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Abstract: We describe the slice spectral sequence of a 32-periodic C4-spectrum K[2] related to the C4 norm
MU((C4)) = NC4C2MUℝ of the real cobordism spectrum MUℝ. We will give it as a spectral sequence of Mackey
functors converging to the graded Mackey functor π∗K[2], complete with differentials and exotic extensions
in theMackey functor structure. The slice spectral sequence for the 8-periodic real K-theory spectrum Kℝ was
first analyzed by Dugger. The C8 analog of K[2] is 256-periodic and detects the Kervaire invariant classes θj.
A partial analysis of its slice spectral sequence led to the solution to the Kervaire invariant problem, namely
the theorem that θj does not exist for j ≥ 7.
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1 Introduction
In [6] we derived the main theorem about the Kervaire invariant elements from some properties of a C8-equi-
variant spectrum we called Ω constructed as follows. We started with the C2-spectrum MUℝ, meaning the
usual complex cobordism spectrum MU equipped with a C2 action defined in terms of complex conjugation.

Then we defined a functor NC8C2 , the norm of [6, Section 2.2.3] which we abbreviate here by N8
2, from the

category of C2-spectra to that of C8-spectra. Roughly speaking, given a C2-spectrum X, N8
2X is underlain by

the fourfold smash power X∧4 where a generator γ of C8 acts by cyclically permuting the four factors, each
of which is invariant under the given action of the subgroup C2. In a similar way one can define a functor NGH
from H-spectra to G-spectra for any finite groups H ⊆ G.

A C8-spectrum such asN8
2MUℝ, which is a commutative ring spectrum, has equivariant homotopy groups

indexed by RO(C8), the orthogonal representation ring for the group C8. One element of the latter is ρ8, the
regular representation. In [6, Section 9] we defined a certain element D ∈ π19ρ8N8

2MUℝ and then formed the
associated mapping telescope, which we denoted by ΩO. The symbolO was chosen to suggest a connection
with the octonions, but there really is none apart from the fact that the octonions are 8-dimensional like ρ8.

Note that ΩO is also a C8-equivariant commutative ring spectrum.We then proved that it is equivariantly
equivalent to Σ256ΩO; we call this result the Periodicity Theorem. Then our spectrum Ω is ΩC8O , the fixed point
spectrum of ΩO.
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It is possible todo thiswith C8 replacedby C2n for any n. Thedimensionof theperiodicity is then21+n+2n−1 .
For example it is 32 for the group C4 and 213 for C16. We chose the group C8 because it is the smallest that
suits our purposes, namely it is the smallest one yielding a fixed point spectrum that detects the Kervaire
invariant elements θj.

We know almost nothing about π∗Ω, only that it is periodic with periodic 256, that π−2 = 0 (the Gap
Theorem of [6, Section 8]), and that when θj exists its image in π∗Ω is nontrivial (the Detection Theorem
of [6, Section 11]).

We also know, although we did not say so in [6], that more explicit computations would be much
easier if we cut N8

2MUℝ down to size in the followingway. Its underlying homotopy, meaning that of the spec-
trumMU∧4, is known classically to be a polynomial algebra over the integers with four generators (cyclically
permuted up to sign by the group action) in every positive even dimension. This can be proved with methods
described by Adams in [1]. For the cyclic group C2n one has 2n−1 generators in each positive even degree.
Specific generators ri,j ∈ π2iMU∧2n−1 for i > 0 and 0 ≤ j <n−1 are defined in [6, Section 5.4.2].

There is a way to kill all the generators above dimension 2k that was described in [6, Section 2.4]. Roughly
speaking, let A be a wedge of suspensions of the sphere spectrum, one for each monomial in the genera-
tors one wants to kill. One can define a multiplication and group action on A corresponding to the ones
in π∗MU∧4. Then one has a map A → MU∧4 whose restriction to each summand represents the correspond-
ing monomial, and a map A → S0 (where the target is the sphere spectrum, not the space S0) sending each
positive-dimensional summand to a point. This leads to two maps

S0 ∧ A ∧MU∧4 Â± S0 ∧MU∧4

whose coequalizer we denote by S0 ∧A MU∧4. Its homotopy is the quotient of π∗MU∧4 obtained by killing
the polynomial generators above dimension 2k. The construction is equivariant, meaning that S0 ∧A MU∧4

underlies a C8-spectrum.
In [6, Section 7] we showed that for k = 0 the spectrum we get is the integer Eilenberg–Mac Lane spec-

trum HZ; we called this result the Reduction Theorem. In the nonequivariant case this is obvious. We are
in effect attaching cells to MU∧4 to kill all of its homotopy groups in positive dimensions, which amounts to
constructing the 0th Postnikov section. In the equivariant case the proof is more delicate.

Now consider the case k = 1, meaning that we are killing the polynomial generators above dimension 2.
Classically we know that doing this to MU (without the C2-action) produces the connective complex K-theory
spectrum, some times denoted by k, bu or (2-locally) BP⟨1⟩. Inverting the Bott element via a mapping tele-
scope gives us K itself, which is of course 2-periodic. In the C2-equivariant case one gets the “real K-theory”
spectrum Kℝ first studied by Atiyah in [3]. It turns out to be 8-periodic and its fixed point spectrum is KO,
which is also referred to in other contexts as real K-theory.

The spectrum we get by killing the generators above dimension 2 in the C8-spectrum N8
2MUℝ will be

denoted analogously by k[3]. We can invert the image of D by forming a mapping telescope, which we will
denote by K[3]. More generally we denote by k[n] the spectrum obtained from NC2nC2 MUℝ by killing all gen-
erators above dimension 2. In particular, k[1] = kℝ. Then we denote the mapping telescope (after defining
a suitable D) by K[n] and its fixed point set by KO[n].

For n ≥ 3, KO[n] also has a Periodicity, Gap and Detection Theorem, so it could be used to prove the
Kervaire Invariant Theorem.

ThusK[3] is a substitute forΩOwithmuch smaller and thereforemore tractable homotopy groups.Adetailed
study of them might shed some light on the fate of θ6 in the 126-stem, the one hypothetical Kervaire invar-
iant element whose status is still open. If we could show that π126KO[3] = 0, that would mean that θ6 does
not exist.

The computation of the equivariant homotopy π∗K[3] at this time is daunting. The purpose of this paper
is to do a similar computation for the group C4 as a warmup exercise. In the process of describing it we will
develop some techniques that are likely to be needed in the C8 case.We start with N4

2MUℝ, kill its polynomial
generators (of which there are two in every positive even dimension) above dimension 2 as described previ-
ously, and then invert a certain element in π4ρ4 . We denote the resulting spectrum by K[2], see Definition 7.3
below. This spectrum is known to be 32-periodic. In an earlier draft of this paper it was denoted by KH.
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Figure 1. The 2008 poster. The first and third quadrants show E4(G/G) of the slice spectral sequence for K[2] with the elements
of Proposition 13.4 excluded. The second quadrant indicates d3s as in Figures 9 and 10. The fourth quadrant indicates compa-
rable d3s in the third quadrant of the slice spectral sequence as in Figures 11 and 12.

The computational tool for finding these homotopy groups is the slice spectral sequence introduced
in [6, Section 4]. Indeed we do not know of any other way to do it. For Kℝ it was first analyzed by Dugger
[4] and his work is described below in Section 8. In this paper we will study the slice spectral sequence of
Mackey functors associated with K[2]. Wewill rely extensively on the results, methods and terminology of [6].

We warn the reader that the computation for K[2] is more intricate than the one for KR. For example, the
slice spectral sequence for KR, which is shown in Figure 7, involves five different Mackey functors for the
group C2. We abbreviate them with certain symbols indicated in Table 1. The one for K[2], partly shown in
Figure 16, involves over twenty Mackey functors for the group C4, with symbols indicated in Table 2.

Part of this spectral sequence is also illustrated in an unpublished poster produced in late 2008
and shown in Figure 1. It shows the spectral sequence converging to the homotopy of the fixed point
spectrum KC4[2]. The corresponding spectral sequence of Mackey functors converges to the graded Mackey
functor π∗K[2].

In both illustrations some patterns of d3s and families of elements in low filtration are excluded to avoid
clutter. In the poster, representative examples of these are shown in the second and fourth quadrants, the
spectral sequence itself being concentrated in the first and third quadrants. In this paper those patterns are
spelled out in Section 12 and Section 13.

We now outline the rest of the paper. Briefly, the next five sections introduce various tools we need. Our
objects of study, the spectra k[2] and K[2], are formally introduced in Section 7. Dugger’s computation for KR
is recalled in Section 8. The final six sections describe the computation for k[2] and K[2].

In more detail, Section 2 collects some notions from equivariant stable homotopy theory with an empha-
sis on Mackey functors. Definition 2.7 introduces new notation that we will occasionally need.

Section 3 concerns the equivariant analog of the homology of a point namely, the RO(G)-graded homo-
topy of the integer Eilenberg–Mac Lane spectrum HZ. In particular, Lemma 3.6 describes some relations
among certain elements in it including the “gold relation” between aV and uV .

Section 4 describes some general properties of spectral sequences of Mackey functors. These include
Theorem 4.4 about the relation between differential and exotic extensions in the Mackey functor structure
and Theorem 4.7 on the norm of a differential.
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Section 5 lists some concise symbols for various specific Mackey functors for the groups C2 and C4 that
we will need. Such functors can be spelled out explicitly bymeans of Lewis diagrams (5.1), which we usually
abbreviate by symbols shown in Tables 1 and 2.

In Section 6 we study some chain complexes of Mackey functors that arise as cellular chain complexes
for G-CW complexes of the form SV .

In Section 7 we formally define (in Definition 7.3) the C4-spectra of interest in this paper, k[2] and K[2].
In Section 8 we shall describe the slice spectral sequence for an easier case, the C2-spectrum for real

K-theory, Kℝ. This is due to Dugger [4] and serves as a warmup exercise for us. It turns out that everything in
the spectral sequence is formally determined by the structure of its E2-term and Bott periodicity.

In Section 9 we introduce various elements in the homotopy groups of k[2] and K[2]. They are collected
in Table 3, which spans several pages. In Section 10 we determine the E2-term of the slice spectral sequence
for k[2] and K[2].

In Section 11 we use the Slice Differentials Theorem of [6] to determine some differentials in our spectral
sequence.

In Section 12we examine the C4-spectrum k[2] as a C2-spectrum. This leads to a calculation only slightly
more complicated than Dugger’s. It gives a way to remove a lot of clutter from the C4 calculation.

In Section 13 we determine the E4-term of our spectral sequence. It is far smaller than E2 and the results
of Section 12 enable us to ignore most of it. What is left is small enough to be shown legibly in the spec-
tral sequence charts of Figures 14 and 16. They illustrate integrally graded (as opposed to RO(C4)-graded)
spectral sequences of Mackey functors, which are discussed in Section 5. In order to read these charts one
needs to refer to Table 2 which defines the “hieroglyphic” symbols we use for the specific Mackey functors
that we need.

We finish the calculation in Section 14 by dealing with the remaining differentials and exotic Mackey
functor extensions. It turns out that they are all formal consequences of C2 differentials of the previous section
along with the results of Section 4.

The result is a complete description of the integrally graded portion of π⋆k[2]. It is best seen in the spec-
tral sequence charts of Figures 14 and 16. Unfortunately, we do not have a clean description, much less an
effective way to display the full RO(C4)-graded homotopy groups.

For G = C2, the two irreducible orthogonal representations are the trivial one of degree 1, denoted by the
symbol 1, and the sign representation denoted by σ. Thus RO(G) is additively a free abelian group of rank 2,
and the spectral sequence of interest is trigraded. In the RO(C2)-graded homotopy of KR, a certain element
of degree 1 + σ (the degree of the regular representation ρ2) is invertible. This means that each component
of π⋆KR is canonically isomorphic to a Mackey functor indexed by an ordinary integer. See Theorem 8.6 for
a more precise statement. Thus the full (trigraded) RO(C2)-graded slice spectral sequence is determined by
bigraded one shown in Figure 7.

For G = C4, the representation ring RO(G) is additively a free abelian group of rank 3, so it leads to
a quadrigraded spectral sequence. The three irreducible representations are the trivial and sign represen-
tations 1 and σ (each having degree one) and a degree two representation λ given by a rotation of the plane
ℝ2 of order 4. The regular representation ρ4 is isomorphic to 1 + σ + λ. As in the case of KR, there is an invert-
ible element d̄1 (see Table 3) in π⋆K[2] of degree ρ4. This means we can reduce the quadigraded slice spectral
sequence to a trigraded one, but finding a full description of it is a problem for the future.

2 Recollections about equivariant stable homotopy theory
We first discuss some structure on the equivariant homotopy groups of a G-spectrum X. We will assume
throughout that G is a finite cyclic p-group. This means that its subgroups are well ordered by inclusion and
each is uniquely determined by its order. The results of this section hold for any prime p, but the rest of the
paper concerns only the case p = 2. We will define several maps indexed by pairs of subgroups of G.We will
often replace these indices by the orders of the subgroups, sometimes denoting |H| by h.
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The homotopy groups can be defined in terms of finite G-sets T. Let

πG0X(T) = [T+, X]G

be the set of homotopy classes of equivariant maps from T+, the suspension spectrum of the union of T with
a disjoint base point, to the spectrum X. We will often omit G from the notation when it is clear from the
context. For an orthogonal representation V of G, we define

πVX(T) = [SV ∧ T+, X]G .

As an RO(G)-graded contravariant abelian group valued functor of T, this converts disjoint unions to direct
sums. This means it is determined by its values on the sets G/H for subgroups H ⊆ G.

Since G is abelian, H is normal and πVX(G/H) is a Z[G/H]-module.
Given subgroups K ⊆ H ⊆ G, one has pinch and fold maps between the H-spectra H/H+ and H/K+. This

leads to a diagram

H/H+

pinch
// H/K+

fold
oo

G+∧H ( ⋅ )

��

G/H+ G+ ∧H H/H+

pinch
// G+ ∧H H/K+

fold
oo G+ ∧K K/K+ G/K+.

(2.1)

Note that while the fold map is induced by a map of H-sets, the pinch map is not. It only exists in the stable
category.

Definition 2.2 (The Mackey functor structure maps in πGVX). The fixed point transfer and restriction maps

πVX(G/H)
resHK
// πVX(G/K)

trHK
oo

are the ones induced by the composite maps in the bottom row of (2.1).

These satisfy the formal properties needed tomake πVX into aMackey functor; see [6,Definition3.1]. They are
usually referred to simply as the transfer and restriction maps. We use the words “fixed point” to distinguish
them from another similar pair of maps specified below in Definition 2.11.

We remind the reader that a Mackey functor M for a finite group G assigns an abelian group M(T) to
every finite G-set T. It converts disjoint unions to direct sums. It is therefore determined by its values on
orbits, meaning G-sets for the form G/H for various subgroups H of G. For subgroups K ⊆ H ⊆ G, one has
a map of G-sets G/K → G/H. In categorical language M is actually a pair of functors, one covariant and
one contravariant, both behaving the same way on objects. Hence we get maps both ways between M(G/K)
and M(G/H). For the Mackey functor πVX, these are the two maps of Definition 2.2.

One can generalize the definition of a Mackey functor by replacing the target category of abelian groups
by one’s favorite abelian category, such as that of R-modules over graded abelian groups.

Definition 2.3. A gradedGreen functor R∗ for a groupG is aMackey functor forGwith values in the category of
graded abelian groups such that R∗(G/H) is a graded commutative ring for each subgroupH and for each pair
of subgroups K ⊆ H ⊆ G, the restriction map resHK is a ring homomorphism and the transfer map trHK satisfies
the Frobenius relation

trHK (res
H
K (a)b) = a (trHK (b)) for a ∈ R∗(G/H) and b ∈ R∗(G/K).

When X is a ring spectrum, we have the fixed point Frobenius relation

trHK (res
H
K (a)b) = a (trHK (b)) for a ∈ π⋆X(G/H) and b ∈ π⋆X(G/K). (2.4)
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In particular, this means that
a(trHK (b)) = 0 when resHK (a) = 0. (2.5)

For a representation V of G, the group

πGVX(G/H) = π
H
VX = [SV , X]H

is isomorphic to
[S0, S−V ∧ X]H = π0(S−V ∧ X)H .

However fixed points do not respect smash products, so we cannot equate this group with

π0(S−V
H
∧ XH) = [SVH , XH] = π|VH |XH = πG|VH |X(G/H).

Conversely a G-equivariant map SV → X represents an element in

[SV , X]G = πGVX = πGVX(G/G).

The following notion is useful.

Definition 2.6 (Mackey functor induction and restriction). For s subgroup H of G and an H-Mackey func-
tor M, the induced G-Mackey functor ↑GH M is given by

↑GH M(T) = M(i∗HT)

for each finite G-set T, where i∗H denotes the forgetful functor from G-sets (or spaces or spectra) to H-sets.
For a G-Mackey functor N, the restricted H-Mackey functor ↓GH N is given by

↓GH N(S) = N(G ×H S)

for each finite H-set S.

This notation is due to Thévenaz–Webb [10]. They put the decorated arrow on the right and denote G ×H S
by S ↑GH and i∗HT by T ↓GH .

We also need notation for X as an H-spectrum for subgroups H ⊆ G. For this purpose we will enlarge
the orthogonal representation ring of G, RO(G), to the representation ring Mackey functor RO(G) defined by
RO(G)(G/H) = RO(H). Thiswas themotivating example for thedefinitionof aMackey functor in thefirst place.
In it the transfer map on a representation V of H is the induced representation of a supergroup K ⊇ H, and
its restriction to a subgroup is defined in the obvious way. In particular, the restriction of the transfer of V
is |K/H|V.

