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Abstract: We describe the slice spectral sequence of a 32-periodic C4-spectrum K|; related to the C4 norm
MU(€) = NE;MU]R of the real cobordism spectrum MUg. We will give it as a spectral sequence of Mackey
functors converging to the graded Mackey functor 7, K[>}, complete with differentials and exotic extensions
in the Mackey functor structure. The slice spectral sequence for the 8-periodic real K-theory spectrum Ky was
first analyzed by Dugger. The Cg analog of K|,; is 256-periodic and detects the Kervaire invariant classes 6;.
A partial analysis of its slice spectral sequence led to the solution to the Kervaire invariant problem, namely
the theorem that 6; does not exist for j > 7.
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1 Introduction

In [6] we derived the main theorem about the Kervaire invariant elements from some properties of a Cg-equi-
variant spectrum we called Q constructed as follows. We started with the C,-spectrum MUpg, meaning the
usual complex cobordism spectrum MU equipped with a C, action defined in terms of complex conjugation.

Then we defined a functor N gj, the norm of [6, Section 2.2.3] which we abbreviate here by N 8 from the
category of C,-spectra to that of Cg-spectra. Roughly speaking, given a C,-spectrum X, N§X is underlain by
the fourfold smash power X"* where a generator y of Cg acts by cyclically permuting the four factors, each
of which is invariant under the given action of the subgroup C,. In a similar way one can define a functor Ng
from H-spectra to G-spectra for any finite groups H < G.

A Cg-spectrum such as NgMUlR, which is a commutative ring spectrum, has equivariant homotopy groups
indexed by RO(Cs), the orthogonal representation ring for the group Cg. One element of the latter is pg, the
regular representation. In [6, Section 9] we defined a certain element D ¢ 7T19p8N§MU]R and then formed the
associated mapping telescope, which we denoted by Q¢. The symbol © was chosen to suggest a connection
with the octonions, but there really is none apart from the fact that the octonions are 8-dimensional like psg.

Note that Q¢ is also a Cg-equivariant commutative ring spectrum. We then proved that it is equivariantly
equivalent to X250 Q¢ ; we call this result the Periodicity Theorem. Then our spectrum Q is Qg‘, the fixed point
spectrum of Q¢.
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Itis possible to do this with Cg replaced by C»» for any n. The dimension of the periodicity is then 21+* 2m
For example it is 32 for the group C4 and 213 for C14. We chose the group Cg because it is the smallest that
suits our purposes, namely it is the smallest one yielding a fixed point spectrum that detects the Kervaire
invariant elements 6;.

We know almost nothing about 71,.Q, only that it is periodic with periodic 256, that 7_, = 0 (the Gap
Theorem of [6, Section 8]), and that when 6; exists its image in 7.Q is nontrivial (the Detection Theorem
of [6, Section 11]).

We also know, although we did not say so in [6], that more explicit computations would be much
easier if we cut N gMUlR down to size in the following way. Its underlying homotopy, meaning that of the spec-
trum MU", is known classically to be a polynomial algebra over the integers with four generators (cyclically
permuted up to sign by the group action) in every positive even dimension. This can be proved with methods
described by Adams in [1]. For the cyclic group C»» one has 2! generators in each positive even degree.
Specific generators r; j € rrz,-MU’\z"_1 fori > 0and 0 < j <! are defined in [6, Section 5.4.2].

There is a way to kill all the generators above dimension 2k that was described in [6, Section 2.4]. Roughly
speaking, let A be a wedge of suspensions of the sphere spectrum, one for each monomial in the genera-
tors one wants to kill. One can define a multiplication and group action on A corresponding to the ones
in 7, MU”*. Then one has a map A — MU"* whose restriction to each summand represents the correspond-
ing monomial, and a map A — S° (where the target is the sphere spectrum, not the space S°) sending each
positive-dimensional summand to a point. This leads to two maps

SO A A AMUM = SO A MUM

whose coequalizer we denote by S° A4 MU”“. Its homotopy is the quotient of 77,MU”* obtained by killing
the polynomial generators above dimension 2k. The construction is equivariant, meaning that S° A, MU
underlies a Cg-spectrum.

In [6, Section 7] we showed that for k = O the spectrum we get is the integer Eilenberg—Mac Lane spec-
trum HZ; we called this result the Reduction Theorem. In the nonequivariant case this is obvious. We are
in effect attaching cells to MU"* to kill all of its homotopy groups in positive dimensions, which amounts to
constructing the Oth Postnikov section. In the equivariant case the proof is more delicate.

Now consider the case k = 1, meaning that we are killing the polynomial generators above dimension 2.
Classically we know that doing this to MU (without the C,-action) produces the connective complex K-theory
spectrum, some times denoted by k, bu or (2-locally) BP(1). Inverting the Bott element via a mapping tele-
scope gives us K itself, which is of course 2-periodic. In the C,-equivariant case one gets the “real K-theory”
spectrum Ky, first studied by Atiyah in [3]. It turns out to be 8-periodic and its fixed point spectrum is KO,
which is also referred to in other contexts as real K-theory.

The spectrum we get by killing the generators above dimension 2 in the Cg-spectrum NgMU]R will be
denoted analogously by k(3]. We can invert the image of D by forming a mapping telescope, which we will
denote by K|3;. More generally we denote by k[, the spectrum obtained from N g;" MUy by killing all gen-
erators above dimension 2. In particular, k1 = kg. Then we denote the mapping telescope (after defining
a suitable D) by K[ and its fixed point set by KOjy;.

For n > 3, KO also has a Periodicity, Gap and Detection Theorem, so it could be used to prove the
Kervaire Invariant Theorem.

Thus K3 is a substitute for Qo with much smaller and therefore more tractable homotopy groups. A detailed
study of them might shed some light on the fate of 6¢ in the 126-stem, the one hypothetical Kervaire invar-
iant element whose status is still open. If we could show that m1,6KO(3] = 0, that would mean that ¢ does
not exist.

The computation of the equivariant homotopy 7, K{3; at this time is daunting. The purpose of this paper
is to do a similar computation for the group C, as a warmup exercise. In the process of describing it we will
develop some techniques that are likely to be needed in the Cg case. We start with N é‘ MUpR, kill its polynomial
generators (of which there are two in every positive even dimension) above dimension 2 as described previ-
ously, and then invert a certain element in 774,,. We denote the resulting spectrum by K|, see Definition 7.3
below. This spectrum is known to be 32-periodic. In an earlier draft of this paper it was denoted by Ky.
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Figure 1. The 2008 poster. The first and third quadrants show E,(G/G) of the slice spectral sequence for K[2) with the elements
of Proposition 13.4 excluded. The second quadrant indicates dss as in Figures 9 and 10. The fourth quadrant indicates compa-
rable dss in the third quadrant of the slice spectral sequence as in Figures 11 and 12.

The computational tool for finding these homotopy groups is the slice spectral sequence introduced
in [6, Section 4]. Indeed we do not know of any other way to do it. For K it was first analyzed by Dugger
[4] and his work is described below in Section 8. In this paper we will study the slice spectral sequence of
Mackey functors associated with K|,). We will rely extensively on the results, methods and terminology of [6].

We warn the reader that the computation for K|, is more intricate than the one for Kgr. For example, the
slice spectral sequence for Kg, which is shown in Figure 7, involves five different Mackey functors for the
group C,. We abbreviate them with certain symbols indicated in Table 1. The one for K|,;, partly shown in
Figure 16, involves over twenty Mackey functors for the group C4, with symbols indicated in Table 2.

Part of this spectral sequence is also illustrated in an unpublished poster produced in late 2008
and shown in Figure 1. It shows the spectral sequence converging to the homotopy of the fixed point
spectrum K[CZ“]. The corresponding spectral sequence of Mackey functors converges to the graded Mackey
functor , K[;.

In both illustrations some patterns of dss and families of elements in low filtration are excluded to avoid
clutter. In the poster, representative examples of these are shown in the second and fourth quadrants, the
spectral sequence itself being concentrated in the first and third quadrants. In this paper those patterns are
spelled out in Section 12 and Section 13.

We now outline the rest of the paper. Briefly, the next five sections introduce various tools we need. Our
objects of study, the spectra k) and K|,;, are formally introduced in Section 7. Dugger’s computation for Kr
is recalled in Section 8. The final six sections describe the computation for k[»; and Kj;.

In more detail, Section 2 collects some notions from equivariant stable homotopy theory with an empha-
sis on Mackey functors. Definition 2.7 introduces new notation that we will occasionally need.

Section 3 concerns the equivariant analog of the homology of a point namely, the RO(G)-graded homo-
topy of the integer Eilenberg-Mac Lane spectrum HZ. In particular, Lemma 3.6 describes some relations
among certain elements in it including the “gold relation” between ay and uy.

Section 4 describes some general properties of spectral sequences of Mackey functors. These include
Theorem 4.4 about the relation between differential and exotic extensions in the Mackey functor structure
and Theorem 4.7 on the norm of a differential.
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Section 5 lists some concise symbols for various specific Mackey functors for the groups C, and C, that
we will need. Such functors can be spelled out explicitly by means of Lewis diagrams (5.1), which we usually
abbreviate by symbols shown in Tables 1 and 2.

In Section 6 we study some chain complexes of Mackey functors that arise as cellular chain complexes
for G-CW complexes of the form SV

In Section 7 we formally define (in Definition 7.3) the C4-spectra of interest in this paper, k() and K.

In Section 8 we shall describe the slice spectral sequence for an easier case, the C,-spectrum for real
K-theory, KR. This is due to Dugger [4] and serves as a warmup exercise for us. It turns out that everything in
the spectral sequence is formally determined by the structure of its E, -term and Bott periodicity.

In Section 9 we introduce various elements in the homotopy groups of k[»; and K|;. They are collected
in Table 3, which spans several pages. In Section 10 we determine the E,-term of the slice spectral sequence
for k() and K.

In Section 11 we use the Slice Differentials Theorem of [6] to determine some differentials in our spectral
sequence.

In Section 12 we examine the C4-spectrum k[ as a C,-spectrum. This leads to a calculation only slightly
more complicated than Dugger’s. It gives a way to remove a lot of clutter from the C, calculation.

In Section 13 we determine the E,-term of our spectral sequence. It is far smaller than E, and the results
of Section 12 enable us to ignore most of it. What is left is small enough to be shown legibly in the spec-
tral sequence charts of Figures 14 and 16. They illustrate integrally graded (as opposed to RO(C4)-graded)
spectral sequences of Mackey functors, which are discussed in Section 5. In order to read these charts one
needs to refer to Table 2 which defines the “hieroglyphic” symbols we use for the specific Mackey functors
that we need.

We finish the calculation in Section 14 by dealing with the remaining differentials and exotic Mackey
functor extensions. It turns out that they are all formal consequences of C, differentials of the previous section
along with the results of Section 4.

The result is a complete description of the integrally graded portion of 1 k). It is best seen in the spec-
tral sequence charts of Figures 14 and 16. Unfortunately, we do not have a clean description, much less an
effective way to display the full RO(C4)-graded homotopy groups.

For G = C», the two irreducible orthogonal representations are the trivial one of degree 1, denoted by the
symbol 1, and the sign representation denoted by o. Thus RO(G) is additively a free abelian group of rank 2,
and the spectral sequence of interest is trigraded. In the RO(C;)-graded homotopy of Kg, a certain element
of degree 1 + ¢ (the degree of the regular representation p,) is invertible. This means that each component
of KR is canonically isomorphic to a Mackey functor indexed by an ordinary integer. See Theorem 8.6 for
a more precise statement. Thus the full (trigraded) RO(C,)-graded slice spectral sequence is determined by
bigraded one shown in Figure 7.

For G = C,, the representation ring RO(G) is additively a free abelian group of rank 3, so it leads to
a quadrigraded spectral sequence. The three irreducible representations are the trivial and sign represen-
tations 1 and o (each having degree one) and a degree two representation A given by a rotation of the plane
R? of order 4. The regular representation p, is isomorphic to 1 + ¢ + A. As in the case of K, there is an invert-
ible element 04 (see Table 3) in 71, K[; of degree p,. This means we can reduce the quadigraded slice spectral
sequence to a trigraded one, but finding a full description of it is a problem for the future.

2 Recollections about equivariant stable homotopy theory

We first discuss some structure on the equivariant homotopy groups of a G-spectrum X. We will assume
throughout that G is a finite cyclic p-group. This means that its subgroups are well ordered by inclusion and
each is uniquely determined by its order. The results of this section hold for any prime p, but the rest of the
paper concerns only the case p = 2. We will define several maps indexed by pairs of subgroups of G. We will
often replace these indices by the orders of the subgroups, sometimes denoting |H| by h.
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The homotopy groups can be defined in terms of finite G-sets T. Let
asX(T) = [Ty, X]°

be the set of homotopy classes of equivariant maps from T, the suspension spectrum of the union of T with
a disjoint base point, to the spectrum X. We will often omit G from the notation when it is clear from the
context. For an orthogonal representation V of G, we define

m,X(T) = [SY ATy, X]C.

As an RO(G)-graded contravariant abelian group valued functor of T, this converts disjoint unions to direct
sums. This means it is determined by its values on the sets G/H for subgroups H < G.
Since G is abelian, H is normal and 77,,X(G/H) is a Z[G/H]-module.
Given subgroups K € H < G, one has pinch and fold maps between the H-spectra H/H, and H/K,. This
leads to a diagram
pinch
— (2.1)

H/H+ (T H/K+
(0]

\“/G+/\H(')

pinch
G/H, = Gy Ay H/H. ——— G, Ang H/K;, = G, A K/K, = G/K,.
fold

Note that while the fold map is induced by a map of H-sets, the pinch map is not. It only exists in the stable
category.

Definition 2.2 (The Mackey functor structure maps in ggX). The fixed point transfer and restriction maps

H

try
nyX(G/H) & n,X(G/K)

rest
are the ones induced by the composite maps in the bottom row of (2.1).

These satisfy the formal properties needed to make 7, X into a Mackey functor; see [6, Definition 3.1]. They are
usually referred to simply as the transfer and restriction maps. We use the words “fixed point” to distinguish
them from another similar pair of maps specified below in Definition 2.11.

We remind the reader that a Mackey functor M for a finite group G assigns an abelian group M(T) to
every finite G-set T. It converts disjoint unions to direct sums. It is therefore determined by its values on
orbits, meaning G-sets for the form G/H for various subgroups H of G. For subgroups K € H < G, one has
a map of G-sets G/K — G/H. In categorical language M is actually a pair of functors, one covariant and
one contravariant, both behaving the same way on objects. Hence we get maps both ways between M(G/K)
and M(G/H). For the Mackey functor i, X, these are the two maps of Definition 2.2.

One can generalize the definition of a Mackey functor by replacing the target category of abelian groups
by one’s favorite abelian category, such as that of R-modules over graded abelian groups.

Definition 2.3. A graded Green functor R, for a group G is a Mackey functor for G with values in the category of
graded abelian groups such that R, (G/H) is a graded commutative ring for each subgroup H and for each pair
of subgroups K ¢ H < G, the restriction map resg is a ring homomorphism and the transfer map trﬁ satisfies

the Frobenius relation
tri (resf (a)b) = a (ttf (b)) fora e R,(G/H)and b € R, (G/K).
When X is a ring spectrum, we have the fixed point Frobenius relation
tri (resff(a)b) = a (ttl (b)) fora € n,X(G/H)and b € 1, X(G/K). (2.4)
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In particular, this means that
a(trtf (b)) =0 when resf(a) = 0. (2.5)

For a representation V of G, the group
aSX(G/H) = nlX =[SV, X1

is isomorphic to
[S%, SV AXIT = mo(S™V A X)H.

However fixed points do not respect smash products, so we cannot equate this group with

mo(s™" AXH) = (87", X7] = mym X" = 1., X(G/H).

Conversely a G-equivariant map SV — X represents an element in
[SY,X]% = n{X = n$X(G/G).
The following notion is useful.

Definition 2.6 (Mackey functor induction and restriction). For s subgroup H of G and an H-Mackey func-
tor M, the induced G-Mackey functor Tg M is given by

1% M(T) = M(i};T)

for each finite G-set T, where i}; denotes the forgetful functor from G-sets (or spaces or spectra) to H-sets.
For a G-Mackey functor N, the restricted H-Mackey functor lfl N is given by

1% N(S) = N(G xp S)
for each finite H-set S.

This notation is due to Thévenaz—Webb [10]. They put the decorated arrow on the right and denote G xg S
by S 1% and i} Thy T |5.

We also need notation for X as an H-spectrum for subgroups H < G. For this purpose we will enlarge
the orthogonal representation ring of G, RO(G), to the representation ring Mackey functor RO(G) defined by
RO(G)(G/H) = RO(H). This was the motivating example for the definition of a Mackey functor in the first place.
In it the transfer map on a representation V of H is the induced representation of a supergroup K 2 H, and
its restriction to a subgroup is defined in the obvious way. In particular, the restriction of the transfer of V
is |K/H|V.

More generally for a finite G-set T, RO(G)(T) is the ring (under pointwise direct sum and tensor product)
of functors to the category of finite-dimensional orthogonal real vector spaces from BT, the split groupoid
(see [9, A1.1.22]) whose objects are the elements of T with morphisms defined by the action of G.

Definition 2.7 (RO(G)-graded homotopy groups). For each G-spectrum X and each pair (H, V) consisting of
asubgroup H ¢ G and avirtual orthogonal representation V of H, let the G-Mackey functor 7z, |,(X) be defined
by

Ty (X)(D) = [(Gy Aw VY AT, X% = [SY A i T, iX]) = mll (i X) (i3 1),
for each finite G-set T. Equivalently, 7z, ,(X) =Tg g{f (if;X) (see 2.6) as Mackey functors. We will often denote
g,y by 15 or my.

We will be studying the RO(G)-graded slice spectral sequence {E}'*} of Mackey functors with r, s € Z and
* € RO(G). We will use the notation Eﬁ’(H’ ") for such Mackey functors, abbreviating to E? V when the subgroup
is G. Most of our spectral sequence charts will display the values of E;’t for integral values of ¢ only.

The following definition should be compared with [2, (2.3)].

Definition 2.8 (An equivariant homeomorphism). Let X be a G-space and Y an H-space for a subgroup H < G.
We define the equivariant homeomorphism

15(Y, X) : G xpr (Y xi5X) — (G xg ¥) x X
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by (g, ¥, x) — (g, ¥, 8(x)) for g € G, y € Y and x € X. We will use the same notation for a similarly defined
homeomorphism
ug(Y,X) : Gy Ag (Y ANIRX) —» (G Ag Y)AX

for a G-spectrum X and H-spectrum Y. We will abbreviate
15(S°, X): Gy An i X — G/H. AX

by @17 (X).

For representations V and V' of G both restricting to W on H, but having distinct restrictions to all larger
subgroups, we define fiy_yr = ﬂg(S V)ﬂg(S V')=1, 50 the following diagram of equivariant homeomorphisms
commutes:

G/HASY (2.9)

}ﬂvvr
H

) G/HASY'.

G, Ny SW

When V' = |V| (meaning that H = Gy acts trivially on W), then we abbreviate fiy_y by iy.
If V is a representation of H restricting to W on K, we can smash the diagram (2.1) with SV and get
pinch

SV ———H/K,AS" (2.10)
fold

\“/G+/\H(')

pinch ~
G, Ag SV <f—T) G, Ag (HIK. ASY) —5 G, Ay (Hy Ag SW) =— G, A SV,
(0]

where the homeomorphism is induced by that of Definition 2.8.

Definition 2.11 (The group action restriction and transfer maps). ForsubgroupsK < H < G,let V € RO(H) be
a virtual representation of H restricting to W € RO(K). The group action transfer and restriction maps

tH,V
G H i* X X (L X G K i* X
Tp ay(pX) =—ngy — Txw — Tg Ty (igX)

I'x

(see 2.6) are the ones induced by the composite maps in the bottom row of (2.10). The symbols t and r here
are underlined because they are maps of Mackey functors rather than maps within Mackey functors.

We include V as an index for the group action transfer gﬁ’v because its target is not determined by its source.

Thus we have abelian groups EH',V(X)(G/H ") for all subgroups H', H" < G and representations V of H'.
Most of them are redundant in view of Theorem 2.13 below. In what follows, we will use the notation
Hy=H'uUH"and H, = H nH".

