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An equivariant approach to the Riemann Hypothesis

Abstract: We start by extending the Riemann zeta function
from CP' (the complex projective line, which is the same thing
as the Riemann sphere) to CP°, the infinite dimensional
complex projective space, via multiplication. We can do this
because CP> is the infinite symmetric product on CP!.

The object is to show that all nontrivial zeros have first
coordinate on the critical line. The group C, acts by complex
conjugation. Using the functional equation we can modify the
zeta function to get a new function A that is symmetric about
the critical line. This leads to an action of G = C> x C, on CP*®
for which modified zeta function is equivariant.
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We can extend this function to the complex cobordism
spectrum MU (which also gets a G-action in this way) by
considering higher derivatives of A.
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We can extend this function to the complex cobordism
spectrum MU (which also gets a G-action in this way) by
considering higher derivatives of A. A theorem of Bombieri
states that a zero off the critical line leads to an essential map
from CP2+2 -1 to the fixed point spectrum MU, where i and j
depend on the moments of the zero in question. Subsequent
work has shown that we must have i,j > 31 (all lower cases
have been excluded by machine computations done in the 90s)
and that the map must factor through the top cell.

Hence the problem is very similar to the Kervaire invariant
question except that the group involved is not cyclic.
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An equivariant approach to the Riemann Hypothesis
(continued)

We can extend this function to the complex cobordism
spectrum MU (which also gets a G-action in this way) by
considering higher derivatives of A. A theorem of Bombieri
states that a zero off the critical line leads to an essential map
from CP2+2 -1 to the fixed point spectrum MU, where i and j
depend on the moments of the zero in question. Subsequent
work has shown that we must have i,j > 31 (all lower cases
have been excluded by machine computations done in the 90s)
and that the map must factor through the top cell.

Hence the problem is very similar to the Kervaire invariant
question except that the group involved is not cyclic. The Slice
Theorem (to be explained below) still holds, but the slices
themselves are more complicated because of the bigger group.
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An equivariant approach to the Riemann Hypothesis
(continued)

We can extend this function to the complex cobordism
spectrum MU (which also gets a G-action in this way) by
considering higher derivatives of A. A theorem of Bombieri
states that a zero off the critical line leads to an essential map
from CP2+2 -1 to the fixed point spectrum MU, where i and j
depend on the moments of the zero in question. Subsequent
work has shown that we must have i,j > 31 (all lower cases
have been excluded by machine computations done in the 90s)
and that the map must factor through the top cell.

Hence the problem is very similar to the Kervaire invariant
question except that the group involved is not cyclic. The Slice
Theorem (to be explained below) still holds, but the slices
themselves are more complicated because of the bigger group.
Using the techniques we have developed in the cyclic case,
there is a good chance we can do the necessary calculations
here and arrive at a similar proof.
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e Manifold formulation: It says that a certain geometrically
defined invariant (M) (the Arf-Kervaire invariant, to be
defined later) on certain manifolds M is always zero.
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e Manifold formulation: It says that a certain geometrically
defined invariant (M) (the Arf-Kervaire invariant, to be
defined later) on certain manifolds M is always zero.

e Stable homotopy theoretic formulation: It says that certain
long sought hypothetical maps between high dimensional
spheres do not exist.
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Our main result

Our main theorem can be stated in three different but
equivalent ways:

e Manifold formulation: It says that a certain geometrically
defined invariant (M) (the Arf-Kervaire invariant, to be
defined later) on certain manifolds M is always zero.

e Stable homotopy theoretic formulation: It says that certain
long sought hypothetical maps between high dimensional
spheres do not exist.

e Unstable homotopy theoretic formulation: It says
something about the EHP sequence, which has to do with
unstable homotopy groups of spheres.

The problem solved by our theorem is nearly 50 years old.
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Our main result

Our main theorem can be stated in three different but
equivalent ways:

e Manifold formulation: It says that a certain geometrically
defined invariant (M) (the Arf-Kervaire invariant, to be
defined later) on certain manifolds M is always zero.

e Stable homotopy theoretic formulation: It says that certain
long sought hypothetical maps between high dimensional
spheres do not exist.

e Unstable homotopy theoretic formulation: It says
something about the EHP sequence, which has to do with
unstable homotopy groups of spheres.

