algebra structure does not seem to give us this generality. When k is small, we can prove Theorem 1 in these cases by using unstable secondary operations coming from Adem relations of the form $\mbox{Sq}^{r+l} = \Sigma \ a_i b_i$ and using them to detect Dyer-Lashof operations.

To make this precise, we state the following proposition which does not seem to be generally known. Let φ_r be an unstable secondary cohomology operation coming from the Adem relation $Sq^{r+1} = \Sigma \ a_i b_i$.

PROPOSITION 3. Let $x \in H_r(\Omega X; Z_2)$, and $x^* \in H^r(\Omega X; Z_2)$ be such that $\langle x^*, x \rangle \neq 0$. Assume x^* is the loop of an element in $H^{r+1}(X; Z_2)$. Further assume that $\phi_r(x^*)$ is defined. Then $\langle \phi_r(x^*), Q_0(x) \rangle = \langle \phi_r(x^*), x^2 \rangle = \langle x^*, x \rangle$ mod indeterminacy.

This proposition implies that ϕ_{Γ} can be used to detect higher Dyer-Lashof operations in iterated loop spaces.

PROPOSITION 4. Let $x \in H_{r-k}(\Omega^{k+1}X; Z_2)$, and $x^* \in H^{r-k}(\Omega^{k+1}X; Z_2)$ be such that $\langle x^*, x \rangle \neq 0$. Assume x^* is the iterated loop of an element $y \in H^{r+1}(X; Z_2)$. Further, assume that $\phi_r(y)$ is defined. Then $\langle \phi_r(x^*), Q_k(x) \rangle = \langle x^*, x \rangle$ mod indeterminacy.

MASSACHUSETTS INSTITUTE OF TECHNOLOGY CAMBRIDGE, MASSACHUSETTS 02139 U.S.A.

Contemporary Mathematics

Morava K-theories and Finite Groups

Douglas C. Ravenel*

The purpose of this note is to prove

Theorem. Let G be a finite group and $K(n)^*$ the n^{th} Morava K-theory associated with a prime number p. Then $K(n)^*(BG)$ is finitely generated as a module over $K(n)^*(pt)$.

We will recall the basic properties of Morava K-theories below. The result above was obtained for abelian groups in [RW]. Since $K(1)^*$ is a summand of mod(p) complex K-theory, the result for n=1 follows from Atiyah's description ([A]) of $K^*(BG)$ in terms the complex representation ring of G. In particular, if G is a p-group his result implies that the rank of $K(1)^*(BG)$ is the number of conjugacy classes of elements in G. The group theoretic significance of the rank of $K(n)^*(BG)$ is an intriguing question which we have no idea how to answer. For G abelian this number is the n^{th} power of the order of the p-Sylow subgroup of G.

The K(n)'s were invented by Jack Morava about ten years ago as a tool for studying complex bordism and BP-theory. $BP^*(X)$ is often very complicated and hard to compute; $K(n)^*(X)$ is simpler, more accessible, and often contains the essential information about X that one hoped to get by computing $BP^*(X)$. The best published references for Morava K-theories are [JW] and [RW] which include proofs of most of the statements below.

Recall that BP is a minimal summand of $^{MU}(p)$, the Thom spectrum for the unitary group localized at a prime p. We have

$$\pi_{\star}(BP) = BP_{\star} = Z_{\{p\}}[v_1, v_2, ...]$$

^{*}Partially supported by the NSF (USA) and SFB (Bonn).

Douglas C. Ravenel

with dim $v_n=2(p^n-1)$. Given any prime ideal $I\subset BP_\star$, the Sullivan-Baass construction gives us a BP-module spectrum BPI with $\pi_\star(BPI)=BP_\star/I$. The ideal we want is $(p,v_1,v_2,\ldots v_{n-1},v_{n+1},v_{n+2}\ldots)$. The resulting spectrum is denoted by k(n) and the corresponding theory $k(n)^\star$ is the n^{th} connective Morava K-theory. There is a map

$$\sum^{2(p^{n}-1)}k(n) + k(n)$$

inducing multiplication by v_n in homotopy. We get a directed system of spectra by iterating this map and K(n) is the resulting direct limit.

Hence, we have $\pi_*(K(n)) = K(n)_* = \mathbb{Z}/(p) [v_n, v_n^{-1}]$ for n > 0 and by convention $K(0)^*$ is ordinary rational cohomology. $K(n)_*$ is a graded field in the sense that every graded module over it is free. This means the Morava K-theories enjoy many of the computational advantages of ordinary cohomology with coefficients in a field. One has, for example, a Künneth isomorphism and linear duality between homology and cohomology.

We will prove the theorem by reducing to the case where G is a p-group and arguing by induction on its order. For the first step, let H be a p-Sylow subgroup of G and let $BH \rightarrow BG$ be the inclusion map. Stably one has a transfer map $BG \rightarrow BH$ such that the composite $BG \rightarrow BH \rightarrow BG$ induces multiplication by the index of H in G in ordinary cohomology. Since this index is prime to P the map becomes a stable equivalence after localizing at P. Hence, PG is a retract of PG and it suffices to show PG is finite.

Now let G be a finite p-group. By elementary group theory G has a normal subgroup of index p which we denote by H. We assume inductively that $K(n)^*(BH)$ is finite dimensional. We have a fibre sequence

$$BH \rightarrow BG \rightarrow BZ/(p)$$
 (*)

which we will use to prove the finiteness of $K(n)^*(BG)$. Our basic tool is

Lemma A. Let $F + E \xrightarrow{f} B$ be a fibre sequence with B a CW-complex. There is a natural spectral sequence converging to $K(n)^*(E)$ with

$$E_2 = H^*(B;K(n)^*(F)),$$

possible having twisted coefficients if B is not simply connected.

