17-183

STATUS

Submitted 02/26/2019

SOURCE

ILLiad

BORROWER

RRR LENDERS

LENDERS
*ZAP, CUY, CGU

TYPE

Сору

REQUEST DATE 02/26/2019 RECEIVE DATE OCLC # 28784366 NEED BEFORE 03/28/2019

DUE DATE

BIBLIOGRAPHIC INFORMATION

LOCAL ID

TITLE Conference on Homotopy Theory : Evanston, Ill.,

1974 : [papers] /

IMPRINT México, D.F.: Sociedad Matemática Mexicana,

1975.

ISBN

SERIES NOTE Notas de matemática y simposia; nr. 1.

ARTICLE AUTHOR Ravenel, Douglas

ARTICLE TITLE Dieudonné modules for abelian Hopf algebras

FORMAT Book

VOLUME NUMBER

DATE 1975

PAGES 177-183

INTERLIBRARY LOAN INFORMATION

ALERT

VERIFIED <TN:1067325><ODYSSEY:216.54.119.128/RRR>

MAX COST OCLC IFM - 100.00 USD

LEND CHARGES

LEND RESTRICTIONS

AFFILIATION ARL; RRLC; CRL; NYLINK; IDS; EAST COPYRIGHT US:CCG

SHIPPED DATE FAX NUMBER

EMAIL

ODYSSEY 216.54.119.128/RRR

ARIEL FTP ARIEL EMAIL

BILL TO ILL

UNIVERSITY OF ROCHESTER LIBRARY 755 LIBRARY RD, BOX 270055 ROCHESTER, NY, US 14627-0055

BORROWER NOTES We loan for free. Members of East, RRLC, and IDS.

SHIPPING INFORMATION

SHIP VIA LM SHIP TO ILL

> UNIVERSITY OF ROCHESTER LIBRARY 755 LIBRARY RD, BOX 270055 ROCHESTER, NY, US 14627-0055

RETURN VIA RETURN TO

Try:

B4 342 694

3)://9 WCT 609

RRR

NOTAS DE MATEMATICAS Y SIMPOSIA

NUMERO 1

CONFERENCE ON HOMOTOPY THEORY

Evanston, Illinois, 1974

Editado por Donald M. Davis

SOCIEDAD MATEMATICA MEXICANA
México, D. F., 1975

V	
Q A 6 <u>1</u> 2	
CONTENIDO 1974	
Lista de Participantes	VII VIII IX 1
CONFERENCIAS	
BROWN, E.H., Jr. and PETERSON, F.P.: H (MO) as an algebra	
over the Steenrod algebra	11
DAVIS, D.M.: The immersion conjecture for \mathbb{R}^{8l+7}	21
GLOVER, H.H. and MISLIN, G.: Vector fields on 2-equivalent	
manifolds	29
JOHNSON, D.C., MILLER, H.R., WILSON, W.S. and ZAHLER, R.S.:	
Boundary homomorphisms in the generalized Adams	
spectral sequence and the nontriviality of infinitely	
many γ_{t} in stable homotopy	47
KAHN, D.S.: Homology of the Barratt-Eccles decomposition	
maps	60
LIULEVICIUS, A.: On the birth and death of elements in	
complex cobordism	78
MAHOWALD, M.: On the unstable J-homomorphism	99
MAY, J.P.: Problems in infinite loop space theory	106
MILGRAM, R.J.: The Steenrod algebra and its dual for	107
connective K-theory	127
invariant prime ideal	150
MOORE, J.C.: An algebraic version of the incompressibility	159
theorem of S. Weingram	167
RAVENEL, D.C.: Dieudonné modules for abelian Hopf algebras	177
,	- · /

DIEUDONNE MODULES FOR ABELIAN HOPF ALGEBRAS Preliminary Report in Honor of SAMUEL EILENBERG

Douglas C. Ravenel (*)

By Abelian Hopf algebra we mean graded connected biassociative strictly bi-commutative Hopf algebra of finite type over a perfect field k of characteristic p. Let A denote the cate gory of such objects. A is known to be abelian ([12]) and our purpose here is to show that it is isomorphic to a certain category of modules. An analogous theorem for the nongraded case was proved long ago by Dieudonné, and the modules that he used have been studied extensively (see [1], Chapter V, and [4]). I am grateful to Bill Singer for first bringing this work to my attention and suggesting the problem of carrying it over to the graded case.