The problem solved by our theorem is nearly 50 years old.
There were several unsuccessful attempts to solve it in the
1970s.
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Our main theorem can be stated in three different but PEIDULIET
equivalent ways: %

e Manifold formulation: It says that a certain geometrically 4
defined invariant (M) (the Arf-Kervaire invariant, to be Background and
defined later) on certain manifolds M is always zero. _

e Stable homotopy theoretic formulation: It says that certain ;;;C\y‘;gﬁwavey
long sought hypothetical maps between high dimensional Questons ised by our
spheres do not exist. T

e Unstable homotopy theoretic formulation: It says Tty
something about the EHP sequence, which has to do with Howwe consuct 2
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unstable homotopy groups of spheres.

The problem solved by our theorem is nearly 50 years old.
There were several unsuccessful attempts to solve it in the
1970s. They were all aimed at proving the opposite of what we
have proved.
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Stable Homotopy Around the Arf-Kervaire Invariant, published
in early 2009, just before we proved our theorem.

“As ideas for progress on a particular mathematics problem
atrophy it can disappear.
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Snaith’s book

Stable Homotopy Around the Arf-Kervaire Invariant, published
in early 2009, just before we proved our theorem.

“As ideas for progress on a particular mathematics problem

atrophy it can disappear. Accordingly | wrote this book to stem
the tide of oblivion.”
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“For a brief period overnight we were convinced that we had
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Homotopy
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“For a brief period overnight we were convinced that we had
the method to make all the sought after framed manifolds- a
feeling which must have been shared by many topologists
working on this problem.
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Snaith’s book (continued)

“For a brief period overnight we were convinced that we had
the method to make all the sought after framed manifolds- a
feeling which must have been shared by many topologists
working on this problem. All in all, the temporary high of
believing that one had the construction was sufficient to
maintain in me at least an enthusiastic spectator’s interest in
the problem.”
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“In the light of the above conjecture and the failure over fifty
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one this might turn out to be a book about things which do not
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“In the light of the above conjecture and the failure over fifty
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exist. This [is] why the quotations which preface each chapter
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Snaith’s book (continued)

“In the light of the above conjecture and the failure over fifty
years to construct framed manifolds of Arf-Kervaire invariant
one this might turn out to be a book about things which do not
exist. This [is] why the quotations which preface each chapter
contain a preponderance of utterances from the pen of Lewis
Carroll”
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Our main result (continued)

Here is the stable homotopy theoretic formulation.
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Our main result (continued)

Here is the stable homotopy theoretic formulation.
Main Theorem

The Arf-Kervaire elements 6; € my1_o,,(S™) for large n do not
exist forj > 7.
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Our main result (continued)

Here is the stable homotopy theoretic formulation.

Main Theorem

The Arf-Kervaire elements 6; € my1_o,,(S™) for large n do not
exist forj > 7.

The ¢; in the theorem is the name given to a hypothetical map
between spheres for which the Arf-Kervaire invariant is
nontrivial.
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Our main result (continued)

Here is the stable homotopy theoretic formulation.

Main Theorem

The Arf-Kervaire elements 6; € my1_o,,(S™) for large n do not
existforj>17.

The ¢; in the theorem is the name given to a hypothetical map
between spheres for which the Arf-Kervaire invariant is
nontrivial. It follows from Browder’s theorem of 1969 that such

things can exist only in dimensions that are 2 less than a power
of 2.
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Our main result (continued)

Some homotopy theorists, most notably Ma-
howald, speculated about what would hap-
pen if §; existed for all j.

Mark Mahowald
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Our main result (continued)

Mark Mahowald

Some homotopy theorists, most notably Ma-
howald, speculated about what would hap-
pen if §; existed for all j. He derived numer-
ous consequences about homotopy groups
of spheres.
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Our main result (continued)

Mark Mahowald

Some homotopy theorists, most notably Ma-
howald, speculated about what would hap-
pen if §; existed for all j. He derived numer-
ous consequences about homotopy groups
of spheres. The possible nonexistence of the
g; for large j was known as the Doomsday
Hypothesis.
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Our main result (continued)

Some homotopy theorists, most notably Ma-
howald, speculated about what would hap-
pen if §; existed for all j. He derived numer-
ous consequences about homotopy groups
of spheres. The possible nonexistence of the
g; for large j was known as the Doomsday
Hypothesis.