More generally for a finite G-set T, RO(G)(T) is the ring (under pointwise direct sum and tensor product)
of functors to the category of finite-dimensional orthogonal real vector spaces from BGT, the split groupoid
(see [9, A1.1.22]) whose objects are the elements of T with morphisms defined by the action of G.

Definition 2.7 (RO(G)-graded homotopy groups). For each G-spectrum X and each pair (H, V) consisting of
a subgroupH ⊆ G anda virtual orthogonal representationV ofH, let theG-Mackey functor πH,V (X)bedefined
by

πH,V (X)(T) := [(G+ ∧H SV ) ∧ T+, X]G ≅ [SV ∧ i∗HT+, i
∗
HX]

H = πHV (i
∗
HX)(i

∗
HT),

for each finite G-set T. Equivalently, πH,V (X) =↑
G
H π

H
V (i

∗
HX) (see 2.6) as Mackey functors. We will often denote

πG,V by π
G
V or πV .

We will be studying the RO(G)-graded slice spectral sequence {Es,⋆r } of Mackey functors with r, s ∈ Z and
⋆ ∈ RO(G).Wewill use the notation Es,(H,V)r for suchMackey functors, abbreviating to Es,Vr when the subgroup
is G. Most of our spectral sequence charts will display the values of Es,t2 for integral values of t only.

The following definition should be compared with [2, (2.3)].

Definition 2.8 (An equivariant homeomorphism). Let X be a G-space and Y anH-space for a subgroupH ⊆ G.
We define the equivariant homeomorphism

ũGH(Y, X) : G ×H (Y × i∗HX) → (G ×H Y) × X

Brought to you by | University of Rochester
Authenticated

Download Date | 5/3/17 6:59 PM



M.A. Hill et al., The slice spectral sequence for the C4 analog of real K-theory | 389

by (g, y, x) Ü→ (g, y, g(x)) for g ∈ G, y ∈ Y and x ∈ X. We will use the same notation for a similarly defined
homeomorphism

ũGH(Y, X) : G+ ∧H (Y ∧ i∗HX) → (G+ ∧H Y) ∧ X

for a G-spectrum X and H-spectrum Y. We will abbreviate

ũGH(S
0, X) : G+ ∧H i∗HX → G/H+ ∧ X

by ũGH(X).
For representations V and V� of G both restricting toW on H, but having distinct restrictions to all larger

subgroups, we define ũV−V� = ũGH(S
V )ũGH(S

V�
)−1, so the following diagram of equivariant homeomorphisms

commutes:

G/H ∧ SV

G+ ∧H SW
ũGH (S

V ) 22

ũGH (S
V� )

,,

G/H ∧ SV� .

ũV−V�

OO
(2.9)

When V� = |V| (meaning that H = GV acts trivially onW), then we abbreviate ũV−V� by ũV .

If V is a representation of H restricting toW on K, we can smash the diagram (2.1) with SV and get

SV
pinch

// H/K+ ∧ SV
fold

oo

G+∧H ( ⋅ )
��

G+ ∧H SV
pinch

// G+ ∧H (H/K+ ∧ SV ) ≈
//

fold
oo G+ ∧H (H+ ∧K SW ) G+ ∧K SW ,

(2.10)

where the homeomorphism is induced by that of Definition 2.8.

Definition 2.11 (The group action restriction and transfer maps). For subgroupsK ⊆ H ⊆ G, letV ∈ RO(H)be
a virtual representation of H restricting toW ∈ RO(K). The group action transfer and restriction maps

↑GH π
H
V (i

∗
HX) πH,VX

rHK
// πK,WX

tH,VK
oo ↑GK π

K
W (i∗KX)

(see 2.6) are the ones induced by the composite maps in the bottom row of (2.10). The symbols t and r here
are underlined because they are maps ofMackey functors rather than maps within Mackey functors.

We include V as an index for the group action transfer tH,VK because its target is not determined by its source.
Thus we have abelian groups πH� ,V (X)(G/H��) for all subgroups H�, H�� ⊆ G and representations V of H�.

Most of them are redundant in view of Theorem 2.13 below. In what follows, we will use the notation
H∪ = H� ∪ H�� and H∩ = H� ∩ H��.

Lemma 2.12 (An equivariant module structure). For a G-spectrum X and H�-spectrum Y,

[G+ ∧H� Y, X]H��
= Z[G/H∪] ⊗ [H∪+ ∧H� Y, X]H��

as Z[G/H��]-modules.

Proof. As abelian groups,

[G+ ∧H� Y, X]H��
= [i∗H�� (G+ ∧H� Y), X]H��

= [ ⋁
|G/H∪|

H∪+ ∧H� Y, X]
H��

= ⨁
|G/H∪|

[H∪+ ∧H� Y, X]H��

and G/H�� permutes the wedge summands of⋁|G/H∪| H∪+ ∧H� Y as it permutes the elements of G/H∪.
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Theorem 2.13 (The module structure for RO(G)-graded homotopy groups). For subgroups H�, H�� ⊆ G with
H∪ = H� ∪ H�� and H∩ = H� ∩ H��, and a virtual representation V of H� restricting toW on H∩,

πH� ,VX(G/H
��) ≅ Z[G/H∪] ⊗ πH∩ ,WX(G/G) ≅ Z[G/H∪] ⊗ πH∩

W i∗H∩
X(H∩/H∩)

as Z[G/H��]-modules.
Suppose that H�� is a proper subgroup of H� and γ ∈ H� is a generator. Then as an element in Z[G/H��], γ

induces multiplication by −1 in πH� ,VX(G/H��) if and only if V is nonorientable.

Proof. We start with the definition and use the homeomorphism of Definition 2.8 and the module structure
of Lemma 2.12:

πH� ,VX(G/H
��) = [(G+ ∧H� SV ) ∧ G/H��

+ , X]G

= [G+ ∧H�� (G+ ∧H� SV ), X]G

= [G+ ∧H� SV , X]H��
= Z[G/H∪] ⊗ [H∪+ ∧H� SV , X]H�� ,

[H∪+ ∧H� SV , X]H��
= [SW , X]H∩

= [G+ ∧H∩ SW , X]G

= πH∩
W (i∗H∩

X)(H∩/H∩) = πH∩ ,WX(G/G).

For the statement about nonoriented V, we have

πH� ,VX(G/H
��) = Z[G/H�] ⊗ πH��

W i∗H��X(H��/H��) = Z[G/H�] ⊗ [SW , X]H�� .

Then γ induces a map of degree ±1 on the sphere depending on the orientability of V.

Theorem 2.13 means that we need only consider the groups

πH,VX(G/G) ≅ π
H
V i

∗
HX(H/H).

When H ⊂ G and V is a virtual representation of G, we have

πVX(G/H) ≅ πH,i∗HVX(G/G) ≅ π
H
i∗HV
i∗HX(H/H). (2.14)

This isomorphism makes the following diagram commute for K ⊆ H:

πVX(G/H)
≅
//

resHK
��

πH,i∗HVX(G/G)
≅
//

rHK
��

πHi∗HV i
∗
HX(H/H)

πVX(G/K)
≅
//

trHK

OO

πK,i∗KVX(G/G)
≅
//

t
H,i∗HV
K

OO

πKi∗KV i
∗
KX(K/K).

We will use the three groups of (2.14) interchangeably as convenient and use the same notation for elements in
each related by this canonical isomorphism. Note that the group on the left is indexed by RO(G)while the two
on the right are indexed by RO(H). This means that if V and V� are representations of G each restricting toW
on H, then πVX(G/H) and πV�X(G/H) are canonically isomorphic. The first of these is

[G/H+ ∧ SV , X]G ≅ [G+ ∧H SW , X]G ≅ [SW , i∗HX]
H ,

where the first isomorphism is induced by the homeomorphism ũGH(X) of Definition 2.8 and the second is the
fact that G+ ∧H ( ⋅ ) is the left adjoint of the forgetful functor i∗H .

Remark 2.15 (Factorization via restriction). For a ring spectrum X, such as the one we are studying in this
paper, an indecomposable element in π⋆X(G/H)maymap to aproduct xy ∈ πH,⋆X(G/G)of elements in groups
indexed by representations of H that are not restrictions of representations of G. When this happens we may
denote the indecomposable element in π⋆X(G/H) by [xy]. This factorization can make some computations
easier.
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3 The RO(G)-graded homotopy of HZ
We describe part of the RO(G)-graded Green functor π⋆(HZ), where HZ is the integer Eilenberg–Mac Lane
spectrum HZ in the G-equivariant category, for some finite cyclic 2-group G. For each actual (as opposed to
virtual) G-representation V we have an equivariant reduced cellular chain complex CV∗ for the space SV . It is
a complex of Z[G]-modules with H∗(CV ) = H∗(S|V|).

One can convert such a chain complex CV∗ of Z[G]-modules to one of Mackey functors as follows. Given
a Z[G]-module M, we get a Mackey functor M defined by

M(G/H) = MH for each subgroup H ⊆ G. (3.1)

We call this a fixed point Mackey functor. In it each restriction map resHK (for K ⊆ H ⊆ G) is one-to-one.
When M is a permutation module, meaning the free abelian group on a G-set B, we call M a permutation
Mackey functor [6, Section 3.2].

In particular, the Z[G]-module Zwith trivial group action (the free abelian group on the G-set G/G) leads
to aMackey functor Z in which each restrictionmap is an isomorphism and the transfermap trHK is multiplica-
tion by |H/K|. For each Mackey functor M there is an Eilenberg–Mac Lane spectrum HM (see [5, Section 5]),
and HZ is the same as HZ with trivial group action.

Given a finite G-CW spectrum X, meaning one built out of cells of the form G+ ∧H en, we get a reduced
cellular chain complex of Z[G]-modules C∗X, leading to a chain complex of fixed point Mackey functors C∗X.
Its homology is a graded Mackey functor H∗X with

H∗X(G/H) = π∗(X ∧ HZ)(G/H) = π∗(X ∧ HZ)H .

In particular, H∗X(G/{e}) = H∗X, the underlying homology of X. In general H∗X(G/H) is not the same as
H∗(XH) because fixed points do not commute with smash products.

For a finite cyclic 2-group G = C2k , the irreducible representations are the 2-dimensional ones λ(m) cor-
responding to rotation through an angle of 2πm/2k for 0 < m < 2k−1, the sign representation σ and the trivial
one of degree one, which we denote by 1. The 2-local equivariant homotopy type of Sλ(m) depends only on
the 2-adic valuation of m, so we will only consider λ(2j) for 0 ≤ j ≤ k − 2 and denote it by λj. The planar
rotation λk−1 though angle π is the same representation as 2σ.We will denote λ(1) = λ0 simply by λ.

We will describe the chain complex CV for

V = a + bσ + ∑
2≤j≤k

cjλk−j

for nonnegative integers a, b and cj. The isotropy group of V (the largest subgroup fixing all of V) is

GV =
{{{
{{{
{

C2k = G for b = c2 = ⋅ ⋅ ⋅ = ck = 0,
C2k−1 =: G� for b > 0 and c2 = ⋅ ⋅ ⋅ = ck = 0,
C2k−ℓ for cℓ > 0 and c1+ℓ = ⋅ ⋅ ⋅ = ck = 0.

The sphere SV has a G-CW structure with reduced cellular chain complex CV of the form

CVn =

{{{{{{
{{{{{{
{

Z for n = d0,
Z[G/G�] for d0 < n ≤ d1,
Z[G/C2k−j ] for dj−1 < n ≤ dj and 2 ≤ j ≤ ℓ,
0 otherwise,

(3.2)

where

dj =
{{{
{{{
{

a for j = 0,
a + b for j = 1,
a + b + 2c2 + ⋅ ⋅ ⋅ + 2cj for 2 ≤ j ≤ ℓ,

so dℓ = |V|.
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The boundarymap ∂n : CVn → CVn−1 is determined by the fact thatH∗(CV ) = H∗(S|V|). More explicitly, let γ
be a generator of G and

ζj = ∑
0≤t<2j

γt for 1 ≤ j ≤ k.

Then we have

∂n =

{{{{{{
{{{{{{
{

∇ for n = 1 + d0,
(1 − γ)xn for n − d0 even and 2 + d0 ≤ n ≤ dn ,
xn for n − d0 odd and 2 + d0 ≤ n ≤ dn ,
0 otherwise,

where ∇ is the fold map sending γ Ü→ 1, and xn denotes multiplication by an element in Z[G] to be named
below. We will use the same symbol below for the quotient map Z[G/H] → Z[G/K] for H ⊆ K ⊆ G. The ele-
ments xn ∈ Z[G] for 2 + d0 ≤ n ≤ |V| are determined recursively by x2+d0 = 1 and

xnxn−1 = ζj for 2 + dj−1 < n ≤ 2 + dj .

It follows that H|V|CV = Z generated by either x1+|V| or its product with 1 − γ, depending on the parity of b.
This complex is

CV = Σ|V0|CV/V0 ,

where V0 = VG. This means we can assume without loss of generality that V0 = 0.
An element

x ∈ HnCV (G/H) = HnS
V (G/H)

corresponds to an element x ∈ πn−VHZ(G/H).
We will denote the dual complex HomZ(CV , Z) by C−V . Its chains lie in dimensions −n for 0 ≤ n ≤ |V|. An

element x ∈ H−n(S−V )(G/H) corresponds to an element x ∈ πV−nHZ(G/H).
The method we have just described determines only a portion of the RO(G)-graded Mackey functor

π(G,⋆)HZ, namely the groups in which the index differs by an integer from an actual representation V or its
negative. For example, it does not give us πσ−λHZ for |G| ≥ 4.

We leave the proof of the following as an exercise for the reader.

Proposition 3.3 (The top (bottom) homology groups for SV (S−V )). LetG beafinite cyclic2-groupandV anon-
trivial representation of G of degree d with VG = 0 and isotropy group GV . Then

CVd = C−V−d = Z[G/GV ]

and the following hold:
(i) If V is oriented, then HdSV = Z, the constant Z-valued Mackey functor in which each restriction map is an

isomorphism and each transfer trKH is multiplication by |K/H|.
(ii) H−dS−V = Z(G, GV ), the constant Z-valued Mackey functor in which

resKH =
{
{
{

1 for K ⊆ GV ,
|K/H| for GV ⊆ H,

and

trKH =
{
{
{

|K/H| for K ⊆ GV ,
1 for GV ⊆ H.

(The above completely describes the cases where |K/H| = 2, and they determine all other restrictions and
transfers.) The functor Z(G, e) is also known as the dual Z∗. These isomorphisms are induced by the maps

HdSV H−dS−V

Z ∆
// Z[G/GV ]

∇
// Z(G, GV ).
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(iii) If V is not oriented, then HdSV = Z−, where

Z−(G/H) =
{
{
{

0 for H = G,
Z− := Z[G]/(1 + γ) otherwise,

where each restrictionmap resKH is an isomorphism and each transfer trKH is multiplication by |K/H| for each
proper subgroup K.

(iv) We also have H−dS−V = Z(G, GV )−, where

Z(G, GV )−(G/H) =
{{{
{{{
{

0 for H = G and V = σ,
Z/2 for H = G and V ̸= σ,
Z− otherwise,

with the same restrictions and transfers as Z(G, GV ). These isomorphisms are induced by the maps

HdSV H−dS−V

Z−
∆−

// Z[G/GV ]
∇−

// Z(G, GV )−.

The Mackey functor Z(G, GV ) is one of those defined (with different notation) in [7, Definition 2.1].

Definition 3.4 (Three elements in πG⋆ (HZ)). Let V be an actual (as opposed to virtual) representation of the
finite cyclic 2-group G with VG = 0 and isotropy group GV .
(i) The equivariant inclusion S0 → SV defines an element in π−VS0(G/G) via the isomorphisms

π−VS
0(G/G) = π0S

V (G/G) = π0SV
G
= π0S0 = Z,

and we will use the symbol aV to denote its image in π−VHZ(G/G).
(ii) The underlying equivalence SV → S|V| defines an element in

πVS
|V|(G/GV ) = πV−|V|S

0(G/GV )

and we will use the symbol eV to denote its image in πV−|V|HZ(G/GV ).
(iii) IfW is an oriented representation of G (we do not require thatWG = 0), there is a map

∆ : Z → CW|W| = Z[G/GW ]

as in Proposition 3.3 giving an element

uW ∈ H|W|S
W (G/G) = π|W|−WHZ(G/G).

For nonorientedW, Proposition 3.3 gives a map

∆− : Z− → CW|W|

and an element
uW ∈ H|W|S

W (G/G�) = π|W|−WHZ(G/G
�).

The element uW above is related to the element ũV of (2.9) as follows.

Lemma 3.5 (The restriction of uW to a unit and permanent cycle). Let W be a nontrivial representation of G
with H = GW . Then the homeomorphism

Σ−W ũW : G/H+ ∧ S|W|−W → G/H+

of (2.9) induces an isomorphism π0HZ(G/H) → π|W|−WHZ(G/H) sending the unit to resKH(uW ) for uW as defined
in (iii) above and K = G or G� depending on the orientability ofW .