The ring D in question is a noncommutative power series over W(k) (the Witt ring of k) in two variables F and V subject to the relations

$$FV = VF = p$$

 $Fw = w^{\sigma}F$, $Vw^{\sigma} = wV$

^(*) Research partially supported by N.S.F.

for $w \in W(k)$, where $w^{\pmb{\sigma}}$ denotes the action of the Frobenius automorphism of k lifted to W(k).

In our case we will obtain modules over a commutative graded ring E = W(k)[[F,V]]/(FV-p) where dim F = 1, dim V = -1. F will be seen to correspond to the Frobenius endomorphism of a Hopf algebra A which sends $x \in A$ to x^p , while V corresponds to the dual of F, commonly known as the Verschiebung.

The relation between abelian Hopf algebras and E-modules will be described in Theorem 3" below, which is our main result.

Our first result is a decomposition theorem.

<u>Definition</u>. Let n be an integer prime to p. An Abelian Hopf algebra is of <u>type</u> n if each of its primitives and generators has dimension npⁱ for some i. Let $\frac{T}{n}A \subset A$ denote the full subcategory of type n Abelian Hopf algebras.

Theorem 1. There is a canonical categorical splitting $A \cong \prod_{(n,p)=1}^{\infty} T_n A, \text{ i.e.}$

- a) Every Abelian Hopf algebra is canonically a direct product of type n Abelian Hopf algebras.
- b) There are no nontrivial maps between a type $\,$ n Hopf algebra and a type $\,$ m $\,$ Hopf algebra for $\,$ m $\,$ \neq n.
- c) Moreover, $\underline{T_1}^A \cong \underline{T_n}^A \forall n$

Such a decomposition is well-known for the Hopf algebra $H_{*}(BU;k)$ (see [3] for example) The general decomposition is

established by showing that the endomorphism ring of $H_{\star}(BU;k)$ acts canonically on any abelian Hopf algebra. Part (b) follows from the fact that a Hopf algebra map sends primitives to primitives. Part (c) is trivial.

We now construct a set of projective generators for $\underline{T_1}^A$. Let $B_n \in \underline{A}$ be $k[b_1,b_2,\ldots,b_n]$ with $\dim b_i = i$ and coproduct $\psi b_i = \sum_{s+t=i} b_s \otimes b_t$ where $b_0 = 1$. Let W_n be the type 1 factor of B_p^n . It is a polynomial algebra $k[w_0,w_1,\ldots,w_n]$ with $\dim w_i = p^i$. The coproduct is obtained lifting to W(k) and defining the Witt polynomials $f_m(w) = \sum_{i=0}^m p^i w_i^{m-i}$, $0 \le m \le n$, to be primitive.

Theorem 2. W is a projective object in \underline{A} , and its dual W is therefore injective.

<u>Proof.</u> Let S_r be the simple object $k[x_r]/x_r^p$, dim $x_r = r$. Any Abelian Hopf algebra can be built up out of these simple objects by multiple extensions, so it suffices to show $\operatorname{Ext}^1_{\underline{A}}(W_n,S_r) = 0 \ \forall \ r$, which is a simple calculation.

Now let $\underline{\underline{W}} \subset \underline{\underline{T}}_1^{\underline{A}}$ denote the full subcategory whose objects are the \underline{W}_n . Let $\underline{\underline{F}}\underline{W}$ denote the category of contravariant functors from $\underline{\underline{W}}$ to the category of finite $\underline{W}(k)$ modules. This category is abelian. We define a functor

$$\underline{D} : T_1 A \longrightarrow \underline{FW}$$

by

$$\underline{D}(A)(W_n) = \text{Hom}_A(W_n, A)$$
.

Now we can state our main result:

Theorem 3. The functor \underline{D} defined above is an equivalence of abelian categories.

The proof is analogous to that of Theorem V, §1,4.3 of [1]. Theorem 3 can be described in a more useful way by analyzing the structure of \underline{W} . Let $V_n: W_{n-1} \longrightarrow W_n$ be the inclusion and let $F_n: W_{n+1} \longrightarrow W_n$ be defined by $F_n(w_i) = w_{i-1}^p$. Note that $V_n F_{n-1} = F_n V_{n-1} = p$. Then we have

Lemma 4. The endomorphism ring of W_n is $W(k)/p^{n+1}$ and these endomorphisms along with the F_n and V_n generate all of the morphisms of W_n .

