Complex Cobordism and its Applications to Homotopy Theory

Douglas C. Ravenel*

In the past few years, the application of complex cobordism to problems in homotopy theory through the medium of the Adams-Novikov spectral sequence has become a lucrative enterprise. We will give a brief survey of some of the foundations and results of this theory, offering nothing new for the experts. See [9] for a more detailed account, including references for some of the statements made here.

The history of the subject begins with Thom's definition [10] of cobordism. Roughly speaking, 2 closed manifolds are cobordant if their disjoint union is the boundary of a third manifold. In the complex case, we require that these manifolds possess compatible complex structures on their stable tangent bundles. Cobordism is easily seen to be an equivalence relation and the set of equivalence classes is a ring (the complex cobordsim ring $M U_{*}$) under disjoint union and Cartesian product. Thom proved that this ring is canonically isomorphic to the homotopy of the complex Thom spectrum $M U$. Milnor [5] and Novikov [6] showed that $M U_{*}=\pi_{*} M U=Z\left[x_{1}, x_{2}, \ldots\right]$ where $\operatorname{dim} x_{i}=2 i$. Brown-Peterson [3] showed that when localized at a prime $p, M U$ splits into an infinite wedge of isomorphic summands known as $B P$ with $\pi_{*} B P=B P_{*}=Z_{(p)}\left[x_{p^{i}-1}\right]$.

Since homotopy theory is essentially a local (in the arithmetic sense) subject we shall concern ourselves primarily with the smaller spectrum $B P$. Once its basic properties have been established, its relation to complex manifolds becomes irrelevant to the applications. Our understanding of these properties rests on a remarkable observation due to Quillen.

[^0]Let $M U^{*}()$ be the generalized cohomology theory represented by the spectrum $M U$. Then $M U^{*}\left(C P^{\infty}\right)=M U^{*}[[x]]$ where $x \in M U^{2}\left(C P^{\infty}\right)$ and $M U^{*}$ is the coefficient ring $\pi_{*} M U$ negatively graded. We also have $M U^{*}\left(C P^{\infty} \times C P^{\infty}\right)=$ $M U^{*}[[x \otimes 1,1 \otimes x]]$ and the tensor product (of complex line bundles) $\operatorname{map} f: C P^{\infty} \times C P^{\infty} \rightarrow C P^{\infty}$ induces $f^{*}: M U^{*}\left(C P^{\infty}\right) \rightarrow M U^{*}\left(C P^{\infty} \times C P^{\infty}\right)$ with $f^{*}(x)=$ $F(x \otimes 1,1 \otimes x)=\sum a_{i j} x^{i} \otimes x^{j}$ with $a_{i j} \in M U^{2(1-i-j)}$. The 2-variable power series F has 3 obvious properties: $F(x, 0)=F(0, x)=x$ (identity); $F(x, y)=F(y, x)$ (commutativity); and $F(F(x, y), z)=F(x, F(y, z))$ (associativity). We define a formal group law G over a commutative ring R to be a power series $G(x, y) \in R[[x, y]]$ having the three properties of F. Quillen's observation was

Theorem 1 [8]. The formal group law F over $M U^{*}$ is universal in the sense that for any other formal group law G over R, there is a unique ring homomorphism $\theta: M U^{*} \rightarrow R$ such that $\quad G(x, y)=\sum \theta\left(a_{i j}\right) x^{i} y^{j}$.

Theorem 2 [8]. There is a map $\varepsilon: M U_{*} \rightarrow B P_{*}$ such that any formal group law G over a $Z_{(p)}$-algebra R is canonically isomorphic to a formal group law G^{\prime} induced by $\theta^{\prime} \varepsilon$ where $\theta^{\prime}: B P_{*} \rightarrow R$ (i.e. there is a power series $f(x) \in R[[x]]$ with leading term x such that $\left.f(G(x, y))=G^{\prime}(f(x), f(y))\right)$.

