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DIEUDONNE MODULES FOR ABELIAN HOPF ALGEBRAS 

Preliminary Report in Honor of 

SAMUEL EILENBERG 

(*) 
Douglas c. Ravenel 

By Abelian Hopf algebra we mean graded connected biassocia­

tive strictly bi-commutative Hopf algebra of finite type over a 

perfect field k of characteristic p. Let A denote the cate 

gory of such objects. ~ is known to be abelian ([12]) and our 

purpose here is to show that it is isomorphic to a certain cate­

gory of modules. An analogous theorem for the nongraded case 

was proved long ago by Dieudonne, and the modules that he used 

have been studied extensively (see [l], Chapter v, and [4]). I 

am grateful to Bill Singer for first bringing this work to my 

attention and suggesting the problem of carrying it over to the 

graded case. 

The ring D in question is a noncommutative power series 

over W(k) (the Witt ring of k) in two variables F and V 

subject to the relations 

FV = VF = p 

Fw = w<J F, vwcr = wv 

( *) 
Research partially supported by N.S.F. 

'~ 
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for w E W(k), where wcr denotes the action of the Frobenius 

automorphism of k lifted to W(k). 

In our case we will obtain modules over a commutative graded 

ring E = W(k) [[F,V]]/(FV-p) where dim F = 1, dim V = -1.. F 

will be seen to correspond to the Frobenius endomorphism of a 

Hopf algebra A which sends x EA to xP, while V corresponds 

to the dual of F, commonly known as the Verschiebung. 

The relation between abelian Hopf algebras and E-modules 

will be described in Theorem 3" below, which is our main result. 

Our first result is a decomposition theorem. 

Definition. Let n be an integer prime to p. An Abelian 

Hopf algebra is of !Y£§_ n if each of its primitives and gener-

ators has dimension 
i 

np for some i. Let T Ac A denote the 
n 

full subcategory -,f l:yp2 n Abelian Hopf algebras. 

Theorem 1.. There is a canonical categorical splitting 

A~ TT TA, i.e. 
n 

(n,p)=l-

a) Every Abelian Hopf algebra is canonically a direct 

product of type n Abelian Hopf algebras. 

b) There are no nontrivial maps between a type n Hopf 

algebra and a type m Hopf algebra for m ~ n. 

c) Moreover, T 1A T A 
n 

V n 

Such a decomposition is well-known for the Hopf algebra 

H*(BU;k) (see [3] for example) The general decomposition is 

179 7 
established by showing that the endomorphism ring of H*(BU;k) 

acts canonically on any abelian Hopf algebra. Part (b) follows 

from the fact that a Hopf algebra map sends primitives to primi­

tives. Part (c) is trivial. 

We now construct a set of projective generators for TA. 
1 

Let Bn E ~ be k[b
1

,b
2

, ... ,bn1 with dim b, = i and coproduct 
l. 

.pb, = L b s®bt where bo = 1. Let w be the type 1 factor 
l. 

of 

s+t=i 

B 
pn 

It is a polynomial algebra 

n 

k[w ,w
1

, ... ,w J 
O n 

with 

dim w, = pi. The coproduct is obtained lifting to W(k) and 
l. 

defining the Witt polynomials 

be primitive. 

f (w) 
m 

m , m-i 
= L p 1.wf o '.S_ m '.S, n, to 

i=O 

Theorem 2. w 
n 

is a projective object in A and its dual 

* W is therefore injective. 
n 

Proof. Let S be the simple object k1x 7/xP, dim x 
r " r- r r 

Any Abelian Hopf algebra can be built up out of these simple 

objects by multiple extensions, so it suffices to show 

ExtA
1

(w ,S) = O \Jr, which is a simple calculation. 
n r 

r. 

Now let Yi c T
1 

A denote the full subcategory whose objects 

are the W. Let FW denote the category of contravariant n -

funccors from w to the category of finite W(k) 

This category is abelian. We define a functor 

D: T A-FW - 1 -

modules. 
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_!2(A) (Wn) Hom (W ,A) 
A n 

Now we can state our main result: 

Theorem 3. The functor _!2 defined above is an equivalence 

of abelian categories. 

The proof is analogous to that of Theorem V, §1,4.3 of [l]. 

Theorem 3 can be described in a more useful way by analyzing 

the structure of W. Let V : w l<--w be the inclusion and 

let F W --w 
n n+l n 

V F = F V 
n n-1 n n+l 

p. 

n n- n 

be defined by 

Then we have 

F (w.) 
n l 

Lemma 4. The endomorphism ring of w 
n 

WP 
i-1 

is 

Note that 

W(k) /pn+l and 

these endomorphisms along with the 

the morphisms of W. 

F and V generate all of 
n n 

Hence Theorem 3 can be paraphrased as 

Theorem 3'. A type 1 Abelian Hopf algebra is characterized 

by a sequence of W(k) modules W (A) = Hom(W ,A) 
n n 

and maps 

F : W (A)--W 
1

(A) 
n n n+ 

and V : W (A)-W 
1

(A) 
n n n-

where VnFn-1 

F nv n+l p. 

If we identify f E W (A) with the element f(w ) EA, we n n 

have (F f) (w 
1

) = f (w ) p EA, i.e. F corresponds to the n n+ n n 

Frobenius endomorphism of A, while V corresponds similarly 
n 
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to the dual endomorphism, i.e. the Verschiebung. 

To make this more concise let E+ denote the where A is 
__Q 0 

projective and A
1 

is polynomial. (If A is not finitely gen-

erated, one can still construct and A
0 

not be of finite type). 

This is a consequence of 

and 

Theorem 6. 
2 

ExtA(B,A) O for all A 

mial. 

Al but they need 

iff B is polyno-

We will conclude by identifying some well-known Hopf alge-

bra functors wit~ standard functors from homological algebra. 

It is convenient at this point to embed + 
EO in ~, the full 

category of graded E-modules and maps of all degrees. Hence for 

M , N E E , Hom ( M , N) - E is also an E-module. Moreover, if N is 

nonnegative and M does not have any generators in positive 

dimensions then HomE(M,N) will also be nonnegatively graded. 

Define modules P = E/VE, R = E/FE. 

Theorem 7. Let AET
1

A. Then Hom (P,C(A)) 
E 

is isomorphic 

to the abelian restricted Lie algebra of primitives of A (where 

F corresponds to the restriction), and Ext~(T,C(A)) is isomer 

phic to the abelian restrict Lie coalgebra (with v correspond­

ing to the corestriction) of decomposable elements of A. 

The functors 1 
ExtE ( P, C ( A) ) and HomE ( R, C ( A) ) are the 

functors 
A A 
P and Q respectively defined in [6] and also in [SJ 
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§3. Hence an extension in T
1

A induces six term exact 

sequences relating these functors as was shown in [6]. 

2 

(Note 

that ExtE (P, -) 
2 

=Ext (R,-) 
E 

= 0). It is evident that the con-

necting homomorphisms of these sequences must be E-module maps, 

i.e. they must preserve the restriction and corestriction res-

pectively. Hence the argument of 4.10 of [6] (which leads to 

contradictions of Theorems 2 and 4) is incorrect. 

COLUMBIA UNIVERSITY 

N.B. These results were also obtained by C. Schoeller, "Etude 

de la categorie des Algebres de Hopf commutatives Connexes sur 

un Corps", Manuscripta Math. l( 1970) , 133-155. 
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