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THE NILPOTENCE AND PERIODICITY
THEOREMS

IN STABLE HOMOTOPY THEORY

by Douglas C. RAVENEL

Seminaire BOURBAKI

42eme annee, 1989-90, n° 728
juin 1990

1 Introduction and statement of theorems

In this paper we will outline some recent results in stable homotopy theory due to
Devinatz, Hopkins and J. Smith ([DHS88], [Hop87] and [HS]) and conjectured by the
author in [Rav84]. A more detailed account will appear in [Rav].

The theorems in question address one of the fundamental questions in algebraic
topology: how to determine, by algebraic methods, when a continuous map from one
topological space to another is homotopic to a constant map, i.e., a map that sends
all of the source space to a single point in the target. This is the simplest case of the
homotopy classification problem, which is to determine the set of homotopy classes of
continuous maps from a space X to a space Y, and to classify spaces (satisfying various
conditions) up to homotopy equivalence.

The basic strategy of algebraic topology is to study this problem by defining functors
from the homotopy category (in which the objects are suitable topological spaces and
the morphisms are homotopy classes of continuous maps) to various algebraic categories
such as that of graded modules over graded rings. The most familiar examples are
homotopy groups and ordinary homology and cohomology; in the latter case the functor
is contravariant rather than covariant. A continuous map is essential (i.e., not homotopic
to a constant map) if the functor carries it to a nontrivial homomorphism, but the
converse is rarely true. In general there is a tradeoff between the computability of the
functor and the amount of information it provides. When a functor that is easy to

compute gives complete information about the homotopy class of a map, one considers
it a great success.

Before stating the Nilpotence Theorem, we will indicate the modification of the
homotopy classification problem that it addresses. First, the spaces under consideration
are finite CW-complexes. The definition can be found in any textbook on algebraic
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topology. This class of spaces includes all of those one commonly studies geometrically,
e.g. compact manifolds, algebraic varieties and simplicial complexes. Moreover, it is

especially convenient for homotopy theory.
Second, we consider such spaces and maps between them up to suspension. The

suspension EX of a space X is the topological of the cylinder

obtained by collapsing each end of the cylinder (i.e., the subspaces X x {0} and X x {1})
to a single point. For example, the suspension of the n-sphere 5*~ (the space of unit
vectors in Rn+1 ) is S"+i .

The suspension E f of a map f : X - Y can be similarly defined, and suspension
can be iterated.

A map f is stably null homotopic if some suspension E’ f is homotopic to a constant

map. Otherwise it is said to be stably essential. When the spaces in question are finite

CW-complexes, there is an upper bound (depending on the connectivity and dimension
of the spaces) on the number of suspensions needed to settle the question.

One can define stable homotopy and the stable homotopy classification problem in
an obvious way. Experience has shown that stabilizing a problem in homotopy theory
in this way makes it much easier to study in most cases. (There are a few exceptions
to this statement, e.g. it is much easier to study maps to the circle S1 up ordinary
homotopy than up to stable homotopy.)

A map of the form

for d > 0 is called a self-map of X. It can be iterated by considering the maps

and one can ask if any of these composites is stably null homotopic. If the answer is

yes, we say the map f is stably nilpotent; otherwise we say it is periodic.
When X is a finite CW-complex, the adjective ’stably’ here is redundant. If one

of the composites above is stably null homotopic, there is another one (obtained by
moving further to the right) which is null homotopic without suspending.

Now we can state the simplest form of the Nilpotence Theorem of Devinatz-Hopkins-
Smith [DHS88].

Theorem 1.1 (Nilpotence Theorem, Self-map Form) There is a functor MU*
such that a self-map f of a finite CW-complex X is stably nilpotent if and only if
some iterate of MU .(!) is trivial.



This is the first of three equivalent forms of the Nilpotence Theorem. The others
are 3.7 and 5.2. 

-

The functor MU*, known as complex bordism theory, takes values in the category of
graded modules over a certain graded ring L, which is isomorphic to MU*(pt.). These
modules come equipped with an action by a certain infinite group r, which also acts
on L. The ring L and the group r are closely related to the theory of formal group
laws. MU*(X ) was originally defined in terms of maps from certain manifolds to X,
but this definition sheds little light on its algebraic structure. It is the algebra rather
than the geometry which is central to our discussion. We will discuss this in more detail
in Section 2 and more background can be found in [Rav86, Chapter 4]. In practice,
MU*(X ) is not difficult to compute.

We can also say something about periodic self-maps.
Before doing so we must discuss localization at a prime p. In algebra one does this

by tensoring everything in sight by Z(p), the integers localized at the prime p; it is the
subring of the rationals consisting of fractions with denominator prime to p. If A is a

finite abelian group, then A ® Z(p) is the p-component of A. Z(p) is flat as a module

over the integers Z; this means that tensoring with it preserves exact sequences.
There is an analogous procedure in homotopy theory. The definitive reference is

[BK72] ; a less formal account can be found in [Ada75]. For each CW-complex X there
is a unique X(p) with the property that for most algebraic functors E*, E*(X~p~) ^-’
E*(X) ® Z(p). We call A’(p) the p-Iocalization of X. If X is finite we say is a p-Iocal
finite CW-complez.

Proposition 1.2 Suppose X is a simply connected CW-complex such that H*(X ) (the
ordinary reduced homology of X ) consists entirely of torsion.

(i) If this torsion is prime to p then X~p~ is contractible.

(ii ) If it is all p-torsion then X is p-Iocal, i. e., X~p~ is homotopy equivalent to X. (In
this case we say that X is a p-torsion complex.)