<u>Proof:</u> This spectral sequence generalizes those of Serre, where $K(n)^*$ is replaced by ordinary cohomology, and Atiyah-Hirzelruch, in which F is a point. The construction is the same in all three cases: take the filtration of E induced by the skeletal filtration of E and apply the appropriate functor. If one is after $h^*(E)$ for a generalized cohomology theory h^* , there may be a convergence problem since what the spectral sequence actually computes is $\lim_{x \to \infty} h^*(f^{-1}(B^n))$. However, the corresponding homology spectral sequence computes $\lim_{x \to \infty} h^*(f^{-1}(B^n))$ which is indeed $h_*(E)$ since homology commutes with direct limits. In our case convergence in cohomology follows from the duality cited above.

Rather than applying Lemma A to (*) directly we study the induced extension \hat{G} of H by Z and get a fibre sequence

$$BH + B\hat{G} + S^{1} \tag{**}$$

and a map of fibre sequences

$$B\widehat{G} \longrightarrow BG \longrightarrow CP^{\infty}$$

$$\downarrow \qquad \qquad \parallel$$

$$S^{1} \longrightarrow BZ/(P) \longrightarrow CP^{\infty}$$

$$(***)$$

Applying Lemma A to (**) shows that $K(n)^*(B\hat{G})$ is finite. To proceed further, we need

Lemma B. In the spectral sequence for the lower fibre sequence in (***), x^{p^n} is killed by a differential, where x is the generator of $H^2(CP^{\infty}; \mathbb{Z}/(p))$.

<u>Proof:</u> In [RW] it is shown that $K(n)^*(BZ/(p))$ has rank p^n , and this forces the spectral sequence to behave as indicated. (The computation of $K(n)^*(BZ/(p))$ is done by means of a short exact sequence

$$0 + K(n)^*(CP^{\infty}) \xrightarrow{[p]} K(n)^*(CP^{\infty}) + K(n)^*(BZ/(p)) + 0$$

where [p] is induced by the degree p map. One has $K(n)^*(CP^{\infty}) = K(n)^*(pt.)[[x]]$ with [p](x) = $v_n x^{p^n}$.) o

Contemporary Mathematics Volume 12, 1982

To complete the proof of the theorem, the naturality of the spectral sequence and Lemma B guarantee that x^{p^n} dies in the spectral sequence for $K(n)^*(BG)$, so the latter some subquotient of $K(n)^*(B\hat{G})[x]/(xp^n)$ and is therefore finite.

References

- [A] M. F. Atiyah, Characters and cohomology of finite groups, Publ. Math. I. H. E. S., 9(1961).
- [JW] D. C. Johnson and W. S. Wilson, BP operations and Morava's extraordinary K-theories, Math. Zeit., 144(1975), 55-75.
- [RW] D. C. Ravenel and W. S. Wilson, The Morava K-theories of Eilenberg-MacLane spaces and the Conner-Floyd conjecture, Amer. J. Math., 102(1980), 691-748.

INVARIANT FRAMINGS OF QUOTIENTS

OF SL2(IR) BY DISCRETE SUBGROUPS

José A. Seade

Instituto de Matemáticas Universidad Nacional Autónoma de México

If G is a Lie group of dimension n, then a choice of a basis for its Lie algebra $g \equiv T_{\rho}G$ defines, by right translation, a trivialization $\,$ R $\,$ of its tangent bundle. If $\,$ G $\,$ is compact and if we use the orientation of g to orient G, then the pair (G,R) represents an element in the cobordism group Ω_n^{fr} of stably-framed n-manifolds and so an element in the stable homotopy group of the spheres $\pi_n^S \equiv \pi_{n+k}(S^k)$, k large. (By the Pontryagin-Thom construction.) For example, the sphere S^3 represents, with its right invariant framing R, the generator of the 3-stem $\pi_3^5 = \mathbb{Z}_{24}$ (see [12]). However, negative results of various authors, e.g., [3, 6, 9], show that not many homotopy elements arise in this way, so it has become necessary to look for different ways of constructing manifolds with natural framings.

In [10] B. Steer and myself considered the following, more general, situation: Let us allow the group G to be, possibly, non-compact, and let $\, \Gamma \,$ be a discrete subgroup of $\, G \,$ with compact quotient $\, \Gamma \, {\diagdown} \, G \, .$ Then the projection

$p: G \longrightarrow r \setminus G$

is a local diffeomorphism, and a choice of a basis for the Lie algebra ${\it g}$ of ${\it G}$ defines, as above, a right invariant trivialization of the tangent bundle of $r \setminus G$, and so an element $(r \setminus G, R)$ in the stable n-stem π_n^S . The element in π_n^S so obtained depends only on the orientation of g; if we choose the opposite orientation we obtain the inverse element in π_n^S .

In [10] we studied the cases when G was either the sphere S^3 or the non-compact group $SL_2(\mathbb{R})$ of real 2 × 2-matrices with determinant 1. Both of these groups are 3-dimensional, semi-simple Lie groups, with centre \pm 1. If we divide S^3 by its centre we obtain the group SO(3)

© 1982 American Mathematical Society 0271-4132/81/0000-0723/\$02.50