The product
resKH(uW )eW ∈ π0HZ(G/H) = Z

is a generator, so eW and resKH(uW ) are units in the ring π⋆HZ(G/H), and resKH(uW ) is in the Hurewicz image
of π⋆S0(G/H).
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Proof. The diagram

G/K+ ∧ S|W|−W G/H+ ∧ S|W|−W ũW
//

fold
oo G/H+

induces (via the functor [ ⋅ , HZ]G)

π|W|−WHZ(G/K)
resKH

// π|W|−WHZ(G/H) π0HZ(G/H)
≅

oo

H|W|SW (G/K) H|W|SW (G/H) Z.

The restriction map is an isomorphism by Proposition 3.3 and the group on the left is generated by uW .
The product is the composite of H-maps

SW eW
// S|W|

resKH (uW )
// ΣWHZ,

which is the standard inclusion.

Note that aV and eV are induced by maps to equivariant spheres while uW is not. This means that in any
spectral sequencebasedonafiltrationwhere the subquotients are equivariantHZ-modules, elements defined
in terms of aV and eV will be permanent cycles, while multiples and powers of uW can support nontrivial
differentials. Lemma 3.5 says a certain restriction of uW is a permanent cycle.

Each nonoriented V has the form W + σ where σ is the sign representation and W is oriented. It follows
that

uV = uσ resGG� (uW ) ∈ π|V|−VHZ(G/G
�).

Note also that a0 = e0 = u0 = 1. The trivial representations contribute nothing to π⋆(HZ). We can limit
our attention to representations V with VG = 0. Among such representations of cyclic 2-groups, the oriented
ones are precisely the ones of even degree.

Lemma 3.6 (Properties of aV , eV and uW ). The three elements aV ∈ π−VHZ(G/G), eV ∈ πV−|V|HZ(G/GV ) and
uW ∈ π|W|−WHZ(G/G) forW oriented of Definition 3.4 satisfy the following:
(1) aV+W = aVaW and uV+W = uVuW .
(2) |G/GV |aV = 0, where GV is the isotropy group of V .
(3) For oriented V, trGGV (eV ) and trG�

GV (eV+σ) have infinite order, while tr
G
GV (eV+σ) has order 2 if |V| > 0 and

trGGV (eσ) = trGG� (eσ) = 0.
(4) For oriented V and GV ⊆ H ⊆ G,

trGGV (eV )uV = |G/GV | ∈ π0HZ(G/G) = Z,

trG�

GV (eV+σ)uV+σ = |G�/GV | ∈ π0HZ(G/G
�) = Z for |V| > 0.

(5) aV+W trGGV (eV+U) = 0 if |V| > 0.
(6) For V andW oriented, uW trGGV (eV+W ) = |GV/GV+W | trGGV (eV ).
(7) The gold (or au) relation. For V andW oriented representations of degree 2 with GV ⊆ GW ,

aWuV = |GW/GV |aVuW .

For nonoriented W similar statements hold in π⋆HZ(G/G�). Moreover, 2W is oriented and u2W is defined
in π2|W|−2WHZ(G/G) with res

G
G� (u2W ) = u2W .

Proof. (1) This follows from the existence of the pairing CV ⊗ CW → CV+W . It induces an isomorphism in H0
and (when both V andW are oriented) in H|V+W|.

(2) This holds because H0(V) is killed by |G/GV |.
(3) This follows from Proposition 3.3.
(4) Using the Frobenius relation we have

trGGV (eV )uV = trGGV (eV res
G
GV (uV )) = trGGV (1) by Lemma 3.5

= |G/GV |,
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and

trG�

GV (eV+σ)uV+σ = trG�

GV (eV+σ res
G�

GV (uV+σ)) = trG�

GV (1) = |G�/GV |.

(5) We have
aV+W trGGV (eV+U) : S

−|V|−|U| → SW−U .

It is null because the bottom cell of SW−U is in dimension −|U|.
(6) Since V is oriented, we are computing in a torsion free group so we can tensor with the rationals. It

follows from (4) that
trGGV+W (eV+W ) =

|G/GV+W |
uVuW

and trGGV (eV ) =
|G/GV |
uV

so
uW trGGV+W (eV+W ) =

|G/GV+W |
uV

= |GV/GV+W | trGGV (eV ).

(7) For G = C2n , each oriented representation of degree 2 is 2-locally equivalent to a λj for 0 ≤ j < n. The
isotropy group is Gλj = C2j . Hence the assumption that GV ⊂ GW is can be replaced with V = λj and W = λk
with 0 ≤ j < k < n. The statement we wish to prove is

aλkuλj = 2k−jaλjuλk .

One has amap Sλj → Sλk which is the suspension of the 2k−jth powermap on the equatorial circle. Hence
its underlying degree is 2k−j. We will denote it by aλk/aλj since there is a diagram

Sλj

aλk /aλj

��

S0

aλj
44

aλk ** Sλk .

We claim there is a similar diagram

Sλk ∧ HZ

uλj /uλk

��

S2
uλk

44

uλj **

Sλj ∧ HZ,

(3.7)

in which the underlying degree of the vertical map is one.
Smashing aλk/aλj with HZ and composing with uλj/uλk gives a factorization of the degree 2k−j map

on Sλj ∧ HZ. Thus we have
uλj
uλk

aλk
aλj

= 2k−j ,

uλjaλk = 2k−juλkaλj ,

as desired.
The vertical map in (3.7) would follow from a map

Sλk−λj → HZ

with underlying degree one. Let G = C2n and G ⊃ H = C2j . Then S−λj has a cellular structure of the form

G/H+ ∧ S−2 ∪ G/H+ ∧ e−1 ∪ e0.

We need to smash this with Sλk . Since λk restricts trivially to H,

G/H+ ∧ Sλk = G/H+ ∧ S2.
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This means
Sλk−λj = Sλk ∧ S−λj = G/H+ ∧ S0 ∪ G/H+ ∧ e1 ∪ e0 ∧ Sλk .

Thus its cellular chain complex has the form

2 Z[G/K]
1−γ
��

∆

++

1 Z[G/K]
∇
��

−∆

++

Z[G/H]
1−γ
��

0 Z Z[G/H],

where K = G/Cpk and the left column is the chain complex for Sλk .
There is a corresponding chain complex of fixed point Mackey functors. Its value on the G-set G/L for an

arbitrary subgroup L is

2 Z[G/max(K, L)]
1−γ
��

∆
,,

1 Z[G/max(K, L)]
∇
��

−∆
,,

Z[G/max(H, L)]
1−γ
��

0 Z Z[G/max(H, L)].

For each L the map ∆ is injective and maps the kernel of the first 1 − γ isomorphically to the kernel of the
second one. This means we can replace the above by a diagram of the form

1 coker(1 − γ)
∇
��

−∆

,,

0 Z coker(1 − γ),

where each cokernel is isomorphic to Z and each map is injective.
Thismeans thatH∗Sλk−λj is concentrated in degree 0where it is the pushout of the diagram above,mean-

ing a Mackey functor whose value on each subgroup is Z. Any such Mackey functor admits a map to Z with
underlying degree one. This proves the claim of (3.7).

The Z-valued Mackey functor H0Sλk−λj is discussed in more detail in [7], where it is denoted by Z(k, j).

4 Generalities on differentials and Mackey functor extensions
Before proceeding with a discussion about spectral sequences, we need the following.

Remark 4.1 (Abusive spectral sequence notation). When dr(x) is a nontrivial element of order 2, the ele-
ments 2x and x2 both survive to Er+1, but in that group they are not the products indicated by these symbols
since x itself is no longer present. More generally if dr(x) = y and αy = 0 for some α, then αx is present in Er+1.
This abuse of notation is customary because it would be cumbersome to rename these elements when pass-
ing from Er to Er+1. We will sometimes denote them by [2x], [x2] and [αx] respectively to emphasize their
indecomposability.

Now we make some observations about the relation between exotic transfers and restriction with certain
differentials in the slice spectral sequence. By “exotic” we mean in a higher filtration. In a spectral sequence
of Mackey functors converging to π⋆X, it can happen that an element x ∈ πVX(G/H) has filtration s, but its
restriction or transfer has a higher filtration. In the spectral sequence charts in this paper, exotic transfers and
restrictions will be indicated by blue and dashed green lines respectively.
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Lemma 4.2 (Restriction kills aσ and aσ kills transfers). Let G be a finite cyclic 2-group with sign representa-
tion σ and index 2 subgroup G�, and let X be a G-spectrum. Then in π∗X(G/G) the image of tr

G
G� is the kernel of

multiplication by aσ, and the kernel of resGG� is the image of multiplication by aσ.
Suppose further that 4 divides the order of G and let λ be the degree 2 representation sending a generator

γ ∈ G to a rotation of order 4. Then restriction kills 2aλ and 2aλ kills transfers.

Proof. Consider the cofiber sequence obtained by smashing X with

S−1 aσ
// Sσ−1 // G+ ∧G� S0 // S0 aσ

// Sσ. (4.3)

Since (G+ ∧G� X)G is equivalent to XG� , passage to fixed point spectra gives

Σ−1XG // (Σσ−1X)G // XG�
// XG // (ΣσX)G,

so the exact sequence of homotopy groups is

πk+1X(G/G)
aσ
// πk+1−σX(G/G)

u−1σ ResGG� ))

// πk(G+ ∧G� X)(G/G) // πkX(G/G).

πk(X)(G/G)
TrGG�

66

Note that the isomorphism uσ is invertible. This gives the exactness required by both statements.
For the statements about aλ, note that λ restricts to 2σG� , where σG� is the sign representation for the

index 2 subgroup G�. It follows that resGG� (aλ) = a2σG� , which has order 2. Using the Frobenius relation, we
have for x ∈ π∗X(G/G�),

2aλ trGG� (x) = trGG� (resGG� (2aλ)x) = trGG� (2a2σG� x) = 0.

This implies that when aσx is killed by a differential but x ∈ Er(G/G) is not, then x represents an element that
is trGG� (y) for some y in lower filtration. Similarly if x supports a nontrivial differential but aσx is a nontrivial
permanent cycle, then the latter represents an element with a nontrivial restriction to G� of higher filtration.
In both cases the converse also holds.

Theorem 4.4 (Exotic transfers and restrictions in the RO(G)-graded slice spectral sequence). LetGbeafinite
cyclic 2-group with index 2 subgroup G� and sign representation σ, and let X be a G-equivariant spectrum with
x ∈ Es,Vr X(G/G) (for V ∈ RO(G)) in the slice spectral sequence for X. Then:
(i) Suppose there is a permanent cycle y� ∈ Es+r,V+r−1r X(G/G�). Then there is a nontrivial differential

dr(x) = trGG� (y�)

if and only if [aσx] is a permanent cycle with resGG� (aσx) = uσy�. In this case [aσx] represents the Toda
bracket ⟨aσ , trGG� , y�⟩.

(ii) Suppose there is a permanent cycle y ∈ Es+r−1,V+r+σ−2r X(G/G). Then there is a nontrivial differential

dr(x) = aσy

if and only if resGG� (x) is a permanent cycle with trGG� (u−1σ resGG� (x)) = y. In this case resGG� (x) represents the
Toda bracket ⟨resGG� , aσ , y⟩.

In each case a nontrivial dr is equivalent to a Mackey functor extension raising filtration by r − 1. In (i) the
permanent cycle aσx is not divisible in π⋆X by aσ and therefore could have a nontrivial restriction in a higher
filtration. Similarly in (ii) the element denoted by resGG� (x) is not a restriction in π⋆X, so we cannot use the
Frobenius relation to equate trGG� (u−1σ resGG� (x)) with trGG� (u−1σ )x.

We remark that the proof below makes no use of any properties specific to the slice filtration. The result
holds for any equivariant filtration with suitable formal properties.

Before giving the proof we need the following.
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Lemma 4.5 (A formal observation). Suppose we have a commutative diagram up to sign

A0,0
a0,0

//

b0,0
��

A0,1
a0,1

//

b0,1
��

A0,2
a0,2
//

b0,2
��

ΣA0,0

b0,0
��

A1,0
a1,0

//

b1,0
��

A1,1
a1,1

//

b1,1
��

A1,2
a1,2
//

b1,2
��

ΣA1,0

b1,0
��

A2,0
a2,0

//

b2,0
��

A2,1
a2,1

//

b2,1
��

A2,2
a2,2
//

b2,2
��

ΣA2,0

b2,0
��

ΣA0,0
a0,0
// ΣA0,1

a0,1
// ΣA0,2

a0,2
// Σ2A0,0

in which each row and column is a cofiber sequence. Suppose that from some spectrumW we have amap f3 and
hypotheticalmaps f1 and f2making the following diagramcommute up to sign,where ci,j = bi,j+1ai,j = ai+1,jbi,j:

W
f3

//

f1

��

f2

))

f3

��

ΣA0,0

b0,0
��

c0,0

##

A1,2
a1,2
//

b1,2
��

c1,2

##

ΣA1,0

b1,0
��

a1,0
// ΣA1,1

b1,1
��

A2,1
a2,1

//

b2,1
��

c2,1

##

A2,2
a2,2
//

b2,2
��

ΣA2,0
a2,0
// ΣA2,1

ΣA0,0
a0,0
//

c0,0
##

ΣA0,1
a0,1
//

b0,1
��

ΣA0,2

b0,2
��

ΣA1,1
a1,1
// ΣA1,2.

(4.6)

Then f1 exists if and only if f2 does. When this happens, c0,0f3 is null and we have Toda brackets

⟨a1,1, c0,0, f3⟩ ∋ f2 and ⟨b1,1, c0,0, f3⟩ ∋ f1.

Proof. Let R be the pullback of a2,1 and b1,2, so we have a diagram

A0,2

��

A0,2

b0,2
��

A2,0 // R

��

// A1,2

b1,2
��

c1,2
// ΣA2,0

A2,0
a2,0
// A2,1

c2,1
��

a2,1
// A2,2

b2,2
��

a2,2
// ΣA2,0

ΣA0,2 ΣA0,2

in which each row and column is a cofiber sequence. Thus we see that R is the fiber of both c1,2 and c2,1.
If f1 exists, then

c2,1f1 = a0,1b2,1f1 = a0,1a0,0f3
which is null homotopic, so f1 lifts to R, which comes equipped with a map to A1,2, giving us f2. Conversely
if f2 exists, it lifts to R, which comes equipped with a map to A2,1, giving us f1.

The statement about Toda brackets follows from the way they are defined.
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Proof of Theorem 4.4. For a G-spectrum X and integers a < b < c ≤ ∞ there is a cofiber sequence

Pcb+1X
i
// PcaX

j
// PbaX

k
// ΣPcb+1X.

When c = ∞, we omit it from the notation. We will combine this and the one of (4.3) to get a diagram similar
to (4.6) withW = SV to prove our two statements.

For (i) note that x ∈ Es,t1 X(G/G) is by definition an element in πt−sPssX(G/G).Wewill assume for simplicity
that s = 0, so x is represented by a map from some SV to (P00X)G. Its survival to Er and supporting a nontriv-
ial differential means that it lifts to (Pr−20 X)G but not to (Pr−10 X)G. The value of dr(x) is represented by the
composite kx in the diagram below, where we can use Lemma 4.5:

SV−1

y�

��

x

��

w

++

y�
// (Pr−1X)G

�

i
��

(Σσ−1P0X)G

j
��

u−1σ resG
G�
// (P0X)G

�

j
��

(Σ−1Pr−20 X)G

k
��

aσ
// (Σσ−1Pr−20 X)G

k
��

u−1σ resG
G�
// (Pr−20 X)G�

(Pr−1X)G
� trG

G�
// (Pr−1X)G

aσ
// (ΣσPr−1X)G.

The commutativity of the lower left trapezoid is the differential of (i), dr(x) = trGG� (y�). The existence of the
map w making the diagram commute follows from that of x and y�. It is the representative of aσx as a per-
manent cycle, which represents the indicated Toda bracket. The commutativity of the upper right trapezoid
identifies y� as u−1σ resGG� (x) as claimed. For the converse we have the existence of y� and w and hence that
of x.

The second statement follows by a similar argument based on the diagram

SV+σ−1

y

��

x

  

w

++

y
// (Pr−1X)G

i
��

(P0X)G
�

j
��

trG
G�

// (P0X)G

j
��

(Σσ−1Pr−20 X)G

k
��

u−1σ resG
G�
// (Pr−20 X)G�

k
��

trG
G�

// (Pr−20 X)G

(Pr−1X)G
aσ

// (ΣσPr−1X)G
u−1σ resG

G�
// (ΣPr−1X)G

� .

Here w represents u−1σ resGG� (x) as a permanent cycle, so we get a Toda bracket containing resGG� (x) as
indicated.

Nextwe study thewaydifferentials interactwith thenorm. Supposewehave a subgroupH ⊂ G andanH-equi-
variant ring spectrum X with Y = NGHX. Suppose we have spectral sequences converging to π⋆X and π⋆Y
based on towers

⋅ ⋅ ⋅ → PHn X → PHn−1X → ⋅ ⋅ ⋅ and ⋅ ⋅ ⋅ → PGn Y → PGn−1Y → ⋅ ⋅ ⋅

for functors PHn and PGn equipped with suitable maps

PHmX ∧ PHn X → PHm+nX, PGmY ∧ PGn Y → PGm+nY and NGHP
H
mX → PGm|G/H|Y.

Our slice spectral sequence for each of the spectra studied in this paper fits this description.
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Theorem 4.7 (The norm of a differential). Suppose we have spectral sequences as described above and a dif-
ferential dr(x) = y for x ∈ Es,⋆r X(H/H). Let ρ = IndGH1 and suppose that aρ has filtration |G/H| − 1. Then in the
spectral sequence for Y = NGHX,

d|G/H|(r−1)+1(aρNGHx) = N
G
Hy ∈ E

|G/H|(s+r),⋆
|G/H|(r−1)+1Y(G/G).