Lemma 2.12 (An equivariant module structure). For a G-spectrum X and H'-spectrum Y,
(G, A Y, X1 = Z[G/Hy) ® [Hy, A Y, X1
as Z[G/H'"1-modules.
Proof. As abelian groups,
H/I HII H” HII
(G nar ¥, XIH = (350,60, X1 = | \/ Hoonaw VX[ = @D (How nar Y, X)
|G/Hy| |G/Hyl

and G/H" permutes the wedge summands of \/,;,5 | Hu+ A Y as it permutes the elements of G/Hy. O
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Theorem 2.13 (The module structure for RO(G)-graded homotopy groups). For subgroups H',H" < G with
Hy=H'UH" and H, = H' n H", and a virtual representation V of H' restricting to W on Hp,

My yX(G/H") = Z[G/Ho) @ my_ X(G/G) = Z[G/Hu] ® i}y, X(Hn/Hn)

as Z[G/H'"-modules.
Suppose that H" is a proper subgroup of H' and y € H' is a generator. Then as an element in Z[G/H"], y
induces multiplication by -1 in ny, ,X(G/H 'Y if and only if V is nonorientable.

Proof. We start with the definition and use the homeomorphism of Definition 2.8 and the module structure
of Lemma 2.12:

EH',VX(G/HH) = [(G+ A SV) A G/Hirl, X]©
=[G4 Awr (Gy Agr S), X6
=[Gy A SV, X7 = Z[G/Hu) ® [Hus Air SV, X1,
[Hos A SV, X" = [V, X)Ho
=[G, An, SY, X6
=y (5, X)(Ho/Hp) = 1y X(G/G).
For the statement about nonoriented V, we have
M yX(G/H") = Z[G/H' @ ) i3, X(H" /H") = Z[G/H'] & [S", X]T".
Then y induces a map of degree +1 on the sphere depending on the orientability of V. O

Theorem 2.13 means that we need only consider the groups
71y vX(G/G) = ny) i}, X(H/H).
When H ¢ G and V is a virtual representation of G, we have
n,X(G/H) = EH,i;;VX(G/G) = ggvi};X(H/H). (2.14)
This isomorphism makes the following diagram commute for K ¢ H:

m,X(G/H) ——— Ty ;- vX(G/G) — gfi yinX(H/H)

H H H,i, V
resy JJ}IK r? J:[!K g

1, X(G/K) ——— Tty vX(G/G) —= g{f*( SR X(K/K).

We will use the three groups of (2.14) interchangeably as convenient and use the same notation for elements in
each related by this canonical isomorphism. Note that the group on the left is indexed by RO(G) while the two
on the right are indexed by RO(H). This means that if V and V' are representations of G each restricting to W
on H, then 71,X(G/H) and 1, X(G/H) are canonically isomorphic. The first of these is

[G/H. AS", X1 =[Gy Au SY, X9 = [SY, if;X]7,

where the first isomorphism is induced by the homeomorphism &} (X) of Definition 2.8 and the second is the
fact that G, Ay (-) is the left adjoint of the forgetful functor iy;.

Remark 2.15 (Factorization via restriction). For a ring spectrum X, such as the one we are studying in this
paper, an indecomposable element in 77, X(G/H) may map to a product xy € 7y , X(G/G) of elements in groups
indexed by representations of H that are not restrictions of representations of G. When this happens we may
denote the indecomposable element in 77, X(G/H) by [xy]. This factorization can make some computations
easier.
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3 The RO(G)-graded homotopy of HZ

We describe part of the RO(G)-graded Green functor m, (HZ), where HZ is the integer Eilenberg—-Mac Lane
spectrum HZ in the G-equivariant category, for some finite cyclic 2-group G. For each actual (as opposed to
virtual) G-representation VV we have an equivariant reduced cellular chain complex CV for the space SV. It is
a complex of Z[G]-modules with H, (CY) = H..(S)).

One can convert such a chain complex CY of Z[G]-modules to one of Mackey functors as follows. Given
a Z[G]-module M, we get a Mackey functor M defined by

M(G/H) = M"  for each subgroup H < G. (3.1)

We call this a fixed point Mackey functor. In it each restriction map resg (for K ¢ H < G) is one-to-one.
When M is a permutation module, meaning the free abelian group on a G-set B, we call M a permutation
Mackey functor [6, Section 3.2].

In particular, the Z[G]-module Z with trivial group action (the free abelian group on the G-set G/G) leads
to a Mackey functor Z in which each restriction map is an isomorphism and the transfer map trfg is multiplica-
tion by |H/K|. For each Mackey functor M there is an Eilenberg—Mac Lane spectrum HM (see [5, Section 5]),
and HZ is the same as HZ with trivial group action.

Given a finite G-CW spectrum X, meaning one built out of cells of the form G, Ay e", we get a reduced
cellular chain complex of Z[G]-modules C, X, leading to a chain complex of fixed point Mackey functors C,_X.
Its homology is a graded Mackey functor H, X with

H,X(G/H) = n,(X NHZ)(G/H) = m.(X N\HZ)".

In particular, H,X(G/{e}) = H. X, the underlying homology of X. In general H,X(G/H) is not the same as
H. (X" because fixed points do not commute with smash products.

For a finite cyclic 2-group G = C»x, the irreducible representations are the 2-dimensional ones A(m) cor-
responding to rotation through an angle of 27rm/2* for 0 < m < 2k-1, the sign representation ¢ and the trivial
one of degree one, which we denote by 1. The 2-local equivariant homotopy type of SA™ depends only on
the 2-adic valuation of m, so we will only consider A(2/) for 0 < j < k - 2 and denote it by A;. The planar
rotation Ax_1 though angle 7 is the same representation as 2a. We will denote A(1) = Ag simply by A.

We will describe the chain complex CY for

V=a+bo+ Z CjAk-j
2<j<k

for nonnegative integers a, b and cj. The isotropy group of V (the largest subgroup fixing all of V) is

Cx=G forb=c,=---=c=0,
Gy=4Cy1 =G forb>0andc; =---=c; =0,
Cor-e forcp >0and ci4e =---=ci = 0.

The sphere S has a G-CW structure with reduced cellular chain complex CV of the form

Z forn = dy,
Z[G/G' fordg < n<d,
Crll/ _ [G/G'] 0 1 (3,2)
Z[G/Cy-] fordj.i1<n<djand2<j<é,
0 otherwise,
where
a forj=0,
di=qa+b forj=1,
a+b+2c+---+2¢; for2<j<e,
sode =|V].
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The boundary map 9, : C¥ — CY_, is determined by the fact that H,(C") = H..(S'V!). More explicitly, let y
be a generator of G and

G= ) ¥y fori<js<k

0<t<2]
Then we have
Y, forn=1+do,
o, = (1-y)xp forn-dopevenand 2 +dy<n<dpy,
Xn forn-dgpoddand 2 +dg < n <dy,
0 otherwise,

where V is the fold map sending y — 1, and x, denotes multiplication by an element in Z[G] to be named
below. We will use the same symbol below for the quotient map Z[G/H] — Z[G/K] for H € K < G. The ele-
ments x, € Z[G] for 2 + dp < n < |V] are determined recursively by x».,4, = 1 and

XnXp-1=¢§ for2+dj_1 <n<2+dj.

It follows that H)y|C" = Z generated by either x1.y| or its product with 1 - y, depending on the parity of b.

This complex is
cV = leolcV/Vo,

where V, = V6. This means we can assume without loss of generality that V, = 0.
An element
x € H,C"(G/H) = H,S"(G/H)

corresponds to an element x € m,_,HZ(G/H).

We will denote the dual complex Homz(CY, Z) by C~V. Its chains lie in dimensions —n for 0 < n < |V|. An
element x € ﬂ_n(S‘V)(G/H) corresponds to an element x € mry,_, HZ(G/H).

The method we have just described determines only a portion of the RO(G)-graded Mackey functor
7, +yHZ, namely the groups in which the index differs by an integer from an actual representation V or its
negative. For example, it does not give us ,_, HZ for |G| > 4.

We leave the proof of the following as an exercise for the reader.

Proposition 3.3 (The top (bottom) homology groups for SV (S™V)). Let G be a finite cyclic 2-group and V a non-
trivial representation of G of degree d with VS = 0 and isotropy group Gy. Then

Cy=CY=2[G/Gy]

and the following hold:

(i) If Vis oriented, then H dSV = Z, the constant Z-valued Mackey functor in which each restriction map is an
isomorphism and each transfer tr§ is multiplication by |K/H]|.

(ii) H_ dS‘V = Z(G, Gy), the constant Z-valued Mackey functor in which

=

« 1 forK < Gy,
|K/H| for Gy < H,

and
X |[K/H| forK < Gy,
try =
1 for Gy € H.

(The above completely describes the cases where |K/H| = 2, and they determine all other restrictions and
transfers.) The functor Z(G, e) is also known as the dual Z*. These isomorphisms are induced by the maps

H,SY H SV

Z— L 7(6/6v] —— Z(G, Gy).
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(iii) If V is not oriented, then H;S" = Z_, where

{0 forH =G,
Z (G/H) =
Z_:=Z[G]/(1 +y) otherwise,

where each restriction map resX is an isomorphism and each transfer trX is multiplication by |K/H| for each
D resy H

proper subgroup K.
(iv) We also have H ,S™V = Z(G, Gy)-, where
0 forH=GandV = o,
Z(G,Gv)-(G/H)=41Z/2 forH=GandV # 0,
Z_  otherwise,

with the same restrictions and transfers as Z(G, Gy). These isomorphisms are induced by the maps

Hys" H ;577
[ [
Z —— Z[G/Gy] ——— Z(G, Gy)-.
The Mackey functor Z(G, Gy) is one of those defined (with different notation) in [7, Definition 2.1].

Definition 3.4 (Three elements in 7(HZ)). Let V be an actual (as opposed to virtual) representation of the
finite cyclic 2-group G with V¢ = 0 and isotropy group Gy.
(i) The equivariant inclusion S° — SV defines an element in g_VSO(G/ G) via the isomorphisms

71_,S°(G/G) = 1,SV(G/G) = moS"" = 7,S° = Z,

and we will use the symbol ay to denote its image in _, HZ(G/G).
(ii) The underlying equivalence SV — S!"! defines an element in

7,S"(G/Gy) = my_;,S°(G/Gv)

and we will use the symbol ey to denote its image in EV—lVlH Z(G/Gy).
(iii) If W is an oriented representation of G (we do not require that W€ = 0), there is a map

A:Z— CIVTl//VI =Z[G/Gw]

as in Proposition 3.3 giving an element

uw € Hy,S"(G/G) = my,_ HZ(G/G).
For nonoriented W, Proposition 3.3 gives a map

A :Z - Cly

and an element

uw € Hyy, S"(G/G') = myy,_HL(G/G").

The element uy above is related to the element ity of (2.9) as follows.

Lemma 3.5 (The restriction of u to a unit and permanent cycle). Let W be a nontrivial representation of G
with H = Gy. Then the homeomorphism

> Wiw : G/H, ASW-Y _ G/H,

of (2.9) induces anisomorphism n,HZ(G/H) — Ty -wHZ(G/H) sending the unit to resﬁ(uw)for uw as defined
in (iii) above and K = G or G' depending on the orientability of W.
The product
resk (uw)ew € n,HZ(G/H) = Z

is a generator, so ey and resﬁ(uw) are units in the ring n, HZ(G/H), and resg(u w) is in the Hurewicz image
of m, S°(G/H).
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Proof. The diagram

G/K, ASW-W P oo agwi-w P o

induces (via the functor [ -, HZ]%)

K
T owHZ(GIK) —— 7 HZ(G/H) —— m,HZ(G/H)

I I I
HyySY (G/K) H SV (G/H) Z.

The restriction map is an isomorphism by Proposition 3.3 and the group on the left is generated by uy.
The product is the composite of H-maps

K
sw ew SIv resy (uw) ZWHZ,

which is the standard inclusion. O

Note that ay and ey are induced by maps to equivariant spheres while uy is not. This means that in any
spectral sequence based on a filtration where the subquotients are equivariant HZ-modules, elements defined
in terms of ay and ey will be permanent cycles, while multiples and powers of uy can support nontrivial
differentials. Lemma 3.5 says a certain restriction of uy is a permanent cycle.
Each nonoriented V has the form W + o where ¢ is the sign representation and W is oriented. It follows
that
uy = ugresy, (uw) € my,_,HZ(G/G").

Note also that ag = eg = ug = 1. The trivial representations contribute nothing to 7, (HZ). We can limit
our attention to representations V with V¢ = 0. Among such representations of cyclic 2-groups, the oriented
ones are precisely the ones of even degree.

Lemma 3.6 (Properties of ay, ey and uw). The three elements ay € n_,HZ(G/G), ey € y_ 1y HZ(G/Gy) and

uw € my,_wHZ(G/G) for W oriented of Definition 3.4 satisfy the following:

(1) av+w = avaw and uy.w = uyuw.

(2) 1G/Gylay = 0, where Gy is the isotropy group of V.

(3) For oriented V, trgv(ev) and trg:/(ve) have infinite order, while trgv(eyw) has order 2 if |V| > 0 and
trgv(eg) = tr, (eg) = 0.

(4) Fororiented Vand Gy < H < G,

tl’gv(ev)uv =|G/Gy| € myHZ(G/G) = Z,
trS (evio)Uvso = |G' /Gyl € mHL(G/G') = Z  for|V] > 0.
(5) av.wtrg, (evav) = 0if V] > 0.
(6) For V and W oriented, uy trgv(ev+w) =|Gy/Gyiwl trgv(ev).
(7) The gold (or au) relation. For V and W oriented representations of degree 2 with Gy < Gy,
awuy = |Gw/Gylayuw.
For nonoriented W similar statements hold in 1, HZ(G/G'). Moreover, 2W is oriented and u,y is defined

in 10, -, wHZ(G/ G) with res, (uaw) = uj,.

Proof. (1) This follows from the existence of the pairing C¥ ® C" — CV*W . It induces an isomorphism in Hy
and (when both V and W are oriented) in Hjy.w;.

(2) This holds because Hy (V) is killed by |G/Gy/|.

(3) This follows from Proposition 3.3.

(4) Using the Frobenius relation we have

trg (ev)uy = trg (evresd (uy)) =trg (1) byLemma 3.5

=1G/Gvl,
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and

tr, (evio)Uvso = g, (evio Tesg, (Uyio)) = trg, (1) = |G'/Gyl.

(5) We have

G —|V|-|U] w-U
av+WtrGV(ev+U) .5Vl L, g .

It is null because the bottom cell of S¥~V is in dimension —|U|.
(6) Since V is oriented, we are computing in a torsion free group so we can tensor with the rationals. It
follows from (4) that

G _1G/Gy.wl G _1G/Gyl
trGV+W(eV+W) = W and ter(eV) =
” |G/Gvwl
uw trgV+W(eV+W) = u::+W =|Gv/Gy+wl trgv(eV)-

(7) For G = Cyn, each oriented representation of degree 2 is 2-locally equivalent to a A; for 0 < j < n. The
isotropy group is G, = C,i. Hence the assumption that Gy ¢ Gw is can be replaced with V = A; and W = A,
with 0 < j < k < n. The statement we wish to prove is

i
ajuy =2 ’aAju/\k.

One has amap S% — S which is the suspension of the 2¥-/th power map on the equatorial circle. Hence
its underlying degree is 2577, We will denote it by ay, / ay, since there is a diagram

Sh
a,\}.
SO ay /ay
o s,
We claim there is a similar diagram
SMAHZ (3.7)
u;\k
S2 up; [up,
Uj:
Sh AHZ,

in which the underlying degree of the vertical map is one.
Smashing ay,/ay, with HZ and composing with uy;/u,, gives a factorization of the degree 21 map
on SN A HZ. Thus we have
Uy ay,
Up, a/(i

= 2k

i
upan = 2" up ay;,

as desired.
The vertical map in (3.7) would follow from a map

shh  HZ
with underlying degree one. Let G = C,» and G > H = C,. Then S~ has a cellular structure of the form
G/H. AS?UG/Hnet uel.
We need to smash this with S$*. Since Ay restricts trivially to H,

G/H, AS™ = G/H, A S2.
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This means
S = S A SN = G/H, AS° U G/H, Ael uel A SH.

Thus its cellular chain complex has the form

2 Z[G/K]
[ -
1 Z|G/K] Z[G/H]
lV \\\\\\\\\:A\\\\\\\\$ ll—y
0 Z Z[G/H],

where K = G/Cpx and the left column is the chain complex for S,
There is a corresponding chain complex of fixed point Mackey functors. Its value on the G-set G/L for an
arbitrary subgroup L is

2 Z[G/ max(K, L)]
ll—y \\\\\\\“‘li\\\\\\\\\$
1 Z[G/ max(K, L)] Z[G/ max(H, L)]
-A
L
0 Z Z[G/max(H, L)].

For each L the map A is injective and maps the kernel of the first 1 — y isomorphically to the kernel of the
second one. This means we can replace the above by a diagram of the form

1 coker(1 -y)
J« \)
v
0 Z coker(1 -y),

where each cokernel is isomorphic to Z and each map is injective.

This means that H, %% is concentrated in degree 0 where it is the pushout of the diagram above, mean-
ing a Mackey functor whose value on each subgroup is Z. Any such Mackey functor admits a map to Z with
underlying degree one. This proves the claim of (3.7). O

The Z-valued Mackey functor H OSAk"‘f is discussed in more detail in [7], where it is denoted by Z(k, j).

4 Generalities on differentials and Mackey functor extensions

Before proceeding with a discussion about spectral sequences, we need the following.

Remark 4.1 (Abusive spectral sequence notation). When d,(x) is a nontrivial element of order 2, the ele-
ments 2x and x? both survive to E, ;, but in that group they are not the products indicated by these symbols
since x itselfis no longer present. More generally if d,(x) = y and ay = O for some a, then ax is presentinE, ;.
This abuse of notation is customary because it would be cumbersome to rename these elements when pass-
ing from E, to E, ;. We will sometimes denote them by [2x], [x?] and [ax] respectively to emphasize their

indecomposability.

Now we make some observations about the relation between exotic transfers and restriction with certain
differentials in the slice spectral sequence. By “exotic” we mean in a higher filtration. In a spectral sequence
of Mackey functors converging to 7, X, it can happen that an element x € m;,X(G/H) has filtration s, but its
restriction or transfer has a higher filtration. In the spectral sequence charts in this paper, exotic transfers and
restrictions will be indicated by blue and dashed green lines respectively.
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Lemma 4.2 (Restriction kills a; and a, kills transfers). Let G be a finite cyclic 2-group with sign representa-
tion o and index 2 subgroup G', and let X be a G-spectrum. Then in 1, X(G/G) the image of trg, is the kernel of
multiplication by as, and the kernel of resg, is the image of multiplication by a.

Suppose further that 4 divides the order of G and let A be the degree 2 representation sending a generator
y € G to a rotation of order 4. Then restriction kills 2a, and 2a kills transfers.

Proof. Consider the cofiber sequence obtained by smashing X with
S 2% 501 G, A SO — SO 2% 59, (4.3)
Since (G, Ag X)C is equivalent to XC', passage to fixed point spectra gives
T1x6 5 (20-1x)6 — X6 — X6 — (29X)C,

so the exact sequence of homotopy groups is

M1 X(G/G) —— 4 ,X(G/G) —— m (G Agr X)(G/G) —— mX(G/G).

u(—]l Resg, ‘ /g’

m(X)(G/G)

Note that the isomorphism u, is invertible. This gives the exactness required by both statements.

For the statements about a,, note that A restricts to 20/, where o is the sign representation for the
index 2 subgroup G'. It follows that resg,(a,\) = a(zjg,, which has order 2. Using the Frobenius relation, we
have for x € 1, X(G/G"),

2a, tr, (x) = tr5 (res, (2an)x) = trg,(Zalz,G, x) = 0. O

This implies that when a,x is killed by a differential but x € E,(G/G) is not, then x represents an element that
is trg, (y) for some y in lower filtration. Similarly if x supports a nontrivial differential but a,x is a nontrivial
permanent cycle, then the latter represents an element with a nontrivial restriction to G’ of higher filtration.
In both cases the converse also holds.

Theorem 4.4 (Exotic transfers and restrictions in the RO(G)-graded slice spectral sequence). Let G be a finite
cyclic 2-group with index 2 subgroup G' and sign representation o, and let X be a G-equivariant spectrum with
X € Ef’VX(G/G) (for V € RO(G)) in the slice spectral sequence for X. Then:

(i) Suppose there is a permanent cycley' € ES*" V+r-1X(G/G'). Then there is a nontrivial differential

dy(x) = trg,(y")

if and only if [asx] is a permanent cycle with resg,(aox) = ugyy'. In this case [ayx] represents the Toda
bracket (ag, tr&,,y').
(i) Suppose there is a permanent cycley € ES*""1:V*"*9=2X(G/G). Then there is a nontrivial differential

dy(x) = agy

if and only if res{, (x) is a permanent cycle with tré, (u* res, (x)) = y. In this case res%, (x) represents the
Toda bracket (res$,, ag, y).