Mark Mahowald

After 1980, the problem faded into the background because it
was thought to be too hard.
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Our main result (continued)

Some homotopy theorists, most notably Ma-
howald, speculated about what would hap-
pen if §; existed for all j. He derived numer-
ous consequences about homotopy groups
of spheres. The possible nonexistence of the
g; for large j was known as the Doomsday
Hypothesis.

Mark Mahowald

After 1980, the problem faded into the background because it
was thought to be too hard. Our proof is two giant steps away
from anything that was attempted in the 70s.
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Our main result (continued)

Some homotopy theorists, most notably Ma-
howald, speculated about what would hap-
pen if §; existed for all j. He derived numer-
ous consequences about homotopy groups
of spheres. The possible nonexistence of the
g; for large j was known as the Doomsday
Hypothesis.

Mark Mahowald

After 1980, the problem faded into the background because it
was thought to be too hard. Our proof is two giant steps away
from anything that was attempted in the 70s. We now know
that the world of homotopy theory is very different from what
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Pontryagin’s early work (continued)

Pontryagin (1930%)

Qy := {stably framed k-manifolds}/ coborcisn

Theorem: The above construction gives a bijection

ﬂn+k(sn) = ()
where

ﬂn+k(sn) = {Maps ik = sn}/homofap\/
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Pontryagin (1930%)

k=2 genusM=0 = Mis a boundary

(since S? bounds a disk and
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Pontryagin (1930%)

Obstruction: @ : Hi(M; Z/2) = Z/2

Argument: Since the dimension of Hi(M; Z/2) is

even, there is always a non-zero element in the
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A quadratic refinement of \ is a map g : H — Z/2 satisfying 4%

Background and
history

a(x +y) =q(x)+q(y) + \(x,y) Cor i

Pontryagin's early work

Its Arf invariant is erERa e
theorem

n Our strategy
Ingredients of the proof
Arf(q) = E q(aiq(b) e Z/2. Tre specium 2
=1 How we construct

The slice spectral sequence

In 1941 Arf proved that this invariant (along with the number n)
determines the isomorphism type of q.
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nontrivial differentials. We have no idea what their targets are.

Unstable homotopy theoretic formulation. In 1967 Mahowald
published an elaborate conjecture about the role of the 6;
(assuming that they all exist) in the unstable homotopy groups
of spheres. Since they do not exist, a substitute for his
conjecture is needed. We have no idea what it should be.
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we use spectra instead of topological spaces. Roughly
speaking, spectra are to spaces as integers are to natural 4
numbers. Instead of making addition formally invertible,
we do the same for suspension. oy
R
This means Tne Arenvaie
e Every spectrum X is equivalent to the suspension of O o e
another spectrum Y = ¥ ' X. R

e X is equivalent to QX X.
. . The spectrum
e Fiber sequences and cofiber sequences are the same, up to [rE——
Weak eqUiValence. The slice spectral sequence
e While space X has a homotopy group mx(X) for each
positive integer k, a spectrum X has an abelian homotopy
group 7 (X) defined for every integer k.

For the sphere spectrum S°, 7,(S?) is the usual homotopy
group w4 x(S") for n > k + 1. The hypothetical 0; is an
element of this group for k = 2/+1 — 2,
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More ingredients of our proof:

e We use complex cobordism theory. This is a branch of
algebraic topology having deep connections with algebraic
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e We also make use of newer less familiar methods from
equivariant stable homotopy theory. This means there is a
finite group G (a cyclic 2-group) acting on all spaces in
sight, and all maps are required to commute with these
actions. When we pass to spectra, we get homotopy
groups indexed not just by the integers Z, but by RO(G),
the real representation ring of G. Our calculations make
use of this richer structure.