Proof. The differential can be represented by a diagram

SV S(1 + V) //

y
��

D(1 + V) //

��

S1+V

x
��

PHs+rX // PHs X // PHs X/PHs+rX

for some orthogonal representation V of H, where each row is a cofiber sequence. We want to apply the norm
functor NGH to it. LetW = IndGHV. Then we get

SW NGHS(1 + V) //

NGHy
��

D(ρ +W) //

��

Sρ+W

NGHx
��

NGHP
H
s+rX // NGHP

H
s X // NGH(P

H
s X/PHs+rX).

Neither row of this diagram is a cofiber sequence, but we can enlarge it to one where the top and bottom
rows are, namely

SW // D(1 +W) //

aρ
��

S1+W

aρ
��

SW //

NGHy
��

D(ρ +W) //

��

Sρ+W

NGHx
��

NGHP
H
s+rX //

��

NGHP
H
s X //

��

NGH(P
H
s X/PHs+rX)

��

PG(s+r)|G/H|Y // PGs|G/H|Y // PGs|G/H|Y/P
G
(s+r)|G/H|Y.

Here the first two bottom vertical maps are part of the multiplicative structure the spectral sequence is as-
sumed tohave. Composing themaps in the three columns gives us the diagram for the desireddifferential.

Given a G-equivariant ring spectrum X, let X� = i∗HX denote its restriction as an H-spectrum. Then we have
NGHX

� = X(|G/H|) and the multiplication on X gives us a map from this smash product to X. This gives us a map
π⋆X� → π⋆X called the internal norm, which we denote abusively by NGH . The argument above yields the
following.

Corollary 4.8 (The internal norm of a differential). With notation as above, suppose we have a differential
dr(x) = y for x ∈ Es,⋆r X�(H/H). Then

d|G/H|(r−1)+1(aρNGHx) = N
G
Hy ∈ E

|G/H|(s+r),⋆
|G/H|(r−1)+1X(G/G).

The following is useful in making such calculations. It is very similar to [6, Lemma 3.13].

Lemma 4.9 (The norm of aV and uV ). With notation as above, let V be a representation of H with VH = 0 and
letW = IndGHV . Then NGH(aV ) = aW . If V is oriented (and hence even-dimensional, making |V|ρ oriented), then

u|V|ρN(uV ) = uW .
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Proof. The element aV is represented by the map S0 → SV , the inclusion of the fixed point set. Applying the
norm functor to this map gives

S0 = NGHS
0 → NGHS

V = SW ,
which is aW .

When V is oriented, uV is represented by a map S|V| → SV ∧ HZ. Applying the norm functor and using
the multiplication in HZ leads to a map

S|V|ρ = NGHS
|V| NGHuVÚÚÚÚ→ SW ∧ HZ.

Now smash both sides with HZ, precompose with u|V|ρ and follow with the multiplication on HZ, giving

S|V||ρ|
u|V|ρ

// S|V|ρ ∧ HZ
NGHuV∧HZ

// SW ∧ HZ ∧ HZ // SW ∧ HZ,

which is uW since |W| = |V||ρ|.

5 Some Mackey functors for C4 and C2
Weneed some notation forMackey functors to be used in spectral sequence charts. In this paper, when a cyclic
group or subgroup appears as an index, we will often replace it by its order.We can specify Mackey functorsM
for the group C2 and N for C4 by means of Lewis diagrams (first introduced in [8]),

M(C2/C2)

res21
��

M(C2/e)

tr21

TT

and N(C4/C4)

res42
��

N(C4/C2)

res21
��

tr42

TT

N(C4/e).

tr21

TT

(5.1)

We omit Lewis’ looped arrow indicating the Weyl group action on M(G/H) for proper subgroups H. This
notation is prohibitively cumbersome in spectral sequence charts, so we will abbreviate specific examples
by more concise symbols. These are shown in Tables 1 and 2. Admittedly some of these symbols are arbitrary
and take some getting used to, but we have to start somewhere. Lewis denotes the fixed point Mackey func-
tor for a ZG-module M by R(M). He abbreviates R(Z)and R(Z−) by R and R−. He also defines (with similar
abbreviations) the orbit group Mackey functor L(M) by

L(M)(G/H) = M/H.

In this case each transfer map is the surjection of the orbit space for a smaller subgroup onto that of a larger
one. The functors R and L are the left and right adjoints of the forgetful functor M Ü→ M(G/e) from Mackey
functors to ZG-modules.

Over C2 we have short exact sequences

0 // // ◻ // ∙ // 0,

0 // ∙ // ◻̇ // ◻ // 0,

0 // ◻ // ◻̂ // ◻ // 0.

We can apply the induction functor to each them to get a short exact sequence of Mackey functors over C4.
Five of theMackey functors in Table 2 are fixedpointMackey functors (3.1),meaning they are fixedpoints

of an underlying Z[G]-module M, such as Z[G] or

Z = Z[G]/(γ − 1), Z[G/G�] = Z[G]/(γ2 − 1),
Z− = Z[G]/(γ + 1), Z[G/G�]− = Z[G]/(γ2 + 1).
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Symbol ◻ ◻ ∙ ◻̇ ◻̂
Lewis diagram Z

1
��

Z
2
XX

0

��

Z−

XX
Z/2

��

0

VV
Z

2
��

Z
1
XX

Z/2
0
��

Z−

1
VV

Z
∆
��

Z[C2]

∇

XX

Lewis symbol R R− ⟨Z/2⟩ L L− R(Z2)

Table 1. Some C2-Mackey functors.

2 = Z 2̂ = Z[G/G′] 2 = Z− ◦ ̂̂2 = Z[G] ̂̇2
Z

1
��
Z

1
��

2

WW

Z

2

WW

Z

∆ ��
Z[G/G′]

1
��

∇

W W

Z[G/G′]

2

UU

0

��
Z−

1
��

WW

Z−

2

UU

Z/4

1
��
Z/2

��

2

UU

0

UU

Z

∆ ��
Z[G/G′]

∆
��

∇

WW

Z[G]

∇
UU

Z/2

∆
��

Z/2[G/G′]

0
��

∇
UU

Z[G/G′]−

1

UU

2̇ = Z(G, e) H N 2̂
Z/2

0 ��
Z−

1

UU

1 ��
Z−

2

UU

Z

2 � �
Z

2 � �

1

WW

Z

1

WW

Z/2

0
��
Z/2

1

UU

��
0

UU

Z/2

1
� �
Z/2

0

UU

��
0

UU

0

��
0

��

WW

Z[G/G′]−

WW

0

0 ��
Z/2

0 ��

0

WW

Z[G/G′]−

∇
UU

= Z(G,G′) • • ̂̇2
Z/2

0 ��
Z/2

0 ��

1

UU

Z[G/G′]−

∇
UU

Z

2 � �
Z

1 � �

1

WW

Z

2

WW

Z/2

��
0

��

UU

0

WW

0

��
Z/2

� �

WW

0

UU

Z/2

1 ��
Z/2

0 ��

0

U U

Z[G/G′]−

∇
U U

Z/2

∆ ��
Z/2[G/G′]

0 ��

∇
UU

Z[G/G′]−

1

UU

̂ ˙ •̂
0

��
Z−

2 ��

WW

Z−

1

UU

Z

∆ ��
Z[G/G′]

2 ��

∇
WW

Z[G/G′]

1

UU

Z

1 ��
Z

2 ��

2

WW

Z

1

W W

Z/2

0 ��
Z−

1

UU

2 ��
Z−

1

UU

Z/4

1 ��
Z/2

0 ��

2

U U

Z[G/G′]−

∇
U U

Z/2

∆ ��
Z/2[G/G′]

��

∇
UU

0

U U

Z/2 1
0


� �

Z/2⊕ Z−[
0 2

]
��

[
1 0

]UU

Z−

 1
1

UU

Z/4 1
0


��

Z/2⊕ Z−[
0 2

]
��

[
2 2

]XX

Z−

 0
1

XX

Table 2. Some C4-Mackey functors, where G = C4 and G� is its index 2 subgroup. The notation Z(G, H) is defined in
Proposition 3.3 (i).
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We will use the following notational conventions for C4-Mackey functors.
(i) Given a C2-Mackey functor M with Lewis diagram

A
α
��

B

β

VV

with A and B cyclic, wewill use the symbolsM,M and Ṁ for the C4-Mackey functorswith Lewis diagrams

A
α
��

B

β

VV

1
��

B,

2

VV

0

��

A−

α
��

VV

B−

β

VV
and

Z/2

0
��

A−

α
��

τ

UU

B−

β

VV

where a generator γ ∈ C4 acts via multiplication by −1 on A and B in the second two, and the transfer τ
is nontrivial.

(ii) For a C2-Mackey functorMwewill denote ↑42 M (see Definition 2.6) by M̂. For aMackey functorM defined
over the trivial group, we will denote ↑21 M and ↑41 M by M̂ and ̂̂M.
Over C4, in addition to the short exact sequences induced up from C2, we have

0 // ∙ // ◻̇ // ◻ // 0,

0 // ë // ∘ // ∙ // 0,

0 // ë // // ◻̂ // 0,

0 // ∙ // ∘ // ê // 0,

0 // // ◻ // ∘ // 0,

0 // // ◻ // ∙ // 0.

(5.2)

Definition 5.3 (A C4-enriched C2-Mackey functor). For a C2-Mackey functor M as above, M̃ will denote the
C2-Mackey functor enriched over Z[C4] defined by

M̃(S) = Z[C4] ⊗Z[C2] M(S)

for a finite C2-set S. Equivalently, in the notation of Definition 2.6, M̃ =↓42↑
4
2 M.

6 Some chain complexes of Mackey functors
As noted above, a G-CW complex X, meaning one built out of cells of the form G+ ∧H en, has a reduced
cellular chain complex of Z[G]-modules C∗X, leading to a chain complex of fixed point Mackey functors
(see (3.1)) C∗X. When X = SV for a representation V, we will denote this complex by CV∗ ; see (3.2). Its homol-
ogy is the graded Mackey functor H∗X. Here we will apply the methods of Section 3 to three examples.

Example (i). Let G = C2 with generator γ, and X = Snρ for n > 0, where ρ denotes the regular representation.
We have seen before [6, Example 3.7] that it has a reduced cellular chain complex C with

Cnρ2i =
{{{
{{{
{

Z[G]/(γ − 1) for i = n,
Z[G] for n < i ≤ 2n,
0 otherwise.

(6.1)
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Let c(n)i denote a generator of Cnρ2i . The boundary operator d is given by

d(c(n)i+1) =
{{{
{{{
{

c(n)i for i = n,
γi+1−n(c(n)i ) for n < i ≤ 2n,
0 otherwise,

(6.2)

where γi = 1 − (−1)iγ. For future reference, let

ϵi = 1 − (−1)i =
{
{
{

0 for i even,
2 for i odd.

This chain complex has the form

n n + 1 n + 2 n + 3 2n

◻ ◻̂∇
oo ◻̂

γ2
oo ◻̂

γ3
oo ⋅ ⋅ ⋅oo ◻̂

γn
oo

Z
1
��

Z
∆
��

2
oo Z

∆
��

0
oo Z

∆
��

2
oo ⋅ ⋅ ⋅oo Z

∆
��

ϵn
oo

Z
2
VV

Z[G]
∇
VV

∇
oo Z[G]

∇
VV

γ2
oo Z[G]

∇
VV

γ3
oo ⋅ ⋅ ⋅oo Z[G].

∇
VV

γn
oo

Passing to homology we get

n n + 1 n + 2 n + 3 2n

∙ 0 ∙ 0 ⋅ ⋅ ⋅ H2n

Z/2

��

0

��

Z/2

��

0

��

⋅ ⋅ ⋅ H2n(G/G)

∆
��

0

UU

0

VV

0

UU

0

VV

⋅ ⋅ ⋅ Z[G]/(γn+1),
∇
TT

where

H2n(G/G) =
{
{
{

Z for n even,
0 for n odd,

and H2n =
{
{
{

◻ for n even,
◻ for n odd.

Here ◻ and ◻ are fixed point Mackey functors but ∙ is not.
Similar calculations can bemade for Snρ2 for n < 0. The results are indicated in Figure 2. This is originally

due to unpublished work of Stong and is reported in [8, Theorem 2.1 and Table 2.2]. This information will be
used in Section 8.

In other words the RO(G)-graded Mackey functor valued homotopy of HZ is as follows. For n ≥ −1 we
have

πiΣ
nρ2HZ = πi−nρ2HZ =

{{{{{{
{{{{{{
{

◻ for n even and i = 2n,
◻ for n odd and i = 2n,
∙ for n ≤ i < 2n and i + n even,
0 otherwise.

For n ≤ −2 we have

πiΣ
nρ2HZ = πi−nρ2HZ =

{{{{{{
{{{{{{
{

for n even and i = 2n,
◻̇ for n odd and i = 2n,
∙ for 2n < i ≤ n − 3 and i + n odd,
0 otherwise.

Brought to you by | University of Rochester
Authenticated

Download Date | 5/3/17 6:59 PM



M.A. Hill et al., The slice spectral sequence for the C4 analog of real K-theory | 405

−16 −12 −8 −4 0 4 8 12 16
−8

−4

0

4

8

22 2 2 2 22̇ 2̇ 2̇ 2 2 2 2

Figure 2. The (collapsing) Mackey functor slice spectral sequence for⋁n∈Z Σnρ2HZ. The symbols are defined in Table 1. When
the Mackey functor π(2−ρ2)n−sHZ = H2n−sSnρ2 is nontrivial, it is shown at (2n − s, s) in the chart. Compare with Figure 7.

We can use Definition 3.4 to name some elements of these groups.
Note that HZ is a commutative ring spectrum, so there is a commutative multiplication in π⋆HZ, making

it a commutative RO(G)-gradedGreen functor. For such a functorM on a general groupG, the restrictionmaps
are a ring homomorphisms while the transfer maps satisfy the Frobenius relations (2.4).

Then the generators of various groups in π⋆HZ are
∙ (4m − 2)-slices for m > 0:

a2m−1−2iui = a(2m−1−2i)σu2iσ ∈ π2m−1+2iΣ
(2m−1)ρ2HZ(G/G) = π2i−(2m−1)σHZ(G/G) for 0 ≤ i < m,

x2m−1 = u(2m−1)σ ∈ π4m−2Σ
(2m−1)ρ2HZ(G/{e}) = π(2m−1)(1−σ)HZ(G/{e}) with γ(x) = −x.

∙ 4m-slices for m > 0:

a2m−2iui = a(2m−2i)σu2iσ ∈ π2m−1+2iΣ
(2m−1)ρ2HZ(G/G) = π2i−(2m−1)σHZ(G/G) for 0 ≤ i ≤ m

and with res(u) = x2.
∙ negative slices:

zn = e2nρ2 ∈ π−4nΣ
−2nρ2HZ(G/{e}) = π2n(σ−1)HZ(G/{e}) for n > 0,

a−i tr(x−2n−1) ∈ π−4n−2−iΣ
−(2n+1+i)ρ2HZ(G/G) = π(2n+1)(σ−1)+iσHZ(G/G) for n > 0 and i ≥ 0.

We have relations
2a = 0, res(a) = 0,

zn = x−2n , tr(xn) =
{{{
{{{
{

2un/2 for n even and n ≥ 0,
tr(z−n/2) for n even and n < 0,
0 for n odd and n > −3.

Example (ii). Let G = C4 with generator γ, G� = C2 ⊆ G, the subgroup generated by γ2, and

Ŝ(n, G�) = G+ ∧G� Snρ2 .

Thus we have
C∗(Ŝ(n, G�)) = Z[G] ⊗Z[G�] C

nρ2
∗

with Cnρ2∗ as in (6.1). The calculations of the previous example carry over verbatimby the exactness ofMackey
functor induction of Definition 2.6.
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˙ ˙ ˙
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◦

◦

◦

◦
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◦

•

•

•

•

•

•

•

•

•

•

•

•

2 2 2 22 2 2
• • •◦ ◦ ◦

◦ ◦ ◦• • •
◦ ◦• • •

◦ ◦ ◦• •
• •◦ ◦

◦ ◦• •
• •◦

◦ ◦•

Figure 3. The Mackey functor slice spectral sequence for⋁n∈Z Σnρ4HZ. The symbols are defined in Table 2. The Mackey functor
at position (4n − s, s) is πn(4−ρ4)−sHZ = H4n−sSnρ4 .

Example (iii). Let G = C4 and X = Snρ4 . Then the reduced cellular chain complex (3.2) has the form

Cnρ4i =

{{{{{{
{{{{{{
{

Z for i = n,
Z[G/G�] for n < i ≤ 2n,
Z[G] for 2n < i ≤ 4n,
0 otherwise,

in which generators c(n)i ∈ Cnρ4i satisfy

d(c(n)i+1) =

{{{{{{{{{
{{{{{{{{{
{

c(n)i for i = n,
γi+1−nc(n)i for n < i ≤ 2n,
μi+1−nc(n)i for 2n < i < 4n and i even,
γi+1−nc(n)i for 2n < i < 4n and i odd,
0 otherwise,

where
μi = γi(1 + γ2) = (1 − (−1)iγ)(1 + γ2).

The values of H∗Snρ4 are illustrated in Figure 3. The Mackey functors in filtration 0 (the horizontal axis)
are the ones described in Proposition 3.3.

As in (i), we name some of these elements. Let G = C4 and G� = C2 ⊆ G. Recall that the regular represen-
tation ρ4 is 1 + σ + λ where σ is the sign representation and λ is the 2-dimensional representation given by
a rotation of order 4.

