let λ be a nonsingular anti-symmetric bilinear form on a free
abelian group H of rank 2n with mod 2 reduction H.

It is known
that H has a basis of the form {ai ,bi : 1 ≤ i ≤ n} with

λ(ai ,ai′) = 0 λ(bj ,bj′) = 0 and λ(ai ,bj ) = δi,j .

In other words, H has a basis for which the bilinear form’s
matrix has the symplectic form

0 1
1 0

0 1
1 0

. . .
0 1
1 0


.
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1.41

The Arf invariant of a quadratic form in characteristic 2
(continued)

A quadratic refinement of λ is a map q : H → Z/2 satisfying

q(x + y) = q(x) + q(y) + λ(x , y)

Its Arf invariant is

Arf(q) =
n∑

i=1

q(ai )q(bi ) ∈ Z/2.

In 1941 Arf proved that this invariant (along with the number n)
determines the isomorphism type of q.
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Money talks: Arf’s definition republished in 2009

Cahit Arf 1910-1997
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1.43

The Kervaire invariant of a framed (4m + 2)-manifold

Let M be a 2m-connected smooth closed framed manifold of
dimension 4m + 2.

Let H = H2m+1(M; Z), the homology group
in the middle dimension. Each x ∈ H is represented by an
embedding ix : S2m+1 ↪→ M with a stably trivialized normal
bundle. H has an antisymmetric bilinear form λ defined in
terms of intersection numbers.

Michel Kervaire 1927-2007

Kervaire defined a
quadratic refinement q
on its mod 2 reduction in
terms of each sphere’s
normal bundle. The
Kervaire invariant Φ(M)
is defined to be the Arf
invariant of q.

For m = 0, Kervaire’s q coincides with Pontryagin’s ϕ.
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The Kervaire invariant of a framed (4m + 2)-manifold
(continued)

What can we say about Φ(M)?

• For m = 0 there is a framing on the torus S1 × S1 ⊂ R4

with nontrivial Kervaire invariant. Pontryagin used it in
1950 (after some false starts in the 30s) to show
πn+2(Sn) = Z/2 for all n ≥ 2.

Pontryagin (1930’s)
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The Kervaire invariant of a framed (4m + 2)-manifold
(continued)

More of what we can say about Φ(M).

• Kervaire (1960) showed it must vanish when m = 2. This
enabled him to construct the first example of a topological
manifold (of dimension 10) without a smooth structure.
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The Kervaire invariant of a framed (4m + 2)-manifold
(continued)

More of what we can say about Φ(M).

•

Ed Brown Frank Peterson
1930-2000

Brown-Peterson (1966)
showed that it vanishes
for all positive even m.
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The Kervaire invariant of a framed (4m + 2)-manifold
(continued)

More of what we can say about Φ(M).

•

Bill Browder

Browder (1969) showed that it can be
nontrivial only if m = 2j−1 − 1 for some
positive integer j . This happens iff the
element h2

j is a permanent cycle in the
Adams spectral sequence. The corre-
sponding element in πn+2j+1−2(Sn) for
large n is θj , the subject of our theo-
rem. This is the stable homotopy the-
oretic formulation of the problem.

• θj is known to exist for 1 ≤ j ≤ 5, i.e., in dimensions 2, 6,
14, 30 and 62.

• In the decade following Browder’s theorem, many
topologists tried without success to construct framed
manifolds with nontrivial Kervaire invariant in all
dimensions 2 less than a power of 2.

• Our theorem says θj does not exist for j ≥ 7. The case
j = 6 is still open.
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1.48

Questions raised by our theorem

Adams spectral sequence formulation. We now know that the
h2

j for j ≥ 7 are not permanent cycles, so they have to support
nontrivial differentials. We have no idea what their targets are.

Unstable homotopy theoretic formulation. In 1967 Mahowald
published an elaborate conjecture about the role of the θj
(assuming that they all exist) in the unstable homotopy groups
of spheres. Since they do not exist, a substitute for his
conjecture is needed. We have no idea what it should be.

Our method of proof offers a new tool, the slice spectral
sequence, for studying the stable homotopy groups of spheres.
We look forward to learning more with it in the future. We will
illustrate it at the end of the talk.
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We will
illustrate it at the end of the talk.
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Ingredients of the proof
Our proof has several ingredients.

• We use methods of stable homotopy theory, which means
we use spectra instead of topological spaces. Roughly
speaking, spectra are to spaces as integers are to natural
numbers. Instead of making addition formally invertible,
we do the same for suspension.

This means
• Every spectrum X is equivalent to the suspension of

another spectrum Y = Σ−1X .
• X is equivalent to ΩΣX .
• Fiber sequences and cofiber sequences are the same, up to

weak equivalence.
• While space X has a homotopy group πk (X ) for each

positive integer k , a spectrum X has an abelian homotopy
group πk (X ) defined for every integer k .