(iii ) In general X is homotopy equivalent to the one-point union of its p-localizations
for all the primes p in this torsion.

The most interesting periodic self-maps occur when X is a finite p-torsion complex.
In these cases it is convenient to replace MU* by the Morava K-theories I~(n)*. These
were invented by Jack Morava in the early ’70’s, but he has yet to publish his work.
Algebraic topologists are generally reluctant to give a precise definition of them in public
because doing so would require a prohibitively long technical discussion. An axiomatic
approach would be desirable, but has yet to be formulated.

Despite the difficulties with the definition, K(n)*(X) is generally easier to com-
pute than MU*(X ), and it makes certain properties of X (having to do with periodic



self-maps) more readily apparent. The essential properties of Morava K-theory are
contained in the following result, most of which is proved in [JW75] ; a proof of (v) can
be found in [Rav84].

Proposition 1.3 For each prime p there is a sequence of functors K(n)* for n > 0
with the following properties. (We follow the standard practice of excluding p from the
notation. )

(i) K(0)*(X) = H*(X; (~) and K(0)*(X) = K(0)*(pt.) when X is a p-torsion com-
plex.

(ii) I~(1)*(X ) is one o f p -1 isomorphic summands of mod p complex K-theory.

(iii) Ii(0)*(pt.) = Q and for n > 0, K(n)*(pt.) = Z/(p)[vn, where the dimension

of vn is 2pn - 2. This ring is a graded field in the sense that every graded module
over it is free. K(n)*(X) is a module over [{( n ).(pt.).

(iv) There is a Kunneth isomorphism

(v) Let X be a p-local finite CW -complex. If

(vi) If X as above is not contractible then is nontrivial for n sufficiently
large.

Definition 1.4 A p-Iocal finite complex X has type n if n is the smallest integer such
that K(n)*(X) is nontrivial.

Because of the Kunneth isomorphism, I~(n)*(X ) is easier to compute than MU*(X ).
Again there are still many interesting spaces for which this has not been done. See

[RW80] and [HKR]. A consequence of the Nilpotence Theorem (1.1) is that the Morava
K-theories, along with ordinary homology with coefficients in a field, are essentially the

only homology theories with Kunneth isomorphisms.
The Morava K-theories are especially useful for detecting periodic self-maps. This

is the subject of the second major result of this paper, the Periodicity Theorem of

Hopkins-Smith [HS]. The proof is outlined in [Hop87].

Theorem 1.5 (Periodicity Theorem) Let X and Y be p-local (noncontractible ) fi-
nite CW-complexes of type n (1..~~.



(i) There is a self-map f : X such that K(n)*( f ) is an isomorphism and

l~(m)*( f ~ is nilpotent for m > n. (We will refer to such a map as a vn-map. )
When n = 0, d = 0 and when n > 0 then d is a multiple of 2p" - 2.

(ii) Suppose h: X --~ Y is a continuous map where Y is another finite p-local CW-
complex of type n. Let g: Y be a self-map as in (i). Then there are

positive integers i and j with di = e j such that the following diagram commutes
up to homotopy.

There are two special cases of (ii) worth noting. The first is when X = Y and h is
the identity map. In that case, (ii) says that f is assymptotically unique in the following
sense. Suppose g is another such periodic self-map. Then there are positive integers i
and j such that f’ is homotopic to gj.

The second case is when Y is a suspension of X and g is the corresponding suspension
of f . Then (ii) shows that f is assymptotically central in that any map h commutes
with some iterate of it. We will see below in 4.3 that a fixed iterate of f commutes with
all h.

2 MU-theory and formal group laws

In this section we will discuss the functor MU* used in the Nilpotence Theorem.
MU*(X ) is defined in terms of maps of manifolds into X as will be explained presently.
Unfortunately the geometry in this definition does not appear to be relevant to the ap-
plications we have in mind. We will be more concerned with some algebraic properties
of the functor which are intimately related to the theory of formal group laws.

Definition 2.1 Let Mi and M2 be smooth closed m-dimensional manifolds and let

be continuous maps for i = 1,2. These maps are bordant if there is a map

where W is a srriooth manifold whose boundary is the disjoint union of Ml and M2 such
that the restriction of f to M~ is f;. f is a bordism between fl and f2.

Bordism is an equivalence relation and the set of bordism classes forms a group
under disjoint union, called the mth bordism group of X.



A manifold is stably complex if it admits a complex linear structure in its stable
normal bundle, i.e., the normal bundle obtained by embedding in a large dimensional
Euclidean space. A complex analytic manifold (e.g. a complex algebraic variety) is
stably complex, but the notion of stably complex is far weaker than that of complex
analytic.

Definition 2.2 MUm(X), the mth complex bordism group of X, is the bordism

group obtained by requiring that all manifolds in sight be stably complex.

The fact that these groups are accessible is due to some remarkable work of Thom

in the 1950’s [Tho54]. A general reference for cobordism theory is Stong’s book [Sto68].
The groups MU*(X ) satisfy all but one of the axioms used by Eilenberg-Steenrod

to characterize ordinary homology. They fail to satisfy the dimension axiom, which
describes the homology of a point. If X is a single point, then the map from the
manifold to X is vacuous, and MU*(pt.) is the group of bordism classes of stably
complex manifolds, which we will denote simply by MU*. It is a graded ring under
Cartesian product and its structure was determined independently by Milnor [Mi160]
and Novikov ( [Nov60] and [Nov62]).

Theorem 2.3 The complex bordi3m ring, MU* is isomorphic to

where dim Xi = 2i.

It is possible to describe the generators Xi as complex manifolds, but this is more
trouble than it is worth. The complex projective spaces CP’ serve as polynomial gen-
erators of Q 0 MU* .