Note that while Figure 2 shows all of π⋆HZ for G = C2, Figure 3 shows only a bigraded portion of this tri-
gradedMackey functor forG = C4, namely the groups forwhich the index differs by an integer fromamultiple
of ρ4. We will need to refer to some elements not shown in the latter chart, namely

aσ ∈ H0S
σ(G/G), aλ ∈ H0S

λ(G/G), aλ = res42(aλ),
u2σ ∈ H2S

2σ(G/G)), uσ ∈ H1S
σ(G/G�), uσ = res21(uσ),

uλ ∈ H2S
λ(G/G), uλ = res42(uλ), uλ = res41(uλ),

}}}
}}}
}

(6.3)
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subject to the relations

2aσ = 0, res42(aσ) = 0,
4aλ = 0, 2aλ = 0, res41(aλ) = 0,

res42(u2σ) = u
2
σ , a2σuλ = 2aλu2σ (gold relation);

}}}
}}}
}

(6.4)

see Definition 3.4 and Lemma 3.6.
We will denote the generator of Es,t2 (G/H) (when it is nontrivial) by xt−s,s, yt−s,s and zt−s,s for H = G, G�

and {e} respectively. Then the generators for the groups in the 4-slice are

y4,0 = uρ4 = uσ res42(uλ) ∈ π4Σ
ρ4HZ(G/G�) = π3−σ−λHZ(G/G

�) with γ(x4,0) = −x4,0,
x3,1 = aσuλ ∈ π3Σ

ρ4HZ(G/G) = π2−σ−λHZ(G/G),
y2,2 = res42(aλ)uσ ∈ π2Σ

ρ4HZ(G/G�) = π1−σ−λHZ(G/G
�),

x1,3 = aρ4 = aσaλ ∈ π1Σ
ρ4HZ(G/G) = π−σ−λHZ(G/G)

and the ones for the 8-slice are

x8,0 = u2λ+2σ = u2ρ4 ∈ π8Σ
2ρ4HZ(G/G) = π6−2σ−2λHZ(G/G) with y24,0 = y8,0 = res42(x8,0),

x6,2 = aλuλ+2σ ∈ π6Σ
2ρ4HZ(G/G) = π4−2σ−2λHZ(G/G) with x23,1 = 2x6,2, y4,0y2,2 = y6,2 = res42(x6,2),

x4,4 = a2λu2σ ∈ π4Σ
2ρ4HZ(G/G) = π2−2σ−2λHZ(G/G) with y22,2 = y4,4 = res42(x4,4), x1,3x3,1 = 2x4,4,

x2,6 = x21,3 ∈ π2Σ
2ρ4HZ(G/G) = π−2σ−2λHZ(G/G).

These elements and their restrictions generate π∗Σmρ4HZ form = 1 and 2. Form > 2 the groups are gen-
erated by products of these elements.

The element
z4,0 = res21(y4,0) = res21(uρ4 ) ∈ π4Σ

ρ4HZ(G/{e})
is invertible with γ(y4,0) = −y4,0, z24,0 = z8,0 = res41(x8,0) and

z−4m,0 := z−m4,0 = emρ4 ∈ π−4mΣ
−mρ4HZ(G/{e}) for m > 0,

where emρ4 is as in Definition 3.4. These elements and their transfers generate the groups in

π−4mΣ
−mρ4HZ for m > 0.

Theorem 6.5 (Divisibilities in the negative regular slices for C4). There are the following infinite divisibilities
in the third quadrant of the spectral sequence in Figure 3.
(i) x−4,0 = tr41(z−4,0) is divisible by any monomial in x1,3 and x4,4, meaning that

xi1,3x
j
4,4x−4−4j−i,−4j−3k = x−4,0 for i, j ≥ 0.

Moreover, no other basis element killed by x3,1 and x4,4 has this property.
(ii) x−4,0, and x−7,−1 are divisible by anymonomial in x4,4, x6,2 and x8,0, subject to the relation x26,2 = x8,0x4,4.

Note here that x23,1 = 2x6,2. Moreover, no other basis element killed by x4,4, x6,2 and x8,0 has this property.
(iii) y−7,−1 = res42(x−7,−1) is divisible by any monomial in y2,2 and y4,0, meaning that

yj2,2y
k
4,0y−7−2j−4k,−1−2j = y−7,−1 for j, k ≥ 0.

Moreover, no other basis element killed by y2,2,and y4,0 has this property.

We will prove Theorem 6.5 as a corollary of a more general statement (Lemma 6.11 and Corollary 6.13) in
which we consider all representations of the form mλ + nσ for m, n ≥ 0. Let

R = ⨁
m,n≥0

H∗S
mλ+nσ .

It is generated by the elements of (6.3) subject to the relations of (6.4).
In the larger ring

R̃ = ⨁
m,n∈Z
mn≥0

H∗S
mλ+nσ ,
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the elements uσ, uσ and uλ are invertible with

eσ = u−1σ ∈ H−1S
−σ(G/G�), eλ = u

−1
λ ∈ H−2S

−λ(G/e).

Define spectra Lm and Kn to be the cofibers of amλ and anσ. Thus we have cofiber sequences

Σ−1Lm
cmλ
// S0 amλ

// Smλ bmλ
// Lm ,

Σ−1Kn
cnσ
// S0 anσ

// Snσ bnσ
// Kn .

Dualizing gives

DLm
Dbmλ

// S−mλ Damλ
// S0 Dcmλ

// ΣDLm ,

DKn
Dbnσ

// S−nσ Danσ
// S0 Dcnσ

// ΣDKn .

The maps Damλ and Danσ are the same as desuspensions of amλ and anσ, which implies that

DLm = Σ−1−mλLm and DKn = Σ−1−nσKn .

Inspection of the cellular chain complexes for Lm and Kn and certain of their suspensions reveals that

Σ2−λLm ∧ HZ = Lm ∧ HZ = Σ2−2σLm ∧ HZ

and
Σ2−2σKn ∧ HZ = Kn ∧ HZ,

while Σ1−σ alters both Lm ∧ HZ and Kn ∧ HZ. We will denote Σk(1−σ)Lm ∧ HZ by L(−1)
k

m ∧ HZ and similarly
for Kn.

The homology groups of L±m and K±
m for m, n > 0 are indicated in Figures 4 and 5, and those for Smλ

and Snσ are shown in Figure6.
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Figure 4. Charts for HiL
±
m. The horizontal coordinate is i and the vertical one is m; Lm is on the left and L−m is on the right.
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Figure 5. Charts for HiK
±
n . The horizontal coordinate is i and the vertical one is n; Kn is on the left and K−

n is on the right.
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Figure 6. Charts for HiSmλ and HiSnσ . The horizontal coordinates are i and the vertical ones are m and n; Smλ is on the left and
Snσ is on the right.

In the followingdiagramswewill use the samenotation for amapand its smashproductwith any identity
map. Let V = mλ + nσwithm, n > 0, and let RV denote the fiber of aV . Since aV is self-dual up to suspension,
we have DRV = Σ−1−VRV . In the following each row and column is a cofiber sequence:

Σnσ−1Lm

cmλ
��

Σnσ−1Lm

��

Σ−1Kn
cnσ
//

��

S0 anσ
// Snσ bnσ

//

amλ
��

Kn

��

Σ−1RV
cV
// S0 aV

// SV bV
//

bmλ
��

RV

��

ΣnσLm ΣnσLm.

(6.6)

The homology sequence for the third column is the easiest way to compute H∗SV . That column is

Σnσ−1Lm
cmλ
// Snσ amλ

// SV bmλ
// ΣnσLm, (6.7)

which dualizes to
Σ1−nσDLm S−nσcmλ

oo S−Vamλ
oo Σ−nσDLm

cmλ
oo

Σ−VLm Σ−1−VLm
or

Σ−1−VLm
cmλ
// S−V amλ

// S−nσ bmλ
// Σ−VLm. (6.8)

For (6.7) the long exact sequence in homology includes

H i+1−nL
(−1)n
m

cmλ
// H iSnσ

amλ
// H iSV

bmλ
// H i−nL

(−1)n
m

cmλ
// H i−1Snσ.

Divisibility by aλ. Multiplication by aλ leads to

H i+1−nL
(−1)n
m

cmλ
//

a�λ
��

H iSnσ
amλ
// H iSV

bmλ
//

aλ
��

H i−nL
(−1)n
m

cmλ
//

a�λ
��

H i−1Snσ

H i+1−nL
(−1)n
m�

cm�λ
// H iSnσ

am�λ
// H iSV+λ

bm�λ
// H i−nL

(−1)n
m�

cm�λ
// H i−1Snσ,

where m� = m + 1 and a�λ is induced by the inclusion Lm → Lm� .
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In the dual case we get

H i+1S−nσ
b
// H i+1+|V|L

(−1)n
m

c
// H iS−V

a
// H iS−nσ

b
// H i+|V|L

(−1)n
m

H i+1S−nσ
b
// H i+3+|V|L

(−1)n
m�

c
//

Da�λ

OO

H iS−V−λ
a
//

aλ

OO

H iS−nσ
b
// H i+2+|V|L

(−1)n
m� .

Da�λ

OO

(6.9)

Here the subscripts on the horizontal maps (mλ in the top row andm�λ in the bottom row) have been omitted
to save space. The five lemma implies that themiddle vertical map is onto when the left hand Da�λ is onto and
the right hand one is one-to-one. The left version of Da�λ is onto in every case except i = −|V| and the right
version of it is one-to-one in all cases except i = −|V| and i = −1 − |V|. This is illustrated for small m in the
following diagram in which trivial Mackey functors are indicated by blank spaces.

j H jL1 H jL2 H jL3 H jL4 H jL
−
1 H jL

−
2 H jL

−
3 H jL

−
4

−1
0
1

bb bb bb

̇ ̇

bb

̇

bb

̇

bb

2 ◻ ∘

aa

∘

aa

∘

aa

◻ ∙

bb

∙

bb

∙

bb

3 ∙

bb

∙

bb

∙

bb

4 ◻ ∘ ∘ ◻ ∙ ∙
5 ∙ ∙
6 ◻ ∘ ◻ ∙
7 ∙
8 ◻ ◻

It follows that the map aλ in (6.9) is onto for all i except −|V|. This is a divisibility result. Note that aλ is trivial
on H∗X(G/e) for any X since res41(aλ) = 0.

Divisibility by uλ. For uλ multiplication we use the diagram

H i+1S−nσ
b
// H i+1L

(−1)n
m

c
// H iS−V

a
// H iS−nσ

b
// H iL

(−1)n
m

H i−1S−nσ−λ
b
//

uλ

OO

H i+1L
(−1)n
m

c
// H i−2S−V−λ

a
//

uλ

OO

H i−2S−nσ−λ
b
//

uλ

OO

H iL
(−1)n
m .

(6.10)

The rightmost uλ is onto in all cases except i = −n and n even. This is illustrated for n = 6and7 in the following
diagram.

j −1 −2 −3 −4 −5 −6 −7 −8 −9

H jS−6σ ∙ ∙

H jS−6σ−λ ∙

ii

∙ ∘

ii ii

H jS−7σ ∙ ∙ ̇

H jS−7σ−λ ∙

ii

∙ ∙ ̇

Thus the central uλ in (6.10) fails to be onto only in when i = −n and n is even.

Divisibility by aσ. The corresponding diagram is

H i+1S−nσ
b
// H i+1+|V|L

(−1)n
m

c
// H iS−V

a
// H iS−nσ

b
// H i+|V|L

(−1)n
m

H i+1S−n
�σ b

//

aσ

OO

H i+2+|V|L
(−1)n�
m

c
//

aσ

OO

H iS−V−σ
a
//

aσ

OO

H iS−n
�σ b

//

aσ

OO

H i+1+|V|L
(−1)n�
m .

aσ

OO
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Here we have abbreviated n + 1 by n�. Since res42(aσ) = 0, the map aσ must vanish on H∗X(G/G�) and
H∗X(G/e). It can be nontrivial only on G/G.

By Lemma 4.2, the image of aσ is the kernel of the restriction map u−1σ res42 and the kernel of aσ is the
image of the transfer tr42. From Figure 6 we see that res42 kills H iS−nσ(G/G) except the case i = −n for even n.
From Figure 4 we see that it kills H jL−m(G/G) for all j and H jLm(G/G) for odd j > 1, but not the generators
for j = 1 nor the ones for even values of j from 2 to 2m. The transfer has nontrivial image inH jL−m only for j = 1
and in H jLm only for j = 1 and for even j from 2 to 2m.

It follows that for odd n, each element of H iS−V (G/G) is divisible by aσ except when i = −|V| = −2m − n.
For even n it is onto except when i = −n, i = −n − 2m, and i odd from 1 − n − 2m to −1 − n.

Divisibility by u2σ. For u2σ multiplication, the diagram is

H i+1S−nσ
b
// H i+1L

(−1)n
m

c
// H iS−V

a
// H iS−nσ

b
// H iL

(−1)n
m

H i−1S−(n+2)σ
b
//

u2σ

OO

H i+1L
(−1)n
m

c
// H i−2S−V−2σ

a
//

u2σ

OO

H i−2S−(n+2)σ
b
//

u2σ

OO

H iL
(−1)n
m .

The rightmost u2σ is onto in all cases, so every element in H∗S−V is divisible by u2σ.
The arguments above prove the following.

Lemma 6.11 (RO(G)-graded divisibility). Let G = C4 and V = mλ + nσ for m, n ≥ 0.
(i) Each element in H iS−V (G/G) or H iS−V (G/G�) is divisible by aλ or aλ except when i = −|V|.
(ii) Each element in H iS−V (G/H) is divisible by a suitable restriction of uλ except when i = −n for even n.
(iii) Each element in H iS−V (G/G) for odd n is divisible by aσ except when i = −|V|. For even n it is divisible by aσ

except when i = −n, i = −|V| and i is odd from i = 1 − |V| to −1 − n.
(iv) Each element in H iS−V (G/H) is divisible by a u2σ, uσ or uσ.

In Theorem 6.5 we are looking for divisibility by

x1,3 = aσaλ ∈ H0S
σ+λ(G/G) = H1S

ρ(G/G),
x4,4 = a2λu2σ ∈ H2S

2λ+2σ(G/G) = H4S
2ρ(G/G),

y2,2 = aλuσ ∈ H1S
1λ+1σ(G/G�) = H2S

ρ(G/G),
x6,2 = aλu2σuλ ∈ H4S

2λ+2σ(G/G) = H6S
2ρ(G/G),

x8,0 = u2σu2λ ∈ H6S
2λ+2σ(G/G) = H8S

2ρ(G/G),
y4,0 = uσuλ ∈ H3S

λ+σ(G/G�) = H4S
ρ(G/G�).

}}}}}}}}}}}}
}}}}}}}}}}}}
}

(6.12)

In view of Lemma 6.11 (iv), we can ignore the factors u2σ and uσ when analyzing such divisibility.

Corollary 6.13 (Infinite divisibility by the divisors of (6.12)). Let

V = mλ + nσ for m, n ≥ 0.

Then the following hold:
∙ Each element of H iS−V (G/G) is infinitely divisible by x1,3 = aσaλ for i > −n when n is even and for i ≥ −n

when n is odd.
∙ Each element of H iS−V (G/G) is infinitely divisible by x4,4 = a2λu2σ for i > −|V|.
∙ Each element of H iS−V (G/G�) is infinitely divisible by y2,2 = aλuσ for i > −|V|.
∙ Each element of H iS−V (G/G) is infinitely divisible by x6,2 = aλu2σuλ for i > −|V| when n is odd and

for −|V| < i < −n when n is even.
∙ Each element of H iS−V (G/G) is infinitely divisible by x8,0 = u2σu2λ for i < −n when n is even and for all i

when n is odd.
∙ Each element of H iS−V (G/G�) is infinitely divisible by y4,0 = uσuλ for i < −n when n is even and for all i

when n is odd.

This implies Theorem 6.5.
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7 The spectra kR and k[2]
Before defining our spectrum we need to recall some definitions and formulas from [6]. Let H ⊂ G be finite
groups. In [6, Section 2.2.3] we define a norm functor NGH from the category of H-spectra to that of G-spectra.
Roughly speaking, for an H-spectrum X, NGHX is the G-spectrum underlain by the smash power X(|G/H|) with
G permuting the factors and H leaving each one invariant. When G is cyclic, we will denote the orders of G
and H by g and h, and the norm functor by Ngh .

There is a C2-spectrumMUℝ underlain by the complex cobordism spectrumMUwith group action given
by complex conjugation. Its construction is spelled out in [6, Section B.12]. For a finite cyclic 2-group G we
define

MU((G)) = Ng2MUℝ.

Choose a generator γ of G. In [6, (5.47)] we defined generators

rk = rGk ∈ πC2kρ2 i
∗
C2MU

((G))(C2/C2) ≅ πC2 ,kρ2MU
((G))(G/G) (7.1)

(note that this group is a module over G/C2) and

rk = r21(rk) ∈ π
u
{e},2kMU

((G))(G/G) ≅ π{e}2kMU
((G))({e}/{e}) = πu2kMU

((G)).

TheHurewicz images of the rk (forwhichweuse the samenotation) are defined in terms of the coefficients
(see Definition 2.7)

mk ∈ πC2kρ2HZ(2) ∧MU((G))(C2/C2) = πC2 ,kρ2HZ(2) ∧MU((G))(G/G)

of the logarithm of the formal group law F associated with the left unit map fromMU to MU((G)). The formula
is

∑
k≥0

rkxk+1 = (x + ∑
ℓ>0

γ(m2ℓ−1)x2
ℓ
)
−1

∘ logF(x),

where

logF(x) = x + ∑
k>0

mkxk+1.