For the sphere spectrum S0, πk (S0) is the usual homotopy
group πn+k (Sn) for n > k + 1. The hypothetical θj is an
element of this group for k = 2j+1 − 2.
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Ingredients of the proof (continued)

More ingredients of our proof:

• We use complex cobordism theory. This is a branch of
algebraic topology having deep connections with algebraic
geometry and number theory. It includes some highly
developed computational techniques that began with work
by Milnor, Novikov and Quillen in the 60s. A pivotal tool in
the subject is the theory of formal group laws.

John Milnor Sergei Novikov Dan Quillen
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Ingredients of the proof (continued)
More ingredients of our proof:
• We also make use of newer less familiar methods from

equivariant stable homotopy theory.

This means there is a
finite group G (a cyclic 2-group) acting on all spaces in
sight, and all maps are required to commute with these
actions. When we pass to spectra, we get homotopy
groups indexed not just by the integers Z, but by RO(G),
the real representation ring of G. Our calculations make
use of this richer structure.

Peter May John Greenlees Gaunce Lewis
1949-2006
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The spectrum Ω

We will produce a map S0 → Ω, where Ω is a nonconnective
spectrum (meaning that it has nontrivial homotopy groups in
arbitrarily large negative dimensions) with the following
properties.

(i) Detection Theorem. It has an Adams-Novikov spectral
sequence (which is a device for calculating homotopy
groups) in which the image of each θj is nontrivial. This
means that if θj exists, we will see its image in π∗(Ω).

(ii) Periodicity Theorem. It is 256-periodic, meaning that
πk (Ω) depends only on the reduction of k modulo 256.

(iii) Gap Theorem. πk (Ω) = 0 for −4 < k < 0. This property is
our zinger. Its proof involves a new tool we call the slice
spectral sequence.
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(ii) Periodicity Theorem. It is 256-periodic, meaning that
πk (Ω) depends only on the reduction of k modulo 256.

(iii) Gap Theorem. πk (Ω) = 0 for −4 < k < 0. This property is
our zinger. Its proof involves a new tool we call the slice
spectral sequence.
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The spectrum Ω (continued)

Here again are the properties of Ω

(i) Detection Theorem. If θj exists, it has nontrivial image in
π∗(Ω).

(ii) Periodicity Theorem. πk (Ω) depends only on the reduction
of k modulo 256.

(iii) Gap Theorem. π−2(Ω) = 0.

(ii) and (iii) imply that π254(Ω) = 0.

If θ7 ∈ π254(S0) exists, (i) implies it has a nontrivial image in this
group, so it cannot exist. The argument for θj for larger j is
similar, since |θj | = 2j+1 − 2 ≡ −2 mod 256 for j ≥ 7.
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The spectrum Ω (continued)

Here again are the properties of Ω
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How we construct Ω

Our spectrum Ω will be the fixed point spectrum for the action of
C8 (the cyclic group of order 8) on an equivariant spectrum Ω̃.

To construct it we start with the complex cobordism spectrum
MU. It can be thought of as the set of complex points of an
algebraic variety defined over the real numbers. This means
that it has an action of C2 defined by complex conjugation. The
fixed point set of this action is the set of real points, known to
topologists as MO, the unoriented cobordism spectrum. In this
notation, U and O stand for the unitary and orthogonal groups.
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How we construct Ω

Our spectrum Ω will be the fixed point spectrum for the action of
C8 (the cyclic group of order 8) on an equivariant spectrum Ω̃.

To construct it we start with the complex cobordism spectrum
MU. It can be thought of as the set of complex points of an
algebraic variety defined over the real numbers. This means
that it has an action of C2 defined by complex conjugation. The
fixed point set of this action is the set of real points, known to
topologists as MO, the unoriented cobordism spectrum. In this
notation, U and O stand for the unitary and orthogonal groups.
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How we construct Ω

Our spectrum Ω will be the fixed point spectrum for the action of
C8 (the cyclic group of order 8) on an equivariant spectrum Ω̃.

To construct it we start with the complex cobordism spectrum
MU.

It can be thought of as the set of complex points of an
algebraic variety defined over the real numbers. This means
that it has an action of C2 defined by complex conjugation. The
fixed point set of this action is the set of real points, known to
topologists as MO, the unoriented cobordism spectrum. In this
notation, U and O stand for the unitary and orthogonal groups.
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How we construct Ω

Our spectrum Ω will be the fixed point spectrum for the action of
C8 (the cyclic group of order 8) on an equivariant spectrum Ω̃.

To construct it we start with the complex cobordism spectrum
MU. It can be thought of as the set of complex points of an
algebraic variety defined over the real numbers.

This means
that it has an action of C2 defined by complex conjugation. The
fixed point set of this action is the set of real points, known to
topologists as MO, the unoriented cobordism spectrum. In this
notation, U and O stand for the unitary and orthogonal groups.
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How we construct Ω

Our spectrum Ω will be the fixed point spectrum for the action of
C8 (the cyclic group of order 8) on an equivariant spectrum Ω̃.