Peter May John Greenlees Gaunce Lewis
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We will produce a map S° — Q, where Q is a nonconnective
spectrum (meaning that it has nontrivial homotopy groups in 4
arbitrarily large negative dimensions) with the following Background and
. istory
properties. Ourmain resul
Pontryagin’s early work
(i) Detection Theorem. It has an Adams-Novikov spectral I
sequence (which is a device for calculating homotopy e
groups) in which the image of each 6; is nontrivial. This Our strategy
means that if §; exists, we will see its image in 7..(). L
(i) Periodicity Theorem. It is 256-periodic, meaning that s e e

m«(§2) depends only on the reduction of k modulo 256.

(iii) Gap Theorem. mx(Q2) = 0 for —4 < k < 0. This property is
our zinger. Its proof involves a new tool we call the slice
spectral sequence.
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If 67 € m254(SP) exists, (i) implies it has a nontrivial image in this
group, so it cannot exist. The argument for 6; for larger j is
similar, since |0;| = 2" —2 = —2 mod 256 for j > 7.
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Our spectrum Q will be the fixed point spectrum for the action of 4%
Cs (the cyclic group of order 8) on an equivariant spectrum €. PR
Our main result
To construct it we start with the complex cobordism spectrum monaae
R formulation
MU. 1t can be thought of as the set of complex points of an @R

theorem

algebraic variety defined over the real numbers. This means our srateay

that it has an action of C, defined by complex conjugation. The o
fixed point set of this action is the set of real points, known to .
topologists as MO, the unoriented cobordism spectrum. In this Thesice specalseauence
notation, U and O stand for the unitary and orthogonal groups.
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To get a Cs-spectrum, we use the following general
construction for getting from a space or spectrum X acted on

by a group H to one acted on by a larger group G containing H
as a subgroup. Let

Y = Mapy(G, X),

the space (or spectrum) of H-equivariant maps from G to X.
Here the action of H on G is by left multiplication, and the
resulting object has an action of G by left multiplication. As a
set, Y = XIG/Hl the |G/H|-fold Cartesian power of X.
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How we construct © (continued) A solution to the
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To get a Cg-spectrum, we use the following general L
construction for getting from a space or spectrum X acted on Doug Ravenel
by a group H to one acted on by a larger group G containing H
as a subgroup. Let 4

Y = MapH(G, X), Eizfgrg;ound and

the space (or spectrum) of H-equivariant maps from G to X. e ey ett
Here the action of H on G is by left multiplication, and the e sty o
resulting object has an action of G by left multiplication. As a e
set, Y = XIG/Hl the |G/H|-fold Cartesian power of X. A sttt
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Arf-Kervaire invariant

problem
To get a Cg-spectrum, we use the following general L
construction for getting from a space or spectrum X acted on Doug Ravenel
by a group H to one acted on by a larger group G containing H
as a subgroup. Let 4

Y = MapH(G, X)’ Ei:fgrg;ound and
the space (or spectrum) of H-equivariant maps from G to X. panagns sar otk
Here the action of H on G is by left multiplication, and the Curtor ey
resulting object has an action of G by left multiplication. As a e
set, Y = XIG/Hl the |G/H|-fold Cartesian power of X. A st oo
general element of G permutes these factors, each of whichis g
invariant under the action of the subgroup H. The sce spectal sequence

In particular we get a Cg-spectrum

MUS? = Map,, (Cs, MUg).
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How we construct Q (continued) S

Arf-Kervaire invariant

problem

To get a Cg-spectrum, we use the following general L
construction for getting from a space or spectrum X acted on Doug Ravenel
by a group H to one acted on by a larger group G containing H
as a subgroup. Let 4

Y = MapH(G, X)’ Ei:fgrg;ound and
the space (or spectrum) of H-equivariant maps from G to X. e ey ett
Here the action of H on G is by left multiplication, and the Conton sy ot
resulting object has an action of G by left multiplication. As a e
set, Y = XIG/Hl the |G/H|-fold Cartesian power of X. A sttt
general element of G permutes these factors, each of whichis g
invariant under the action of the subgroup H. The sce spectal sequence

In particular we get a Cg-spectrum
MUS? = Map,, (Cs, MUg).
This spectrum is not periodic, but it has a close relative

which is.
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A homotopy fixed point spectral sequence
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The corresponding slice spectral sequence
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