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algebra structure does not seem to give us this generality. When k
is small, we can prove Theorem 1 in these cases by using unstable secondary
operations coming from Adem relations of the form Sq"*!
using them to detect Dyer-Lashof operations.

To make this precise, we state the following proposition which doeg
not seem to be generally known. Let ?p be an unstable secondary
cohomology operation coming from the Adem relation Sq"*! =

=z aibi and

L a;b;.

PROPOSITION 3. Let x eH (aX; Z,), and x*e H'(aX; Z,)
that <x*, x> # 0. Assume x* is the loop of an element in
Hr+l(x; 22). Further assume that ¢r(x*) is defined. Then
< (x*), Qg(x)> = <e.(x*), x2> = <x*, x> mod indeterminacy.

This proposition implies that ?. can be used to detect higher
Dyer-Lashof operations in iterated loop spaces.

be such

PROPOSITION 4. Let x € H_ (a**1x; 2,), and xre WR(a"*lx; 7))

be such that «<x*, x> # 0. Assume x* is the iterated loop of an

element y€ Hr+l(x; 22). Further, assume that 9r(y) is defined.
Then  <p (x*), Q(x) = <x*, x> mod indeterminacy.
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The purpose of this note ig to prove

-the Y
Theorem Let G be a f nl te g oup nd K (n) the n Morava
. 1 X a K 1[ Or

ssoc:l.ated wi th a pIillle !lu"lber P- Then K(ﬂ) (BG) is fi“ltely generated
a

as a module over K(n)*(pt). ©

i . The
We will recall the basic properties of Morava K-theories below

*
3 i i K(1 is a
result above was obtained for abelian groups 1n [RW)}. Since (1)

= lows from
summand of mod(p) complex K-theory, the result for n =1 fol

* the complex representation
atiyah's degcription ([A]l) of K'(BG) in terms p

i i t the
ring of G In particular, if ¢ is a p-group his result implies tha
) i G.
rank of K{(1)*(BG) 1is the number of conjugacy classes of elements 1n
* i in-
The group theoretic significance of the rank of K({n) {BG) is an

i belian
triguing question which we have no jdea how to answer. For G a

this number is the nth power of the order of the p-Sylow subgroup of G.

tool
The K(n)'s were invented by Jack Morava about ten years ago as a

i i is often very compli-
for studying complex bordism and BP-theory. BPT(X) i

i i d often
cated and hard to compute; K(n)*(x) is simpler, more accessible, an

et b
contains the essential information about X that one hoped to g y

- ies are
computing Be* (X) The best published references for Morava K-theorie

W.
[dW] and [RW] which include proofs of most of the statements belo

i Thom spectrum for
Recall that BP is a minimal summand of MU(P), the p

the unitary group localized at a prime p. We have

#,(BP) = BP, = z(p,[vl,vz,...l
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with dim v_ = n.
0 2(p ' -1). Given any prime ideal I c BP,, the Sulliv,
constru 3
ction gives us a BP-module spectrum BPI with = {BPI) "3
The : e
ideal we want is (p,vl,vz,...v 'V v ) ;
spectrum is denoted e e
ed by k(n) and the corresponding theory k(n)* i
S the

th

n-" connective Morava K-theory. There is a map
2(p"-1
12" Dxm) + k)

inducin
g multiplication by v_  in homotopy. W
R o y e get a directed system of
Y erating this map and K(n) is the resulting direct limit
Hence, we have w,(K(n)) = K(n), = . :
» =2/(p}Iv,v,"] for n >0
convention X(0)* is ordi . o
ordinary rational cohomology. K{n) is a graded
field in t . )
he sense that every graded module over it is free This m
the Morava K- j . o
K-theories enjoy many of the computational advantages of ordji
nar i
Y cohomology with coefficients in a field. oOne has, for 1
Kiinneth ' B
isomorphism and linear duality between homology and ¢ohomol
We will NG
prove the theorem by reducing to the case where G is a
grou, -
p and arguing by induction on its order. For the first step, 1
e ¢ let H
p-Sylow subgroup of G and let BH - BG be the inclusio
Stably on e
3’4 e has a transfer map BG + BH such that the composite BG -+BH
indu i s
ces multiplication by the index of H in G in ordinary coh
Since this inde i N
. x is prime to p the map becomes a stable equivalence after
ocalizing at & i
g* p. Hence, BG(p) is a retract of BH and it suffices to
show K(n) (BH) is finite. (p)
Now let G
be a finite p-group. By elementary group theory G has a
normal sub j i
group of index p which we denote by H. We assume inductively

that * i i
K(n)"(BH) is finite dimensional, We have a fibre sequence
BH + BG - Bz/(p) (*)
which we wi
ill use to prove the finiteness of K(n)*(BG). Our basic tool is

Lemma A. Let f
F - E—»B be a fibre sequence with B a CW-complex.