Note that MU*(X ) is an MU*-module as follows. Given X E MU*(X ) represented
by f : M - X and A ~ MU* represented by a manifold N, ax is represented by the

composite map

Definition 2.4 A formal group law over a commutative ring with unit R’ is a power
series F(x, y) over R that satisfies the following three conditions.

(i) F(x, 0) = F(0, x) = x (identity ),

(ii) F(x, y) = F(y, x) (commutativity ) and

(iii) F(F(x,y),z) = F(x,F(y,z)) (associativity ).

(The existence of an inverse is automatic. It is the power series i(x) determined by the

equation F(x, i(x)) = 0. )



Example 2.5 (i) F(x, y) = x + y. This is called the additive formal group law.

(ii ) F(x, y) = x + y + xy = This is called the multiplicative formal
group law.

The theory of formal group laws from the power series point of view is treated

comprehensively in [Haz78]. A short account containing all that is relevant for the
current discussion can be found in [Rav86, Appendix 2].

The following result is due to Lazard [Laz55a].

Theorem 2.6 (Lazard’s Theorem) (i) There is a universal formal group law de-
fined over a ring L of the form

such that for any formal group law F over R there is a unique ring homomorphism
e from L to R such that

(ii) L is a polynomial algebra Z(xl, x2, ...~. If we put a grading on L such that has

degree 2(1- i - j ) then xt has degree -2i.

The grading above is chosen so that if j- and y have degree 2, then G(x, y) is a

homogeneous expression of degree 2. Note that L is isomorphic to MU* except that the
grading is reversed. There is an important connection between the two.

Associated to the covariant functor MU* there is a contravariant functor MU*. It

bears the same relation to MU* that ordinary cohomology bears to ordinary homology.
The conventions in force in algebraic topology require that MU*(pt.) (which we will
denote by MU*) be the same as MU*(pt.) but with the grading reversed. Thus MU*
is isomorphic to the Lazard ring L.

This isomorphism is natural in the following sense. MU*(X), like H*(X ), comes
equipped with cup products, making it a graded algebra over MU*. Of particular
interest is the case when X is the infinite-dimensional complex projective space CP°°.
We have

The space CP°° is an abelian topological group, so there is a map



with certain properties. is also the classifying space for complex line bundles and
the map in question corresponds to the tensor product.) Since MU* is contravariant

we get a map

which is determined by its behavior on the generator x E The power series

can easily be shown to be a formal group law over MU*. Hence by Lazard’s Theorem

(2.6) it corresponds to a ring homomorphism a: L -~ MU*. The following was proved
by Quillen [Qui69] in 1969.

Theorem 2.7 (Quillen’s Theorem) The homomorphism 8: L -~ MU* above is an

isomorphism. In other words, the formal group law associated with complex cobordism
is the universal one.

Given this isomorphism (and ignoring the reversal of the grading), we can regard
MU*(X ) as an L-module.

Now we define a group r which acts in an interesting way on L.

Definition 2.8 Let r be the group of power series over Z having the form

where the group operation is functional composition. r acts on the Lazard ring L of
1.5 as follows. Let G(x,y) be the universal formal group law as above and let 03B3 E r.
Then ~y-1(G(~y(x),~y(y))) is another formal group law over L, and therefore is induced

by a homomorphism from L to itself. Since 03B3 is invertible, this homomorphi1Jm is an

automorphism, giving the desired action of r on L.

For reasons too difficult to explain here, r also acts naturally on MU* (X ) compatibly
with the action on MU*(pt.) defined above. That is, given x E E rand

A E L, we have

and the action of r commutes with homomorphisms induced by continuous maps.
For algebraic topologists we can offer some explanation for this action of r. It is

analogous to the action of the Streenrod algebra in ordinary cohomology. More precisely,
it is analogous to the action of the group of multiplicative cohomology operations,
such as (in the mod 2 case) the total Streenrod square, Such an operation
is determined by its effect on the generator of Z /(2)). Thus the group of

multiplicative mod 2 cohomology operations embeds in rz/(2))? the group of power
series over Z/(2) analogous to r over the integers.



Definition 2.9 Let CF denote the category of finitely presented L-modules equipped
with an action of r compatible with its action on L as above, and let FH denote the
category of finite CW-complexes and homotopy classes of maps between them.

Thus we can regard MU* as a functor from FH to CF. The latter category is much
more accessible. We will see that it has some structural features which reflect those of
FH very well. The Nilpotence and Periodicity Theorems are examples of this.

In order to study CF further we need some more facts about formal group laws.
Here are some power series associated with them.

Definition 2.10 For each integer n the n-series ~n~(x~ is given by

For the additive formal group law (2.5), we have (n](x) = nx, and for the multiplicative
formal group law, (n](x) = (1 + x)n -1.

Of particular interest is the p-series. In characteristic p it always has leading term
axq where q = ph for some integer h. This leads to the following.

Definition 2.11 Let F(x, y) be a formal group law over a ring in which the prime p is
not a unit. If the mod p reduction of (p~(x) has the form

then we say that F has height h at p. If [p](a-) = 0 mod p then the height is infinity.

For the additive formal group law we have [p](.r) = 0 so the height is oo. The
multiplicative formal group law has height 1 since [p](.r) = xp.

The following classification theorem is due to Lazard [Laz55b].

Theorem 2.12 (Lazard’s Classification Theorem) Two formal group laws over the
algebraic closure of Fp are isomorphic if and only if they have the same height.