In each case a nontrivial d, is equivalent to a Mackey functor extension raising filtration by r — 1. In (i) the
permanent cycle aqx is not divisible in 1, X by a, and therefore could have a nontrivial restriction in a higher
filtration. Similarly in (ii) the element denoted by resg, (x) is not a restriction in , X, so we cannot use the
Frobenius relation to equate tr%, (u;! res$, (x)) with trg, (u;?)x.

We remark that the proof below makes no use of any properties specific to the slice filtration. The result
holds for any equivariant filtration with suitable formal properties.

Before giving the proof we need the following.
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Lemma 4.5 (A formal observation). Suppose we have a commutative diagram up to sign

ao,o Qo1 ao,2
Ao,o Ao, Aoy —— Aoy
bo,o bo,1 bo,> bo,o
aiz,o a1 a2
A0 A1 Ay, —— A0
b1, b1, b1, b1,
az,o aza az,»
Azo Az Az, —— ZAs0
bao by1 b2, bao
Qo,1 ao,2 2
ZA(),() ZAo,l ZA(),Z — X Ao’o

in which each row and column is a cofiber sequence. Suppose that from some spectrum W we have a map f3 and
hypothetical maps f1 and f, making the following diagram commute up to sign, where ¢; j = bj j+14a; j = ais1,jbi j:

f3

w = 2A0,0 (4.6)
A
\ ~ \fz\ bo’o Co,0
\ =< -
\ > a2 aizo
I Ay —22 3 S0~ BA,
\ C1,2
f3 N b1, bi,0 bi,1
Y
as; az, 2,0
A2,1 Em— Az,z —_— ZAzyo —_— ZAz,l
C2,1
me b2,
ao,1
ZAo,0 2Ao,1 Ao,
me bo,2
Co,0

TAp; — 3AL .

Then f1 exists if and only if f, does. When this happens, co.of3 is null and we have Toda brackets

and (by,1, Co,0,f3) 3 f1-

Proof. Let R be the pullback of a,,1 and b1 ,, so we have a diagram

(ai,1,¢o,0,f3) 3 2

Ao,y ——— Ao,
bo,2
C1,2
Az,o R A1,2 — z:AZ,O
b1, ‘
a,o az az,»
Az Az Az — EAzp
€21 by,»
2Ap,, == ZAo,

in which each row and column is a cofiber sequence. Thus we see that R is the fiber of both ¢, and c3,1.
If f1 exists, then

€2,1f1 = Ao,1b2,1f1 = a0,1a0,0f3
which is null homotopic, so f; lifts to R, which comes equipped with a map to 41 >, giving us f,. Conversely
if f, exists, it lifts to R, which comes equipped with a map to A, 1, giving us f;.

The statement about Toda brackets follows from the way they are defined. O
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Proof of Theorem 4.4. For a G-spectrum X and integers a < b < ¢ < oo there is a cofiber sequence

P x — pex L pbx X wp¢ X
When ¢ = co, we omit it from the notation. We will combine this and the one of (4.3) to get a diagram similar
to (4.6) with W = SV to prove our two statements.

For (i) note that x € E}’ X(G/G) s by definition an element in m,_PiX(G/G). We will assume for simplicity
that s = 0, so x is represented by a map from some S to (P8X)G. Its survival to E, and supporting a nontriv-
ial differential means that it lifts to (P{{ZX)G but not to (PE{IX)G. The value of d,(x) is represented by the
composite kx in the diagram below, where we can use Lemma 4.5:

_ y ’
SV ! — (Pr—lx)G
\ = - -~
AN -~ W .
N T~ _ J(l
N T~ Uy’ res?,

!
N (27 1PX)¢ — 2 (PoX)©

N
' N . .
TS | |
Y -1 216

uztres¢, ,
(Z_l P(T)—Zx)G 40 (ZU_1P6_2X)G G (P{)—ZX)G

. & |

(P X)0 —C 5 (P, 1 X)¢ —2 5 (9P, 1 X)C.

The commutativity of the lower left trapezoid is the differential of (i), d,(x) = trg, (y"). The existence of the
map w making the diagram commute follows from that of x and y'. It is the representative of ayx as a per-
manent cycle, which represents the indicated Toda bracket. The commutativity of the upper right trapezoid
identifies y' as u;! resg, (x) as claimed. For the converse we have the existence of y’ and w and hence that
of x.

The second statement follows by a similar argument based on the diagram

§V+o-1 — y (Pr—lx)G
h AN T~ - - W J
N -~ - 1
h X T - - ' trg,
N 7 (PoX)¥ ———— (PoX)C
AN
y AN J)’ lj
o\il 2 U S -2 37 G' g 123G
(zo-1pr2x)6 — % (pr2X) (P52X)
lk Jk
-1 G

o res’, ,
(Pr1X)6 —— (9P, 1X)¢ —— (3P4 X)C.

Here w represents u;l resg, (x) as a permanent cycle, so we get a Toda bracket containing resg, (x) as

indicated. O

Next we study the way differentials interact with the norm. Suppose we have a subgroup H ¢ G and an H-equi-
variant ring spectrum X with Y = NgX. Suppose we have spectral sequences converging to 7, X and 71, Y
based on towers

—>PfX—>PIn{_1X—> ... and --- _)pr([?y_,pg_lyﬁ

for functors PH and PS equipped with suitable maps

PLXAP{X - Pi X, PRYAPTY—Pp..Y and NGPRX — Py ..

Our slice spectral sequence for each of the spectra studied in this paper fits this description.
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Theorem 4.7 (The norm of a differential). Suppose we have spectral sequences as described above and a dif-
ferential d,(x) =y for x € E}*X(H/H). Letp = Indf,l and suppose that a, has filtration |G/H| - 1. Then in the
spectral sequence for Y = NgX,

G/H| S x
digrmio-1+1(@pNGx) = Ny € Egm ™) Y(G/6).

Proof. The differential can be represented by a diagram

SV —5S(1+V) —— D1+ V) —— SV
| | |
P x Pix pPlix/p2 x

for some orthogonal representation V of H, where each row is a cofiber sequence. We want to apply the norm
functor N§ to it. Let W = Ind% V. Then we get

SW —= N§S(1+V) —— D(p + W) ——— sP*W
Ngyl J JNEIX
NGPE X —— NGPHEX —— NS(PHX/PE X).

Neither row of this diagram is a cofiber sequence, but we can enlarge it to one where the top and bottom
rows are, namely

sV — 5 DA+W) ——— SV

SW ——— Dp+W) ———— S
Ngij Ngx
NGPH X ——— NEPEX ——— NG(PHX/PE X)

|

G
(s+r)|G/H]|

a, ap

+W

G G
P Y —— P Y —— PSg Y/P Y.

G
(s+n)|G/H]|

Here the first two bottom vertical maps are part of the multiplicative structure the spectral sequence is as-
sumed to have. Composing the maps in the three columns gives us the diagram for the desired differential. [

Given a G-equivariant ring spectrum X, let X’ = i};X denote its restriction as an H-spectrum. Then we have
NEX' = X(6/HD and the multiplication on X gives us a map from this smash product to X. This gives us a map
m,X' — m,.X called the internal norm, which we denote abusively by Ng. The argument above yields the
following.

Corollary 4.8 (The internal norm of a differential). With notation as above, suppose we have a differential
d,(x) = y for x € E;*X'(H/H). Then

di/Hi-1)+1(apNGx) = NGy € Elg/HiC* )" X(G/6).

The following is useful in making such calculations. It is very similar to [6, Lemma 3.13].

Lemma 4.9 (The norm of ay and uy). With notation as above, let V be a representation of H with V¥ = 0 and
let W = Indg V. Then Ng(av) = aw. If V is oriented (and hence even-dimensional, making |V|p oriented), then

uypN(uy) = uy.
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Proof. The element ay is represented by the map S° — SY, the inclusion of the fixed point set. Applying the
norm functor to this map gives
S° = NiS® — NfsV = sV,

which is ay.

When V is oriented, uy is represented by a map S'"! — SV A HZ. Applying the norm functor and using
the multiplication in HZ leads to a map

siVle = NGsIV! Nivv, oW g

Now smash both sides with HZ, precompose with uy), and follow with the multiplication on HZ, giving

NSuyAHZ
slvilpl ", glvip AHZ TR L ow ANHZAHZ —— SW AHZ,

which is uw since |W| = |V]|p]. O

5 Some Mackey functors for C, and C,

We need some notation for Mackey functors to be used in spectral sequence charts. In this paper, when a cyclic
group or subgroup appears as an index, we will often replace it by its order. We can specify Mackey functors M
for the group C, and N for C, by means of Lewis diagrams (first introduced in [8]),

M(C,/C;) and  N(C4/Cy) (5.1)
walfe ] ]
M(C>/e) N(C4/C2)

<[]

N(Ca/e).

We omit Lewis’ looped arrow indicating the Weyl group action on M(G/H) for proper subgroups H. This
notation is prohibitively cumbersome in spectral sequence charts, so we will abbreviate specific examples
by more concise symbols. These are shown in Tables 1 and 2. Admittedly some of these symbols are arbitrary
and take some getting used to, but we have to start somewhere. Lewis denotes the fixed point Mackey func-
tor for a ZG-module M by R(M). He abbreviates R(Z)and R(Z_) by R and R_. He also defines (with similar
abbreviations) the orbit group Mackey functor L(M) by

L(M)(G/H) = M/H.

In this case each transfer map is the surjection of the orbit space for a smaller subgroup onto that of a larger
one. The functors R and L are the left and right adjoints of the forgetful functor M — M(G/e) from Mackey
functors to ZG-modules.

Over C, we have short exact sequences

0 A | . o,
0 . 0 O 0,
0 O g O 0.

We can apply the induction functor to each them to get a short exact sequence of Mackey functors over Cy.
Five of the Mackey functors in Table 2 are fixed point Mackey functors (3.1), meaning they are fixed points
of an underlying Z[G]-module M, such as Z[G] or

Z=1Z[G]/(y-1), Z[G/G'] = ZIGl/(y* - 1),
Z =Z[Gl/(y+1),  ZIG/G']- =Z[Gl/(y* +1).
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Symbol m] [u] . N u] =]
Lewis diagram z 0 Z/2 z Z/2 Y4
() () (T () of[]r o)
z z 0 z z ri(ey
Lewis symbol R R_ (Z/2) L L R(Z?)
Table 1. Some C,-Mackey functors.
o=z |6=z[G/¢")|a=2_| o 8 = Z[G] O
Z y/ 0 Z/4 Z 72
1( ))\2 A( ))\V ( ‘) 1\( 9\2 A\( })V A\C D\V
Z Z[G/G] Z_ z/2 | Z[G/G] | Z/2[G/G
Lo | 0 0[O ] 2D | o)
Z [G/G'] = 0 Z[G) Z[G/G']_
O Z(G,e) v A [m] &
Z/2 y/ Z/2 Z/2 0 0
T I T TR BT S B
Z_ z z/2 | Z)2 0 Z/2
1£72 2(51 i)\ 1y ‘(3 oiyv
7 zZ 0 0 ZG/G)_ | Z[G/G]-
w N=7Z(G,G) o . Y O
Z/2 v/ Z/2 0 Z/2 Z/2
o | (O Y] e | s
Z/2 Z 0 Z/2 Z/2 Z/2[G/G"]
of Jo | a{)e [ L) O] el)s | e b
Z[G/G)- V/ 0 0 Z[G/G- | Z|G/G]-
N N = N © B
0 Z 72 Z/4 72
f y A\( jv 11 72 oi 71 1£ 72 A\( Tv
A vAteyied Z Y 7/2 Z/2(G/G]
S T S T I AT
z Z[G/G" Z Z_ | Z[G/G')- 0
N N
72 Z/4
o] ol HIgIER
7207 7207
o 21(]]1] o210 )]1]
Z_ Z_

Table 2. Some C,-Mackey functors, where G = C; and G’ is its index 2 subgroup. The notation Z(G, H) is defined in
Proposition 3.3 (i).
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We will use the following notational conventions for C,-Mackey functors.
(i) Given a C,-Mackey functor M with Lewis diagram

Oﬁ

B

with A and B cyclic, we will use the symbols M, M and M for the C,-Mackey functors with Lewis diagrams

04
P

where a generator y € C4 acts via multiplication by —1 on A and B in the second two, and the transfer ©
is nontrivial.

(ii) Fora C>-Mackey functor M we will denote T3 M (see Definition 2 .6) by M. For a Mackey functor M defined
over the trivial group, we will denote 12 M and 1% M by M and M.
Over C4, in addition to the short exact sequences induced up from C,, we have

0 . u] 5] 0, (5.2)
0 v o . 0,
0 v \J & 0,
0 . o A o,
0 d O ° 0,
0 [\ O . 0.

Definition 5.3 (A C4-enriched C,-Mackey functor). For a C,-Mackey functor M as above, M will denote the
C,-Mackey functor enriched over Z[C,] defined by
M(S) = Z[C4) ®z(c,] M(S)

for a finite C,-set S. Equivalently, in the notation of Definition 2.6, M =573 M.

6 Some chain complexes of Mackey functors

As noted above, a G-CW complex X, meaning one built out of cells of the form G, Ay e", has a reduced
cellular chain complex of Z[G]-modules C. X, leading to a chain complex of fixed point Mackey functors
(see (3.1)) C,X. When X = S for a representation V, we will denote this complex by C *V ; see (3.2). Its homol-
ogy is the graded Mackey functor H, X. Here we will apply the methods of Section 3 to three examples.

Example (i). Let G = C, with generator y, and X = S™ for n > 0, where p denotes the regular representation.
We have seen before [6, Example 3.7] that it has a reduced cellular chain complex C with
Z[G]/(y-1) fori=n,
¢ = {1z[G] forn <i<2n, (6.1)

0 otherwise.

Brought to you by | University of Rochester
Authenticated
Download Date | 5/3/17 6:59 PM



404 — M.A. Hilletal., The slice spectral sequence for the C, analog of real K-theory DE GRUYTER
Let cgn) denote a generator of C ?p ?. The boundary operator d is given by
cgn) fori=n,
d(cl@ﬂ = Yi+1—n(C§")) forn<i<2n, (6.2)
0 otherwise,
wherey; =1 - (—1)iy. For future reference, let
. 0 forieven,
€i=1-(-1)"'=
2 foriodd.
This chain complex has the form
n n+1 n+?2 n+3 2n
\% ~ V2 ~ V3 ~ Vn ~
O 0 O | a
y/ y/ Z y/ “ z
1£ jz Aﬁ jv Aﬁ jv Aﬁ Sv Aﬁ 5\7
z Z(6] — 22— Z[G] —2— Z[G) ™ zi6).
Passing to homology we get
n n+1 n+2 n+3 2n
L] 0 L] O ﬂzn
Z/2 0 Z/2 0 H,,(G/G)
(] () (] (] sl Jv
0 0 0 0 Z[G]/(Yn+1)s
where
Z forneven, o forneven,
H,,(G/G) = and Hp,=q_
0 fornodd, o fornodd.

Here 0 and O are fixed point Mackey functors but » is not.

Similar calculations can be made for S™2 for n <
due to unpublished work of Stong and is reported in
used in Section 8.

0. The results are indicated in Figure 2. This is originally
[8, Theorem 2.1 and Table 2.2]. This information will be

In other words the RO(G)-graded Mackey functor valued homotopy of HZ is as follows. For n > -1 we

have
O
n.X""HZ =n. HZ= o
=i 27 LDi-np, = .
0
For n < -2 we have
Al
Eiznpz HZ — Ei—nsz_ —

fornevenandi = 2n,
fornoddandi = 2n,
forn<i<2nandi+neven,

otherwise.

fornevenandi = 2n,
fornoddandi = 2n,
for2n<i<n-3andi+nodd,

otherwise.
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8 . ° .
4 ° ° ° °
° ° ° °
0N O IN| O Al O N O 1O (gl |9 g g g 49 g O
—4 ° °
_8 °
—16 —12 -8 —4 0 4 8 12 16

Figure 2. The (collapsing) Mackey functor slice spectral sequence for \/,.; Z"P2HZ. The symbols are defined in Table 1. When

the Mackey functor m, .\, (HZ = H,,  S"P? is nontrivial, it is shown at (2 - s, 5) in the chart. Compare with Figure 7.

We can use Definition 3.4 to name some elements of these groups.

Note that HZ is a commutative ring spectrum, so there is a commutative multiplication in 7, HZ, making
ita commutative RO(G)-graded Green functor. For such a functor M on a general group G, the restriction maps
are a ring homomorphisms while the transfer maps satisfy the Frobenius relations (2.4).

Then the generators of various groups in , HZ are
e (4m - 2)-slices for m > 0:

q?m-1-2iyi _ Am-1-20olaig € Ezm_1+ziz(2m_1)p2HZ(G/G) = Myi_m-1)0HZ(G/G) forO<i<m,

XM = Uomot)g € My, E" P HL(G/{ED) = Mipp_1)1- HZ(G/{€}) with y(x) = —x.

e 4m-slices for m > 0O:

q?m-2iyi _ Aam-200Uaio € EZm-1+2iZ(2m_1)p2HZ(G/G) = i m-1)cHZ(G/G) forO<i<m

and with res(u) = x2.
o negative slices:

Zn = €np, € M4y 2" HZ(G/{€}) = 15,1, HZ(G/{e}) forn >0,
a tr(x MY € ;g ZTCMTP HL(G/G) = M 1y(0-1)4i0HZ(G/G)  forn > 0andi > 0.

We have relations
2a =0, res(a) =0,

2un/2 fornevenandn > 0,
Zn =X tr(x™) = tr(z_p;2) fornevenandn<o,
0 fornoddand n > -3.

Example (ii). Let G = C; with generator y, G’ = C, < G, the subgroup generated by y?, and
S(n, G') = G, ng' S

Thus we have
C.(S(n, G")) = Z[G] @716 C:*

with C7* asin (6.1). The calculations of the previous example carry over verbatim by the exactness of Mackey
functor induction of Definition 2.6.
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16 ° [9 o [9)
° ° °
° ° o o
° ° D
12 ° [ D o °
D °
° 0 [¢) ° o
° ° °
8 [® O [®) ° [©
° ° °
° o [¢) o [¢) o
° ° °
4 [¢) ° [®) ® [¢) ®
D D D
o ) o [¢) ° [¢)
° ° °
04 N_| [ 4 A || 4 N 0 O O 0 0 O |
O ) ) o O
° °
[¢) ° [¢) o °
—4 ° °
o [¢) o [¢)
° ° °
e [¢) 0O °
-8 ° °
o ° [¢) o
° °
[¢) ° °
—12Te ° °
° [¢) °
° °
D ° °
—16

-24 -20 -16 -—-12 -8 -4 0 4 8 12 16 20 24

Figure 3. The Mackey functor slice spectral sequence for \/,.; Z"?4 HZ. The symbols are defined in Table 2. The Mackey functor

at position (4n —s,s)ism,, .\ HZ=H,, ;S"P*.

Example (iii). Let G = C4 and X = §"P4, Then the reduced cellular chain complex (3.2) has the form
Z fori=n,

o Z[G/G"] forn<i<2n,
Z[G] for2n <i < 4n,

i

0 otherwise,
in which generators CE") € C?p * satisfy
'an) fori=n,
y,-+1_nc§") forn<i<?2n,
d(CEZ)l) = 1 yi+1_ncl(.") for 2n < i < 4nandieven,
y,-+1_nc§") for 2n < i < 4nandiodd,
[0 otherwise,

where
Hi=yi(l+y?) = (1= (DA + D).

The values of H,S"+ are illustrated in Figure 3. The Mackey functors in filtration O (the horizontal axis)
are the ones described in Proposition 3.3.

As in (i), we name some of these elements. Let G = C4 and G’ = C, < G. Recall that the regular represen-
tation p,4 is 1 + 0 + A where o is the sign representation and A is the 2-dimensional representation given by
a rotation of order 4.