Quillen was able to use these results to determine the structure of $B P^{*} B P$, the algebra of cohomology operations for the theory represented by the spectrum $B P$. This algebra, the $B P$ analogue of the Steenrod algebra, is difficult to work with because it does not have finite type and cannot be readily described in terms of generators and relations. Instead we will describe its dual $B P_{*} B P=\pi_{*} B P \wedge B P$, the analogue of the dual Steenrod algebra.

First, we described the formal group law εF, which we will denote simply by F. Define $\log x \in\left(Q \otimes B P_{*}\right)[[x]]$ by $\log x=\sum_{i \geqq 0} l_{i} x^{p^{i}}$ where $l_{i}=\varepsilon\left[C P^{p^{i}-1}\right] / p^{i}$. Then $F(x, y)$ is defined by

$$
\begin{equation*}
\log F(x, y)=F(\log x, \log y) \tag{3}
\end{equation*}
$$

ThEOREM 4 ([8], [1]). As an algebra $B P_{*} B P=B P_{*}\left[t_{1}, t_{2}, \ldots\right]$ with $\operatorname{dim} t_{i}=2\left(p^{i}-1\right)$. The Hurewicz or right unit map $\eta_{R}: B P_{*} \rightarrow B P_{*} B P$ (induced by $B P=S^{0} \wedge B P \rightarrow$ $B P \wedge B P$) is given over Q by

$$
\begin{equation*}
\eta_{R} l_{n}=\sum l_{i} t_{n-i}^{p^{i}} \tag{5}
\end{equation*}
$$

This map defines a right $B P_{*}$-module structure on $B P_{*} B P$ and the coproduct (dual to composition of cohomology operations) is a map $\Delta: B P_{*} B P \rightarrow B P_{*} B P \otimes_{B P_{*}} B P_{*} B P$ defined over Q by

$$
\begin{equation*}
\sum_{i \geqq 0} \log \Delta\left(t_{i}\right)=\sum_{i, j \geqq 0} \log \left(t_{i} \otimes t_{j}^{p l}\right) \tag{6}
\end{equation*}
$$

where $t_{0}=1$.

The lack of a more explicit formula for $\Delta\left(t_{i}\right)$ was for some time a psychological obstruction to computing with $B P$. (6) can be rewritten as

$$
\begin{equation*}
\sum^{F} \Delta\left(t_{i}\right)=\sum^{F} t_{i} \otimes t_{j}^{p^{\prime}} \tag{7}
\end{equation*}
$$

(where $\log \left(\Sigma^{F} x_{i}\right)=\sum \log x_{i}$, i.e. $\sum^{F} x_{i}$ is the formal sum of the x_{i}), but this is of little help due to the complexity of F. Another difficulty is that the elements $p^{i} l_{i}=\varepsilon\left[C P^{p^{i}-1}\right]$ do not generate $B P_{*}$. This problem was surmounted first by Hazewinkel and later by Araki.

Theorbm 8 (Araki). $B P_{*}=Z_{(p)}\left[v_{1}, v_{2}, \ldots\right]$ where v_{n} is defined by $p l_{n}=\sum_{0 \leqq i \leqq n} l_{i} v_{n-i}^{p_{i}^{t}}$ with $v_{0}=p$.

Theorem 9. $\eta_{R}\left(v_{i}\right)$ is given by

$$
\sum_{i, j \geqq 0}^{F} v_{i} i_{j}^{p^{i}}=\sum_{i, j \geqq 0}^{F} t_{i} \eta_{R}\left(v_{j}\right)^{p^{t}}
$$

This completes our survey of the foundations of the subject. We turn now to some applications in the homotopy groups of spheres. Novikov first formulated an $M U$ analogue of the Adams spectral sequence. His main result can be restated as

Theorem 10 (Noviкov [7]). Let X be a connective spectrum. There is a spectral sequence converging to $Z_{(p)} \otimes \pi_{*} X$ with $E_{2}^{* *}=\mathrm{Ext}_{P_{*} B P}^{* *}\left(B P_{*}, B P_{*} X\right)$.