Let vn E L denote the coefficient of xpn in the p-series for the universal formal group
law; the prime p is omitted from the notation. This vn is closely related to the vn in the
Morava K-theories (1.3). It can be shown that vn is an indecomposable element in L,
i.e., it could serve as a polynomial generator in dimension 2pn - 2. Let Ip,n C L denote
the prime ideal (p, v1, ... 

The following result is due to Morava [Mor85] and Landweber [Lan73a].

Theorem 2.13 (Morava-Landweber Theorem) The only prime ideals in L which
are invariant under the action of r are the Ip,n defined above, where p is a prime integer
and n is a nonnegative integer, possibly oo. is by definition the ideal (p, v1, v2, ...)
and Ip,o is the zero ideal. )

Moreover in for n > 0 the subgroup fixed by r is In L itself the
invariant subgroup is Z.

This shows that the action of r on L is very rigid. L has a bewildering collection
of prime ideals, but the only ones we ever have to consider are the ones listed in the
theorem. This places severe restriction on the modules in CF.

Recall that a finitely presented module M over a Noetherian ring R has a finite
filtration

in which each subquotient FiM/Fi-1M is isomorphic to for some prime ideal

I= C R. Now L is not Noetherian, but it is coherent, which means that finitely presented
modules over it admit similar filtrations. For a module in Cr, the filtration can be

chosen so that the submodules, and therefore the prime ideals, are all invariant under
r. The following result is due to Landweber [Lan73b].

Theorem 2.14 (Landweber’s Filtration Theorem) Every module M in Cr ad-
mits a finite filtration by submodules in Cr as above in which each subquotient is iso-

morphic to a suspension of L/Ip,n for some prime p and some finite n.

The following are easy consequences of the Landweber Filtration Theorem.

Corollary 2.15 Suppose M is a p-local module in Cr.

(a~ Then if = 0, i. e., if each element in M is annihilated by some power of vn,
then ’Un il M = 0.

(ii) If M is nontrivial, then so is for n sufficiently large.

(iii ) If vnllM = 0, then there is a positive integer k such that multiplication by vn in
M commutes with the action of r.



The first two statements should be compared to the last two statements in 1.3. In

fact the functor vn is trivial on a finite p-local CW-complex X if and only
if K(n)*(X) is. One could replace K(n)* by in the statement of the Period-

icity Theorem. The third statement above is an algebraic analogue of the Periodicity
Theorem.

Now we need to consider certain full subcategories of CF and FH.

Definition 2.16 A full subcategory C of Cr is thick if it satisfies the following two
axioms:

is a short exact sequence in Cr in which two of the three modules are in C, then
so is the third.

(ii) If M fli N is in C then so are M and N.

We want to define the corresponding notion for a subcategory of FH, so we need
analogs of short exact sequences and direct sums. Given a map f : X - Y, the cofibre
Cf of f is the quotient of

obtained by collapsing X x ~0} to a single point, and identifying (~, 1) for x E X with
f (x) E Y. It is easy to show that the cofibre of the map Y - Cf is homotopy equivalent
to EX. A cofibre sequence is a sequence of maps of the form

is the homotopy theoretic analog of a short exact sequence. The analog of a direct sum
is the wedge X V Y, which is the quotient of X U Y obtained by identifying one point
in X with one point in Y.

Definition 2.17 A full subcategory F of FH is thick if it satisfies the following two
aX1,Om3:

is a cofibre sequence in which two of the three spaces are in F, then so is the third.

(ii) If X V Y is in F then so are X and Y.



Thick subcategories were called generic subcategories by Hopkins in ~Hop87~.
Using the Landweber Filtration Theorem, one can classify the thick subcategories

of cr(p).

Theorem 2.18 Let C be a thick subcategory of (the category of all p-local mod-
ules Cr). Then C is either a.ll of the trivial subcategory (in which the only object
is the trivial module ), or consists of all p-local modules M in Cr with = 0. We

denote the latter category by Cp,n.

There is an analogous result about thick subcategories of FH(p), which is a very
useful consequence of the Nilpotence Theorem.

Theorem 2.19 (Thick Subcategory Theorem) Let F C FH(p) be a thick subcate-
gory of the category of p-Iocal finite CW-complexes. Then F is either all of FH~p~, the
trivial subcategory (in which the only object is a point) or consists of all p-local finite
CW-complexes X with vnllMU*(X) trivial. We denote the latter category by Fp,n.

Thus we have two nested sequences of thick subcategories,

The functor MU*(~) sends one to the other. Until 1983 it was not even known that
the Fp,n were nontrivial for all but a few small values of n. Mitchell [Mit85] first showed
that all of the inclusions of the Fp,n are proper. Now it is a corollary of the Periodicity
Theorem.

In Section 3 we will derive the Thick Subcategory Theorem from another form of
the Nilpotence Theorem. This is easy since it uses nothing more than elementary tools
from homotopy theory.

In Section 4 we will sketch the proof of the Periodicity Theorem. It is not difficult

to show that the collection of complexes admitting periodic self maps for given p and n
forms a thick subcategory. Given the Thick Subcategory Theorem, it suffices to find just
one nontrivial example of a complex of type n with a periodic self-map. This involves

some hard homotopy theory. There are two major ingredients in the construction. One
is the Adams spectral sequence, a computational tool that one would expect to see
used here. The other is a novel application of the modular representation theory of the

symmetric group described in as yet unpublished work of Jeff Smith.



3 The proof of the Thick Subcategory Theorem

In this section we will derive the Thick Subcategory Theorem from the Nilpotence
Theorem with the use of some standard tools from homotopy theory, which we must

introduce before we can give the proof. The proof itself is identical to the one given by
Hopkins in [Hop87].