For small k we have

r1 = (1 − γ)(m1),
r2 = m2 − 2γ(m1)(1 − γ)(m1),

r3 = (1 − γ)(m3) − γ(m1)(5γ(m1)2 − 6γ(m1)m1 + m2
1 + 2m2).

Now let G = C2 or C4 and, in the latter case G� = C2 ⊆ G. The generators rGk are the rk defined above. We
also have elements rG

�

k defined by similar formulas with γ replaced by γ2; recall that γ2(mk) = (−1)kmk. They
are the images of similar generators of

πC2kρ2MU
((G�))(C2/C2) ≅ πC2 ,kρ2MU

((G�))(G�/G�)

under the left unit map

MU((G�)) → MU((G�)) ∧MU((G�)) ≅ i∗G�MU((G)).

Thus we have

rG
�

1 = 2m1,

rG
�

2 = m2 + 4m2
1,

rG
�

3 = 2m3 + 2m1m2 + 12m3
1.
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If we set r2 = 0 and r3 = 0, we get

rG
�

1 = r1,0 + r1,1,

rG
�

2 = 3r1,0r1,1 + r21,1,

rG
�

3 = 5r21,0r1,1 + 5r1,0r21,1 + r
3
1,1 = r1,1(5r21,0 + 5r1,0r1,1 + r21,1),

γ(rG
�

3 ) = −r1,0(5r21,1 − 5r1,0r1,1 + r21,0),

−rG
�

3 γ(r
G�

3 )/r1,0r1,1 = (5r21,1 − 5r1,0r1,1 + r21,0)(r
2
1,1 + 5r1,0r1,1 + 5r21,0)

= (5r41,0 − 20r31,0r1,1 + r
2
1,0r

2
1,1 + 20r1,0r31,1 + 5r41,1)

= (5(r21,0 − r
2
1,1)

2 − 20r1,0r1,1(r21,0 − r
2
1,1) + 11(r1,0r1,1)2),

}}}}}}}}}}}}}}}}}
}}}}}}}}}}}}}}}}}
}

(7.2)

where r1,0 = r1 and r1,1 = γ(r1).

Definition 7.3 (kR, KR, k[2] and K[2]). The C2-spectrum kℝ (connective real K-theory), is the spectrum ob-
tained fromMUℝ by killing the rns for n ≥ 2. Its periodic counterpart KR is the telescope obtained from kR by
inverting r1 ∈ πρ2kR(C2/C2).

The C4-spectrum k[2] is obtained fromMU((C4)) bykilling the rns and their conjugates for n ≥ 2. Its periodic
counterpartK[2] is the telescope obtained from k[2] by inverting a certain elementD ∈ π4ρ4k[2](C4/C4)defined
below in (9.3) and Table 3.

The image of D in πC28ρ2k[2](C2/C2) ≅ πC2 ,8ρ2k[2](C4/C4) is

r42(D) = r1,0r1,1r
G�

3 γ(r
G�

3 )

= r21,0r
2
1,1(−5r

4
1,0 + 20r31,0r1,1 − r

2
1,0r

2
1,1 − 20r1,0r31,1 − 5r41,1)

= −r21,0r
2
1,1(5(r

2
1,0 − r

2
1,1)

2 − 20r1,0r1,1(r21,0 − r
2
1,1) + 11(r1,0r1,1)2). (7.4)

It is fixed by the action of G/G�, while its factors r1,0r1,1 and rG
�

3 γ(r
G�

3 ) are each negated by the action of
the generator γ.

We remark that while MU((C4)) is MUℝ ∧MUℝ as a C2-spectrum, k[2] is not kℝ ∧ kℝ as a C2-spectrum. The
former has torsion free underlying homotopy but the latter does not.

8 The slice spectral sequence for KR

In this section we describe the slice spectral sequence for KR. These results are originally due to Dugger [4],
to which we refer for many of the proofs. This case is far simpler than that of K[2], but it is very instructive.

Theorem 8.1 (The slice E2-terms for KR and kR). The slices of KR are

PttKR =
{
{
{

Σ(t/2)ρ2HZ for t even,
∗ otherwise.

For kR they are the same in nonnegative dimensions, and contractible below dimension 0.

Hence we know the integrally graded homotopy groups of these slices by the results of Section 6, and they
are shown in Figure 2. It shows the E2-term for the wedge of all of the slices of KR, and KR itself has the
same E2-term. It turns out that the differentials and Mackey functor extensions are determined by the fact
that π∗KR is 8-periodic, while the E2-term is far from it. This explanation is admittedly circular in that the
proof of the Periodicity Theorem itself of [6, Section 9] relies on the existence of certain differentials described
below in (11.2).

Theorem 8.2 (The slice spectral sequence for KR). The differentials and extensions in the spectral sequence
are as indicated in Figure 7.
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−16 −12 −8 −4 0 4 8 12 16
−8

−4

0

4

8

22 2 2 2 22̇ 2̇ 2̇ 2 2 2 2

Figure 7. The slice spectral sequence for KR. Compare with Figure 2. Exotic transfers and restrictions are indicated respectively
by solid blue and dashed green lines. Differentials are in red.

Proof. There are four phenomena we need to establish:
(i) The differentials in the first quadrant, which are indicated by red lines.
(ii) The differentials in the third quadrant.
(iii) The exotic transfers in the first quadrant, which are indicated by blue lines.
(iv) The exotic restrictions in the third quadrant, which are indicated by dashed green lines.

For (i), note that there is a nontrivial element in E3,62 (G/G), which is part of the 3-stem, but nothing in the
(−5)-stem. This means the former element must be killed by a differential, and the only possibility is the one
indicated. The other differentials in the first quadrant follow from this one and the multiplicative structure.

For (ii), we know that π7KR = 0, so the same must be true of π−9. Hence the element in E−3,−122 cannot
survive, leading to the indicated third quadrant differentials.

For (iii), note that π2 and π−6 must be the same as Mackey functors. This forces the indicated exotic
transfers. For each m ≥ 0 one has a nonsplit short exact sequence of C2 Mackey functors

0 // E2,8m+4
2

// π8m+2KR // E0,8m+2
2

// 0.

∙ ◻̇ ◻

For (iv), note that π−8 and π0must also agree. This forces the indicated exotic restrictions. For eachm < 0
one has a nonsplit short exact sequence

0 // E0,8m2
// π8mKR // E−2,8m−2

2
// 0

◻̇, ∙

as desired.

In order to describe π∗KR as a graded Green functor, meaning a graded Mackey functor with multiplication,
we recall some notation from Section 6 (i) and Definition 3.4. For G = C2 we have elements

a = aσ ∈ π−σHZ(G/G),
u = u2σ ∈ π2−2σHZ(G/G),
x = uσ ∈ π1−σHZ(G/{e}) with x2 = res(u),

zn = e2nρ2 ∈ π2n(σ−1)HZ(G/{e}) for n > 0,

a−i tr(x−2n−1) ∈ π(2n+1)(σ−1)+iσHZ(G/G) for n > 0.

}}}}}}}}}
}}}}}}}}}
}

(8.3)
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Wewill use the same symbols for the representatives of these elements in the slice E2-term. The filtrations
of u, x and zn are zero while that of a is one. It follows that a−i tr(x−2n−1) has filtration −i. The element x is
invertible.

In E∗,∗2 we have relations in

2a = 0, res(a) = 0,

zn = x−2n , tr(xn) =

{{{{{{
{{{{{{
{

2un/2 for n even and n ≥ 0,
tr(z−n/2) ̸= 0 for n even and n < 0,
0 for n odd and n > −3,
̸= 0 for n odd and n ≤ −3.

}}}}}}}}}
}}}}}}}}}
}

(8.4)

Wealsohave the element r1 ∈ π1+σkR(G/G), the image of the element of the samename in r1 ∈ π1+σMUℝ(G/G)
of (7.1). We use the same symbol for its representative E0,1+σ2 (G/G). Thenwe have integrally graded elements

η = a r1 ∈ E1,22 (G/G),

v1 = x ⋅ res(r1) ∈ E0,22 (G/{e}) with γ(v1) = −v1,

ur21 ∈ E0,42 (G/G),

w = 2ur21 ∈ E0,42 (G/G),

b = u2r41 ∈ E0,82 (G/G) with w2 = 4b,

where η and v1 are the images of the elements of the same name in π1S0 and π2k, andw and b are permanent
cycles. The elements x, v1 and b are invertible. Note that for n < 0,

E0,2n2 (G/G) =
{{{
{{{
{

0 for n = 1,
Z generated by tr(v−n1 ) for n even,
Z/2 generated by tr(v−n1 ) for n odd and n < −1,

so each group is killed by η = ar1 by Lemma 4.2.
Then we have

d3(u) = a3r1 by (11.3) below,

d3(ur21) = d3(u)r
2
1 = a3r31 = η3,

so
tr21(x) = a

2r1 by (11.4), raising filtration by 2,
tr21(v1) = η

2.
Thus we get:

Theorem 8.5 (The homotopy of KR as an integrally graded Green functor). With notation as above,

π∗KR(G/{e}) = Z[v±11 ], π∗KR(G/G) = Z[b±1, w, η]/(2η, η3, wη, w2 − 4b)

with

tr(vi1) =

{{{{{{
{{{{{{
{

2bj for i = 4j,
η2bj for i = 4j + 1,
wbj for i = 4j + 2,
0 for i = 4j + 3,

res(b) = v41, res(w) = 2v, res(η) = 0.

For each j < 0, bj has filtration −2 and supports an exotic restriction in the slice spectral sequence as indicated
in Figure 7. Both v1 res(bj) and η2bj have filtration zero, so the transfer relating them is does not raise filtration.

Nowwe will describe the RO(G)-graded slice spectral sequence and homotopy of KR. The former is trigraded
since RO(G) itself is bigraded, being isomorphic as an abelian group to Z ⊕ Z. For each integer k, one can
imagine a chart similar to Figure 7 converging to the graded Mackey functor πkσ+∗KR. Figure 7 itself is the
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one for k = 0. The product of elements in the kth and ℓth charts lies in the (k + ℓ)th chart. We have elements
as in (8.3):

a = aσ ∈ E1,1−σ2 (G/G),

u = u2σ ∈ E0,2−2σ2 (G/G),

x = uσ ∈ E0,1−σ2 (G/{e}) with γ(x) = −1 and x2 = res(u),

zn = x−2n ∈ E0,−2n+2nσ2 (G/{e}) for n > 0,

a−i tr(x−2n−1) ∈ E−i,−i−2n+2nσ2 (G/G) for i ≥ 0 and n > 0,

r1 ∈ E0,1+σ2 (G/G),
where a, x, zn and r1 are permanent cycles, both x and r1 are invertible, and there are relations as in (8.4).
We also know that

d3(u) = a3r1 by (11.3) below, tr21(x) = a
2r1 by (11.4).

Theorem 8.6. The RO(G)-graded slice spectral sequence for KR can be obtained by tensoring that of Figure 7
with Z[r±11 ], that is for any integer k,

Es,t+kσ2 (G/G) ≅ rk1E
s,t−k
2 (G/G) and Es,t+kσ2 (G/{e}) ≅ res(rk1)E

s,t−k
2 (G/{e})

and πt+kσKR has a similar description.

Proof. The element r1 and its restriction are invertible permanent cycles, so multiplication by either induces
an isomorphism in the spectral sequence.

Remark 8.7. In theRO(G)-graded slice spectral sequence for kR onehas d3(u) = r1a3, but a3 itself, and indeed
all higher powers of a, survive to E4 = E∞. Hence the E∞-term of this spectral sequence does not have the
horizontal vanishing line thatwe see in E4-termof Figure 7. Howeverwhenwepass from kR to KR, r1 becomes
invertible and we have

d3(r−11 u) = a3.

We can keep track of the groups in this trigraded spectral sequence with the help of four variable Poincaré
series g(Er(G/G)) ∈ Z[[x, y, z, t]] in which the rank of Es,i+jσr (G/G) is the coefficient in Z[[t]] of xi−syjzs. The
variable t keeps track of powers of two. Thus a copy of the integers is represented by 1/(1 − t) or (when it is
the kernel of a differential of the form Z → Z/2) t/(1 − t). Let

â = y−1z, û = x2y−1 and r̂ = xy. (8.8)

Since E2(G/G) = Z[a, u, r1]/(2a), we have

g(E2(G/G)) = (
1

1 − t
+

â
1 − â)

1
(1 − û)(1 − r̂)

,

g(E4(G/G)) = g(E2(G/G)) −
û + r̂â3

(1 − â)(1 − û2)(1 − r̂)
.

We subtract the indicated expression from g(E2(G/G)) because we have differentials

d3(air
j
1u

2k+1) = ai+3rj+11 u2k for all i, j, k ≥ 0.

Pursuing this further we get

g(E4(G/G)) = (
1

1 − t
+

â
1 − â)

1
(1 − û)(1 − r̂)

−
û

(1 − û2)(1 − r̂)
−

aû + r̂â3

(1 − â)(1 − û2)(1 − r̂)

=
1 + û − û(1 − t)

(1 − t)(1 − û2)(1 − r̂)
+
â(1 + û) − â(û + â2 r̂)
(1 − â)(1 − û2)(1 − r̂)

=
1 + tû

(1 − t)(1 − û2)(1 − r̂)
+

â − â3 + â3 − â3 r̂
(1 − â)(1 − û2)(1 − r̂)

=
1 + tû

(1 − t)(1 − û2)(1 − r̂)
+

â + â2

(1 − û2)(1 − r̂)
+

â3

(1 − â)(1 − û2)
.
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The third term of this expression represents the elements of filtration above two (referred to in Remark 8.7)
which disappear when we pass to KR. The first term represents the elements of filtration zero, which include

1, [2u] ∈ ⟨2, a, a2r1⟩ and [u2] ∈ ⟨a, a2r1a, a2r1⟩. (8.9)

Here we use the notation [2u] and [u2] to indicate the images in E4 of the elements 2u and u2 in E2;
see Remark 4.1 below. The former not divisible by 2 and the latter is not a square since u itself is not present
in E4, where the Massey products are defined. For an introduction to Massey products, we refer the reader
to [9, A1.4].

We nowmake a similar computation where we enlarge E2(G/G) by adjoining r
−1
1 u and denote the result-

ing spectral sequence terms by E�2 and E
�
4.

Let
ŵ = r̂−1û = xy−3.

Then since
E�2(G/G) = Z[a, r−11 u, r1]/(2a),

we have

g(E�2(G/G)) = (
1

1 − t
+

â
1 − â)

1
(1 − ŵ)(1 − r̂)

,

g(E4(G/G)) = g(E2(G/G)) −
ŵ + â3

(1 − â)(1 − ŵ2)(1 − r̂)

= (
1

1 − t
+

â
1 − â)

1
(1 − ŵ)(1 − r̂)

−
ŵ

(1 − ŵ2)(1 − r̂)
−

aŵ + â3

(1 − â)(1 − ŵ2)(1 − r̂)

=
1 + ŵ − ŵ(1 − t)

(1 − t)(1 − ŵ2)(1 − r̂)
+
â(1 + ŵ) − â(ŵ + â2)
(1 − â)(1 − ŵ2)(1 − r̂)

=
1 + tŵ

(1 − t)(1 − ŵ2)(1 − r̂)
+

â + â2

(1 − ŵ2)(1 − r̂)
and there is nothing in E�4with filtration above two. As far aswe know there is nomodification of the spectrum
kR corresponding to this modification of Er. However the map ErkR → ErKR clearly factors through E

�
r

9 Some elements in the homotopy groups of k[2] and K[2]

For G = C4 we will often use a (second) subscript ϵ on elements such as rn to indicate the action of a genera-
tor γ of G = C4, so γ(xϵ) = x1+ϵ and x2+ϵ = ±xϵ. Then we have

πu∗k[2] = π∗k[2](G/{e}) = π{e},∗k[2](G/G) = Z[r1, γ(r1)] = Z[r1,0, r1,1], (9.1)

where γ2(r1,ϵ) = −r1,ϵ. Here we use r1,ϵ and r1,ϵ to denote the images of elements of the same name in the
homotopy of MU((G)).

−2 −1 0 1 2 3 4

0

1

2

uσ u2σ

uσ2 uλ

r1,0 r1,1
t2 t

′
2

d̄1

aσ aσ2 η η′

aλ

(9.2)

Here the vertical coordinate is s and the horizontal coordinate is |t| − s. More information about these
elements can be found in Table 3 below.
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We are using the following notational convention. When x = tr42(y) for some element y ∈ π⋆k[2](G/G�),
we will write x� = tr42(uσy). Examples above include the cases x = η and x = t2. The primes could be iterated,
i.e., we might write x(k) = tr42(ukσy), but this turns out to be unnecessary.

The group action (by G� on r1,ϵ, aσ2 and uσ2 , and by G on all the others) fixes each generator but uσ
and uσ2 . For them the action is given by

uσ oo
γ
// −uσ and uσ2 oo

γ2
// −uσ2

by Theorem 2.13. This is compatible with the following G-action:

r1,0
γ
// r1,1

γ
��

−r1,1

γ

OO

−r1,0,γ
oo

where r1,ϵ = r21(r1,ϵ) ∈ π{e},2k[2](G/G).
Wewill see below (Theorem 11.13) that d5(u2σ) = a3σaλd̄1 and [u22σ] is a permanent cycle. Since all trans-

fers are killed by aσ multiplication (Lemma 4.2), this implies that [u2σx] is a permanent cycle representing
the Toda bracket

[u2σx] = [u2σ tr42(y)] = ⟨x, aσ , a2σaλd̄1⟩.

