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In the past few years, the application of complex cobordism to problems in 
homotopy theory through the medium of the Adams-Novikov spectral sequence 
has become a lucrative enterprise. We will give a brief survey of some of the 
foundations and results of this theory, offering nothing new for the experts. See [9] 
for a more detailed account, including references for some of the statements made 
here. 

The history of the subject begins with Thorn's definition [10] of cobordism. 
Roughly speaking, 2 closed manifolds are cobordant if their disjoint union is the 
boundary of a third manifold. In the complex case, we require that these manifolds 
possess compatible complex structures on their stable tangent bundles. Cobordism 
is easily seen to be an equivalence relation and the set of equivalence classes is 
a ring (the complex cobordsim ring MUJ under disjoint union and Cartesian 
product. Thorn proved that this ring is canonically isomorphic to the homotopy 
of the complex Thorn spectrum MU. Milnor [5] and Novikov [6] showed that 
MU^=n^MU=Z[xl9x2, ...] where dhnjtf=2?. Brown-Peterson [3] showed 
that when localized at a prime p9 MU splits into an infinite wedge of isomorphic 
summands known as BP with n^BP=BP^<=Z(p)[xpi_1]. 

Since homotopy theory is essentially a local (in the arithmetic sense) subject 
we shall concern ourselves primarily with the smaller spectrum BP. Once its basic 
properties have been established, its relation to complex manifolds becomes irrelevant 
to the applications. Our understanding of these properties rests on a remarkable 
observation due to Quillen. 
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Let MU*( ) be the generalized cohomology theory represented by the spectrum 
MU. Then MU*(CP°°)=MU*[[x]] where xeMU2(CP°°) and MU* is the 
coefficient ring n^MU negatively graded. We also have MU*(CP00XCP00) = 
M£/*[[x<g)l, l®*]] and the tensor product (of complex line bundles) 
m a p / : CP^XCP^-^CP00 induces/*: Mtf*(CP~)-Mtf*(CP~XCP~) withf*(x) = 
F(x®l9l®x)=2iaijXi(8>xJ with a^MU20-"1'-0. The 2-variable power series 
F has 3 obvious properties: F(x9 0)=F(09 x)=x (identity); F(x9 y) = F(y9 x) 
(commutativity); and F{F(x9 y)9 z) = F(x9 F(y9 z)) (associativity). We define 
a formal group law G over a commutative ring JR to be a power series 
G(x9 y)£R[[x9 y]] having the three properties of F. Quillen's observation was 

THEOREM 1 [8]. The formal group law F over MU* is universal in the sense 
that for any other formal group law G over R9 there is a unique ring homomorphism 
9:MU*-+R such that G(x9y)=Z0(aij)x

iyJ. D 

THEOREM 2 [8]. There is a map s: MU^BP^ such that any formal group law 
G over a Z^-algebra R is canonically isomorphic to a formal group law G' induced 
by O's where 6':BP^R (i.e. there is a power series f(x)£R[[x]] with leading 
term x such that f{G(x9y)) = G\f(x)9f(y))). • 

Quillen was able to use these results to determine the structure of BP*BP9 the 
algebra of cohomology operations for the theory represented by the spectrum BP. 
This algebra, the BP analogue of the Steenrod algebra, is difficult to work with 
because it does not have finite type and cannot be readily described in terms of 
generators and relations. Instead we will describe its dual BP^BP=n^BP ABP9 

the analogue of the dual Steenrod algebra. 
First, we described the formal group law eF9 which we will denote simply by F. 

Define logx£(Q®BPJ[[x]] by l o g x = Z W o ^ ' w h e r e /<=ß[CPpI"1]/pl- Then 
F(x9 y) is defined by 

(3) log F(x9 y) = F(log x9 log y). 

THEOREM 4 ([8], [1]). As an algebra BP^BP=BP^[tl9129...] with dim ^ = 2 ( ^ - 1 ) . 
The Hurewicz or right unit map rfR: BP^BP^BP (induced by BP=S°ABP-+ 

BP A BP) is given over Q by 

(5) ui* = 2*^-1. 