Note that while Figure 2 shows all of m, HZ for G = C,, Figure 3 shows only a bigraded portion of this tri-
graded Mackey functor for G = C4, namely the groups for which the index differs by an integer from a multiple
of p,. We will need to refer to some elements not shown in the latter chart, namely

ag € HyS°(G/G),  ar € HySNG/G), @y = resi(ay),
Use € H,S*°(G/G)), uq € H,S°(G/G'), U, =res?(up), (6.3)

up € H,SMG/G),  up =resy(up), Uy = res}(up),
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subject to the relations
2a,=0, resi(as) =0,
4ay =0, 2a, =0, rest(ay) = 0, (6.4)
ress(uzg) = ug, aiuy = 2apuy,  (gold relation);
see Definition 3.4 and Lemma 3.6.
We will denote the generator of Eé’t(G/H) (when it is nontrivial) by x;_s s, Y¢-s.s and z;_s s for H = G, G'
and {e} respectively. Then the generators for the groups in the 4-slice are
Va0 = Up, = UgTesy(uy) € m, 2P HL(G/G') = m5_y yHZ(G/G') with y(x4,0) = —X4,0,
X3,1 = agup € M3 ¥P*HL(G/G) = m, , \HZ(G/G),
Y2, = resy(a)u,y € m,¥*HZ(G/G") = m,_, \HZ(G/G'"),
X1,3 = Gp, = dgap € 1, 2*"HL(G/G) = n_, ,HZ(G/G)
and the ones for the 8-slice are
Xs,0 = Uah20 = Uzp, € TP HL(G/G) = g_», , HL(G/G) Withyj 5 = ys,0 = 1es}(xs,0),
X6,2 = AAUps20 € TGEP*HZ(G/G) = 1, 5, 5, HZ(G/G) with X3 | = 2Xe,2, V4,0¥2,2 = V6,2 = 1€S3(Xe,2),
X4,4 = AopUzg € P HL(G/G) = 71, 5, HL(G/G) Withy3 , = Va4 = 1€85(X4,4), X1,3X3,1 = 2X44,
Xa,6 = X3 3 € ,EPHL(G/G) = Ty, , HZ(G/G).
These elements and their restrictions generate 1, "°* HZ for m = 1 and 2. For m > 2 the groups are gen-
erated by products of these elements.

The element
24,0 = 1€53(V4,0) = Tes? (Up,) € m,ZP*HZ(G/{e})

is invertible with y(v4,0) = —V4,0, Z%,o =280 = res‘l‘(x&o) and
Z-4m,0 = Z40 = €mp, € T_4 X P HL(G/{e}) form >0,
where ey, is as in Definition 3.4. These elements and their transfers generate the groups in
.2 ™P*HZ form > 0.

Theorem 6.5 (Divisibilities in the negative regular slices for C4). There are the following infinite divisibilities
in the third quadrant of the spectral sequence in Figure 3.
(i) x_40= tr‘l* (z-4,0) is divisible by any monomial in x1,3 and x4,4, meaning that

X4 3% 4 X d4-sj-i-4j-3k = X40 fori,j= 0.
Moreover, no other basis element killed by x3,1 and x4, 4 has this property.
(ii) x_4,0, and x_7,_1 are divisible by any monomial in x, 4, X4, and Xg o, subject to the relation Xé,z = X8,0X4,4-

Note here that xg,l = 2X¢,2. Moreover, no other basis element killed by x4 4, X¢,> and xg o has this property.
(iii) y_7,-1 = resg (x_7,-1) is divisible by any monomial iny, > and y4,o, meaning that

. '
Yh2VaoV-7-2j-4k-1-2j = Y-7,-1  forj, k= 0.

Moreover, no other basis element killed by y »,and y,,o has this property.

We will prove Theorem 6.5 as a corollary of a more general statement (Lemma 6.11 and Corollary 6.13) in
which we consider all representations of the form mA + no for m, n > 0. Let
R= H, Sm/\+no.
m@o
It is generated by the elements of (6.3) subject to the relations of (6.4).
In the larger ring
R _ @ H Sm/\+n0

m,nez
mn=0
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the elements uy, U, and 5,1 are invertible with
-1 —0 ! =1 -A
eg=u, €eH ;S°G/G), er=u, €H ,S"(G/e).

Define spectra L,, and K, to be the cofibers of a;;) and a,s. Thus we have cofiber sequences

S, —m, g0 _Om gma _Pm g

S1K, —S7 g0 Mo, gno P g
Dualizing gives

DLy, —2Pm, g-mt _Pam g0 Pm  opy

DK, 2o, gno Do g0 Do | epp

The maps Dam, and Da,q are the same as desuspensions of a;,y and a,g, which implies that
DLy =3™L, and DK, =3 1"K,.
Inspection of the cellular chain complexes for L,, and K,, and certain of their suspensions reveals that
2> AL w AHZ = Ly AHZ = $%72°L,, AHZ

and
»2-20K, AHZ = K, A HZ,

while £1-9 alters both Ly A HZ and K, A HZ. We will denote =¥1-9L,. A HZ by LGV A HZ and similarly
for K.

The homology groups of L%, and K3, for m, n > 0 are indicated in Figures 4 and 5, and those for gmA
and S™ are shown in Figure6.

6 4|0 o o o o O 6 Al e|e| o|e o|le|e|e o e
5 > IRe) o o o O 5 M e e o/ o|le|ale
4 ” IRe) o o 4 M ele|o|e o e T
3| |@|o| |o] |O 3 |Nje|e e
2| |mlo| |O 2 |Nje|e O
1| |40 1 N0
0 2 4 6 g8 10 12 0 2 4 6 8 10 12

Figure 4. Charts for H;Ly,. The horizontal coordinate is j and the vertical one is m; L, is on the left and L, is on the right.

12 NI ° ° ° ° O 12 0 ° ° ° ° e O
11 M| e ° ° ° e 0 11 0 ° ° ° ° O
10 M| e ° ° ° O 10 0 ° ° ° O
9 A e ° ° e 0 9 0 ° ° ° O
8 A e ° ° O 8 0 ° ° e O
7 A e ° e 0 7 0 ° ° O
6| Nje| | |DO 6| O] || ||O
5 A e (] 5 0 ° O
4] |N]e 4] |O ° O
3| |N|e|O 3 O] O
2| |N|O 2| oo
1| |o 1 g
0 2 4 6 8 10 12 0 2 4 6 8 10 12

Figure 5. Charts for H;K5. The horizontal coordinate is i and the vertical one is n; K, is on the left and K is on the right.
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4 o o o o O 4 . . O
3 o o o O 3 . o | O
2 o o O 2 .
1 o O 1 e O
0 O 0 O

-1 ] -1 o

-2 4|0 -2 N

-3 4|0 o -3 N

—4 ] o ) —4 N e

-5 4| o o o -5 °

—6|4]| o o o o o —06|N| e °
—-12 -10 -8 -6 -4 -2 0 2 4 6 8 -6 -4 -2 0 2 4

Figure 6. Charts forﬂiS’”’1 and H;5"°. The horizontal coordinates are i and the vertical ones are m and n; S™ is on the left and
S"%is on the right.

In the following diagrams we will use the same notation for a map and its smash product with any identity
map. Let V = mA + nowith m, n > 0, and let Ry denote the fiber of ay. Since ay is self-dual up to suspension,
we have DRy = -1V Ry. In the following each row and column is a cofiber sequence:

DUy p— (6.6)
CmA
s-1K, Cno 50 ang gno bno K,
TR
SRy — 50 W v P R,
-
gnop, —— gnop

The homology sequence for the third column is the easiest way to compute H,SV. That column is

CmA ama sV bma TNOL. (6.7)

Znﬁ—l Lm sno

which dualizes to

EIMODL, M gmo (S gV M yonop,,
I I
S VLm VL
or

CmA Ama bma

>V, sV Nld VL. (6.8)

For (6.7) the long exact sequence in homology includes

ama bma

—-1)n CmA
§i+1—nL£n : ﬂisng

HS"

1

H Ly"" —" H,_,S™.

Divisibility by ay. Multiplication by a, leads to

-1)" Cma ama bma —-1)" Cma
Hypp LG - HiS™ H;SsY H Ly —" H,_ S"™
J'a/ll H Jra/‘ J’a:‘
-1)"  Cma () V+A bpia (-D"  Cm2
Hig gLy’ —— H;§"? —— H;$"" —— H ,Lyy” —— H; 5",

wherem' = m + 1 and ajl is induced by the inclusion L,;; — Lpy.
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In the dual case we get
H S 2o Hy ke —— HSYV —*— Hsm™ 2 H L5 (6.9)

=i+l
‘ TDa/’1 A[a/( H TDa/’1

b (=" V-A
Hl+1S " — I—_Ii+3+|V|Lm’ —> H S” _) H s —> H1+2+|V|L

n

Here the subscripts on the horizontal maps (mA in the top row and m’A in the bottom row) have been omitted
to save space. The five lemma implies that the middle vertical map is onto when the left hand Da j\ is onto and
the right hand one is one-to-one. The left version of Da}t is onto in every case except i = —|V| and the right
version of it is one-to-one in all cases except i = —|V| and i = —1 — |V]. This is illustrated for small m in the
following diagram in which trivial Mackey functors are indicated by blank spaces.

j E;Ll LI]’LZ ﬂjLB E;Llo ﬂjLI ﬂjLE ﬂng ﬂjLZ

TN
N NN NN
A Y NN
; N, N;

It follows that the map a, in (6.9) is onto for all i except —|V|. This is a divisibility result. Note that a, is trivial
on H,X(G/e) for any X since res}(ay) =

Divisibility by us. For uy multiplication we use the diagram

Cc

—1)n _ _ -1)"
Hy,, Hi, Ly HSY g5 —2 5 gIGY (6.10)

R

H,_ 511 H LGV —S oy H sV, H,_,5o-A LN HLY

H .smo b g a b

Therightmost u, is ontoin all cases excepti = —n and n even. This is illustrated for n = 6 and 7 in the following
diagram.

j -1 -2 -3 -4 -5 -6 -7 -8 -9
ﬂ's_60 o . N
P_Ij]S‘G"‘/‘ \.\.\\u
ﬂjs_70

Thus the central u, in (6.10) fails to be onto only in when i = —n and n is even.

H.S~70-4
=]

Divisibility by a;. The corresponding diagram is

b _ _ b -1)"
1+1$ ne ? H1+1+|V|L - ? ﬂis v 2 ﬂis ne I—_Ii+|V|L£n :
Iaa Tﬂa ]aa Iaa A‘Aaa

_ b (- 1)' c V- a _ b (- 1)’
H;,,S mo 2 HipwLm — H;S Ve —— HS™? —— Hipqwlm -
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Here we have abbreviated n + 1 by n'. Since resé‘(ag) =0, the map a, must vanish on H_X(G/G') and
H_X(G/e). It can be nontrivial only on G/G.

By Lemma 4.2, the image of a, is the kernel of the restriction map uj’ resg and the kernel of a, is the
image of the transfer trs. From Figure 6 we see that res} kills H;S™(G/G) except the case i = —n for even n.
From Figure 4 we see that it kills H iL,‘n(G/ G) for all j and H ij(G/ G) for odd j > 1, but not the generators
for j = 1 nor the ones for even values of j from 2 to 2m. The transfer has nontrivial image in H iLn onlyforj=1
and in H;Lp, only for j = 1 and for even j from 2 to 2m.

It follows that for odd n, each element ofﬂiS*V(G/G) is divisible by a, except when i = —|V| = -2m — n.
For even n it is onto except wheni = -n,i = -n-2m,andioddfrom1-n-2mto-1-n.

Divisibility by u»4. For u,, multiplication, the diagram is

_ b -1)" _ _ b —1)"
H S —— HmLsn s H;S e HSM —— ﬂiLﬁn )

MZaT H HZUT uZHT ‘

H; S0 L H L5V —— H; ,S7V=20 % H, 520 LA ﬂiLirfl)"-

i+1
The rightmost u,, is onto in all cases, so every element in H,S™" is divisible by u,.

The arguments above prove the following.

Lemma 6.11 (RO(G)-graded divisibility). Let G = C4, and V = mA + no form,n > 0.

(i) Each element in LII-S‘V(G/G) or ﬂiS‘V(G/G’) is divisible by a, or aj except wheni = —|V|.

(ii) Each elementin H iS‘V(G/H) is divisible by a suitable restriction of uy except when i = —n for even n.

(iii) Each element in H iS‘V(G/ G) for odd n is divisible by a, except when i = —|V|. For even n it is divisible by a,
except wheni=-n,i=-|V|landiisodd fromi=1-|V|to-1-n.

(iv) Each element in H;S™V(G/H) is divisible by a uaq, Uq 0F Us.

In Theorem 6.5 we are looking for divisibility by
X1,3 = agay € HyS™N(G/G) = H,S*(G/G),
Xu4 = @3z € H,S*M2%(G/G) = H,S* (G/G),
Y2, = Gaug € H;S™1(G/G') = H,SP(G/G),
Xe.2 = Qtaot € H,S29(G/G) = H 8% (G/G), |
Xg,0 = Uzolt € H S*M29(G/G) = HgS* (G/G),
Ya,0 = ugtp € H;SM(G/G") = H,S°(G/G"). |

(6.12)

In view of Lemma 6.11 (iv), we can ignore the factors u,, and u, when analyzing such divisibility.
Corollary 6.13 (Infinite divisibility by the divisors of (6.12)). Let
V=mA+no form,nz=0.

Then the following hold:

o Each element ofﬂiS‘V(G/G) is infinitely divisible by x1,3 = agay fori > —n when n is even and for i > —n
when n is odd.

o Each element ofﬂiS‘V(G/G) is infinitely divisible by x4, 4 = aﬁuzg fori> —|V|.

«  Eachelement of H;S™V(G/G') is infinitely divisible by y, > = a\uq fori > —|V].

e Each element of ﬂiS*V(G/ G) is infinitely divisible by x¢, = ayuzsuy for i > —|V| when n is odd and
for —|V| < i < —n when n is even.

o Each element ofﬂiS‘V(G/G) is infinitely divisible by xg 0 = uzguﬁ for i < —n when n is even and for all i
when n is odd.

«  Each element of H;S™V(G/G') is infinitely divisible by y4,o = usUx for i < —n when n is even and for all i
when n is odd.

This implies Theorem 6.5.
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7 The spectra kg and k|

Before defining our spectrum we need to recall some definitions and formulas from [6]. Let H ¢ G be finite
groups. In [6, Section 2.2.3] we define a norm functor Ng from the category of H-spectra to that of G-spectra.
Roughly speaking, for an H-spectrum X, N5 X is the G-spectrum underlain by the smash power X(¢/H) with
G permuting the factors and H leaving each one invariant. When G is cyclic, we will denote the orders of G
and H by g and h, and the norm functor by Nf .

There is a C,-spectrum MUR underlain by the complex cobordism spectrum MU with group action given
by complex conjugation. Its construction is spelled out in [6, Section B.12]. For a finite cyclic 2-group G we
define

MU®) = NSMUR.
Choose a generator y of G. In [6, (5.47)] we defined generators

MU©@(G/6) (7.1)

_ — Cy sx
Ty = rg c Ek;lezMU((G))(CZ/CZ) = ECz,kpz

(note that this group is a module over G/C,) and
re= i) € mly 5, MUO(G/G) = mi MU (fe}/fe}) = niy MU,

The Hurewicz images of the 7 (for which we use the same notation) are defined in terms of the coefficients
(see Definition 2.7)

my € Ezf;zHZ(z) AMUD(C,/C,) = e, kp, HLZ ) N MU‘9(6/6)

of the logarithm of the formal group law F associated with the left unit map from MU to MU®), The formula
is

-1
¥ Pt = (x4 Yyl x®) o logg(x),
k>0 >0

where

logr(x) = x + Z ML,
k>0

For small k we have
1 =(1-y)(my),
Ty =my - 2y(m1)(1 - y)(my),
73 = (1 - y)(W;3) - y(m1)(5y(my)? - 6y(M1)my + My + 27,).
Now let G = C, or C4 and, in the latter case G' = C, < G. The generators ?f are the 7y defined above. We

also have elements ?,((;, defined by similar formulas with y replaced by y?; recall that y? (my) = (-1)*my. They
are the images of similar generators of

m2, MU (Cy/C) = g 4, MUV (G'1GT)
under the left unit map
MU G _ MUCED A MUUE = iZIMU((G))-
Thus we have
7(1;, =2my,
7 =, + 4m2,
7§ = 2M + 2y, + 1275,
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If we set7, = 0and 73 = 0, we get
7?’ = 71,0 + 71,1,
?g’ = 3?1,0?1,1 +Fi1,
7S = 52 oT1,1 + 571,072 1 + T30 = F1,1(5T4 o + 571,071,1 + T2.0),
y(Fgl) = 71,0571 = 571,071,1 + T1.0)s i (7.2)
7S YT ) [T1,071,1 = (5741 = 5T1,071,1 + T2 o) (T4 + 5T1,071,1 + 572.0)

=4 =3 = ) = =3 =4
= (571,0 — 2077 oT1,1 + 71 oT1,1 + 2071077 1 + 577 1)

=2 =2 \2 = = =2 =2 - = 2
= (5(r1,0 —71,1)° — 2071 ,071,1(T] o — T1,1) + 11(T1,071,1)7),
wherery,o =711 and 71,1 = y(r1).

Definition 7.3 (kgr, Kg, k(2] and K3}). The C,-spectrum kg (connective real K-theory), is the spectrum ob-
tained from MUR by killing the ry,s for n > 2. Its periodic counterpart Ky is the telescope obtained from kg by
inverting r; € ,, kr(C2/C>).

The C,-spectrum k(,; is obtained from MU{4) by killing the r,,s and their conjugates for n > 2. Its periodic
counterpart K] is the telescope obtained from k() by inverting a certain element D € 7, k{2;(C4/C4) defined
below in (9.3) and Table 3.

The image of D in 713 ki2)(C2/Ca) = ¢, g, ki2)(Ca/Ca) is

4 _ — G -G
r5(D) =T11,0r1,173 Y(13)
) )
_rlorl 1(= 5r10+20r10r11—r10r11 20r10r11 5r1 1)

= —r%,or1,1(5(r1,o - r1,1) - 20r1,0r1,1(r1’0 - r1,1) +11(71,071.1)°). (7.4)

It is fixed by the action of G/G’, while its factors 71 o71,; and F3G ' y(?gl) are each negated by the action of
the generator y.

We remark that while MU“) is MUg A MUR as a C,-spectrum, ki,; is not kg A kg as a C,-spectrum. The
former has torsion free underlying homotopy but the latter does not.

8 The slice spectral sequence for Ky

In this section we describe the slice spectral sequence for Kg. These results are originally due to Dugger [4],
to which we refer for many of the proofs. This case is far simpler than that of K{,j, but it is very instructive.

Theorem 8.1 (The slice E,-terms for Kg and kgr). The slices of Kr are

P xW2p2HZ  for t even,
R =
* otherwise.

For kg they are the same in nonnegative dimensions, and contractible below dimension 0.

Hence we know the integrally graded homotopy groups of these slices by the results of Section 6, and they
are shown in Figure 2. It shows the E,-term for the wedge of all of the slices of Kgr, and Ky itself has the
same E,-term. It turns out that the differentials and Mackey functor extensions are determined by the fact
that 7, Ky is 8-periodic, while the E,-term is far from it. This explanation is admittedly circular in that the
proof of the Periodicity Theorem itself of [6, Section 9] relies on the existence of certain differentials described
below in (11.2).

Theorem 8.2 (The slice spectral sequence for Kr). The differentials and extensions in the spectral sequence
are as indicated in Figure 7.
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Figure 7. The slice spectral sequence for Kgr. Compare with Figure 2. Exotic transfers and restrictions are indicated respectively
by solid blue and dashed green lines. Differentials are in red.

Proof. There are four phenomena we need to establish:

(i) The differentials in the first quadrant, which are indicated by red lines.

(ii) The differentials in the third quadrant.

(iii) The exotic transfers in the first quadrant, which are indicated by blue lines.

(iv) The exotic restrictions in the third quadrant, which are indicated by dashed green lines.

For (i), note that there is a nontrivial element in E ;’6(6/ G), which is part of the 3-stem, but nothing in the
(-5)-stem. This means the former element must be killed by a differential, and the only possibility is the one
indicated. The other differentials in the first quadrant follow from this one and the multiplicative structure.

For (ii), we know that 77, Kg = 0, so the same must be true of 7_,. Hence the element in 53 12 cannot
survive, leading to the indicated third quadrant differentials.

For (iii), note that 1, and 71_, must be the same as Mackey functors. This forces the indicated exotic
transfers. For each m > 0 one has a nonsplit short exact sequence of C, Mackey functors

0,8m-+2
— Mg KR — E, — 0.

Il
. 0 [u]

00— E

2,8m+4
2

For (iv), note that n_g and 71, must also agree. This forces the indicated exotic restrictions. For eachm < 0
one has a nonsplit short exact sequence

0 Eg,Bm EngR E;Z,Sm—z 0
[\ 0, .
as desired. O

In order to describe 71, Kg as a graded Green functor, meaning a graded Mackey functor with multiplication,
we recall some notation from Section 6 (i) and Definition 3.4. For G = C, we have elements

a=aqscn_;HLG/G),

U=z €M, ,HZ(G/G),

X =ugen, ,HL(G/{e}) with x? = res(u), } (8.3)
Zn = €y, € Ezn(a—l)HZ(G/{e}) forn >0,

HZ(G/G) forn>o0.