This element is x�� since in E2 we have (using the Frobenius relation (2.4))

x�� = tr42(u
2
σy) = tr42(res

4
2(u2σ)y) = u2σ tr

4
2(y) = u2σx.

Similarly x��� = u2σx�. For k ≥ 4, x(k) = u22σx(k−4) in π⋆ as well as E2.

The Periodicity Theorem [6, Theorem 9.19] states that inverting a class in π4ρ4k[2](G/G) whose image
under r42 res

4
2 is divisible by r

G�

3,0r
G�

3,1 (see (7.2)) and r1,0r1,1 = rG1,0r
G
1,1 makes u8ρ4 a permanent cycle. One such

class is

D = N4
2(d̄

G
1 )d̄

G�

2 = u−22σ(r
4
2 res

4
2)

−1(rG1,0r
G
1,1r

G�

3,0r
G�

3,1) = d̄21(−5t
2
2 + 20t2d̄1 + 9d̄21) ∈ π4ρ4k[2](G/G), (9.3)

where t2 = tr42(u−1σ [r21,0]) and d̄1 is as in (9.5) below, and K[2] = D−1k[2]. Then we know that Σ32K[2] is equiv-
alent to K[2].

The Slice and Reduction Theorems [6, Theorems 6.1 and 6.5] imply that the 2kth slice of k[2] is the 2kth
wedge summand of HZ ∧ N4

2(⋁i≥0 Siρ2 ).
It follows that over G� the 2kth slice is a wedge of k + 1 copies of HZ ∧ Skρ2 . Over G we get the wedge of

the appropriate number of copies of G+ ∧G� HZ ∧ Skρ2 , wedged with a single copy of HZ ∧ S(k/2)ρ4 for even k.
This is spelled out in Theorem 10.2 below.

The group πG�

ρ2k[2](G
�/{e}) is not in the image of the group action restriction r42 because ρ2 is not the re-

striction of a representation of G. However, πu2k[2] is refined (in the sense of [6, Definition 5.28]) by a map
from

Sρ2 := G+ ∧G� Sρ2
s1ÚÚ→ k[2]. (9.4)

The Reduction Theorem implies that the 2-slice P22k[2] is Sρ2 ∧ HZ. We know that

π2(Sρ2 ∧ HZ) = ◻̂.

We use the symbols r1 and γ(r1) to denote the generators of the underlying abelian group of ◻̂(G/{e}) =
Z[G/G�]−. These elements have trivial fixed point transfers and

π2(Sρ2 ∧ HZ)(G/G
�) = 0.

Table 3 describes some elements in the slice spectral sequence for k[2] in low dimensions, which we
now discuss.
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Given an element in π⋆MU((G)), we will often use the same symbol to denote its image in π⋆k[2]. For
example, in [6, Section 9.1]

d̄n ∈ πG(2n−1)ρ4MU
((G)) = πG(2n−1)ρ4MU

((G))(G/G) (9.5)

was defined to be the composite

S(2n−1)ρ4 = N4
2S

(2n−1)ρ2 N4
2 r2n−1ÚÚÚÚÚÚ→ N4

2MU
((G)) ÚÚÚÚÚÚ→ MU((G)).

We will use the same symbol to denote its image in the group πG(2n−1)ρ4k[2](G/G).
The element η ∈ π1S0 (coming from the Hopf map S3 → S2) has image aσr1 ∈ πG�

1 kR(G�/G�). There are t
wo corresponding elements

ηϵ ∈ πG
�

1 k[2](G
�/G�) for ϵ = 0, 1.

We use the same symbol for their preimages under r42 in π
G
1 k[2](G/G�), and there we have

ηϵ = aσ2 r1,ϵ .

We denote by η again the image of either under the transfer tr42, so

res42(η) = η0 + η1.

Its cube is killed by a d3 in the slice spectral sequence, as is the sum of any twomonomials of degree 3 in
the ηϵ. It follows that in E4 each such monomial is equal to η30. It has a nontrivial transfer, which we denote
by x3.

In [6, Definition 5.51] we defined

fk = akρN
g
2(rk) ∈ πkMU

((G))(G/G) (9.6)

for a finite cyclic 2-group G. In particular, f2n−1 = a2n−1ρ d̄n for d̄n as in (9.5). The slice filtration of fk is k(g − 1)
and we will see below (Lemma 4.2 and, for G = C4, Theorem 11.13) that

trGG� (uσ) = aσ f1. (9.7)

Note that uσ ∈ E0,1−σ2 (G/G�) since the maximal subgroup for which the sign representation σ is oriented
is G�, on which it restricts to the trivial representation of degree 1. This group depends only on the restriction
of the RO(G)-grading to G�, and the isomorphism extends to differentials aswell. Thismeans that uσ is a place
holder corresponding to the permanent cycle 1 ∈ E0,02 (G/G�).

For G = C4, equation (9.7) implies

tr42(uσ) = aσ f1 = a2σaλd̄1.

For example,

tr42(η0η1) = tr42(a
2
σ2 r1,0r1,1) = tr42(uσ res

4
2(aλd̄1)) = tr42(uσ)aλd̄1 = aσ f1aλd̄1 = f 21 .

The Hopf element ν ∈ π3S0 has image

aσuλd̄1 ∈ π3k[2](G/G),

so we also denote the latter by ν. (We will see below in (11.7) that uλ is not a permanent cycle, but ν := aσuλ
is (11.8).) It has an exotic restriction η30 (filtration jump two), which implies that

2ν = tr42(res
4
2(ν)) = tr42(η

3
0) = x3.

One way to see this is to use the Periodicity Theorem to equate π3k[2] with π−29k[2], which can be shown to
be the Mackey functor ∘ in slice filtration −32. Another argument not relying on periodicity is given below in
Theorem 11.13.

The exotic restriction on ν implies
res42(ν

2) = η60,

with filtration jump 4.
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Theorem 9.8 (The Hurewicz image). The elements ν ∈ π3k[2](G/G), ϵ ∈ π8k[2](G/G), κ ∈ π14k[2](G/G), and
κ ∈ π20k[2](G/G) are the images of elements of the same names in π∗S0. The image of the Hopf map η ∈ π1S0

is either η = tr42(ηϵ) or its sum with f1.

We refer the reader to [9, Table A3.3] for more information about these elements.

Proof. Suppose we know this for ν and κ. Then ∆−41 ν is represented by an element of filtration −3 whose
product with ν2 is nontrivial. This implies that ν3 has nontrivial image in π9k[2](G/G). This is a nontrivial
multiplicative extension in the first quadrant, but not in the third. The spectral sequence representative of ν3

has filtration 11 instead of 3. We will see later that ν3 = 2n where n has filtration 1, and ν3 is the transfer of
an element in filtration 1.

Since ν3 = ηϵ in π∗S0, this implies that η and ϵ are both detected and have the images stated in Table 3.
It follows that ϵκ has nontrivial image here. Since κ2 = ϵκ in π∗S0, κ must also be detected. Its only possible
image is the one indicated.

Both ν and κ have images of order 8 in π∗TMF and its K(2) localization. The latter is the homotopy fixed
point set of an action of the binary tetrahedral groupG24 acting on E2. This in turn is a retract of the homotopy
fixed point set of the quaternion groupQ8. A restriction and transfer argument shows that both elements have
order at least 4 in the homotopy fixed point set of C4 ⊂ Q8.

There is an orientation map MU → E2, which extends to a C2-equivariant map MUℝ → E2. Norming up
and multiplying on the right gives us a C4-equivariant map N4

2MUℝ → E2. This C4-action on the target is
compatible with the G24-action leading to LK(2)TMF.

The image of η ∈ π1S0 must restrict to η0 + η1, so modulo the kernel of res42 it is the element tr42(ηϵ),
which we are calling η. The kernel of res42 is generated by f1.

We now discuss the norm N4
2, which is a functor from the category of C2-spectra to that of C4 spectra. As

explained above in connection with Corollary 4.8, for a C4-ring spectrum X we have an internal norm

πG�

V i
∗
G�X(G�/G�) ≅ πG�

G� ,VX(G/G) → πGInd42VX(G/G)

and a similar functor on the slice spectral sequence for X. It preserves multiplication but not addition. Its
source is a module over G/G�, which acts trivially on its target. Consider the diagram

πG� ,VX(G/G)
≅
// πG�

V i
∗
G�X(G�/G�)

N4
2
// πGInd42V

X(G/G)

res42
��

πG� ,2VX(G/G)
≅
// πG�

2V i
∗
G�X(G�/G�) ≅

// πGInd42V
X(G/G�).

For x ∈ πG�

V i
∗
G�X(G�/G�)we have xγ(x) ∈ πG�

2V i
∗
G�X(G�/G�) and 2V is the restriction of someW ∈ RO(G). The

group πGWX(G/G�) depends only on the restriction of W to RO(G�). If W� ∈ RO(G) is another virtual repre-
sentation restricting to 2V, thenW −W� = k(1 − σ) for some integer k. The canonical isomorphism between
πGWX(G/G

�) and πGW�X(G/G�) is given by multiplication by ukσ.

Definition 9.9 (A second use of square bracket notation). For 0 ≤ i ≤ 2d, let f(r1,0, r1,1) be a homogeneous
polynomial of degree 2d − i, so

aiσ2 f(r1,0, r1,1) ∈ π
G�

(2d−i)+(2d−2i)σ2 i
∗
G�k[2](G�/G�).

We will denote by [aiσ2 f(r1,0, r1,1)] its preimage in π2d−i+(d−i)λk[2](G/G�) under the isomorphism of (2.14).

The first use of square bracket notation is that of Remark 4.1. Note that r1,ϵ ∈ πG
�

ρ2 i
∗
G�k[2] is not the target of

such an isomorphism since ρ2 ∈ RO(G�) is not the restriction of any element in RO(G), hence the requirement
that f has even degree.

We will denote u−1σ [r21,ϵ] ∈ πGρ4k[2](G/G
�) by s2,ϵ. Then we have γ(s2,0) = −s2,1 and γ(s2,1) = −s2,0. We

define
t2 := (−1)ϵ tr42(s2,ϵ),
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which is independent of ϵ, and we have

res42(t2) = s2,0 − s2,1.

Then we have
res42(N

4
2(r1,0)) = res42(d̄1) = u

−1
σ [r1,0r1,1] ∈ πρ4k[2](G/G

�).

More generally, for integers m and n,

res42(N
4
2(mr1,0 + nr1,1)) = u

−1
σ [(mr1,0 + nr1,1)(mr1,1 − nr1,0)]

= u−1σ ((m2 − n2)[r1,0r1,1] + mn([r21,1] − [r21,0]))
= (m2 − n2) res42(d̄1) − mn res42(t2),

so
N4
2(mr1,0 + nr1,1) = (m2 − n2)d̄1 − mnt2. (9.10)

Similarly, for integers a, b and c,

u2σ res42(N
4
2(ar

2
1,0 + br1,0r1,1 + cr

2
1,1)) = [(ar21,0 + br1,0r1,1 + cr

2
1,1)(ar

2
1,1 − br1,0r1,1 + cr

2
1,0)]

= [ac(r41,0 + r
4
1,1)+ b(c − a)r1,0r1,1(r

2
1,0 − r

2
1,1)+ (a2 − b2 + c2)r21,0r

2
1,1]

= [ac(r21,0 − r
2
1,1)

2 + b(c − a)r1,0r1,1(r21,0 − r
2
1,1)+ ((a + c)2 − b2)r21,0r

2
1,1],

so
N4
2(ar

2
1,0 + br1,0r1,1 + cr

2
1,1) = ac t

2
2 + b(c − a)d̄1t2 + ((a + c)2 − b2)d̄21 (9.11)

For future reference we need

N4
2(5r

2
1,0r1,1 + 5r1,0r21,1 + r

3
1,1) = N4

2(r1,1)N
4
2(5r

2
1,0 + 5r1,0r1,1 + r21,1)) = −d̄1(5t

2
2 − 20d̄1t2 + 11d̄21).

Compare with (7.2). We also denote by

ηϵ = [aσ2 r1,ϵ] ∈ π1k[2](G/G
�)

the preimage of aσ2 r1,ϵ ∈ πG
�

1 i
∗
G�k[2](G�/G�) and by [a2σ2 ] ∈ π−λk[2](G/G

�) the preimage of a2σ2 . The latter
is res42(aλ). The values of N

4
2(aσ2 ) and N

4
2(u2σ2 ) are given by Lemma 4.9, namely

N4
2(aσ2 ) = aλ and N4

2(u2σ2 ) = u2λ/u2σ .

Element Description

Filtration 0

r1,ϵ ∈ πG
�
ρ2 i

∗
G� k[2](G

�/G�) ≅ πG� ,ρ2 k[2](G/G) with r1,2 = −r1,0 Images from (7.1) defined in [6, (5.47)]
r1,ϵ ∈ π{e},2k[2](G/G) ≅ πG,2k[2](G/{e}) ≅ π

u
2k[2] r21(r1,ϵ), generating π

G
2 k[2]/torsion = ◻̂

u2σ ∈ E0,2−2σ2 (G/G) with Element corresponding to u2σ ∈ π2−2σHZ(G/G)
d5(u2σ) = a3σaλd̄1 Slice differential of (11.3)
[2u2σ] = ⟨2, aσ , a2σaλd̄1⟩ ∈ E

0,2−2σ
6 (G/G) Image of 2u2σ in E0,2−2σ6 (G/G), which is a permanent cycle

[u22σ] = ⟨a3σaλ , d̄1 , a3σaλ , d̄1⟩ ∈ E
0,4−4σ
6 (G/G) Image of u22σ in E

0,2−2σ
6 (G/G), which is a permanent cycle

uσ ∈ π1−σk[2](G/G
�) ≅ πG� ,0k[2](G/G) with res

4
2(u2σ) = u2σ ,

γ(uσ) = −uσ
Isomorphic image of 1 ∈ π0k[2](G/G

�) ≅ πG� ,0k[2](G/G)

tr42(u
4k+1
σ ) = aσ f1u2k2σ (exotic transfer), tr

4
2(u

2k
σ ) = 2uk2σ ,

tr42(u
4k+3
σ ) = 0

Follows from Theorem 4.4 and d5(u2σ) in (11.3)

Continued on next page
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Element Description

uλ ∈ E0,2−λ2 (G/G) with Element corresponding to uλ ∈ π2−λHZ(G/G)
[2uλ] ∈ π2−λK[2](G/G) ⟨2, η, aλ⟩
a3σuλ = 0 Follows from the gold relation, Lemma 3.6 (vii)
d3(uλ) = ηaλ = tr42([a

3
σ2 r1,0]) Slice differential of Theorem 11.13

d5([u2λ]) = νa
2
λd̄1 Slice differential of Theorem 11.13

d7([2u2λ]) = η
�a3λd̄1 2νa2λd̄1

[4u2λ] ∈ π4−2λK[2](G/G) ⟨2, η, aλ⟩2 = ⟨2, η� , a3λd̄1⟩
[2aσu2λ] ∈ π4−σ−2λK[2](G/G) ⟨aσ , η� , a3λd̄1⟩
d7([u4λ]) = ⟨η� , ν, a2λd̄1⟩a

3
λd̄1 [2u2λd(u

2
λ)]

[2u4λ] ∈ π8−4λK[2](G/G) tr42(u
4
λ)

uλ ∈ E0,2−λ2 (G/G�) with res42(uλ)
d3(uλ) = [a3σ2 (r1,0 + r1,1)] = res42(aλ)(η0 + η1) res42(d3(uλ))
[2uλ] ∈ π2−λK[2](G/G

�) [⟨2, a3σ2 , r1,0 + r1,1⟩] = ⟨2, [a2σ2 ], η0 + η1⟩
d7([u2λ]) = a

7
σ2 r

3
1,0 res42(d5(u

2
λ))

[2u2λ] ∈ π4−2λK[2](G/G
�) [⟨2, a7σ2 , r

3
1,0⟩] = ⟨2, [a2σ2 ]

2 , η30⟩
[u4λ] ∈ π8−4λK[2](G/G

�) [⟨a7σ2 , r
3
1,0 , a7σ2 , r

3
1,0⟩] = ⟨[a2σ2 ]

2 , η30 , [a2σ2 ]
2 , η30⟩

uσ2 ∈ π(G� ,1−σ2)k[2](G/e) with res
2
1(uλ) = u2σ2 , γ

2(uσ2 ) = −uσ2
and tr21(uσ2 ) = a2σ2 (r1,0 + r1,1) (exotic transfer)

Isomorphic image of 1 ∈ π0k[2](G/e)

s2,ϵ ∈ πGρ4 k[2](G/G
�) u−1σ [r21,ϵ]

d̄1 ∈ πGρ4 k[2](G/G) with res
4
2(d̄1) = u

−1
σ [r1,0r1,1] Image from (9.5) defined in [6, Section 9.1]

t2 ∈ πGρ4 k[2](G/G) with res
4
2(t2) = s2,0 − s2,1 (−1)ϵ tr42(s2,ϵ) for either value of ϵ

t�2 ∈ πG2+λk[2](G/G) with res
4
2(t

�
2) = [r21,0] + [r21,1] tr42([r

2
1,ϵ]) for either value of ϵ

D ∈ π4ρ4 k[2](G/G), the periodicity element −d̄21(5t
2
2 − 20t2d̄1 + 11d̄21)