First we have to introduce the category of spectra. Since the category was introduced

around 1960 [Lim60], it has taken on a life of its own, as will be seen later in this paper.
Most of the theorems in this paper that are stated in terms of spaces are really theorems

about spectra that we have done our best to disguise. However we cannot keep up this

act any longer.

Definition 3.1 A spectrum E is a collection of spaces ~En: n ~> 0} and maps EEn -->
The suspension spectrum of a space X is defined by En = E"X with each map

being the identity. The ith suspension E’E of E is defined by

for any integer i. Thus any spectrum can be suspended or desuspended any number of
times.

The homotopy.groups of E are given by

and other invariants such as homology and cohomology can be similarly defined.
A spectrum X is connective if its homotopy groups are bounded below, i.e., if

It has finite type if is finitely generated for each k.

Example 3.2 (Sphere spectrum) The spectrum S’k is defined by setting =

sk+n. (The abuse of notation here is standard. Hopefully the context will make it

clear whether we are talking about a spectrum or a space.)

Example 3.3 (Mod p Eilenberg-Mac Lane spectrum) The spectrum H/(p) is de-
fined by setting equal to the Eilenberg-MacLane space K(Z/(p),n).

One of the original motivations for the definition of spectra is the following example.

Example 3.4 (Complex cobordism spectrum) The spectrum MU is defined by set-
ting MU2n equal to the Thom space for the universal Cn-bundle over BU(n), the classi-
fying space for the unitary group U(n). MU2n+1 defined to be Then is

isomorphic to the complex cobordism ring MU* discussed above. MU is a ring spectrum
(see ,~. ~ below).



The homotopy groups of spectra are much more manageable than those of spaces.
For example, one has

for all k and i. ’

Next we need to discuss smash products. For spaces the definition is as follows.

Definition 3.5 Let X and Y be spaces equipped with base points xo and yo. The smash

product X A Y is the quotient of X x Y obtained by collapsing X x U x Y

to a single point. The k-f01d iterated smash product of X with itself is denoted by 
For f: X - Y, denote the evident map from to Y~k~. The map f is smash

nilpotent if f(k) is null homotopic for some k.

The k-fold suspension EkX is the same as Sk A X. For CW-complexes X and Y
there is an equivalence

If either of the spectra E or F is a suspension spectrum, then there is an obvious
definition of their smash product E A F. In particular, smashing E with the sphere
spectrum S° (3.2) leaves E unchanged. However the general definition of the smash

product of two spectra is very difficult; we refer the interested reader to Adams [Ada74].

Definition 3.6 For a spectrum E the E-homology of X is defined by

The E-cohomology of X, E*(X), is the graded group of homotopy classes of maps
from X to E, i.e.,

In the case E = MU, this is equivalent to the definition given above, 2.2.
The Nilpotence Theorem can be stated in terms of smash products as follows.

Theorem 3.7 (Nilpotence Theorem, Smash Product Form) Let

be a map of spectra where F is finite. Then f is smash nilpotent if MU A f (i.e., the
evident map MU A MU AX) is null homotopic.

This can be shown to be equivalent to 1.1. A more useful form of this for our

purposes is the following.



Corollary 3.8 Let W, X and Y be p-Iocal finite spectra with f : X - Y. Then W 
is null homotopic for k » 0 if K(n)*(W A f ) = 0 for all n > 0. (In particular, W could
be So, in which case W 11 f = f .~

It is from this result that we will derive the Thick Subcategory Theorem.
Next we need to discuss Spanier-Whitehead duality, which is treated in more detail

in [Ada74].

Theorem 3.9 (Spanier-Whitehead Duality) For a finite spectrum X there is a

unique finite spectrum DX (the Spanier-Whitehead dual of X ~ with the following
properties.

(i) For any spectrum Y, the graded group (X, Y~* is isomorphic to I1 Y). We

say that the maps S" --> DX A Y and Y that correspond under this

isomorphism are adjoint to each other. In particular when Y = X, the identity
map on X is adjoint to a map e: S° --~ DX I1 X.

(ii) For Y = X this isomorphism is reflected in Morava K-theory, namely

is isomorphic to li’(n)*(DX 11X ). In particular li (n)*(e) ~ 0 when h’(n)*(X) ~ 0.

(iii) DDX ~ X.

(iv) For a homology theory E*, there is a natural isomorphism between Ek(X) and

E-k(DX). (These groups are defined in 3.6.~

(v) Spanier-Whitehead duality commutes with smash products, i.e., for finite spectra
X and Y, D(X A Y) = DX A DY.

The basic geometric idea behind Spanier-Whitehead duality is as follows. A finite

spectrum X is the suspension spectrum of a finite CW-complex, which we also denote

by X. It can always be embedded in some Euclidean space RN and hence in Then

DX is a suitable suspension of the suspension spectrum of the complement SN - X.

3.9(iv) is a generalization of the classical Alexander Duality Theorem, which says that
Hk(X) is isomorphic to X). A simple example of this is the case where
X = Sk and it it linearly embedded in SN. Then its complement is homotopy equivalent
to SN-1-k. The Alexander Duality Theorem says that the complement has the same

cohomology as SN-1-k even when the embedding of Sk in SN is not linear, e.g. when
k =1, n = 3 and Sl C S3 is knotted.

Before we can proceed with the proof of the Thick Subcategory Theorem we need
an elementary lemma about Spanier-Whitehead duality. For a finite spectrum X, let
f : W - S° be the map such that



is a cofibre sequence. In the category of spectra, such maps always exist. W in this case
is finite, and Cr = DX A X.