—i -2n-1
a ltr(X " )GE(2n+l)(a—1)+i0
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We will use the same symbols for the representatives of these elements in the slice E,-term. The filtrations
of u, x and z, are zero while that of a is one. It follows that a* tr(x~2""1) has filtration —i. The element x is
invertible.

In E3’* we have relations in

2a =0, res(a) =0,

2un/? fornevenandn > 0,

o an . tr(z_pj2) #0 fornevenandn<oO, r (8.4)

zn =X 1, tr(x") =
fornoddand n > -3,

+0 fornoddand n < -3.

Wealso have the element 7, € m,, ;kr(G/G), theimage of the element of the samenamein7; € m,, MURr(G/G)
of (7.1). We use the same symbol for its representative Eg’lw(G/ G). Then we have integrally graded elements

n=at e E"*(G/G),
vi =x-tes(t1) € Ey*(G/{e}) withy(vq) = vy,
urt € E5*(G/6),
w = 2ur € EY*(G/G),
b = u?r} € EY®(G/G) with w? = 4b,
where 17 and v; are the images of the elements of the same name in 13 S%and m, k, and w and b are permanent
cycles. The elements x, v1 and b are invertible. Note that for n < 0,
0 forn=1,
5‘2”2"(6/6) = 1 Z generated by tr(vi") for n even,
Z/2 generated by tr(v{") fornoddandn < -1,

so each group is killed by = ar; by Lemma 4.2.
Then we have
ds(u) = a’r, by (11.3) below,
ds(ur}) = ds(W)P = &’ = 1n°,
)
tr?(x) = a1 by (11.4), raising filtration by 2,

tr2(v1) = n°.

Thus we get:
Theorem 8.5 (The homotopy of Kg as an integrally graded Green functor). With notation as above,

7, Kr(G/{e}) = Z[vi'], m,Kr(G/G)=Z[b*', w,n]/(2n,n°, wn, w” - 4b)
with
2b fori = 4j,
n’b fori=4j+1,
wbl  fori=4j+2,
0 fori=4j+3,

tr(v"l) = res(b) = vi‘, res(w) = 2v, res(n)=0.

Foreachj < 0, b/ has filtration —2 and supports an exotic restriction in the slice spectral sequence as indicated
in Figure 7. Both v res(b’) and nzbj have filtration zero, so the transfer relating them is does not raise filtration.

Now we will describe the RO(G)-graded slice spectral sequence and homotopy of Kg. The former is trigraded
since RO(G) itself is bigraded, being isomorphic as an abelian group to Z ® Z. For each integer k, one can
imagine a chart similar to Figure 7 converging to the graded Mackey functor ., , Kr. Figure 7 itself is the
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one for k = 0. The product of elements in the kth and ¢th charts lies in the (k + £)th chart. We have elements
asin (8.3):
a=ay€Ey" °(G/G),

u = € Ey°7°(G/G),
X=1Ug€ Eg’l_o(G/{e}) with y(x) = -1 and x? = res(u),
Zn = X2 € EY ™ (G/le})  forn >0,
altr(x 2" e E;i’fifzr”z"”(G/G) fori>0andn >0,
1 € E51°(G/G),

where a, x, z, and 7, are permanent cycles, both x and 7; are invertible, and there are relations as in (8.4).
We also know that

ds(u) = a’r1 by (11.3) below, tr2(x) = a’r1 by (11.4).

Theorem 8.6. The RO(G)-graded slice spectral sequence for Kr can be obtained by tensoring that of Figure 7
with Z[7+'], that is for any integer k,

ES"(G/6G) =KES" (G/G) and ES"*(G/fe}) = res(FV)ES ¥ (G/le))
and 1, ,Kr has a similar description.

Proof. The element r; and its restriction are invertible permanent cycles, so multiplication by either induces
an isomorphism in the spectral sequence. O

Remark 8.7. Inthe RO(G)-graded slice spectral sequence for kg one has ds(u) = 71a>, but a3 itself, and indeed
all higher powers of a, survive to E, = E__. Hence the E_ -term of this spectral sequence does not have the
horizontal vanishing line that we see in E,,-term of Figure 7. However when we pass from kg to Kg, 71 becomes
invertible and we have

ds(r{'u) = a°.

We can keep track of the groups in this trigraded spectral sequence with the help of four variable Poincaré
series g(E,(G/G)) € Z[[x, y, z, t]] in which the rank of E;""”(G/G) is the coefficient in Z[[¢]] of xI"Sy/z5. The
variable t keeps track of powers of two. Thus a copy of the integers is represented by 1/(1 — t) or (when it is
the kernel of a differential of the form Z — Z/2) t/(1 - t). Let

a=y 'z, u=x’y"'! and 7=uxy. (8.8)

Since E,(G/G) = Z]a, u, r1]/(2a), we have

1 a 1
g(Ez(G/G)):<1—t+ 1—&)(1—&)(1—?)’

u+7a’
1-a)1-u)(1-7)°
We subtract the indicated expression from g(E,(G/G)) because we have differentials

dg(a"leuZ"”) = ai+3?j1+1u2k foralli,j, k > 0.

8(E,(G/G)) = 8(E,(G/G)) -

Pursuing this further we get

1 a 1 U ati +7a3
8(E,(G/G)) = (1—t+ 1—a)(1—a)(1—?) TA-m)(1-m d-ad-m)(1-7
1+ u-u(l-o a1 +un) - a( + a’v)
TU-na-ma-n  d-ad-a)a-n
B 1+tu a-ad+a’-a’r
T-oa-ma-n d-aa-a)a-n
1+tu a+a? a’

TA-0d-w)1-n  A-w?I-n  d-ad-u2)
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The third term of this expression represents the elements of filtration above two (referred to in Remark 8.7)
which disappear when we pass to Kgr. The first term represents the elements of filtration zero, which include

1, [2u]€(2,a,a’r) and [u?] € {a,a’Ta,a’r:). (8.9)

Here we use the notation [2u] and [u?] to indicate the images in E , of the elements 2u and u? in E 2
see Remark 4.1 below. The former not divisible by 2 and the latter is not a square since u itself is not present
in E,, where the Massey products are defined. For an introduction to Massey products, we refer the reader
to [9, Al.4].

We now make a similar computation where we enlarge E, (G/G) by adjoining 7[1 u and denote the result-
ing spectral sequence terms by E’, and E,.

Let
w=7tu=xy>.
Then since
EY(G/G) = Z[a, 7{'u, 71]/(2a),
we have
) 1 a 1
g(ﬁz(G/G))_<1—t+1—&)(1—W)(1—?)’
w+al
8(E(GIG)) = 8(Ex(G/O) - T—avr— w5
_( 1 a ) 1 - w - aw + a’
-t 1-a/ad-wi-n d-w)d-9 (d-dd-wHad-7
o 1l+w-w(l-o) al+w)-aw+a?)
S A-HA-wH(A-7) Q-a)(1-wH(L-T7)
1+tw a+a?

= — — =+ — —
aA-pHa-w)hHa-n @@-w)ha-7
and there is nothing in E), with filtration above two. As far as we know there is no modification of the spectrum
kg corresponding to this modification of E,. However the map E,kr — E,Kg clearly factors through E/

9 Some elements in the homotopy groups of k;; and K|,

For G = C4 we will often use a (second) subscript € on elements such as r, to indicate the action of a genera-
tor y of G = Cy4, SO y(x¢) = X1+¢ and X24¢ = £Xe. Then we have

ki) = 1, k2)(G/e}) = myg, k12)(G/G) = Z[r1, y(r1)] = Z[r1,0, 11,1, (9.1)

where y?(ry,¢) = -r1,c. Here we use r1 . and 71, . to denote the images of elements of the same name in the
homotopy of MU((®),

2 ax
1 Ao Qg, n ’I]l (9.2)
Uy U220 %2 ?2
0 T1,0 T1,1 -
Ugy U D1
—2 —1 0 1 2 3 4

Here the vertical coordinate is s and the horizontal coordinate is |¢t| — s. More information about these
elements can be found in Table 3 below.
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We are using the following notational convention. When x = tr2 (y) for some element y € 7, k;2;(G/G"),
we will write x” = tré‘(ugy) Examples above include the cases x =  and x = t,. The primes could be iterated,
i.e., we might write ¥ = trj(uky), but this turns out to be unnecessary.

The group action (by G’ on 7y, a4, and ug,, and by G on all the others) fixes each generator but u,
and ug, . For them the action is given by

14 v
Ug ¢ —Ug and Ug, ¢ —Ug,

by Theorem 2.13. This is compatible with the following G-action:

Y
o —TI

where ry ¢ = r3(71,e) € 71, ,K121(G/G).

We will see below (Theorem 11.13) that ds5(u»g) = a?,a,\51 and [u% »]is a permanent cycle. Since all trans-
fers are killed by a, multiplication (Lemma 4.2), this implies that [u,,X] is a permanent cycle representing
the Toda bracket

[U20x] = [U26 tr3(1)] = (X, ag, azardr).

This element is x"' since in E, we have (using the Frobenius relation (2.4))

" = try(uly) = tri(ress(Uze)y) = Usg tr3(Y) = UseX.

Similarly X"’ = uyex'. For k > 4, x® = u3

x*=4 in 7 aswellas E,.

The Per10d1c1ty Theorem [6 Theorem 9.19] states that inverting a class in Ty, k(2)(G/G) whose image
under r2 res2 is divisible by 7 r r3 1 (see(7.2))and 71,071,1 = r? Or? 1 makes ug,, a permanent cycle. One such
class is

D= N{@$RY = uz2(rirest) (7 0rflr3 o3, = e 5t2+20t201+901) € 1, ki21(G/G), (9.3)

where £, = tri(ug! [Fio]) and 0, is as in (9.5) below, and K3 = D~'k[3;. Then we know that 22Ky is equiv-
alent to K|].

The Slice and Reduction Theorems [6, Theorems 6.1 and 6.5] imply that the 2kth slice of k{»; is the 2kth
wedge summand of HZ A N3 (\/;50 S%?).

It follows that over G' the 2kth slice is a wedge of k + 1 copies of HZ A Sk, Over G we get the wedge of
the appropriate number of copies of G, Ag' HZ A SkP2, wedged with a single copy of HZ A S%/24 for even k.
This is spelled out in Theorem 10.2 below.

The group k[z (G'/{e}) is not in the image of the group action restriction r2 because p; is not the re-
striction of a representatlon of G. However, m5k(,) is refined (in the sense of [6, Definition 5.28]) by a map
from

Sp, 1= Gy Agr S 5 k. (9.4)
The Reduction Theorem implies that the 2-slice P3kiy) is Sy, A HZ. We know that
7)(Sp, AHZ) =T

We use the symbols r; and y(r1) to denote the generators of the underlying abelian group of E(G/ {e}) =
Z[G/G']-. These elements have trivial fixed point transfers and

11,(Sp, AHZ)(G/G') = 0

Table 3 describes some elements in the slice spectral sequence for k] in low dimensions, which we
now discuss.
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Given an element in 7,MU®), we will often use the same symbol to denote its image in 7, k(). For
example, in [6, Section 9.1]

€ Gy, MU = 76, MU (G/6) (9.5)

was defined to be the composite

4
S(Z"—l)p4 _ NL'S (2"-1)p, Nor N4MU (G)) > MU(6)

We will use the same symbol to denote its image in the group 71(2" P, k21(G/G).
The element 7 € 1;S° (coming from the Hopf map S> — S?) has image a1 € ¥ 'kr(G'/G"). There are t
wo corresponding elements
Ne € gf'k[z](G'/G’) fore =0, 1.

We use the same symbol for their preimages under r2 inm; klz] (G/G"), and there we have
Ne =Ag,T1,¢.

We denote by 17 again the image of either under the transfer trg, SO

rest(n) = no + 11

Its cube is killed by a d3 in the slice spectral sequence, as is the sum of any two monomials of degree 3 in
the ne. It follows that in E, each such monomial is equal to ng. It has a nontrivial transfer, which we denote
by x3.

In [6, Definition 5.51] we defined

fic = asN5 (7o) € ;MU (G/G) (9.6)

for a finite cyclic 2-group G. In particular, for-1 = a%"’lﬁn for 9, asin (9.5). The slice filtration of f is k(g - 1)
and we will see below (Lemma 4.2 and, for G = C4, Theorem 11.13) that

tl’g,(llg) = aefi. 9.7

Note that us € Ey""°(G/G') since the maximal subgroup for which the sign representation o is oriented
is G', on which it restricts to the trivial representation of degree 1. This group depends only on the restriction
of the RO(G)-grading to G, and the isomorphism extends to differentials as well. This means that u, is a place
holder corresponding to the permanent cycle 1 € Eg’O(G/ G).

For G = C4, equation (9.7) implies

0,1-0

tr3(uy) = agf1 = azavs.
For example,
trs(nom1) = try(ag, r1,071,1) = try(ug ress(axdy)) = try(ug)ards = asfrards = f.
The Hopf element v € m35° has image
agupdy € m3kp(G/G),

so we also denote the latter by v. (We will see below in (11.7) that u; is not a permanent cycle, but v := a,u,
is (11.8).) It has an exotic restriction 71(3) (filtration jump two), which implies that

2v = trz(resz(v)) = trz(no) = X3.
One way to see this is to use the Periodicity Theorem to equate 715 k2; with 71_,4k[2), which can be shown to
be the Mackey functor o in slice filtration —32. Another argument not relying on periodicity is given below in
Theorem 11.13.
The exotic restriction on v implies
res3(v?) = n8,

with filtration jump 4.
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Theorem 9.8 (The Hurewicz image). The elements v € ni3k2)(G/G), € € mgk21(G/G), x € m;,k2(G/G), and
X € m,,k(21(G/G) are the images of elements of the same names in m.S°. The image of the Hopf map n € m;S°
is eithern = trg(ne) or its sum with f;.

We refer the reader to [9, Table A3.3] for more information about these elements.

Proof. Suppose we know this for v and k. Then AI4V is represented by an element of filtration —3 whose
product with v? is nontrivial. This implies that v has nontrivial image in 1yk(2)(G/G). This is a nontrivial
multiplicative extension in the first quadrant, but not in the third. The spectral sequence representative of v3
has filtration 11 instead of 3. We will see later that v = 2n where n has filtration 1, and v3 is the transfer of
an element in filtration 1.

Since v3 = ne in 71,.S°, this implies that n and € are both detected and have the images stated in Table 3.
It follows that ex has nontrivial image here. Since x? = €x in 77, S°, x must also be detected. Its only possible
image is the one indicated.

Both v and ¥ have images of order 8 in 77, TMF and its K(2) localization. The latter is the homotopy fixed
point set of an action of the binary tetrahedral group G4 acting on E>. This in turn is a retract of the homotopy
fixed point set of the quaternion group Qg. A restriction and transfer argument shows that both elements have
order at least 4 in the homotopy fixed point set of C, c Qg.

There is an orientation map MU — E-, which extends to a C,-equivariant map MUr — E,. Norming up
and multiplying on the right gives us a C,4-equivariant map N§MUR — E5. This C4-action on the target is
compatible with the G,4-action leading to L) TMF.

The image of 17 € 11S° must restrict to No + N1, so modulo the kernel of resé‘ it is the element tr‘z‘(ne),
which we are calling 1. The kernel of res‘z‘ is generated by f;. O

We now discuss the norm Né‘, which is a functor from the category of C,-spectra to that of C, spectra. As
explained above in connection with Corollary 4.8, for a C4-ring spectrum X we have an internal norm

rrV it X(G'/G) = rrG, X(G/G) — ITI a4V X(G/G)

and a similar functor on the slice spectral sequence for X. It preserves multiplication but not addition. Its
source is a module over G/G', which acts trivially on its target. Consider the diagram

g yX(G/G) — T[V G,X(G’/G’) —> T[I v X(G/G)
Jvresg
e Ly X(G/G) — Eg;/iz,X(G’/G’) I a4V X(G/G".

Forx € nV G,X(G’/G ) we have xy(x) € n2V G,X(G’/G ) and 2V is the restriction of some W € RO(G). The
group QWX(G/ G') depends only on the restriction of W to RO(G’). If W' € RO(G) is another virtual repre-
sentation restricting to 2V, then W - W' = k(1 - o) for some integer k. The canonical isomorphism between
75, X(G/G') and 1%, X(G/G') is given by multiplication by u.

Definition 9.9 (A second use of square bracket notation). For 0 <i < 2d, let f(71,0,71,1) be a homogeneous
polynomial of degree 2d - i, so

o , .
@, f(71,0, T1,1) € Ty i) 2d-20r0, 16 K121(G'/G).

We will denote by [af72 f(t1,0, 71,1)] its preimage in , ;_; +@-ink21(G/ G') under the isomorphism of (2.14).

The first use of square bracket notation is that of Remark 4.1. Note that 71 ¢ € ggzl is k(2] is not the target of
such an isomorphism since p, € RO(G') is not the restriction of any element in RO(G), hence the requirement
that f has even degree.

We will denote u;l[?ie] € gga ki21(G/G") by 53,¢. Then we have y(S3,0) = —S2,1 and y(S2,1) = —52,0. We
define

b= (1)t (52,),
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4 i -_— -_—
res,(t2) = S2,0 — S2,1-

Then we have

res3 (N3 (71,0) = 1es3(9,) = ug' [F1,071,1] € 71, k21(G/G").

More generally, for integers m and n,

ress(N3(mF1,0 + n71,1)) = uy* [(MT1,0 + NT1,1)(MF1,1 — NF1,0)]

=ugt(m? = n?)[T10711] + mn([ﬁ,l] - [ﬁ,o]))

= (m? - n?)res}(2,) - mn res;(6,),

SO

N3 (mFy,0 + nr1,1) = (m? - n®)d1 — mnt,.

Similarly, for integers a, b and c,

(9.10)

2 ) S -2 -2 e -2 -2 e -
ug resy (N3 (ary o + bT1,0T1,1 + CT1 1)) = [(aF{ o + bT1,071,1 + CT1 1)(aFy 1 — bT1,0T1,1 + €1 0)]

4 =4 e 2 2
= [ac(r] o +71 1) + b(c - a)F1,071,1(F1 o~ T1.1) + (@ = b2 + )1 o1 4]

2 2 \2 = 2 12\2 2
=lac(r],o-711,1)" +b(c—a)r1,071,1(T1 0~ 71 1)+ ((@+C)" =) oT1 1],

SO

N3(ari o + bF10T1,1 + €Ty ) = act + b(c—a)dits + ((a+c)? - b%)o?

For future reference we need

(9.11)

oy _ _ _ _ _ _ _ I - _
Né‘(Sriorl,l + Srl,ori1 + ril) = Ng(rl,l)Né‘(Srio +571,071,1 + ril)) = -01(5¢, — 200165 + 1199).