Hence Theorem 3 can be paraphrased as

Theorem 3'. A type 1 Abelian Hopf algebra is characterized by a sequence of W(k) modules $W_n(A) = \operatorname{Hom}(W_n, A)$ and maps $F_n: W_n(A) \longrightarrow W_{n+1}(A) \quad \text{and} \quad V_n: W_n(A) \longrightarrow W_{n-1}(A) \quad \text{where} \quad V_n F_{n-1} = F_n V_{n+1} = p.$

If we identify $f \in W_n(A)$ with the element $f(w_n) \in A$, we have $(F_n f)(w_{n+1}) = f(w_n)^p \in A$, i.e. F_n corresponds to the Frobenius endomorphism of A, while V_n corresponds similarly

to the dual endomorphism, i.e. the Verschiebung.

To make this more concise let $\frac{E_0^+}{O}$ denote the where A_0^- is projective and A_1^- is polynomial. (If A is not finitely generated, one can still construct and A_0^- and A_1^- but they need not be of finite type).

This is a consequence of

Theorem 6. $\operatorname{Ext}^2_{\underline{A}}(B,A) = 0$ for all A iff B is polynomial.

We will conclude by identifying some well-known Hopf algebra functors with standard functors from homological algebra. It is convenient at this point to embed $\stackrel{+}{\underline{\mathsf{E}}}$ in $\stackrel{-}{\underline{\mathsf{E}}}$, the full category of graded E-modules and maps of all degrees. Hence for M, N \in $\stackrel{-}{\underline{\mathsf{E}}}$, Hom $_{\stackrel{-}{\underline{\mathsf{E}}}}$ (M,N) is also an E-module. Moreover, if N is nonnegative and M does not have any generators in positive dimensions then $\operatorname{Hom}_{\stackrel{-}{\underline{\mathsf{E}}}}$ (M,N) will also be nonnegatively graded. Define modules P = E/VE, R = E/FE.

Theorem 7. Let $A \in \underline{T_1}A$. Then $\underline{Hom}_{\underline{E}}(P,C(A))$ is isomorphic to the abelian restricted Lie algebra of primitives of A (where F corresponds to the restriction), and $\operatorname{Ext}^1_{\underline{E}}(T,C(A))$ is isomorphic phic to the abelian restrict Lie coalgebra (with V corresponding to the corestriction) of decomposable elements of A.

The functors $\operatorname{Ext}^1_{\underline{E}}(P,C(A))$ and $\operatorname{Hom}_{\underline{E}}(R,C(A))$ are the functors \hat{P} and \hat{Q} respectively defined in [6] and also in [5]

§3. Hence an extension in $\underline{T_1}A$ induces six term exact sequences relating these functors as was shown in [6]. (Note that $\mathrm{Ext}_{\underline{E}}^2(P,-) = \mathrm{Ext}_{\underline{E}}^2(R,-) = 0$). It is evident that the connecting homomorphisms of these sequences must be E-module maps, i.e. they must preserve the restriction and corestriction respectively. Hence the argument of 4.10 of [6] (which leads to contradictions of Theorems 2 and 4) is incorrect.

182

COLUMBIA UNIVERSITY

N.B. These results were also obtained by C. Schoeller, "Etude de la Categorie des Algebres de Hopf Commutatives Connexes sur un Corps", Manuscripta Math. $\underline{3}(1970)$, 133-155.

References

- [1] M. Demazure and P. Gabriel, "Groupes Algebriques", North Holland, 1970.
- [2] V.K.A.M. Gugenheim, "Extensions of algebras, coalgebras, Hopf algebras", I and II, Amer. J. Math., 84(1962), 349-382.
- D. Husemoller, "The structure of the Hopf algebra $H_{\star}(BU)$ over a $Z_{(p)}$ -algebra", Amer. J. Math., 93(1971), 329-349.
- [4] Y.I. Manin, "The theory of commutative formal groups over fields of finite characteristic", Russian Math. Surveys,

1963.

[5] J. Moore and L. Smith, "Hopf algebras and multiplicative fibrations", II, Amer. J. Math., 90(1968), 1113-1150.

183

[6] G.C. Wraith, "Abelian Hopf algebras", Journal of Algebra, 6(1967), 135-156.