Lemma 3.10 With notation as above, there is cofibre sequence

Proof. A standard lemma in homotopy theory says that given maps

there is a diagram

in which each row and column is a cofibre sequence. Setting X = W ~k~, Y = W ~~-l~,
Z = S° and g = this diagram becomes

and the right hand column is the desired cofibre sequence..

Now we are ready to prove the Thick Subcategory Theorem. Let F C FH(p) be a
thick subcategory. Choose n to be the smallest integer such that F contains a p-local
finite spectrum X with Ii (n)*{X) ~ 0. We want to show that F = Fn. It is clear from

the choice of n that F C Fn, so it suffices to show that F D Fn.
Let Y be a p-local finite CW-spectrum in Fn. From the fact that F is thick, it

follows that X A F is in F for any finite F, so X A DX A Y (or C f A Y in the notation
of 3.10) is in F. Thus 3.10 implies that Y is in F for all k > 0.

It follows from 3.9(ii) that h’(i)*( f ) = 0 when h’(i)*(X) ~ 0, i.e., for i > n. Since

= 0 for i  n, It follows that K(i).(Y A f ) = 0 for all i. Therefore by 3.8 (a
corollary to the Nilpotence Theorem), Y A f(k) is null homotopic for some k > 0.

Now the cofibre of a null homotopic map is equivalent to the wedge of its target and

the suspension of its source, so we have

Since F is thick and contains Y A it follows that Y is in F, so F contains Fn as

desired.



4 The proof of the Periodicity Theorem

In this section we will outline the proof of the Periodicity Theorem, which falls into

two parts. The first, which is relatively easy, is to show that the category of spectra

admitting self-maps as in the Periodicity Theorem is thick (4.6). Thus by the Thick

Subcategory Theorem, this category is either Fn, as asserted in the Periodicity Theorem,
or it is trivial. The second and harder step in the proof is to construct a nontrivial

example. This relies on some unpublished work of Jeff Smith.
First we need a definition.

Definition 4.1 A ring spectrum E is a spectrum equipped with maps q: So -+ E,
called the unit map, and m: E A E - E, called the multiplication map, such that

the composites

are each the identity on E (this is analogous to the unitary condition on a ring), and
the following diagram commutes up to homotopy.

This is an associativity condition on m. The multiplication m need not be commutative

up to homotopy, but it is in most cases.
A module spectrum M over E is one equipped with a map

such that the following diagram commutes up to homotopy.

We begin by observing that a self-map f : X is adjoint to /: Sd --> DX A X.
We will abbreviate DX A X by R. Now R is a ring spectrum. The unit is the map
e: S° --3 DX A X adjoint to the identity map on X (3.9). Since DDX = X and

Spanier-Whitehead duality commutes with smash products, e is dual to

The multiplication on R is the composite

We will use f* to denote the element induced by  in both ’1r.(R) and K(n)*(R).



Lemma 4.2 For a vn-map f as above, there is an i such that Ii (n)*( f’) is multiplica-
tion by some power of vn.

Proof. The ring K(n)*(R) is a finite-dimensional h’(n)*-algebra, so the ungraded
quotient is a finite ring with a finite group of units. It follows that

the group of units in Ii(n)*(R) itself is an extension of the group of units of K(n)*
by this finite group. Therefore some power of the unit f* is in K(n)*, and the result
follows..

Lemma 4.3 For a vn-map f as above, there is an i > 0 such that ~r*( f ~) is in the

center 

Proof. Let A be a noncommutative p-torsion ring, such as Given a E A we

define a map

Thus a is in the center of A if ad(a) = 0.
There is a formula relating ad(a*) to ad’(a), the j th iterate of ad(a), namely

Now suppose ad(a) is nilpotent and we set i = pN for some large N. Then the terms on
the right for large j are zero because ad(a) is nilpotent, and the terms for small j vanish
because the binomial coefficient is divisible by a large power of p. Hence ad(a*) = 0 so
ai is in the center of A.

To apply this to the situation at hand, define

where T is the map that interchanges the two factors. Then for x E 

By 4.2 (after replacing f by a suitable iterate if necessary), we can assume that 1« n ).(f)
is multiplication by a power of vn, so h’(n)*( f ) is in the center of I«n).(R) and

K(n)*(ad( f )) = 0. Hence the Nilpotence Theorem tells us that ad( f ) is nilpotent
and the argument above applies to give the desired result..



Lemma 4.4 (Uniqueness of vn-maps) If X has two vn-maps f and g then there
are integers i and j such that f = gj .

Proof. Replacing f and g by suitable powers if necessary, we may assume that they
commute with each other and that h’(m)*{ f ) = K(m)*(g) for all m. Hence K(m)*(f -
g) = 0 so I - 9 is nilpotent. For K 0 we also have

modulo any given power of p, so fpK = gpK as claimed..

Lemma 4.5 If X and Y have vn-maps f and g and h: X --~ Y, then there are integers
i and j such that the following diagrnm commutes.

Note that 4.4 is the special case of this where h is the identity map on X.
Proof. Let W = DX A Y, so h is adjoint to an element h E 7r*(W). W has two
vn-maps, namely DX A g and D f A Y, so by 4.4,

for suitable i and j.
Now hfi is adjoint to (D f" A Y)h and gjh is adjoint to (DX A Since these are

homotopic, the diagram commutes..

Theorem 4.6 The category C C FH~p~ of finite p-local CW-spectra admitting vn-maps
is thick.

Proof. Suppose X V Y is in C and

is a vn-map. By 4.3 we can assume that f commutes with the idempotent

and it follows that the composite

is a vn-map, so X is in C.



Now suppose h: X -; Y where X and Y have vn-maps f and g. By 4.5 we can
assume that gh, so there is a map

making the following diagram commute.