Compare with (7.2). We also denote by

Ne = [aozFl,e] € Elk[ZJ(G/G,)

the preimage of a,,71 ¢ € gf'i’&,k[z](G’/G’) and by [a2,] € m_,k;1(G/G') the preimage of aZ . The latter
is res?(ay). The values of N (a,,) and N3 (uy,,) are given by Lemma 4.9, namely

Ni(ag,) =ay and Nj(uzg,) = Uzp/Uag-

Element

Description

Filtration 0

FreenS it ki(6'/6") = mg ,, ki21(G/G) with P15 = —F1

rie € Mg ,k21(G/6) = mg , k) (G/{e}) = mykpa

Images from (7.1) defined in [6, (5.47)]

G

ﬁ (r1,¢), generating m; kiz;/torsion = 0

Uze € Ey*72°(G/G) with
ds(uzg) = agaxd,
[2u26) = (2, ag, aZaxd1) € 2 7>°(G/G)

[u2,] = (a3ax, D1, a3ax, 91) € E0**°(G/G)

Element corresponding to uzs € m,_,,HZ(G/G)
Slice differential of (11.3)
Image of 2u,4 in gg’z'zo(G/G), which is a permanent cycle

Image of u2, in Eg'>~*?(G/G), which is a permanent cycle

Ug € my_,kp21(G/G') = g oki21(G/G) with res (uso) = u2,
y(uo) = —Ug
tra(uaktt) = agfiu2k (exotic transfer), tri(u2k) = 2uk ,

try(uek3) =0

Isomorphic image of 1 € gokm(G/G’) ng,,okm(G/G)

Follows from Theorem 4.4 and ds(uyg) in (11.3)

Continued on next page
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Element Description

uy € gg’zf’\(G/G) with Element corresponding to uy € m, ,HZ(G/G)
[2ua] € m,_,K(2(G/G) 2,1, ap)

aguA =0 Follows from the gold relation, Lemma 3.6 (vii)
ds(up) = nax = tra([a3,71,0]) Slice differential of Theorem 11.13

ds([ul]) =va3d, Slice differential of Theorem 11.13

d7([2u3]) = n'a}d; 2vaid,

[4u3] € m,_»,K(2)(G/G) (2,n,a2)? = (2,1, a301)

[2a,u2] € M,y 52 K(21(G/G) (ag, 0, a301)

d7([u3]) = (', V, a301)a3 0, [2u2d(ud)]

[2u}] € mg_,K121(G/G) tr(uy)

Uy € EY*7(6/6") with res;(uz)

d3(Up) = [a3,(F1,0 +T1,1)] = res3(az)(no + N1) res3(ds(uz))

[2up] € m,_,K(21(G/G") [(2,a3,,F1,0 + 71,101 = (2, [a2,], o + 1)
d7([U3)) = ab, 71 0 resy(ds(u3))

[2u}] € m,_,;K(2)(G/G") [(2,a5,,71 0)] = (2, [a2,1%, n3)

()] € mg_,,K121(G/G") [ad,. 73 00 Gby» 1,00 = ([a2,12, 03, (02,12, 13)

ki2(G/e) with res?(u;) = u,, y*(Us,) = Uy, Isomorphicimage of 1 € mykp2)(G/e)

Uoz €611 gy)

and trf(uaz) = af,z (r1,0 + r'1,1) (exotic transfer)

S, € 16, ki2)(G/G') uplm ]

01 € 15 ki2)(G/G) with ress(d1) = ug'[F1,071,1] Image from (9.5) defined in [6, Section 9.1]

t; € 15, ki2)(G/G) with res3(t2) = 55,0 - 52,1 (-1)€ tri(3,,¢) for either value of €

[ 15, k21(G/G) with resi(ty) = (710l + [P 4] tr4([71..]) for either value of €

D e m,,, ki2)(G/G), the periodicity element —5%(5?5 - 208,01 +1122)

Sy € EY"k2)(G/G') with 55, = 35 0 and (~1)€up,S2,e = (~D)UA[T; ]

d3(Z2,6) = N2(no0 +M1)

T, € Ey*k12)(G/G) with res4(T,) = 23,0 - 22,1 and trh(Z2,e) = (~1)€up tri ([7,.]) for either value of €
ds(T2) = n?

T4 € gg’sk[z](G/G) with T2 = A (T2 - 44y), (1€ try(22,01) = uzoU3t20, for either value of €
res3(Ts) = (22,0 — 22,1)01 and d3(T4) = 0

1 € ES*k(2)(G/G") with y(81) = -1, tr4(81) = 0 and Up, Tess(d1) = UalF1,071,1]

d3(01) = non1(No + N1)

D1 € ES%ki2)(G/G) with rest (A1) = 82, rest(Ay) = r2 or2 U2p, D3 = Uzoud?

and ds(A1) = vx,

Filtration 1

o, € Mg 4y, k121(G/G) = gf’ k(21(G'/G") with 2a,, = 0 See Definition 3.4

Ne € m,k21(G/G') = n% ki) (G'/G) with 21 = 0 [ag,T1,¢]

1 € n§ ki2)(G/G) with res3(n) = no + N1 € 1§ kp21(G/G") tr3(ne) = tr3([ag,71,0]) = trj([do, T1,1])

n' € m,_yki2)(G/G) with tr3(Noto) = tr3([ao, T1,01Uo) = tr3([ag,T1,1]U0)
res3(n') = uo(no + 1) € m§_,k(21(G/G")

vem, , ,kz2(G/G)with [agual =(ao, N, az)

resg(V) = ug[a?,zﬂ,o] (exotic restriction) Follows from Theorem 4.4 and d3(uj;) in Theorem 11.13
2v=n'a) Transfer of the above

nv = ax(2, do, f2) = ax(2, o, tr3(noN1))

n'v=0

aoV = aptri(u?) [aZua] = aa[2ua5] by the gold relation, Lemma 3.6 (vii)
azv=0 [aguz] = aaagtry(u?) = 0

Continued on next page
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Element Description

€ € 1, 5, 1k(2(G/G) with (Vuzol = (v, a3, f1)

res;(§) = ay,uzr1,0 Follows from value of res?(v)
28 = ax(n', aZ, fr) Transfer of the above

ds(uzou3) = £a30;
n& = 2aau3, 0, (exotic multiplication)

n'€ = aZa;u,d? (exotic multiplication)

v € m3k21(G/G) with agup01 = V01, generating o = m5 k()
res‘z‘(v) = r[f) and 2v = x3 (exotic restriction and group Follows from those on v
extension)
Filtration 2
la2,] € m_,ki21(G/G') Preimage of a2, € g_zdziz,k[z](G’/G’)
aj € m_,ki21(G/G) with 4a; = 0 and res‘z‘(a,\) = [agz] See Definition 3.4
nZ, non1 € nSkp(G/G') with tri(n2) = (-1)¢aty and usla2,15,,c and ugla2, ] res3(d1), generating the torsion
tri(non1) = f2 (exotic transfer) SevinnSkp
n? = a,\(fl2 +a2apd?) = aﬁ’z +f2 a,ﬁ’2 has order 2 by Lemma 4.2
nn' = axluzetzl, (n')? = aA[uzgflz] See (11.5) for the definition of [u24t2] and [Uzaf’z]
v? € m ki2)(G/G) 2a upuzg0? = (2,0, f1, f2)
K € 1,,k2)(G/G) 2a;lu§auiﬁi'
Filtration 3
f1 € m kp2)(G/G) aaa,\ﬁl, generating the summand « of , k2
g = Ngn1 = non3 = n; € n5k2(G/G') neuola2,]ress(d1) = neuola2, 15 e
X3 € M3k2)(G/G) with res’ (x3) = 0 tri(n2n1) = aan'ds
Filtration 4

x4 € Ey%(G/G) with ds(xs) = f7, res(xs) = (non1)? = n and  a2urqd?
2x4 = frv

K € My, k(2)(G/G) au3,u3ds
2K = try(uq resy(u3,u303)) (exotic transfer)

Filtration 8

€ € Mgk(2)(G/G) X2 =1, f2. fr, ) € E§1°(G/G)

Filtration 11

v =nee Myk(2)(G/G) Represents fle, € 51‘20(6/6)

Table 3. Some elements in the slice spectral sequence and homotopy groups of k{31, listed in order of ascending filtration.

10 Slices for k5 and K|,

In this section we will identify the slices for kj; and K|) and the generators of their integrally graded homo-
topy groups. For the latter we will use the notation of Table 3. Let

XmPs HZ form=n
Xmon = = (10.1)
G, Ag 2M*WP2HZ form < n.

The slices of k() are certain finite wedges of these, and those of K|,) are a certain infinite wedges. Fortunately
we can analyze these slices by considering just one value of m at a time, this index being preserved by the
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first differential ds3. These are illustrated below in Figures 9-12. They show both E, and E, in four cases
depending on the sign and parity of m.

Theorem 10.2 (The slice E,-term for kj2)). The slices of k2 are

P‘k[ - \/Osmsm Xm,tj2-m fortevenandt >0,
5 =
® otherwise,

where X,  is as in (10.1).
The structure of m' k() as a Z[G]-module (see (9.1)) leads to four types of orbits and slice summands:
(1) {(r1,0 rl,l)”} leading to X»¢,2¢ for € > O; see the leftmost diagonal in Figure 9. On the O-line we have a copy
of O (defined in Table 2) generated under restrictions by
AS = g, 03¢ = ub U202t € EY*(G/G).

In positive filtrations we have

oC E2),8€

generated by ailuzgu/1 32 ¢ E2%(6/G) for0 <j<2e,
e CESOBE generated by a2fa2tul ko2t ¢ EXC¥(G/G) foro < k<e.

2) {(rl,orl,l)z"”} leading to X»¢.1,20+1 for € > O; see the leftmost diagonal in Figure 10. On the 0O-line we have
a copy of O generated under restrictions by

83671 = ugf res) (uad1)**t € EY*(G/G).

In positive filtrations we have

T ED generated by ~ uZ‘*! resz(a}tui“l T2y ¢ ETE(G G foro<j<2e+1,
c EJHB generated by agd ub u I ¢ §§’+1’8€+4(G/G) foro<j<26+1,
o ¢ BRHAE380 gonerated by a2kl gabrly b kp2ert ¢ At 88 66y foro < k <.

B) {rl ori%’, 1% 1} leading to X; ze- lfor 0 < i < ¢; see other diagonals in Figure 9. On the O-line we have

a copy of d generated (under trz, 1res1 and the group action) by
ubss Tresi(uédl) € EY*(G/G).
In positive filtrations we have

e EP*(G/6") foro<j<e,

2j b—j—b-i-j

SCEP"  generated by ulsh ' resi(du’ o)) i . .
=1 Ug S, 1resz(u}l o)) forO<j<e-i.

@) {r or15™ ", %' 1} leading to X aee1-i for O < i < ¢; see other diagonals in Figure 10. On the 0-line
we have a copy of T generated (under transfers and the group action) by
r1ores?(uss™) res;(ufd}) e EY*2(G/{e}).

In positive filtrations we have

2j+1,4€+2 ' .
~ j € E; G/G or0<j<e,
s EYM? generated by nculss resy(ahuy o)) 21+1 e 1_(e 1/1 ) i g :
=MNe Ug'S, resz(u,1 a) foro<j<e—i.

Corollary 10.3 (A subring of the slice E,-term). The ring E ki) (G/G") contains

Z[61,%0,e, et € =0,1]/(20¢, 63 — 2,0%2,1, NeZa,ev1 + N1+¢61);

see Table 3 for the definitions of its generators. In particular, the elements ny and n, are algebraically indepen-
dent modulo 2 with

yemont) € my, nXmn(G/G')  form < n.
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The element (non1)? is the fixed point restriction of
Uz0a30? € Ey®k12)(G/G),

which has order 4, and the transfer of the former is twice the latter. The element non; is not in the image of res‘z‘
and has trivial transfer in E,.

Proof. We detect this subring with the monomorphism

n _ _ o
E,ki2)(G/G") =5 E;k2)(G'/G'),  ne€ = AoTie,  Zaje v UzoTr e, 61 UzaT1,0T1,1,
in which all the relations are transparent. O

Corollary 10.4 (Slices for K[2). The slices of K2 are

PiKpy = Vmetra Xm,tj2-m  for t even,
* otherwise,

where Xy, is as in Theorem 10.2. Here m can be any integer, and we still require that m < n.
Proof. Recall that K| is obtained from k|, by inverting a certain element
Demn,, ki2)(G/G)
described in Table 3. Thus K|,; is the homotopy colimit of the diagram
iz = Pk > B8k e
Desuspending by 4p, converts slices to slices, so for even ¢ we have

¢ ; —4kpy pt+16k
PiKpp) = kILrEOZ PP ekl

; —4k
= khm X HKp4 \/ X, t/248k-m
- O<mst/4+4k

= klim \/ Xn-tk,t/2+4k-m
T 0<mst/4+4k

= lim \/ Xm,t/2-m
k—oo
—4k<m<t/4

= \/ Xm,t/z—m- 0

m<t/4

Corollary 10.5 (A filtration of kj2;). Consider the diagram

kia) PRI ik PR 5204 ki) PR S
Yo y1=2Pyo y2 = %P4y,

where y is the cofiber of the map induced by 01. Then the slices of yn, are

Ply,, = Xm,tj2-m fortevenandt > 4m,
e * otherwise.

Corollary 10.6 (A filtration of K[3]). Let R = Z()[x]/(11x% — 20x + 5). After tensoring with R (by smashing with
a suitable Moore spectrum M) there is a diagram

C— ZZP“k[z] L) Pak(a) L} k2] f_()) Pak(a L)

l l l l

Y, Yi Yo Yo,

where the homotopy colimit of the top row is K») and each Yy, has slices similar to those of ym as in Corol-
lary 10.5.
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Proof. The periodicity element D = —6%(5?; - 20£,01 + 1193) can be factored as
D = DoD1D;,D3,

where D; = a;01 + bit, with a; € Z(XZ) and b; € R. Then let f4,,; be multiplication by D;. It follows that the
composite of any four successive fy;s is D, making the colimit K|, as desired. The fact that a; is a unit means
that the Y’s here have the same slices as the y’s in Corollary 10.5. O

Remark 10.7. The 2-adic completion of R is the Witt ring W(F,) used in Morava E,-theory. This follows from
the fact that the roots of the quadratic polynomial involve v/5, which is in W(F4) but is not a 2-adic integer.

Moreover, if we assume that DoD; = 5?; - 20,01 + 1194, then the composite maps fanfan+1, as well
as fun+2 and f4n43, can be constructed without adjoining /5.

It turns out that y,, A M and Y, for m > 0 not only have the same slices, but the same slice spectral sequence,
which is shown in Figures 9-12. See Remark 13.2 below. We do not know if they have the same homotopy

type.

11 Some differentials in the slice spectral sequence for k|,

Now we turn to differentials. The only generators in (9.2) that are not permanent cycles are the u’s. We will
see that it is easy to account for the elements in E(Z)"VFV(G/H) for proper subgroups H of G = C,4. From (9.2)

we see that
ES'=0 for|t|odd. (11.1)

This sparseness condition implies that d, can be nontrivial only for odd values of r.

Our starting point is the Slice Differentials Theorem of [6, Theorem 9.9], which is derived from the fact
that the geometric fixed point spectrum of MU(%) is MO. It says that in the slice spectral sequence for MU(©)
for an arbitrary finite cyclic 2-group G of order g, the first nontrivial differential on various powers of u, is

2k—l

d, ) = a2 a2 NS5, ) € Errr2 o IMu©) 6/ 6), (11.2)

l 2k-1
where r = 1 + (2¥ - 1)g and p is the reduced regular representation of G.
In particular,
ds(uz0) = aiards € E2*2°MUCN(G/G)  for G = Cy,
di3([u3,)) = aja30; € Ej3""MUD(G/G)  for G = Cu,
d3(uz0) = ag¥y € E3**°MUR(G/G) for G = C,
d;([u3,)) = al73 € E5'* " MUR(G/G) for G = C;.

(11.3)

The first of these leads directly to a similar differential in the slice spectral sequence for k. The target
of the second one has trivial image in k{,) and we shall see that [u%o] turns out to be a permanent cycle.
There are two ways to leverage the third and fourth differentials of (11.3) into information about k{,;.

(i) They both lead to differentials in the slice spectral sequence for the C; spectrum i, k). They are spelled
outind (11.6) and will be studied in detail below in Section 12. They completely determine the slice spec-
tral sequence E***(G/G') for both kjz; and K[). Since u, restricts to u;, which is isomorphic to uyg,, we
get some information about differentials on powers of u,. The ds; on u,,, forces a ds(ua) = naa. The target
of d; ([u% o ]) turns out to be the exotic restriction of an element in filtration 5, leading to ds([ua]?) = vaﬁ.
We will also see that even though [ué‘gz] is a permanent cycle, [ui‘] (its preimage under the restriction
map res?) is not.

(ii) One can norm up the differentials on u,, and its square using Corollary 4.8, converting the d3 and d; to
ads and a di3. The source of the latter is [a,u}], which implies that [u}] is not a permanent cycle.
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The differentials of (11.3) lead to Massey products which are permanent cycles,

E®22°MUC)(G/G) for G = Cy,
(2, a2, f1) = [2uzo] = 16, (u2) € 175
o f1 20 G'\Ha Ey*?MUR(G/G)  forG = Cy,

ES44OMUO (G/G) for G = C,4
(2, a3, f3) = [2u3,] = trg, (ug) € 1" ,
oo SR UG € it 6/6) o6 - i

and (by Theorem 4.4) to exotic transfers
P tri(uo) € EX>"'MUO)(G/G) for G=C, (filtration jump 4),
17 2 (u) € E23OMUR(G/G)  for G=C,  (filtration jump 2),

(11.4)
3 try(u) € EXZ3°MUR(G/G) for G = C4 (filtration jump 12),
a =
o tr}(u]) € E&?3°MUR(G/G)  for G = C; (filtration jump 6).
Since a, and 2a, kill transfers by Lemma 4.2, we have Massey products,
(U2 try(X)] = try(ulx) = (aof1, ag, tr5(0))  with 2ax[use try(x)] = 0. (11.5)

Now, as before, let G = C4 and G' = C, < G. We need to translate the ds above in the slice spectral
sequence for MUy into a statement about the one for k3] as a G'-spectrum. We have an equivariant multipli-
cation map m of G'-spectra

MU(G)
Il
no m

MUR MUR A MUR MUR

-G -G =G | —G'

r]_ I )’1,0 + )’1,1 T rl
3,=G =G 3=G’

ag(rio+7111) ! gl

—G' -6 =G ~G . =G —G -G -G -G’
3 — 5r1’0r1’1(r1’O + r1,1) + (r1,1)3 mod (r;,73) ——— 13,

where the elements lie in Eng( )(G'/G") and Egl;z( )(G'/G"). In the slice spectral sequence for MU(%) as
a G'-spectrum, ds(u,) and d7(u% ») must be G-invariant since u,, is, and they must map respectively to a?,?f

and a’7§ , so we have
— =\ _ 43 (76 =G \ _ 2
d3(uze,) = ds(up) = ag,(r{,o +11,1) = ag, (1o + N1)
d7([ud,,)) = d7([U3]) = aj, (575 o751 (Fy o + 75 1) + (F1 1) +++) (11.6)
=al (f{ o) +--- sinceal,(f{ o +771) = 0inE,.
We get similar differentials in the slice spectral sequence for kj»; as a C,-spectrum in which the missing

terms in dy(ﬁi) vanish.
Pulling back along the isomorphism 13 gives

ds(resy(up)) = ds(Up) = [ag,1(no +11) = reS‘z‘(am),} (11.7)

d7(rest(u?)) = d7 (u}) = resi(a?)n} = resi(a3v).
These imply that
ds(up) =aan and ds(uy) = ajv.
The differential on u, leads to the following Massey products, the second two of which are permanent
cycles:
[u3] = (an, 0, ax, ) € B9 72A(G/6),
[2up] = (2,1, ax) € EX*4(G/6), (11.8)

V= [aou}l] = (aG, n, aA) € E}!’B_U_A(G/G)’
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where v satisfies
2= 2
av ={(a’,n,ap) = aglaiusl

= ag[2apuys] = [2agaruzs] = 0,
(exotic restriction with filtration jump 2 by Theorem 4.4 (i),

resy() = [a2,F1,cluq € E2°7NG/G")
2V = tri(resy (V) = tr5(uolal 71,el)
=n'ay € E2°7NG/6)

try 0V = try (x - res3 (v)) = try(x[ag, F1,0luo),

(exotic group extension with jump 2),

nv = tr3((ag, 71,1V
= tré([af,‘il,oh,ﬂuo) = aiﬁl try(u2)
= axd,(2, ag, aof1) = (2, ag, f1),
n'v=a3d, tryul) =0,
d7((u3)) = [a], 75 o] inE,
= resy (V) res3 (a301)
= res (Vaj01)
= res} (ds(u})),
ds([ui]) = Vaiﬁl = aiv,
d7([2u3)) = (2V)a3d: = aln'dy.
Note that v = Vo, with the exotic restriction and group extension on v being consistent with those on v.

The differential on [u i] yields Massey products
[aéui] = (ai’ V: aiﬁl)y
[n'ui] = (0", v, ajdy).

]» (11.9)

Theorem 11.10 (Normed up slice differentials for k(o) and K|2). In the slice spectral sequences for ki and
Ki21 we have
ds([asuy]) =0 and dis([acui)) = a][u3,103.

Proof. The two slice differentials over G’ are
3 3G 3 (3 =
ds(uag,) = ag,7{ = ag,(T1,0 +71,1),
2 7 =G’ 7 32 = = =2 =3
d7([uye,]) = ag, 735 = ag, (571 gT1,1 +571,077,1 +71,1)-

We need to find the norms of both sources and targets. Lemma 4.9 tells us that

N3(a)) = af,
N3 (b, ) =ukjub, inE,(G/G).

Previous calculations give
N3(F1,0+71,1) = -6 by (9.10),

NA(572 gF1,1 + 5T1,072 4 +T3.4) = =01(505 — 208,01 + 1132) by (9.11).

For the first differential, Corollary 4.8 tells us that

aitr = ds(aqgu;/uze)
= ds(agu3)/uze — aguyds(Uzg)/ (U3,

= ds(agu;)/uze — agu;agady/[uz,].
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Multiplying both sides by the permanent cycle [u3 -] gives
[uz0ds(acuy)] = a; [u3,]tz + aguiagard:
= a; [u3,]t2 + 4a; [u3,]01
= ai[uﬁg]?z,
ds(asu3) = a;[uzets].
We have seen that
nn' = arluzets].