For the definition of this Ext, see [9]. In it, $B P_{*} X$ can be replaced by any $B P_{*} B P$ comodule M. From now on we will abbreviate this to Ext M.

For $X=S^{0}$ the E_{2}-term is Ext $B P_{*}$ which has the following convenient sparseness property.

Proposition 11. Ext ${ }^{s, t} B P_{*}=0$ if $t \not \equiv 0 \bmod 2(p-1)$. Consequently, in the Adams-Novikov spectral sequence for $S^{0}, E_{2+2 r(p-1)}^{* *}=E_{2 p-1+2 r(p-1)}^{* *}$ for $r \geqslant 0$. In particular, the first nontrivial differential is $d_{2 p-1}$ so all nontrivial elements in $E_{2}^{s, t}$ for $t \leqslant 2(p-1)$ which are permanent cycles are nontrivial in $E_{\infty}^{* *}$.

This spectral sequence has fewer differentials and extensions (at least for p odd) than the classical Adams spectral sequence based on mod p cohomology, i.e. its E_{2}-term is a closer approximation of stable homotopy. For example, for $p>2$, Ext $^{1} B P_{*}$ is isomorphic to $\operatorname{Im} J$, the image of the Hopf-Whitehead J-homomorphism, and for $p=3$ there are no differentials below dimension 33.

An unstable form of this spectral sequence has recently been constructed and used by Bendersky-Curtis-Miller [2]. It appears to be a very promising device.

In studying the classical Adams spectral sequence one learns that elements in $\operatorname{Ext}_{\mathscr{A}}^{1}(Z / p, Z / p)$ correspond to generators of the Steenrod algebra \mathscr{A} while elements in $\operatorname{Ext}_{\mathscr{\infty}}^{2}(Z|p, Z| p)$ correspond to relations among these generators. However, this point of view appears not to be helpful in understanding Ext ${ }^{1} B P_{*}$ and $\mathrm{Ext}^{2} B \boldsymbol{P}_{*}$.

We will now describe the Greek letter construction, which is an entirely different method of manufacturing elements in Ext $B P_{*}$.
An ideal $I \subset B P_{*}$ is invariant if $B P_{*} / I$ is a $B P_{*} B P$-comodule, i.e. if $\eta_{R} I \subset I B P_{*} B P$. Invariant ideals are rare as the following result shows.

Theorem 12 (Morava, Landweber). (a) The only invariant prime ideals in $B P_{*}$ are $I_{n}=\left(p, v_{1}, \ldots, v_{n-1}\right)$ for $0 \leqslant n \leqslant \infty \quad\left(I_{0}\right.$ is the zero ideal).
(b) $\mathrm{Ext}^{0} \boldsymbol{B P} \boldsymbol{P}_{*}=Z_{(p)}$ and $\mathrm{Ext}^{0} B P_{*} / I_{n}=\boldsymbol{F}_{p}\left[v_{n}\right]$ for $0<n<\infty$.
(c) The following is a short exact sequence of $B P_{*} B P$-comodules.

$$
\begin{equation*}
0 \rightarrow \Sigma^{2\left(p^{n}-1\right)} B P_{*} / I_{n} \xrightarrow{v_{n}} B P_{*} / I_{n} \rightarrow B P_{*} / I_{n+1} \rightarrow 0 . \tag{13}
\end{equation*}
$$

Now let

$$
\delta_{n}: \mathrm{Ext}^{\mathrm{s}, t} B P_{*} / I_{n+1} \rightarrow \mathrm{Ext}^{s+1, t-2\left(p^{n-1}\right)} B P_{*} / I_{n}
$$

be the connecting homomorphism associated with (13). Then we can define the following elements, commonly known as Greek letters, in the Adams-Novikov E_{2}-term $\operatorname{Ext} B P_{*}$:

$$
\begin{align*}
\alpha_{t} & =\delta_{0}\left(v_{1}^{t}\right) \in \operatorname{Ext}^{1,2(p-1) t} B P_{*}, \\
\beta_{t} & =\delta_{0} \delta_{1}\left(v_{2}^{t}\right) \in \operatorname{Ext}^{2,2\left(p^{2}-1\right) t-2(p-1)} B P_{*}, \tag{14}\\
\gamma_{t} & =\delta_{0} \delta_{1} \delta_{2}\left(v_{3}^{t}\right) \in \operatorname{Ext}^{3,2\left(p^{3}-1\right) t-2(p-1)-2\left(p^{2}-1\right)} B P_{*} .
\end{align*}
$$