To construct it we start with the complex cobordism spectrum
MU. It can be thought of as the set of complex points of an
algebraic variety defined over the real numbers. This means
that it has an action of C2 defined by complex conjugation.

The
fixed point set of this action is the set of real points, known to
topologists as MO, the unoriented cobordism spectrum. In this
notation, U and O stand for the unitary and orthogonal groups.
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How we construct Ω

Our spectrum Ω will be the fixed point spectrum for the action of
C8 (the cyclic group of order 8) on an equivariant spectrum Ω̃.

To construct it we start with the complex cobordism spectrum
MU. It can be thought of as the set of complex points of an
algebraic variety defined over the real numbers. This means
that it has an action of C2 defined by complex conjugation. The
fixed point set of this action is the set of real points, known to
topologists as MO, the unoriented cobordism spectrum.

In this
notation, U and O stand for the unitary and orthogonal groups.
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How we construct Ω

Our spectrum Ω will be the fixed point spectrum for the action of
C8 (the cyclic group of order 8) on an equivariant spectrum Ω̃.

To construct it we start with the complex cobordism spectrum
MU. It can be thought of as the set of complex points of an
algebraic variety defined over the real numbers. This means
that it has an action of C2 defined by complex conjugation. The
fixed point set of this action is the set of real points, known to
topologists as MO, the unoriented cobordism spectrum. In this
notation, U and O stand for the unitary and orthogonal groups.
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How we construct Ω (continued)

Some people who have studied MU as a C2-spectrum:

Peter Landweber

Shoro Araki
1930–2005

Igor Kriz and Po Hu

Nitu Kitchloo Steve Wilson
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How we construct Ω (continued)

Some people who have studied MU as a C2-spectrum:

Peter Landweber

Shoro Araki
1930–2005

Igor Kriz and Po Hu

Nitu Kitchloo Steve Wilson
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How we construct Ω (continued)

Some people who have studied MU as a C2-spectrum:

Peter Landweber

Shoro Araki
1930–2005

Igor Kriz and Po Hu

Nitu Kitchloo Steve Wilson
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How we construct Ω (continued)

Some people who have studied MU as a C2-spectrum:

Peter Landweber

Shoro Araki
1930–2005

Igor Kriz and Po Hu

Nitu Kitchloo Steve Wilson
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How we construct Ω (continued)

Some people who have studied MU as a C2-spectrum:

Peter Landweber

Shoro Araki
1930–2005

Igor Kriz and Po Hu

Nitu Kitchloo Steve Wilson
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How we construct Ω (continued)

To get a C8-spectrum, we use the following general
construction for getting from a space or spectrum X acted on
by a group H to one acted on by a larger group G containing H
as a subgroup.

Let

Y = MapH(G,X ),

the space (or spectrum) of H-equivariant maps from G to X .
Here the action of H on G is by left multiplication, and the
resulting object has an action of G by left multiplication. As a
set, Y = X |G/H|, the |G/H|-fold Cartesian power of X . A
general element of G permutes these factors, each of which is
invariant under the action of the subgroup H.

In particular we get a C8-spectrum

MU(4)
R = MapC2

(C8,MUR).

This spectrum is not periodic, but it has a close relative Ω̃
which is.



A solution to the
Arf-Kervaire invariant

problem

Mike Hill
Mike Hopkins
Doug Ravenel

Background and
history
Our main result

Pontryagin’s early work

The Arf-Kervaire
formulation

Questions raised by our
theorem

Our strategy
Ingredients of the proof

The spectrum Ω

How we construct Ω

The slice spectral sequence

1.56

How we construct Ω (continued)

To get a C8-spectrum, we use the following general
construction for getting from a space or spectrum X acted on
by a group H to one acted on by a larger group G containing H
as a subgroup. Let

Y = MapH(G,X ),
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How we construct Ω (continued)
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How we construct Ω (continued)
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How we construct Ω (continued)
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How we construct Ω (continued)
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How we construct Ω (continued)

To get a C8-spectrum, we use the following general
construction for getting from a space or spectrum X acted on
by a group H to one acted on by a larger group G containing H
as a subgroup. Let

Y = MapH(G,X ),

the space (or spectrum) of H-equivariant maps from G to X .
Here the action of H on G is by left multiplication, and the
resulting object has an action of G by left multiplication. As a
set, Y = X |G/H|, the |G/H|-fold Cartesian power of X . A
general element of G permutes these factors, each of which is
invariant under the action of the subgroup H.

In particular we get a C8-spectrum

MU(4)
R = MapC2

(C8,MUR).

This spectrum is not periodic, but it has a close relative Ω̃
which is.



A solution to the
Arf-Kervaire invariant

problem

Mike Hill
Mike Hopkins
Doug Ravenel

Background and
history
Our main result

Pontryagin’s early work

The Arf-Kervaire
formulation

Questions raised by our
theorem

Our strategy
Ingredients of the proof

The spectrum Ω

How we construct Ω

The slice spectral sequence

1.57

A homotopy fixed point spectral sequence
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The corresponding slice spectral sequence
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