This implies that a3 [u,,¢,] vanishes in E; since a,n is killed by ds. It follows that ds(asu3) = a; [uzqt2] = 0,
as claimed.
For the second differential we have

di3([agu’ /u3,)) = ald1 (=56 + 206,01 + 992),
di3([aou’]) = al[ud,101(~5F; + 201,07 +932)
= aK[u%a]ﬁl(—?g +02)
since a, has order 4. As we saw above, aﬁ [uyot;] vanishes in E 55 SO d13([aguf{]) is as claimed. O

We can use this to find the differential on [uf{]. We have

d([u3]) = [2uz1d([u3]) = [2uz]vazo, = (2V)az[uz]d: } (11.11)

=n'ai[uild; = [n'uilazo, = (', v, a3d1)a;01.
The differential on u,, yields
[xuz] = (x, a3, f1)

for any permanent cycle x killed by a2. Possible values of x include 2, 1, ' (each of which is killed by a, as
well) and v. For the last of these we write

£ = Vurg) = (v, a3, f1) = lagmal, a3, f1) € Eg°0G/6), (11.12)
which satisfies
resy(§) = aj ugti,c € §2’7’3‘H1(G/G’) (exotic restriction with jump 2),
2¢ = tré‘(res‘z‘(é')) =n'ayuys € §2’773U’A(G/G) (exotic group extension with jump 2),

ds([uzgu3]) = agaruidr + vasusedr = (@yuj + Viae)a; o1
= (agaupuze + {)aﬁﬁl = .faiﬁl,
d7([2uz0u3]) = 2§~ ajd1 = n' ajuzeds,
resy(ds([uxu3))) = ugay 71,c resy(azdr) = uéa?,jio = uld; ().

Theorem 11.13 (The differentials on powers of uj and uy,). The following differentials occur in the slice spec-
tral sequence for ki»); here u, denotes resg(u 21):

ds(up) = aan = try(ag,m1e),
ds(uy) = res3(an)(no + 1) = [ag, (F1,0 +T1,1)]

ds(uz0) = agady,

ds([u3]) = ajasupdy = a;vo, = azv forvasin(11.8),

ds([uz0ul]) = alaruidr +vaiuseds = (agui + Vurg)asor = €ajor  for & asin(11.12),
d7([2uzeu3]) = n'auzgda,
d7([2u]) = 2a3Vd1 = a3n'd,,
d7([U3)) = resi(ad)ng = al, 7 o,

d7([u})) = [n'ufla}dq = (', V, ad1)a}o;.
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The elements

U, [2ua]l = (2,1, aa),
2uag] = (2, a5, f1) = try(u3), [4u3i]l = (2,1, a301) = tri(ug),
(w3, = (az. f1, az, f) [2u3] = (2, a5, ag, T3 ,0) = 1 (ud),
[2uzeupl = ([2uz6], 1, ar), [2uf] = (2,1, 7, a}0}) = ry(u}),
1=

[yl = (aj,, T 0, ag,, T o), WG] = ('uil, a3on, I'ul, ajon)
are permanent cycles.
We also have the following exotic restriction and transfers:

resy(aguy) = Ug ress(a)ne = ugay ri,e  (filtration jump 2),

azapo, u(k L2 agf1u(2’;_1)/2 fork=1mod4 (filtration jump 4),
trz(ug) = 1 2uk/2 for k even,

0 for k = 3 mod 4,

6102(7’1 0+T71, 1)u(k Liz _ =ag,(Mo+ M )u(k b2 fork =1mod4 (filtration jump 2),
U%(uléz) = 2uk/2 for k even

agz n Ou;k 2 fork=3mod4 (filtrationjump 6).

Proof. All differentials were established above.

The differential on uﬁ does not lead to an exotic transfer because neither [ﬂﬁ] nor [uy aﬁﬁl] is a permanent
cycle as required by Theorem 4.4.

We need to discuss the element [2usqua] = {([2U206], 17, ar). To see that this Toda bracket is defined, we
need to verify that [2u;4]n = 0. For this we have

[2u1n = [2u26] (o) = tra(2uZno) = tr3(0) = 0.

The exotic restriction and transfers are applications of Theorem 4.4 to the differentials on u, and

[u(zlf;rl /2] and [u(k+1 /2] for odd k. For even k we have

trz(ug) = trz(resz([uk/z])) = [2u’2‘f,2] since trz(resz(x)) = (1 +y)x,

and similarly for even powers of ug,.

As remarked above, we lose no information by inverting the class D, which is divisible by 9;. It is
shown in [6, Theorem 9.16] that inverting the latter makes u3, a permanent cycle. One can also see this
from (11.3). Since ds(uz0) = azad1, we have ds(uz00;") = aga. This means that di3([u3,]) = aza;0s is
trivial in E¢(G/G). It turns out that there is no possible target for a higher differential. O

12 k;; as a C;-spectrum

Before studying the slice spectral sequence for the C4-spectrum k) further, it is helpful to explore its restric-
tion to G’ = Cs, for which the Z-bigraded portion

Ey*ig k(611G = By ki2)(G/G) = Ey " ki2)(G/G')

(see Theorem 2.13 for these isomorphisms) is the isomorphic image of the subring of Corollary 10.3. In the
following we identify %, ¢, §; and 71 ¢ (see Table 3) with their images under zg. From the differentials of (11.6)
we get
d3(Z2,¢) = N2 (o +M1) = ag71 (P10 + T1,0),
d3(61) = ngn1 + nons = airi,0t1,1(F1,0 + 71,1), (12.1)

2 2 \32 32 7=G'=2 =2 732 3 = =2 =3 \32 2
d7([61]) = d7(u3,)11,071,1 = AoT3 11,0711 = Ag(571 oT1,1 + 5T1,071,1 +71,1)71,07 1,1
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The differentials d3 above make all monomials in 170 and 171 of any given degree > 3 the same in E,(G/G’)
and E,(G'/G'), so d7(6%) = n{. Similar calculations show that
d7([23,c)) = ng = agri -

The image of the periodicity element D here is as in (7.4).
We have the following values of the transfer on powers of ug:

[Zu%] for i even,
_1)/24,~ - .
2l [a?,u(zla ) 1(F1,0 +71,1) fori=1mod 4,
’ (s, 1-3/8a877 o = [u4,109/8aS7; | fori=3mod8,
0 fori =7 mod 8.

This leads to the following, for which Figure 8 is a visual aid.

Theorem 12.2 (The slice spectral sequence for k(2] as a Ca-spectrum). Using the notation of Table 1 and Def-
inition 5.3, we have

Ey*(G'/{e)) = Zlr1,0,11,1]  withrye € EY*(G'/{e}),
E>"(G'/G") =Z[61,%2,¢,e: € =0,1]/(20¢, 63 = £2,082,1, NeZ2,e41 + N1+€01),

SO

(e ,a  for(s,t)=(0,46) with € > 0,

@Pp 0 for(s,t)=(0,46+2)withe >0,

Ex'=1. ®Pype for(s,t) = (2u, 4€ + 4u) with£ > 0 and u > 0,

Drie* for(s,t) = QRu-1,4€ + 4u-2)with€ >0andu > 0,

|0 otherwise.

The first set of differentials and determined by

d3(Z2,¢) = ni(no+m1) and ds(61) = noni(no +n1)

and there is a second set of differentials determined by
d7(23 ) = d7(87) = ;.

Corollary 12.3 (Some nontrivial permanent cy;les). The elements listed below in Ej’s”zsk[z](G/G’) are non-
trivial permanent cycles. Their transfers in ES®"**k(2(G/G) are also permanent cycles.

. ng;jé"l for 0 < j < 2i (4i + 1 elements of infinite order including 6%"), ievenands = 0.

. nezﬁfja"l for0<j<2iand 456%" (41 + 2 elements or order 2) forievenand s = 1.

. ngzﬁf;fs"l for0 < j < 2iand 62'{n3, non1, n3} (4i+ 3 elements or order 2) for i even and s = 2.

. né&%ifor 3 < s < 6 (four elements or order 2) and i even.

. Zﬁf;’ﬁ"l + 82 for 0 < j < 2i (4 + 1 elements of infinite order including 262'), i odd and s = 0.

. nezﬁszsﬁ + 82 for0<j<2i-1andnod2 " 1(Zy1 + 1) = N1621(Zy,0 + 81) (4 + 1 elements of order 2),
ioddands = 1.

D néZiS’&’l + 6%1 for0<j<2i-1, 72(2)5%1.71(22’1 +61) = Ylon15%i71(22,0 +61) and 1’[01’115%1.71(22’1 +61) =
n26271(2,,0 + 61) (4i + 2 elements of order 2) for i odd and s = 2.
In Eg’g”l‘k[z](G/G’) we have Zzile_jtﬁjl for0<j<2iand 25€, 4i + 3 elements of infinite order, each in the

image of the transfer trs.
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12 130 150
12 \ 14e
10 1o \ \ 130
100 \ \ 12e
8 o0 | 1\ 1\ |r1e 136
ge I\ 1\ (ubel ) 120
; AU I
6o I AN sl 11| [20e
4 59 \ Te \ \ 9\3 11e
ds ool 1| | |se 10e
2 3e IR Je
2 do| [T 1] 6o Se
olo| |25 [3o0] 48| |so| |em| |7o| |sm| oo
0 4 g 12 16

Figure 8. The slice spectral sequence for kj2; as a C,-spectrum. The Mackey functor symbols are defined in Table 1. The
Cy4-structure of the Mackey functors is not indicated here. In each bidegree we have a direct sum of the indicated number of
copies of the indicated Mackey functor. Each ds has maximal rank, leaving a cokernel of rank 1, and each d; has rank 1. Blue
lines indicate exotic transfers. The ones raising filtration by 2 have maximal rank while the ones raising it by 6 have rank 1. The
resulting Eg = E__-term is shown below.

8
6 . L
4 ° °
2 3e Ge 1le
2e He 10e
0 o (sm| 4o Mg |60 W] |sT| |oo| jog |18 2@ B
0 1 8 12 16 20 24

Remark 12.4. In the RO(G)-graded slice spectral sequence for k() one has
d3(uz0) = al(Fro +711) and  ds([ud,)) = al7§ = alfs .

but a’ itself, and indeed all higher powers of a, survive to Eg = E_ . Hence the E_ -term of this spectral
sequence does not have the horizontal vanishing line that we see in Eg4-term of Figure 7. However when we
pass from k] to Kj2j, ?g = 57f’071,1 + SFl,oFil + Fil becomes invertible and we have

d7((75 ) ud,)) = dr(Frp[uds)) = a’.
On the other hand, 71 o + 71,1 is not invertible, so we cannot divide u, by it.

We now give the Poincaré series computation analogous to the one following Remark 8.7, using the notation
of (8.8). In RO(G')-graded slice spectral sequence for kj,; we have

E,(G'/G) = Zlag, uag, 71,0, 1,21/ (2ay),
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SO

oo (1 a 1
g(gz(G/G))‘(pt*1-a)(1—a)(1—?)2’
T+ 783
$(EG'/6) = 8(E(G'16)) ~ i
1+tu a+a’ a’

TA-0a-Da-m - -72 d-ad-a)a-n
as before. The next differential leads to

552 233457
$(E(G'/6) = 8B, (G'/G) ~ =i
o 2 12a Pa’
=SECTIE) - A T A aa i on  d-aa - ma -7
B 1+ tu a+a’ a’ u?
TU-nA-mA-72  A-mA-72  A-ad-m)1-7 d-ah1-7
2@+ a?) a3 Pa’

T1-aHa-7n Q-a1-ahHa-7 (1 a(1-u%(1-7
1+ +u?) - (1-61 -7)u? . (@+a?)@+u%-u2(1-7) . a1 +u?) -ua’ -va’
1-tHA-ur)(1-7)2 (1-ut)(1-7)? 1-a1-ut)(1-7)
1+ti+(t+7-u2+tu> (@+a>1+u%r) a-a +a’ -7a’
A-HA-a)1-72 = (A-a)1-72 @ (A-a)dl-a")(1-7)
6 6

1+th+(+7-Du2+tu> (@a+a>)(1+u?r) a*+a*+a+a a’'(1+7+72)
-0 -u)1-72 & (1-a)1-72 = d-@H1-7n  A-ad-ub)

The fourth term of this expression represents the elements with filtration above six, and the first term repre-
sents the elements of filtration 0. The latter include

[2u20] € (2, a5, a(F1,0 + 71,1)),
[2u3,] € (2, aq, aST; o),
[(F1,0 + F1,0U3,]) € (ag, agTy 0, Fr0 +T1,1)  With (Fi0 +F1,1)[2u3,] = 2[(F1,0 + F1,1)u3],
[2u20] € (2, ao(rl 0+71,1)s ag, a r1 o)
[uza] € (ag, a, rl,Oaa’ aar1,o>

with notation as in Remark 4.1.

As indicated in Remark 12.4, we can get rid of them by formally adjoining w := (Fg )71 u% o 0E 2(G’ /G").
As before we denote the enlarged spectral sequence terms by E|(G'/G') This time let w = 73%? = xy~’. Then
we have

=2
E/(G'/G) = ( 11 = >§,(G’/G’) forr=2andr =4

and
PPN "al1GNY) — W+’
8(E3(G/6D) = 8(EL(G/G) - T a7

P W @+aw @Cw+a’

B R s w3 S 5 G W Sl ¢ ¢ 53 e

. 1+ tu a+a a - w
Ta-oa-wa-n?  @-wmi-n2 G-ad-wa-n  1-wH(I-mn

@+ a2)w a*w+a’

T 1-w)(1-7 (1-a(1-wd)(1-7)
A+t +w)-(1-nA-nw  @+a)1-1-Hw) a(l+w)-aw-a’
- 1-t)1-w?)(1-7)? (1-w2)(1-7)? 1-a)1-w»H(1-7)
6

Cl+tu+(t+T-tHw+twn  @+a’)(1+w) a+a‘+a +a
Q- -wH(-7)2 +(1—VAV2)(1—?)2 a1-w2)a-7) °
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Again the first term represents the elements of filtration 0. These include

[2u30] € (2, a5, ag(F1,0 +71,1)),
[2w] € (2, aq, ab),
[(F1,0 +T1,1)W] € (ag, ay, T1,0 + T1,1)
with (71,0 +71,1)[2w] = 2[(r1,0 + T1,1)W],
[2uyew] € (2, a(zy(71 0+T1,1), az, as)

and [w?] e (a},ala},al)

where, as indicated above, w = (r3) uzU

13 The effect of the first differentials over C,

Theorem 10.2 lists elements in the slice spectral sequence for k) over Cy4 in terms of

r1, 52, 015 1, Ag, AA; Up, Ug, Ug.
All but the u are permanent cycles, and the action of d3 on u,, ug, Uz, is described above in Theorem 11.13.

Proposition 13.1 (d3 on elements in Theorem 10.2). We have the following dss, subject to the conditions on i,
j, k and € of Theorem 10.2:

o On Xze’zg.'

1 20-j-1 .
i=2e af nus,u; - 03¢ € 11, X2020+1(G/G) forjodd,
d3(a/1u20u/l 0 ) = .

0 forj even,
ds(aZka2us }e2t) =

e OnXjpi12041:

d3(831) = nugtt! resy(aup*0i*) € m, Xaei1,242(G/G'),

20+1 J+1, 20-j520+1 ' .
ds (uz"” resz(aAui“l ]52“1)) _ nug resz(a/1 uy 07) € 1, Xop41,2042(G/G')  for jeven,
0 forjodd,
j+1 £-j520+1 .
Se. 2041 102“1) nasa, u2 uA 01" e, Xopi1,2e42(G/G)  forjeven,

d(aau u
PR forjodd,

dg(az"”af”ug;"éi“l) -0
e OnXjop:

(L5 rest(ulal ) = nPubish resi(ub100) € m, Xie+1-1(G/G')  for € 0dd,
2 2(U07)) =

for ¢ even,
. 251y 5955 vest(aaul 7 19) € L Xiner1-1(G/G')  for € —jodd,
ds(Pul "e”resz(u T3y = 1 7 @00 €1 Xizen (616D S }
for € —j even.

o OnXizpi1-i:

t’fl

ds(r1 res? (u5s5 ) rest (uid))) =

o bjb-isj e-j-1=; )
21+2u0 ’sy T resy(aquy T 0Y) € 1, Xi 2042-i(G/G')  for € - j odd,

for € —jeven.

ds (Pl o-j—b—i-j n

40 050
s, resy(u; 0y)) =

Note that in each case the first index of X is unchanged by the differential, and the second one is increased
by one. Since X, is a summand of the 2(m + n)th slice, each d; raises the slice degree by 2 as expected.
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Remark 13.2 (The spectra y,;, and Yy, of Corollaries 10.5 and 10.6). Similar statements can be proved for the
case £ < 0. We leave the details to the reader, but illustrate the results in Figures 11 and 12.

The source of each differential in Proposition 13.1 is the product of some element in 7, HZ with a power
of 0, or ;. The target is the product of a different element in 77, HZ with the same power. This means they are
differentials in the slice spectral sequence for the spectra y,, of Corollary 10.5.

Similar differentials occur when we replace 5i1 by any homogeneous polynomial of degree i in 9, and t
in which the coefficient of ﬁil is odd. This means they are also differentials in the slice spectral sequence for
the spectra Y,, of Corollary 10.6.

These differentials are illustrated in the upper charts in Figures 9-12. In order to pass to E, we need the
following exact sequences of Mackey functors:

ds

0 ° o . ° O,
_ _d
0 N 8 ——5% 0,
_d
0 e — 5% v 0,
— — d3 —~
0 Al O D v 0.

The resulting subquotients of E, are shown in the lower charts of Figures 9-12 and described below in
Theorem 13.3. In the latter the slice summands are organized as shown in the Figures rather than by orbit
type as in Theorem 10.2.

16 ° ° ° ° ° ° °
° ° ° ° ° ° °
14 ° ° ° ° ° ° °
° ° ° ° ° ° °
12 ° ° ° ° ° ° ° ° °
° ° ° ° ° ° ° °
10 ° ® ° ° ° ° ° ° °
° ° ° ° ° ° ° °
8 o ° ° ° ° ° ° ° °
° ° ° ° ° ° ° °
6 o ° ° ° ° ° ° °
° ° ° ° ° ° °
4 o ° ° ° ° ° ° °
° ° ° ° ° ° °
2 <) ° ° ° ° ° °
° ° ° ° ° °
0 O 0B g8 88
0 4 8 12 16 20 24 28 32 36 40
16
14
12 °
10 ° _
0
8 o
6 ° _
°
4 [¢)
2 ° ° ° °
ol ol ol
0 OGN HEAOAFNHOHKHB
0 4 8 12 16 20 24 28 32 36 40

Figure 9. The subquotient of the slice E,- and E,,-terms for k2] for the slice summands X;, , for n > 4. Exotic transfers are shown
in blue and differentials are in red. The symbols are defined in Table 2. This is also the slice spectral sequence for y, as in
Corollary 10.5 and Y (after tensoring with R) as in Corollary 10.6.
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16 ° ° ° ° ° ° °
° ° ° ° ° ° ° °
14 ° ° ° ° ° ° °
° ° ° ° ° ° ° °
12 ° ° ° ° ° ° ° °
o] o ° ° ° ° ° ° °
10 ° ° ° ° ° ° ° °
o) o ° ° ° ° ° °
8 ° ° ° ° ° ° ° °
o o ° ° ° ° ° °
6 ° ° ° ° ° ° °
o) o ° ° ° ° °
4 ° ° ° ° ° ° °
ol fo ° ° ° ° °
2 ° ° ° ° ° °
o) [o ° ° ° °
0 O 000 O0H O
0 4 8 12 16 20 24 28 32 36 40
16
14
12
O\ /
10 D
8
o |V
6 D
4
oV
2 ° ° °
o | ol ol
0 5 0 5 K 5 ) )

| ] 0O N OJ
0 4 8 12 16 20 24 28 32 36 40
Figure 10. The subquotient of the slice E, and E ,-terms for k) for the slice summands Xs , for n > 5. Exotic restrictions and
transfers are shown in dashed green and solid blue lines respectively. This is also the slice spectral sequence for ys as in

Corollary 10.5 and for Y5 (after tensoring with R) as in Corollary 10.6.