The 5-lemma implies that K(n)*(f) is an isomorphism.
We also need to show that K(m)*(f) = 0 for m ~ n. This is not implied by the facts

that K(m)*( f ) = 0 and K(m)*(g) = 0. However, an easy diagram chase shows that
they do imply that K(m).(f2) = 0, so f2 is the desired vn-map on Ch..

Having proved 4.6, we need only to construct one nontrivial example of a vn-map
in order to complete the proof of the Periodicity Theorem. This requires extensive use
of the Adams spectral sequence and the Steenrod algebra. We will not describe these
details here because they are quite technical. They will be described in [Rav]. However
we will outline a new construction due to Jeff Smith which uses modular (characteristic
p) representations of the symmetric group, and which is the most interesting part of the
proof.

Suppose X is a finite spectrum, and is its k-fold smash product. The symmetric
group Ek acts on X(k) by permuting coordinates. Since we are in the stable category,
it is possible to add maps, so we get an action of the group ring on X~k~ . If X is

p-local, we have an action of the p-local group ring S = Now suppose e is an

idempotent element (e2 = e) in this group ring. Then 1- e is also idempotent. For any
S-module M (such as ~r*(X~k~)) we get a splitting

There is a standard construction in homotopy theory which gives a similar splitting
of X(k) or any other spectrum on which S acts, which we write as

In some cases one of the two summands may be trivial.

Thus each idempotent element e E leads to a splitting of the smash product
X(k) for any X. We will use this to construct a finite spectrum Y of type n that can be
shown to admit a vn-self map, starting with a well known X.

Now suppose V is a finite dimensional vector space over a field of characteristic p.

(The example we have in mind is H*(X; Z /(p)).) Then W = is an S-module so

we have a splitting



and the rank of eW is determined by that of V. There are enough idempotents e to
give the following.

Theorem 4.7 (J. Smith) For each positive integer r there is an idempotent

(where the number k depends on r ) such that the rank of eW above is nonzero if and
only if the rank of V is at least r.

Now for V = H*(X ; Z/(p)) there is a technical problem when p is odd and H*(X) is
not concentrated in even dimensions. The action of Ek on Z/(p)) = V®k is not
the expected permutation of coordinates, because a minus sign is introduced whenever
two odd-dimensional elements are interchanged. Smith has proved a generalization of
4.7 that takes this into account.

For any spectrum Y, H*(Y; Z /(p)) is a module over the mod p Steenrod algebra
A ; the best reference for its properties is the classic [SE62]. Using the Adams spectral
sequence, it can be shown that if Y is finite and its mod p cohomology is free as a
module over a certain subalgebra of A, then Y has type n and admits a vn-map.

To obtain such a Y, one starts with a finite spectrum X satisfying much milder
conditions. An appropriate skeleton of the classifying space of the group with p elements,
BZ/(p), will do. Then one applies a suitable Smith idempotent to a smash power of
X. The cohomology of the resulting spectrum Y can be shown to satisfy the required
conditions.

This completes our outline of the proof of the Periodicity Theorem.

5 The proof of the Nilpotence Theorem

In this section we will outline the proof of the Nilpotence Theorem. We have previously
stated it in two different guises, in terms of self-maps (1.1) and in terms of smash
products (3.7). For our purposes here it is convenient to give a third statement, but
first we need another definition.

Definition 5.1 For a ring spectrum E, the Hurewicz map h: - E*(X) is the
homomorphism induced by

where ?y: S° --3 E is the unit map for E (4.1).



Theorem 5.2 (Nilpotence Theorem, Ring Spectrum Form) Let R be a connec-
tive ring spectrum of finite type (9.1 and l~.l~ and let

be the Hurewicz map. Then a E is nilpotent if h( 0:) = 0

To see that this implies 1.1, let X be a finite complex and let R = X A DX. Recall
that a self-map f : adjoint to a map /: R. Then h( f ) is nilpotent if
and only if MU*( f ) is.

In proving this we will make use of certain spectra X(n). They are constructed in
terms of vector bundles and Thom spectra. Let SU denote the infinite special unitary
group, i.e., the union of all the SU(n)’s. The Bott Periodicity Theorem gives us a

homotopy equivalence

where BU is the classifying space of the infinite unitary group. Composing this with
the loops on the inclusion of SU(n) into SU, we get a map

This defines an infinite-dimensional vector bundle over The resulting Thom
spectrum is X(n). A routine calculation gives

where = 2i. For this is the usual description of H*(MU).
X(n) is a ring spectrum so we have a Hurewicz map

In particular = S° so is the identity map. The map X(n) - MU is a
homotopy equivalence through dimension 2n - 1. It follows that if h(a) = 0, then

h( n)( 0:) = 0 for large n. Hence, the Nilpotence Theorem will follow from

Theorem 5.3 With notation as above, if h(n + 1)(~) = 0 then h(n)(a) is nilpotent.

The hypothesis that h(n + 1)(a) = 0 could be replaced by the condition that it is

nilpotent, since we could replace a by a suitable power of it.
The element a E 7!~(jR) is represented by a map

Smashing both sides with R and using the multiplication in R, we get a self-map

which we also designate by a.



Definition 5.4 Let a-I R denote the homotopy direct limit of

This is called the telescope associated with a.

Lemma 5.5 is contractible then h(n)*(a) is nilpotent.

Proof. The map a : Sd -+ R induces a self-map Ed. The spectrum a-I R A X(n) is by
definition the homotopy direct limit of

It follows that each element of X(n)*(R), including h(n)(a), is annihilated after a finite
number of steps, so h( n)( 0:) is nilpotent..