There is
a natural spectral sequence converging to K(n)*(E) with

E, = B (B;K(n)*(F)),

. %
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possible having twisted coefficients if B is not simply connected.

This spectral sequence generalizes those of Serre, where K(n)'

and Atiyah-Hirzelruch, in which F is
take the

Proof:

is replaced by ordinary cohomology,

a point. The construction is the same in all three cases:

filtration of E induced by the skeletal filtration of B and apply the

1f one is after w*(E) for a generalized cohomology

appropriate functor.

, there may be a convergence problem since wh

tes is lim n* (£71(8")). However, the corresponding
-

v1im b* (€71 (%)) which is indeed
i

theory h* at the spectral

sequence actually compu

homology spectral sequence computes
h, (E) since homology commutes with direct 1imits. In our case convergence

in cohomology follows from the duality cited above. D

Rather than applying Lemma A to (*) directly we study the induced ex-

tension G of H by 2 andgeta fibre seguence

g + B » st (#%)

and a map of fibre sequences

BG — > BG ——cP" (*xn)

Lo I

sl —— B2/ (p) —>CP"

Applying Lemma A to (**) shows that K(n)'(Bé) ig finite. To proceed

further, we need

In the spectral sequence for the lower fibre seguence in

Lemma B.
where x is the generator of

n
(»++), xP  is killed by a differential,

2 (ce”;2/(p)) -

proof: In [RW] it is shown that x(n)*(Bz/(p)) has rank p“, and this
forces the spectral sequence to behave as indicated. (The computation of

K(n)* (82/(p)) is done by means of a short exact seguence

0 + X(n)" (CP™) 1B | gk (ny* (cP™) ~ K(n)*(BZ/(p)) + O

=

where [p} 1is jnduced by the degree P map. One has K(n)*(CPQ) =

* = Pn
K(n) " (pt.) ([x)) with fpl (x) = v,x* .) ©
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To complete the Volume 12, 1982
proof of the theorem, the naturality of the . ,
spectral

seqguence and
Lemma B guarantee that xP  dies in the spectral
ctral sequence fo
r

K(n)*(BG), so
. the latter some subquotient of K{n)* (B8 &
therefore finite. e
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U v If G is a Lie group of dimension N, then a choice of a basis

for its Lie algebra 4 = TeG defines, by right translation, a trivializa-
tion R of its tangent bundle. 1If G is compact and if we use the
orientation of g 1o orient G, then the pair (G, R} represents an
element in the cobordism group nﬁr of stably-framed n-manifolds and SO
an element in the stable homotopy group of the spheres 1§ = un+k(sk).

k large. (By the Pontryagin-Thom construction.) fFor example, the
sphere 53 represents, with its right invariant framing R, the generator
v of the 3-stem ug = 2124 (see [12]). However, negative results of
various authors, €.9., 3, 6, 9], show that not many homotopy elements

arise in this way, sO it has become necessary to look for different ways

of constructing manifolds with natural framings.

| in [10] B. Steer and myself considered the following, more general ,
i situation: Let us allow the group G to be, possibly, non-compact, and
| let T bea discrete subgroup of G with compact quotient r\@G.

| Then the projection

p:G—T\G

is a local diffeomorphism, and a choice of a basis for the Lie algebra

g of @& defines, as above, @ right invariant trivialization of the

tangent bundle of P\G, and soan element (r\G, R) in the stable
n-stem xﬁ. The element in ui so obtained depends only on the ori-
entation of g; if we choose the opposite orientation we obtain the

inverse element in nﬁ.

in [10] we studied the cases when G was either the sphere 53
or the non-compact group SLZ(]R) of real 2 x 2-matrices with determinant 1.
Both of these groups are 3-dimensional, semi-simple Lie groups, with centre

+ 1. If we divide s3 by its centre we obtain the group  SO(3)
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