4 [ ) [ ] [ ) [ ] [ ]
[ ) [ ] [ ] [ ] [ )
2 ° ° ° ° °
[ ] [ ] [ ] [ ] [ ]
AN NONGONBS OO O 0B 0850
o ) )
_2 o. [ ]
4 Al
O
—6
[ ]
-8
—10
—-20 —-16 —-12 -8 —4 0 4 8 12 16 20
4
2 ° ° o | |
~ ~ YR YR o L
0 4o NENANE088808308RK
-2 o ..
(@]
—4
[ ]
—6
-8
[ )
—-10

-20 —-16 —-12 -8 —4 0 4 8 12 16 20

Figure 11. The subquotient of the slice £, and £ ,-terms for k() for the slice summands X_4,, for n > —4. This is also the slice
spectral sequence for Y_4 (after tensoring with R) as in Corollary 10.6.
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o
O
[]
[
[ 4
0
1]
(4
]
(4
1]
(4
1]
[]
im]
[]
1]
[]
1]
]
Ol
]
1]
[]

( ]
e
[ ]
e
( ]
)—e

4
il
3
4
1]
J

O
«
°) ¥
0
4
Ol
°) ¥
0
4
]
u|

—10 °

—12 °
-20 —-16 —-12 =8 —4 0 4 8 12 16 20

Figure 12. The subquotient of the slice £, and E,-terms for k) for the slice summands X_s , for n > -5. This is also the slice
spectral sequence for Y_s (after tensoring with R) as in Corollary 10.6.

Theorem 13.3 (The slice E,-term for k{3)). The elements of Theorem 10.2 surviving to E,,, which live in the ap-

propriate subquotients of m_Xm n, are as follows:

() Inm, Xoe2¢ (see the leftmost diagonal in Figure 9), on the 0-line we still have a copy of O generated under
fixed point restrictions by A‘i € EO’Se. In positive filtrations we have

dub iy 78 ¢ EV¥(6/6), jeven,0<j<2¢,

2a/.1u20 26- ’al = aza’/l 1u§;1u§" - 192 ¢ Eij’ge(G/G), jodd,0<j<2e,

2j,8¢

o CE, generated by

o < E2X208¢ generated by a2*a2ub, <% € EVV%(G/G) foro <k <e.

(i) In m, Xoe,20+1 (see the second leftmost diagonal in Figure 9), in filtration O we have ﬁ, generated (under
transfers and the group action) by

r1 res? (u2€ res? (u2492¢) € EY%**(G/{e}).
In positive filtrations we have

~ _ 11,8042
Ey

o C generated (under transfers and the group action) by nu resz(u/\bl)” Eb 8")JrZ(G/ G,

sc EZIHLBEH for 0 < k < ¢ generated by x = n***1u2¢-2  res (uy0, )%~ ¢ 52k+1’85+2(G/G )
with (1 -y)x = tr‘z‘(x) =

(iii) In 7, X2¢+1,20+1 (See the leftmost diagonal in Figure 10), on the 0-line we have a copy of N generated under

fixed point A(ze+1)/ 2 ¢ EZ'SEM. In positive filtrations we have
= E2”8€+4 generated by u2¢+! resz(aAuieJr1 ]6%‘”1) € Eij’8€+4(G/G’)for0 <j<20+1,
o c EJTL 80 generated by agaAua Gttt 3261 ¢ pURRBENY GG for0 < j < 20+ 1,

. C EFA3884 - cenerated by a2kt a2t b ko3¢t ¢ ESTTR8E(GG) for0 < k< 20 + 1.
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(iv) Inmm_X5¢41,20+2 (see the second leftmost diagonal in Figure 10), in filtration O we have E, generated (under
transfers and the group action) by

" res%(uf,e“ res?(uiﬁ-lﬁ%ﬁ-l) € E2’8€+6(G/{e}).

In positive filtrations we have
v C B85 for 0 < k < € generated under transfer by x = n**3 A4k ¢ EF3846 (GG
with (1 -y)x = 0.
The generator of EZkB 866G /G') is the exotic restriction of the one in §2k+1’8£+4(6/ G).

(V) Inm X m+i for i > 2 (see the rest of Figures 9 and 10), in filtration O we have
0,4m+4j+2

oc E, generated under transfers and group action by

r res%(uz,"”?.z)resi‘(u;mjﬁ'l") € 52’4m+4j+2(6/{e})forj >0,
(Nfs I_:"?"SEM generated under transfers and group action by

r res%(uf,"”?z)res‘{(u;"”ﬁ’l") € EY3(G/{e}) for € = m/2,
ac Eg,se generated under transfers, restriction and group action by

Xge,m = Z%ﬂ;m5¥1 + 35%6,
where
Loc=Up,Sze and 061 =up, res‘z‘(ﬁl) € Eg’se(G/G’)forO <m<2¢-1.

In positive filtrations we have

. c Ez,se+4 generated under transfers and group action by

- 2,8¢
narest(AS) = n262¢ = nZu2 rest(ux01)* € E2%(6/6"),
E%*  generated under transfers and group action by

NSXge.m € E‘Z’g“zs(G/G')fors =1,2and0<m<2£-1.

N

Each generator ofgi’geM(G/G’) is an exotic transfer of one in 52’8“2(6/63).

Proposition 13.4 (Some nontrivial permanent cycles). The elements listed in Theorem 13.3 (v) other than

n26%¢ are all nontrivial permanent cycles.

Proof. Each such element is either in the image of Eg’* (G/{e}) under the transfer and therefore a nontrivial
permanent cycle, or it is one of the ones listed in Corollary 12.3. O

In subsequent discussions and charts, starting with Figure 14, we will omit the elements in Proposition 13.4.
These elements all occur in EZ’[for 0<s<2.

Analogous statements can be made about the slice spectral sequence for K»j. Each of its slices is a certain
infinite wedge spelled out in Corollary 10.4. Their homotopy groups are determined by the chain complex cal-
culations of Section 6 and illustrated in Figures 2 (with Mackey functor induction T;‘ applied) and 3. Analogs
of Figures 9-10 are shown in Figures 11-12. In each figure, exotic transfers and restrictions are indicated by
blue and dashed green lines respectively. As in the kp,j case, most of the elements shown in this chart can be
ignored for the purpose of calculating higher differentials. In the third quadrant the elements we are ignoring
all occur in B3 for -2 < s < 0.

The resulting reduced E, for K] is shown in Figure 16. The information shown there is very useful for
computing differentials and extensions. The periodicity theorem tells us that 7, K>) and ,,_5, K|2) are isomor-
phic. For 0 < n < 32 these groups appear in the first and third quadrants respectively, and the information
visible in the spectral sequence can be quite different.

For example, we see that 77,K|7) has summand of the form O, while 77_5, K>} has a subgroup isomorphic
to 4. The quotient O/(d is isomorphic to ». This leads to the exotic restrictions and transfer in dimension —32
shown in Figure 16. Information that is transparent in dimension O implies subtle information in dimen-
sion —32. Conversely, we see easily that 7_, K[> = Kwhile 7, K[> has a quotient isomorphic to K. This leads
to the “long transfer” (which raises filtration by 12) in dimension 28.
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Figure 13. The slice E,-term for the C>-spectrum i, kj2). The Mackey functor symbols are defined in Table 1. Anumber n in front
of a symbol indicates an n-fold direct sum. Blue lines indicate exotic transfers and red lines indicate differentials.

14 Higher differentials and exotic Mackey functor extensions

We can use the results of the Section 12 to study higher differentials and extensions. The E,-term implied by
them is illustrated in Figure 13. For each ¢, s > 0O there is a generator

Y8e+s,s = ’188%6 € E;’8€+ZS(G/G,)
with
d7(}/16k+s+8,s) = Y16k+s+7,5+7
Recall that
o ) (G,
81 = WT1,071,1 € ES*ki2)(G/G') = Ey'° ki) (G/G),
and in the latter group we denote u, by u,,. We have
d3(61) = d3(UA)T1,071,1 = d3(U26)T1,071,1 = A (F1,0 + T1,1)T1,071,1-
If the source has the form res‘z‘(x16k+s+g, s), then such an x must support a nontrivial d, for r < 7. If it has

a nontrivial transfer x’16k +s+8.¢» thensuch an x' cannot support an earlier differential, and we must have

dr(Xigrpsrs.s) = 13 (d7(V16kssts,s) = t5(Viksst7,s+7) forsomer>7.

We could get a higher differential (meaning r > 7) if y16x+s+7,s+7 SUpports an exotic transfer.
We have seen (Figure 14 and Theorem 13.3) that for s > 3 and k > 0,

o fors=0mod 4,
E§,16k+8+25 =17 fors=1,2mod4, (14.1)

v fors =3 mod 4.

Fors=1,2, §§’16k+8+25 has + as a direct summand. For s = 0 it has 0 as a summand, and the differentials on
it factor through its quotient o; see (5.2).
The corresponding statement in the third quadrant is

o fors =3 mod 4,
Egs,—16k—25—24 =47 fors=1,2mod4,

v fors=0mod4,
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for s > 3 and k > 0. For s = 1, 2 the groups have similar summands, and for s = O there is a summand of the
form W, which has ¥ as a subgroup; again see (5.2). This is illustrated in Figure 16.

Theorem 14.2 (Differentials for C, related to the ds for C,). The differential

d7(y16k+s+8,s) = Y16k+s+7,5+7 withs = 3

has the following implications for the congruence classes of s modulo 4.
(i) Fors=0, E;,16k+8+23 =oand l_?§+7’16k+14+25 = V. Hence y1¢k+s+8.s IS a restriction with a nontrivial transfer,
and

ds5(X16k+s+8,5) = X16k+5+7,545

4 4
d7(2X16k+s+8,s) = d7(tr2()’16k+s+8,s)) = tl'2()/16k+s+7,s+7) = X16k+s+7,5+7+
(ii) Fors =1,

7\Y16k+s+8,s) = Y16k+s+7,5+7»
d7(y16k ) = Y16k
4
ds(X16k+s+8,5+2) = tr; (V16k+s+7,547) = 2X16k+5+7,5+7 -
This leaves the fate of X16k+s+7,s+7 Undecided; see below.
(iii) For s = 2, ES1*8+25 _ 3 and ES*7-16K+14+25 _ 3 Neither the source nor target is a restriction or has a non-
trivial transfer, so no additional differentials are implied.
(iv) Fors = 3, 557’16’“8*25 =vand Ei”’lék*””zs = In this case the source is an exotic restriction; again see
Figure 10). Thus we have

d7(V16kes+8,s) = Y16kts+7,5475
. 4
ds (X16k+s+8,s—2) = X16k+s++7,5+3 with 1'esz(X16k+s++7,s+3) = Y16k+s+7,5+7«

Moreover, trg (V16k+8+s,s) IS nontrivial and it supports a nontrivial d11 when 4k + s = 3 mod 8. The other
case, 4k + s = 7, will be discussed below.

Proof. (i) The target Mackey functor is ¥ and y1¢k+s+7,s+7 iS the exotic restriction of x1¢x+s+7,s+5; See Figure 10
and Theorem 13.3. The indicated ds and d; follow.
(ii) The differential is nontrivial on the G/G' component of

_ d
. Es7,16k+8+2$ _7> £;+7,16k+14+25 —o.

Thus the target has a nontrivial transfer, so the source must have an exotic transfer. The only option
is X16k+s+8,s+2, and the result follows.
(iv) We prove the statement about d;; by showing that

s+7 g4k
Yi6k+s+7,s+7 = N 6

supports an exotic transfer that raises filtration by 4. First note that
tr3(non1) = try(ag,71,071,0) = tr3(ug resy(aady)) = try(ug)aads = agardiaydy by (11.4).
Next note that the three elements
V8,8 =1 =1es3(€), Y204 =1N¢8] =res3(X) and y3z0 = 63 = res3(A*)
are all permanent cycles, so the same is true of all

netsy™  form, € >0and m + £ even.

Yiem+ae,4e =

It follows that for such ¢ and m,

4¢ 64m 46+2 54m

4
NoN1Yiem+se,4¢ = NoN1Mg =1 = Yiem+4e+2,40+2 = NoMN1 1€S5(X16m+ae,40),
S0
try( ) = tr3(non1) = f;
Iy (Viem+ae+2,40+2) = Wy (NoN1)X16m+4e,4¢ = J1 X16m+4e,4¢-

This is the desired exotic transfer. O
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We now turn to the unsettled part of Theorem 14.2 (iv).

Theorem 14.3 (The fate of x16x+s+8,s for 4k + s = 7 mod 8 and s > 7). Each of these elements is the target of
a differential d; and hence a permanent cycle.

Proof. Consider the element A% € l_?(z)’lé(G/ G). We will show that

d7(8}) = x15,7 = tr5(y15,7).

This is the case k = 0 and s = 7. The remaining cases will follow via repeated multiplication by €, k and A?.
We begin by looking at
Al = uzguﬁﬁi.

From Theorem 11.13 we have
ds(uzg) = agapdr and ds(u3) = agaupds.
Using the gold relation aéu,\ = 2ajuyq, we have

ds (A1) = ds(uz0u3)d; = (@Zaruid, + agaiupizgd1)d,
= agayup(aiuy + aruze)d3
= AgauA(2aalze + AUze)0]
= AgAiUAU26DT since 2ay = 0

= VXy4.
Since v supports an exotic group extension, 2v = x3, we have
2d5(A1) = d7(2A1) = x3X4.

From this it follows that
d7(A%) = Ard7(2A) = X15,7

as claimed. O

The resulting reduced E,,-term is shown in Figure 15. It is sparse enough that the only possible remaining
differentials are the indicated differentials d13. In order to establish them we need the following.
The surviving class in E ?2)3 (G/G)is

X173 = fib] = agapdy - [U5,]u3d] = (aguy)(a[us,o3).
The second factor is a permanent cycle, so Theorem 11.10 gives
di3(fiA}) = (a] [u3,]07)(ar[u3,107) = ad[u3,10} = € = xj.
The surviving class in Ei%’z(G/ G)is
X30,2 = a2u3,uso € E;5%(G/G)

and satisfies
- 2. A2
€x30,2 = f1kXx17,3 = f1 X4A\7,

so we have proved the following.

Theorem 14.4 (Differentials di3 in the slice spectral sequence for kz)). There are differentials
dus (FEXGAT™ = f{ g aa
fore=1,2, m+nodd,n>1andm > 1 - €. The spectral sequence collapses from E, ,.
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Figure 14. The E,-term of the slice spectral sequence for k(2 with elements of Proposition 13.4 removed. Differentials are

shown in red. Exotic transfers and restrictions are shown as solid blue and dashed green lines respectively. The Mackey functor
symbols are as in Table 2.
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Figure 15. The E,,-term of the slice spectral sequence for k) with elements of Proposition 13.4 removed. Differentials are

shown in red. Exotic transfers and restrictions are shown as solid blue and dashed green lines respectively. The Mackey functor
symbols are as in Table 2.
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To finish the calculation we have

Theorem 14.5 (Exotic transfers from and restrictions to the 0-line). In m, kp2j, for i > 0 we have
ll‘forll‘f )= ng?l{fo?l{fl € mg,, (filtrationjump 2),

(3 = 2x4AY ey, (filtration jump 4),
tri((r} o + 13 )1y orsy) = ngnids € myy;,  (filtration jump 6),

4, 81+5 ,8i+5 4i+2 )
tri (1’0 171 ) = 2x4A1"" € 135,50 (filtration jump 4),

tr2(ry,er

20(,3 3 8i+4.8i+4y\ _ ,3..3 88i+4 . .
try((r{,0 +77,0)770 111 ) = MoN107 " € M3y;,5, (filtration jump 6),

tr3(2687%7) = oY e 151,55 (filtration jump 12, the long transfer).

Let M, denote the reduced value of r, k{2), meaning the one obtained by removing the elements of Propo-
sition 13.4. Its values are shown in purple in Figure 17, and each has at most two summands. For even k one of
them contains torsion free elements, and we denote it by M ;( Its values depend on k mod 32 and are as follows,
with symbols as in Table 2.

k 0
i
M, o

H
o
=Y
N

an ‘s
-
o
-
o]

7o S
N
N
N
S
N
(o)}
N
o]

an 'y

2 4 6 8
O N ® @ o

Proof. We have two tools at our disposal: the periodicity theorem and Theorem 4.4, which relates exotic
transfers to differentials.
Figure 16 shows that M L has the indicated value for -8 < k < 0 because the same is true of E 2”‘ and there
is no room for any exotic extensions. On the other hand EZ”‘B 2 does not have the same value for k = -8,
k = -6 and k = —4. This comparison via periodicity forces
o theindicated ds and d7 in dimension 24, which together convert 0 to (4. These were also established in
Theorem 14.2.
e the short transfer in dimension 26, which converts T to 0. It also follows from the results of Section 12.
« thelong transfer in dimension 28, which converts K to K.
The differential corresponding to the long transfer is

di3([2u})) = agafuyeu;d3,

S0
dis(as(2ul]) = ala§ureu}dl = 2a] [ud,Ju3d].
This compares well with the d13 of Theorem 11.10, namely
di3(as[ul]) = af [u3,133.

The statements in dimensions 4 and 20 have similar proofs, and we will only give the details for the
former. It is based on comparing the E,-term for K{,) in dimensions -28 and 4. They must converge to the
same thing by periodicity. From the slice E,-term in dimension 4 we see there is a short exact sequence

0 v M, N 0 (14.6)

of |1 [3]| |i1al
1

(3]
72— 7pez — Y 7

o21 |[?] 2 |1
0 —_— Z_ _— Z_’
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while the (-28)-stem gives

0 N M, . 0

of |1 [ |(1al

c
z il 26z — 2 7/

2 |1 021 |[?]
27 _ 27 _— 0,
The commutativity of the second diagram requires that
at+b=c=1
and
b+d=c+d=0,
giving
(a’ b’ C’ d) = (09 1’ 1’ 1)'

The diagram for M, is that of N in Table 2.
In dimension 20 the short exact sequence of (14.6) is replaced by

O—)o—>M£0—>i—>O

and the resulting diagram for M ’20 is that of kL.
Similar arguments can be made in dimensions 6 and 22. O

We could prove a similar statement about exotic restrictions hitting the 0-line in the third quadrant in dimen-
sions congruent to 0, 4, 6, 14, 16, 20 (where there is an exotic transfer) and 22. The problem is naming the
elements involved.

In Table 4 we show short or 4-term exact sequences in the sixteen even-dimensional congruence classes.
In each case the value of M ;( is the symbol appearing in both rows of the diagram. For even k with 0 < k < 32,
we typically have short exact sequences

0o—» l_?g’k%z M quotient ——— 0
[
0,k
0 —— subgroup M; E, 0,

where the quotient or subgroup is finite and may be spread over several filtrations. This happens for the
quotient in dimensions —32, -16 and —12, and for the subgroup in dimensions 6 and 22.

This is the situation in dimensions where no differential hits [originates on] the 0-line in the third [first]
quadrant. When such a differential occurs, we may need a 4-term sequence, such as the one in dimen-
sion —22.

In dimensions 8 and 24 there is more than one such differential, the targets being a quotient and sub-
group of the Mackey functor o = o/4.

In dimension —18 we have a d; hitting the O-line. Its source is written as o C 227’724 in Figure 16. Its
generator supports a ds, leaving a copy of v in §;7’724.

There is no case in which we have such differentials in both the first and third quadrants.

Corollary 14.7 (The E__-term of the slice spectral sequence for Kj3)). The surviving elements in the spectral
sequence for K[») are shown in Figure 17.
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Figure 16. The reduced E ,-term of the slice spectral sequence for the periodic spectrum K|,;. Differentials are shown in red.
Exotic transfers and restrictions are shown in solid blue and dashed green vertical lines respectively. The Mackey functor
symbols are indicated in the table below Figure 17.
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Figure 17. The reduced E, , = E_-term of the slice spectral sequence for KJ2). The exotic Mackey functor extensions lead to the
Mackey functors shown in violet in the second and fourth quadrants. The Mackey functor symbols are indicated in the table on
the right.
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Dimension Third quadrant Dimension Third quadrant
mod 32 First quadrant mod 32 First quadrant
0 4d—O0——o 16 4d—N—V
0—>|g| m] 21—>|:|—>o
2,10 E—>§—>o 18, 26 5—>§—>o
:—HS—)E -—)E—)E
4 n—»lvﬂl—ﬁ 20 n—>ﬁ—>o
vV N— & o yN— N
6 —,m ® . 22 ¥ —
f—m—a QENN N
8 d—— 4d—0 24 44— 4d—0
LIS LA
12 -Li—@ 28 i—)ﬁ—)O
0——N—— N e — N——N
14 VLM—)% 30 ﬁ—>§—>o
0——0——0 0——0——0

Table 4. Infinite Mackey functors in the reduced E__-term for K[3). In each even degree there is an infinite Mackey functor on
the O-line that is related to a summand of 1, K|2; in the manor indicated. The rows in each diagram are short or 4-term exact
sequences with the summand appearing in both rows.

Funding: The authors were supported by DARPA Grant FA9550-07-1-0555 and NSF Grants DMS-0905160,
DMS-1307896.
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