Of course, this definition generalizes to $\eta_{t}^{(n)}$, where $\eta^{(n)}$ denotes the nth letter of the Greek alphabet.
In order to apply this construction to homotopy theory one must prove two things: that the elements so defined are nontrivial in Ext $B P_{*}$ and that they are permanent cycles in the Adams-Novikov spectral sequence. It will then follow from Proposition 11 that the resulting elements in E_{∞} are nontrivial, so they detect nontrivial homotopy classes.

Theorem 15 (see [9] for references). (a) The elements $\alpha_{t}(t>0)$ are nontrivial for $p \geqslant 2$ and are permanent cycles for $p \geqslant 3$. (They detect the elements of order p in $\operatorname{Im} J$.)
(b) The elements $\beta_{t}(t>0)$ are nontrivial for $p \geqslant 3$ and are permanent cycles for $p \geqslant 5$.
(c) The elements $\gamma_{t}(t>0)$ are nontrivial for $p \geqslant 3$ and are permanent cycles for $p \geqslant 7$.

The nontriviality result is an algebraic computation, while the construction of the corresponding homotopy elements, due to H. Toda and Larry Smith, is as follows. One constructs finite complexes $V(n-1)(n \leqslant 4)$ with $B P_{*} V(n-1)=$ $B P_{*} / I_{n}$ by means of cofibrations ($n \leqslant 3$)

$$
\Sigma^{2\left(p^{n}-1\right)} V(n-1) \xrightarrow{\varphi_{n}} V(n-1) \rightarrow V(n)
$$

realizing the sequence (13), with $V(-1)=S^{0}$. Then $\eta_{t}^{(n)}$ is the composition

$$
S^{2 t\left(p^{n-1}\right)} \xrightarrow{i} \sum^{2 t\left(p^{n-1)}\right.} V(n-1) \xrightarrow{\varphi_{n}^{t}} V(n-1) \xrightarrow{j} S^{k}
$$

where i is the inclusion of the bottom cell, j is the collapsing onto the top cell, and $k=\sum_{0 \leqq m<n}\left(2 p^{m}-1\right)$.

One can generalize the Greek letter construction by replacing the invariant prime ideals I_{n} by invariant regular ideals. Regularity is precisely what is needed to get short exact sequences generalizing (13). For $p \geqslant 3$ it is known that all elements in $\mathrm{Ext}^{1} B P_{*}$ and $\mathrm{Ext}^{2} B P_{*}$ arise in this way.

However, not all elements in $E x t^{3} B P_{*}$ come from $E x t^{0} B P / I$ for an invariant regular ideal I with 3 generators. For example, the elements $\alpha_{1} \beta_{t}$ arise from elements in Ext ${ }^{1} B P_{*} / I_{2}$ which are free under multiplication by v_{2}, so they cannot come from $\operatorname{Ext}^{0} B P_{*} /\left(p, v_{1}, v_{2}^{k}\right)$ for any k. What is true is that every element in Ext $B P_{*}$ is the image of some element in Ext $B P_{*} / I$ (where I is an invariant regular ideal with n generators) which is free under multiplication by the powers of v_{n} belonging to $\operatorname{Ext}^{0} B P_{*} / I$.