This map defines a right BP ̂ -module structure on BP^BP and the coproduct (dual 
to composition of cohomology operations) is a map A: BP^BP^BP^BP®BP^BP^BP 
defined over Q by 

(6) 2^gA(td= Z logfo®/ft 

where t0=l. D 
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The lack of a more explicit formula for A (tt) was for some time a psychological 
obstruction to computing with BP. (6) can be rewritten as 

(7) 2A(td=2ti®tf> 

(where log(2Fxi)—2l°£xi> i-e- 2F*i *s ^ e formal sum of the xt)9 but this is 
of little help due to the complexity of F. Another difficulty is that the elements 
y/ /=e[CPp '~1] do not generate BP^. This problem was surmounted first by 
Hazewinkel and later by Araki. 

THEOREM 8 (ARAKI). BP^=Z^p)[vl9 v2i ...] where vn isdefinedby pln
=2^^i^nhvn-i 

with v0=p. D 

THEOREM 9. i]R(Vj) is given by 

2 »it? = 2 un^vjY. D 

This completes our survey of the foundations of the subject. We turn now to 
some applications in the homotopy groups of spheres. Novikov first formulated 
an MU analogue of the Adams spectral sequence. His main result can be restated as 

THEOREM 10 (Novncov [7]). Let X be a connective spectrum. There is a spectral 
sequence converging to Z(p)®7r+Z with E** = Extlp^BP(BP^9 BP^X). D 

For the definition of this Ext, see [9]. In it, BP^X can be replaced by any BP^BP-
comodule M. From now on we will abbreviate this to Ext M. 

For X=S° the j£2-termis Ext BP^ which has the following convenient sparseness 
property. 

PROPOSITION 11. ExtSitBP^=0 if t^O mod2(/?- l ) . Consequently, in the 
Adams-Novikov spectral sequence for S°9 £2**2r(p-i)=^2*p*-i+2r(p-i) for r^O. 
In particular, the first nontrivial differential is d2p_1 so all nontrivial elements in 
Elft for t^2(p — l) which are permanent cycles are nontrivial in E**. • 

This spectral sequence has fewer differentials and extensions (at least for p odd) 
than the classical Adams spectral sequence based on mod p cohomology, i.e. its 
j&a-term is a closer approximation of stable homotopy. For example, for />>2, 
Ext1 BP^ is isomorphic to ImJ, the image of the Hopf-Whitehead /-homo
morphism, and for p = 3 there are no differentials below dimension 33. 

An unstable form of this spectral sequence has recently been constructed and 
used by Bendersky-Curtis-Miller [2]. It appears to be a very promising device. 

In studying the classical Adams spectral sequence one learns that elements in 
Ext^(Z//?, Zip) correspond to generators of the Steenrod algebra sé while elements 
in Ext^ (Zjp9 Z/p) correspond to relations among these generators. However, 
this point of view appears not to be helpful in understanding Ext1 BP^ and Ext2 BP^. 
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We will now describe the Greek letter construction, which is an entirely different 
method of manufacturing elements in Ext BP^. 

An ideal IaBP^ is invariant if BPJI is a if/^ÄP-comodule, i.e. if 
flRIdIBP^BP. Invariant ideals are rare as the following result shows. 

THEOREM 12 (MORAVA, LAND WEBER), (a) The only invariant prime ideals in 
BP^ are I„ = (p,vl9 . . . , ü „ _ I ) for 0^n^°° (I0 is the zero ideal). 

(b) Ext0 BP^=Z{p) and Ext0 BP JI„=F p[vn] for 0<«<oo. 
(c) The following is a short exact sequence of BP^BP-comodules. 

(13) 0 - Z^-^BPJh — BPJI, - BPJI„+1 - 0. D 

Now let 
ön: Exts>'BPjIn+1 -> Ext*+^-^n-»BPjIn 

be the connecting homomorphism associated with (13). Then we can define the 
following elements, commonly known as Greek letters, in the Adams-Novikov 
jEa-term Ext BP^. 

a* = «WiKExt^-^ÄP*, 

(14) ßt = öoö^vüZEx&W-V'-^-VBP^ 

yt = ô o ^ ^ ^ ^ E x t 3 ' 2 ^ 3 - « ' - 2 ^ - 1 ^ 2 ^ 2 - 1 ) ^ ^ . 