In studying questions of this sort, the following notion is convenient.

Definition 5.6 Two spectra E and Fare Bousfield equivalent if E039BX is contractible
if and only if X is. The resulting equivalence class is denoted by (E), called the
Bousfield class o f E. We say

if E A X is contractible implies that F I1 X is contractible.

Under this partial ordering, the largest Bousfield class is, while the smallest is

(Pt.).
The following is straightforward.

Lemma 5.7 Let

be a cofibre sequence, and let be the telescope associated with f. Then

Now we need to study the spectra X(n) more closely. Consider the diagram

in which each row is a fibration. The top row is obtained by looping the fibration



where e is the evaluation map which sends a matrix m E SU(n + 1) to mu where
u E is fixed unit vector.

J kS2n is the kth space in the James construction [Jam53] on S2n. This is the same
thing as the 2nk-skeleton of It is a CW-complex with one cell in every 2n
dimensions; it can also be described as a certain quotient of the Cartesian product
(S2n)k. The space Bk is the pullback, i.e., the QSU(n)-bundle over JkS2n induced by
the inclusion map into 

Recall that = Z[bi, b2,... C H*(QSU(n + 1)) is the free
module over it generated by bn for 0  i  k.

Now the composite map

gives a stable bundle over Bk and we denote the Thom spectrum by Fk. We will be

especially interested in which we will denote by Gj. These spectra interpolate
between X(n) and X(n + 1). Thus we have Go = X(n) and Goo = X(n + 1).

The following two lemmas clearly imply 5.3 and hence the Nilpotence Theorem.
Their proofs will occupy the rest of this section.

Lemma 5.10 Let a-1R be the telescope associated with a E 7r*(R) (5.4). If h(n +
1)*(a) = 0 then Gj A contractible for large j. ..

The following is the harder of the two and is the heart of the Nilpotence Theorem.

Lemma 5.11 For each j > 0, (Gj) = ~X(n)~. In particular (G~1= 

We will now outline the proof of 5.10. It requires the use of the Adams spectral
sequence for a generalized homology theory. It would take too long to define this here.
The interested reader can find all the needed definitions in [Rav86]. Fortunately all we
require of it here is certain formal properties; we will not have to make any detailed

computations.
We need to look at the Adams spectral sequence for 7r*(G; A R) based on X(n + 1)-

theory. It has the following properties:

(i) can be identified with a certain Ext group related to X(n + 1)-theory.

(ii) vanishes unless s and t are both nonnegative.

(iii) a corresponds to an element x E E2’s+d for some s > 0.

(iv) vanishes for all (s, t) above a certain line (called a vanishing line) of slope



for some constant c.

Hence the slope of the vanishing line can be made arbitrarily small by making j
large, and j can be chosen so that some power of x lies above the vanishing line. This
means that Gj A a is nilpotent, and 5.10 follows.

We now turn to the more difficult proof of 5.11. We need to show that (G~ ~ _ (X (n)~.
Recall that Gj = and H*(Fk) is the free module over H*(X(n)) generated by bn
for 0  i  k. One has inclusion maps

with cofibre sequences

From this it follows immediately that

for all k > 0.

It can also be shown that (after localizing at p) there is a cofibre sequence

where the cofibre of each map is a suspension of G~. This shows that

It is also straightforward to show that there is a cofibre sequence

which induces a short exact sequence in homology. Thus we can form the composite

in which the first map is surjective in homology while the second is monomorphic. We
denote the cofibre of by Yn,;.



In order to understand these spectra, it is useful to consider the simplest case, i.e.,
n = 1 and j = 0. Then Go = S°, Gi has p cells and Yi,o is 2-cell complex of the form

so there is a cofibre sequence

(At an odd prime these complexes are actually wedges of spheres, but is is best to

ignores this fact for now.)
In the general case one replaces the cells above by copies of Gj, and there is a diagram

where the bottom row is a cofibre sequence and i is the inclusion. The composite is

null, so i lifts to This gives us the following cofibre sequence generalizing (5.13)

Since is the cofibre of a self-map of we have-

Using 5.7, we see that if the telescope is contractible then we will have

Thus we have reduced the Nilpotence Theorem to the following.

be the map of (5.1.~~. It has a contractible telescope for each n and j.

This is equivalent to the statement that for each finite skeleton of G~, there is an
iterate of whose restriction to the skeleton is null.

Proof. We need to look again at (5.8) for k = pi - 1. The map



is known (after localizing at p) to the be inclusion of the fibre of a map

Thus the diagram (5.8) can be enlarged to

in which each row and column is a fibre sequence.

Of particular interest is the map

We can think of the double loop space as a topological group acting on the

space so there is an action map

Recall that Gj is the Thom spectrum of a certain stable vector bundle over 
This means that (5.18) leads to a stable map

Here we are skipping over some technical details which can be found in [DHS88].
The space S~2S2"~’+1 was shown by Snaith [Sna74] to have a stable splitting, i.e., the

suspension spectrum is homotopy equivalent to an infinite wedge of finite

spectra. After localizing at p, this splitting has the form

where each Dm is a certain finite complex (independent of n and j ) with bottom cell in
dimension 0. Moreover there are maps

of degree 1 on the bottom cell, and the limit, lim- Dm, is known to be the mod p

Eilenberg-MacLane spectrum H/(p) (3.3).



Our map is the composite

and is the composite

Thus we get a diagram

This means that the map

factors through G~ n l~/(p).
Now consider the diagram

The middle vertical map is null because bn,j induces the trivial map in homology. Passing
to the limit, we get

with the composite being the identity map on the telescope This shows that the

telescope is contractible as desired..
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