Hence in some sense every element of the Adams-Novikov E_{2}-term is a member of an infinite periodic family of the type exemplified most simply by the $\eta_{t}^{(n)}$ of (14). Whether a similar statement can be made about stable homotopy itself is still an open question. In light of this situation, one would like to classify these periodic families. A machine for doing this known as the chromatic spectral sequence was set up in [4]. One begins by looking at the $\boldsymbol{F}_{p}\left[v_{n}\right]$-free summand of $\operatorname{Ext} B P_{*} / I_{n}$, which maps monomorphically to $v_{n}^{-1} \operatorname{Ext} B P_{*} / I_{n}=\operatorname{Ext} v_{n}^{-1} B P_{*} / I_{n}$. This group is surprisingly easy to compute, due to some farsighted work of Jack Morava. His results indicate a striking connection between homotopy theory and local algebraic number theory. We can only give the barest description here.

Ext $v_{n}^{-1} B P_{*} / I_{n}$ is a free module over $K(n)_{*}=\operatorname{Ext}^{0} v_{n}^{-1} B P_{*} / I_{n}=\boldsymbol{F}_{p}\left[v_{n}, v_{n}^{-1}\right]$. We make $\boldsymbol{F}_{p^{n}}$ a nongraded $K(n)_{*}$-module by sending v_{n} to 1 . Then we have

Theorem 16. $\boldsymbol{F}_{p^{n}} \otimes_{K(n)_{*}} \operatorname{Ext} v_{n}^{-1} B P_{*} / I_{n}=H_{c}^{*}\left(S_{n}, F_{p^{n}}\right)$, the continuous cohomology (with trivial action on $F_{p^{n}}$) of the compact p-adic Lie group S_{n}, which is the p-Sylow subgroup of the automorphism group of the (height n) formal group law over $F_{p^{n}}$ induced by $B P_{*} \rightarrow K(n)_{*} \rightarrow F_{p^{n}}$.

For example $H_{c}^{*} S_{n}$ has the following Poincaré series $f(t)=\sum\left(\operatorname{dim} H_{c}^{i} S_{n}\right) t^{i}$:

p	1	2	3
2	$(1+t) /(1-t)$	$(1+t)^{3}\left(1-t^{6}\right) /(1-t)\left(1-t^{4}\right)$	$?$
3	$1+t$	$(1+t)^{2}\left(1+t^{2}\right) /(1-t)$	$?$
$\geqq 5$	$1+t$	$(1+t)^{2}\left(1+t+t^{2}\right)$	$(1+t)^{3}\left(1+t+6 t^{2}+3 t^{3}+6 t^{4}+t^{6}+t^{6}\right)$

References

1. J. F. Adams, Stable homotopy and generalized homology, Univ. of Chicago Press, Chicago, I 11., 1974.
2. M. Bendersky, E. B. Curtis, and H. R. Miller, The unstable Adams spectral sequence for generalized homology, Topology 17 (1978), 229-248.
3. E. H. Brown and F. P. Peterson, A spectrum whose Z_{p}-cohomology is the algebra of reduced pth powers, Topology 5 (1966), 149-154.
4. H. R. Miller, D. C. Ravenel and W. S. Wilson, Periodic phenomena in the Adams-Novikov spectral sequence, Ann. of Math. 106 (1977), 469-516.
5. J. W. Milnor, On the cobordism ring Ω^{*} and a complex analogue, Part I, Amer. J. Math. 82 (1960), 505-521.
6. S. P. Novikov, Some problems in the topology of manifolds connected with the theory of Thom spaces, Soviet Math. Doklady 1 (1960), 717-720.
7.

The methods of algebraic topology from the viewpoint of cobordism theories, Math U.S.S.R.-Izvestia (1967), 827-913.
8. D. G. Quillen, On the formal group laws of unoriented and complex cobordism theory, Bull. Amer. Math. Soc. 75 (1969), 1293-1298.
9. D. C. Ravenel, A novice's guide to the Adams-Novikov spectral sequence, Geometric Applications of Homotopy Theory. II, Lecture Notes in Math, vol. 658, Springer-Verlag, Berlin and New York 1978, pp. 404-475.
10. R. Thom, Quelques propriétés globales des variétés différentiables, Comment. Math. Helv. 28 (1954), 17-86.

University of Washington
Seattle, Washington 98195, U.S.A.

[^0]: * Partially supported by the National Science Foundation of the United States.