Of course, this definition generalizes to rj^9 where j / ( n ) denotes the wth letter of the 
Greek alphabet. 

In order to apply this construction to homotopy theory one must prove two 
things: that the elements so defined are nontrivial in Ext i î i^ and that they are 
permanent cycles in the Adams-Novikov spectral sequence. It will then follow 
from Proposition 11 that the resulting elements in E^ are nontrivial, so they detect 
nontrivial homotopy classes. 

THEOREM 15 (SEE [9] FOR REFERENCES), (a) The elements at (t >0) are nontrivial 
for p^*2 and are permanent cycles for p^3. (They detect the elements of order 
p in ImJ.) 

(b) The elements ßt (f>0) are nontrivial for p^3 and are permanent cycles 
for p^5. 

(c) The elements yt (/>0) are nontrivial for p^3 and are permanent cycles 
for p^l. • 

The nontriviality result is an algebraic computation, while the construction of 
the corresponding homotopy elements, due to H. Toda and Larry Smith, is as 
follows. One constructs finite complexes V(n — 1) (n^4) with BP^V(n —1) = 
BPJIn by means of cofibrations (n^3) 

22ipn-1)V(n-l)-^-> V(n-1)-+V(n) 
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realizing the sequence (13), with V(—\) = S°. Then i$l) is the composition 

£2f(p»-i)_U 2 , 2 ' ^ , , - 1 ) F ( / 7 - l ) - ^ - v(17-i)-L^sk 

where / is the inclusion of the bottom cell, j is the collapsing onto the top cell, 
and k=20^„(2p>»-l). 

One can generalize the Greek letter construction by replacing the invariant prime 
ideals /„ by invariant regular ideals. Regularity is precisely what is needed to get 
short exact sequences generalizing (13). For p^3 it is known that all elements 
in Ext1 BP^ and Ext2 BP^ arise in this way. 

However, not all elements in Ext3 BP^ come from Ext0 BP/I for an invariant 
regular ideal / with 3 generators. For example, the elements o /̂?, arise from 
elements in Ext1 BPJI2 which are free under multiplication by v2> so they cannot 
come from Ext0 BPJ(p9 vl9 v%) for any k. What is true is that every element in 
Ext BP^ is the image of some element in Ext BPJI (where / is an invariant 
regular ideal with n generators) which is free under multiplication by the powers 
of v„ belonging to Ext0 BPJI. 

Hence in some sense every element of the Adams-Novikov ii2-term is a member 
of an infinite periodic family of the type exemplified most simply by the i]\'l) of (14). 
Whether a similar statement can be made about stable homotopy itself is still an 
open question. In light of this situation, one would like to classify these periodic 
families. A machine for doing this known as the chromatic spectral sequence was 
set up in [4]. One begins by looking at the Fp[>M]-free summand of Ext BPJI„, 
which maps monomorphically to i ;~ 1 ExtBPJI^Ex tv" 1 BPJI„. This group 
is surprisingly easy to compute, due to some farsighted work of Jack Morava. 
His results indicate a striking connection between homotopy theory and local 
algebraic number theory. We can only give the barest description here. 

Ext v'1 BPJIn is a free module over K(n)^ = Ext° v~* BPJIn=Fp[vu9 v'1]. 
We make Fp„ a nongraded K(n)^-modu\e by sending vn to 1. Then we have 

THEOREM 16. F^,, (g)^(/;)+Ext u"1 BPJIn=H*(S„9Fp„)9 the continuous cohomology 
(with trivial action on FpU) of the compact p-adic Lie group Sn9 which is the p- Sylow 
subgroup of the automorphism group of the (height n) formal group law over Fp„ 
induced by BP^-+K(n\-+Fp„. D 

For example H*Sn has the following Poincaré series f(t)=2($ini HcS^t*: 
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