Σ2,ϵ ∈ E0,42 k[2](G/G�) with Σ2,2 = Σ2,0 and
d3(Σ2,ϵ) = η2ϵ (η0 + η1)

(−1)ϵuρ4 s2,ϵ = (−1)ϵuλ[r21,ϵ]

T2 ∈ E0,42 k[2](G/G) with res42(T2) = Σ2,0 − Σ2,1 and
d3(T2) = η3

tr42(Σ2,ϵ) = (−1)ϵuλ tr42([r
2
1,ϵ]) for either value of ϵ

T4 ∈ E0,82 k[2](G/G) with T24 = ∆1(T22 − 4∆1),
res42(T4) = (Σ2,0 − Σ2,1)δ1 and d3(T4) = 0

(−1)ϵ tr42(Σ2,ϵδ1) = u2σu
2
λ t2d̄1 for either value of ϵ

δ1 ∈ E0,42 k[2](G/G�) with γ(δ1) = −δ1, tr42(δ1) = 0 and
d3(δ1) = η0η1(η0 + η1)

uρ4 res42(d̄1) = uλ[r1,0r1,1]

∆1 ∈ E0,82 k[2](G/G) with res42(∆1) = δ
2
1, res

4
1(∆1) = r

2
1,0r

2
1,1

and d5(∆1) = νx4
u2ρ4 d̄21 = u2σu2λd̄

2
1

Filtration 1

aσ2 ∈ πG� ,−σ2 k[2](G/G) ≅ π
G�
1 k[2](G�/G�) with 2aσ2 = 0 See Definition 3.4

ηϵ ∈ π1k[2](G/G
�) ≅ πG�1 k[2](G�/G�) with 2ηϵ = 0 [aσ2 r1,ϵ]

η ∈ πG1 k[2](G/G) with res
4
2(η) = η0 + η1 ∈ πG1 k[2](G/G�) tr42(ηϵ) = tr42([aσ2 r1,0]) = tr42([aσ2 r1,1])

η� ∈ π2−σk[2](G/G) with
res42(η�) = uσ(η0 + η1) ∈ π

G
2−σk[2](G/G�)

tr42(η0uσ) = tr42([aσ2 r1,0]uσ) = tr42([aσ2 r1,1]uσ)

ν ∈ π2−σ−λk[2](G/G) with [aσuλ] = ⟨aσ , η, aλ⟩
res42(ν) = uσ[a

3
σ2 r1,0] (exotic restriction) Follows from Theorem 4.4 and d3(uλ) in Theorem 11.13

2ν = η�aλ Transfer of the above
ην = aλ⟨2, aσ , f 21 ⟩ = aλ⟨2, aσ , tr

4
2(η0η1)⟩

η�ν = 0
aσν = aλ tr42(u2σ) [a2σuλ] = aλ[2u2σ] by the gold relation, Lemma 3.6 (vii)
a2σν = 0 [a3σuλ] = aλaσ tr42(u2σ) = 0

Continued on next page
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Element Description

ξ ∈ π4−3σ−λk[2](G/G) with [νu2σ] = ⟨ν, a2σ , f1⟩
res42(ξ) = a

3
σ2u

3
σ r1,0 Follows from value of res42(ν)

2ξ = aλ⟨η� , a2σ , f1⟩ Transfer of the above
d5(u2σu2λ) = ξa

2
λd̄1

ηξ = 2aλu22σ d̄1 (exotic multiplication)
η�ξ = a2σa3λu

2
2σ d̄

2
1 (exotic multiplication)

ν ∈ π3k[2](G/G) with aσuλd̄1 = νd̄1, generating ∘ = π3k[2]
res42(ν) = η

3
0 and 2ν = x3 (exotic restriction and group

extension)
Follows from those on ν

Filtration 2

[a2σ2 ] ∈ π−λk[2](G/G
�) Preimage of a2σ2 ∈ π−2σ2 i

∗
G� k[2](G

�/G�)

aλ ∈ π−λk[2](G/G) with 4aλ = 0 and res42(aλ) = [a2σ2 ] See Definition 3.4
η2ϵ , η0η1 ∈ πG2 k[2](G/G�) with tr42(η

2
ϵ ) = (−1)ϵaλ t

�
2 and

tr42(η0η1) = f
2
1 (exotic transfer)

uσ[a2σ2 ]s2,ϵ and uσ[a
2
σ2 ] res

4
2(d̄1), generating the torsion

∙̂ ⊕ ë in πG2 k[2]
η2 = aλ(t

�
2 + a2σaλd̄21) = aλ t

�
2 + f 21 aλ t

�
2 has order 2 by Lemma 4.2

ηη� = aλ[u2σ t2], (η�)2 = aλ[u2σ t
�
2] See (11.5) for the definition of [u2σ t2] and [u2σ t

�
2]

ν2 ∈ π6k[2](G/G) 2aλuλu2σ d̄21 = ⟨2, η, f1 , f 21 ⟩
κ ∈ π14k[2](G/G) 2aλu22σu

3
λd̄

4
1

Filtration 3

f1 ∈ π1k[2](G/G) aσaλd̄1, generating the summand ∙ of π1k[2]
η30 = η20η1 = η0η21 = η31 ∈ πG3 k[2](G/G�) ηϵuσ[a2σ2 ] res

4
2(d̄1) = ηϵuσ[a2σ2 ]s2,ϵ

x3 ∈ π3k[2](G/G) with res
4
2(x3) = 0 tr42(η

2
0η1) = aλη�d̄1

Filtration 4

x4 ∈ E4,82 (G/G) with d5(x4) = f 31 , res
4
2(x4) = (η0η1)2 = η40 and

2x4 = f1ν
a2λu2σ d̄

2
1

κ ∈ π20k[2](G/G) a2λu
3
2σu

4
λd̄

6
1

2κ = tr42(uσ res
4
2(u

2
2σu

5
λd̄

5
1)) (exotic transfer)

Filtration 8

ϵ ∈ π8k[2](G/G) x24 = ⟨f1 , f 21 , f1 , f
2
1 ⟩ ∈ E

8,16
6 (G/G)

Filtration 11

ν3 = ηϵ ∈ π9k[2](G/G) Represents f1x24 ∈ E11,202 (G/G)

Table 3. Some elements in the slice spectral sequence and homotopy groups of k[2], listed in order of ascending filtration.

10 Slices for k[2] and K[2]

In this section we will identify the slices for k[2] and K[2] and the generators of their integrally graded homo-
topy groups. For the latter we will use the notation of Table 3. Let

Xm,n =
{
{
{

Σmρ4HZ for m = n
G+ ∧G� Σ(m+n)ρ2HZ for m < n.

(10.1)

The slices of k[2] are certain finite wedges of these, and those of K[2] are a certain infinite wedges. Fortunately
we can analyze these slices by considering just one value of m at a time, this index being preserved by the
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first differential d3. These are illustrated below in Figures 9–12. They show both E2 and E4 in four cases
depending on the sign and parity of m.

Theorem 10.2 (The slice E2-term for k[2]). The slices of k[2] are

Pttk[2] =
{
{
{

⋁0≤m≤t/4 Xm,t/2−m for t even and t ≥ 0,
∗ otherwise,

where Xm,n is as in (10.1).
The structure of πu∗k[2] as a Z[G]-module (see (9.1)) leads to four types of orbits and slice summands:

(1) {(r1,0r1,1)2ℓ} leading to X2ℓ,2ℓ for ℓ ≥ 0; see the leftmost diagonal in Figure 9. On the 0-line we have a copy
of ◻ (defined in Table 2) generated under restrictions by

∆ℓ1 = u2ℓρ4 d̄2ℓ1 = uℓ2σu
2ℓ
λ d̄2ℓ1 ∈ E0,8ℓ2 (G/G).

In positive filtrations we have

∘ ⊆ E2j,8ℓ2 generated by ajλu
ℓ
2σu

2ℓ−j
λ d̄2ℓ1 ∈ E2j,8ℓ2 (G/G) for 0 < j ≤ 2ℓ,

∙ ⊆ E2k+4ℓ,8ℓ2 generated by a2kσ a2ℓλ u
ℓ−k
2σ d̄2ℓ1 ∈ E2k+4ℓ,8ℓ2 (G/G) for 0 < k ≤ ℓ.

(2) {(r1,0r1,1)2ℓ+1} leading to X2ℓ+1,2ℓ+1 for ℓ ≥ 0; see the leftmost diagonal in Figure 10. On the 0-line we have
a copy of ◻ generated under restrictions by

δ2ℓ+11 = u2ℓ+1σ res42(uλd̄1)
2ℓ+1 ∈ E0,8ℓ+42 (G/G�).

In positive filtrations we have

∙ ⊆ E2j,8ℓ+42 generated by u2ℓ+1σ res42(a
j
λu

2ℓ+1−j
λ d̄2ℓ+11 ) ∈ E2j,8ℓ+42 (G/G�) for 0 < j ≤ 2ℓ + 1,

∙ ⊆ E2j+1,8ℓ+42 generated by aσa
j
λu

ℓ
2σu

2ℓ+1−j
λ d̄2ℓ+11 ∈ E2j+1,8ℓ+42 (G/G) for 0 ≤ j ≤ 2ℓ + 1,

∙ ⊆ E2k+4ℓ+3,8ℓ+42 generated by a2k+1σ a2ℓ+1λ uℓ−k2σ d̄2ℓ+11 ∈ E2k+4ℓ+3,8ℓ+42 (G/G) for 0 < k ≤ ℓ.

(3) {ri1,0r
2ℓ−i
1,1 , r

2ℓ−i
1,0 r

i
1,1} leading to Xi,2ℓ−i for 0 ≤ i < ℓ; see other diagonals in Figure 9. On the 0-line we have

a copy of ◻̂ generated (under tr42, res
2
1 and the group action) by

uℓσs
ℓ−i
2 res42(u

ℓ
λd̄
i
1) ∈ E

0,4ℓ
2 (G/G�).

In positive filtrations we have

∙̂ ⊆ E2j,4ℓ2 generated by uℓσs
ℓ−i
2 res42(a

j
λu

ℓ−j
λ d̄i1)

{
{
{

∈ E2j,4ℓ2 (G/G�) for 0 < j ≤ ℓ,
= η2jϵ u

ℓ−j
σ sℓ−i−j2 res42(u

ℓ−j
λ d̄i1) for 0 < j < ℓ − i.

(4) {ri1,0r
2ℓ+1−i
1,1 , r2ℓ+1−i1,0 ri1,1} leading to Xi,2ℓ+1−i for 0 ≤ i ≤ ℓ; see other diagonals in Figure 10. On the 0-line

we have a copy of ◻̂ generated (under transfers and the group action) by

r1,0 res21(u
ℓ
σs

ℓ−i
2 ) res41(u

ℓ
λd̄
i
1) ∈ E

0,4ℓ+2
2 (G/{e}).

In positive filtrations we have

∙̂ ⊆ E2j+1,4ℓ+22 generated by ηϵuℓσs
ℓ−i
2 res42(a

j
λu

ℓ−j
λ d̄i1)

{
{
{

∈ E2j+1,4ℓ+22 (G/G�) for 0 ≤ j ≤ ℓ,
= η2j+1ϵ uℓ−jσ sℓ−i−j2 res42(u

ℓ−j
λ d̄i1) for 0 ≤ j ≤ ℓ − i.

Corollary 10.3 (A subring of the slice E2-term). The ring E2k[2](G/G�) contains

Z[δ1, Σ2,ϵ , ηϵ : ϵ = 0, 1]/(2ηϵ , δ21 − Σ2,0Σ2,1, ηϵΣ2,ϵ+1 + η1+ϵδ1);

see Table 3 for the definitions of its generators. In particular, the elements η0 and η1 are algebraically indepen-
dent modulo 2 with

γϵ(ηm0 η
n
1) ∈ πm+nXm,n(G/G

�) for m ≤ n.
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The element (η0η1)2 is the fixed point restriction of

u2σa2λ d̄
2
1 ∈ E4,82 k[2](G/G),

which has order 4, and the transfer of the former is twice the latter. The element η0η1 is not in the image of res42
and has trivial transfer in E2.

Proof. We detect this subring with the monomorphism

E2k[2](G/G
�)

r42Ú→ E2k[2](G
�/G�), ηtϵ Ü→ aσr1,ϵ , Σ2,ϵ Ü→ u2σr21,ϵ , δ1 Ü→ u2σr1,0r1,1,

in which all the relations are transparent.

Corollary 10.4 (Slices for K[2]). The slices of K[2] are

PttK[2] =
{
{
{

⋁m≤t/4 Xm,t/2−m for t even,
∗ otherwise,

where Xm,n is as in Theorem 10.2. Here m can be any integer, and we still require that m ≤ n.

Proof. Recall that K[2] is obtained from k[2] by inverting a certain element

D ∈ π4ρ4k[2](G/G)

described in Table 3. Thus K[2] is the homotopy colimit of the diagram

k[2]
D
Ú→ Σ−4ρ4k[2]

D
Ú→ Σ−8ρ4k[2]

D
Ú→ ⋅ ⋅ ⋅ .

Desuspending by 4ρ4 converts slices to slices, so for even t we have

PttK[2] = lim
k→∞

Σ−4kρ4Pt+16kt+16kk[2]

= lim
k→∞

Σ−4kρ4 ⋁
0≤m≤t/4+4k

Xm,t/2+8k−m

= lim
k→∞

⋁
0≤m≤t/4+4k

Xm−4k,t/2+4k−m

= lim
k→∞

⋁
−4k≤m≤t/4

Xm,t/2−m

= ⋁
m≤t/4

Xm,t/2−m .

Corollary 10.5 (A filtration of k[2]). Consider the diagram

k[2]

��

Σρ4k[2]

��

d̄1
oo Σ2ρ4k[2]

��

d̄1
oo ⋅ ⋅ ⋅

d̄1
oo

y0 y1 = Σρ4y0 y2 = Σ2ρ4y0,

where y0 is the cofiber of the map induced by d̄1. Then the slices of ym are

Pttym =
{
{
{

Xm,t/2−m for t even and t ≥ 4m,
∗ otherwise.

Corollary 10.6 (A filtration of K[2]). Let R = Z(2)[x]/(11x2 − 20x + 5). After tensoring with R (by smashing with
a suitable Moore spectrum M) there is a diagram

⋅ ⋅ ⋅ // Σ2ρ4k[2]
f2
//

��

Σρ4k[2]
f1
//

��

k[2]
f0
//

��

Σ−ρ4k[2]
f−1
//

��

⋅ ⋅ ⋅

Y2 Y1 Y0 Y−1,

where the homotopy colimit of the top row is K[2] and each Ym has slices similar to those of ym as in Corol-
lary 10.5.
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Proof. The periodicity element D = −d̄21(5t
2
2 − 20t2d̄1 + 11d̄21) can be factored as

D = D0D1D2D3,

where Di = aid̄1 + bi t2 with ai ∈ Z×(2) and bi ∈ R. Then let f4n+i be multiplication by Di. It follows that the
composite of any four successive fms is D, making the colimit K[2] as desired. The fact that ai is a unit means
that the Y’s here have the same slices as the y’s in Corollary 10.5.

Remark 10.7. The 2-adic completion of R is the Witt ringW(F4) used in Morava E2-theory. This follows from
the fact that the roots of the quadratic polynomial involve√5, which is inW(F4) but is not a 2-adic integer.

Moreover, if we assume that D0D1 = 5t22 − 20t2d̄1 + 11d̄21, then the composite maps f4n f4n+1, as well
as f4n+2 and f4n+3, can be constructed without adjoining√5.

It turns out that ym ∧M and Ym form ≥ 0 not only have the same slices, but the same slice spectral sequence,
which is shown in Figures 9–12. See Remark 13.2 below. We do not know if they have the same homotopy
type.

11 Some differentials in the slice spectral sequence for k[2]
Now we turn to differentials. The only generators in (9.2) that are not permanent cycles are the u’s. We will
see that it is easy to account for the elements in E0,|V|−V2 (G/H) for proper subgroups H of G = C4. From (9.2)
we see that

Es,t2 = 0 for |t| odd. (11.1)

This sparseness condition implies that dr can be nontrivial only for odd values of r.
Our starting point is the Slice Differentials Theorem of [6, Theorem 9.9], which is derived from the fact

that the geometric fixed point spectrum of MU((G)) isMO. It says that in the slice spectral sequence for MU((G))

for an arbitrary finite cyclic 2-group G of order g, the first nontrivial differential on various powers of u2σ is

dr(u2
k−1

2σ ) = a2kσ a2
k−1
ρ Ng2(r

G
2k−1) ∈ E

r,r+2k(1−σ)−1
r MU((G))(G/G), (11.2)

where r = 1 + (2k − 1)g and ρ is the reduced regular representation of G.
In particular,

d5(u2σ) = a3σaλd̄1 ∈ E5,6−2σ5 MU((G))(G/G) for G = C4,

d13([u22σ]) = a
7
σa3λ d̄2 ∈ E13,16−4σ13 MU((G))(G/G) for G = C4,

d3(u2σ) = a3σr1 ∈ E3,4−2σ3 MUℝ(G/G) for G = C2,

d7([u22σ]) = a
7
σr3 ∈ E7,10−4σ3 MUℝ(G/G) for G = C2.

}}}}}}}
}}}}}}}
}

(11.3)

The first of these leads directly to a similar differential in the slice spectral sequence for k[2]. The target
of the second one has trivial image in k[2] and we shall see that [u22σ] turns out to be a permanent cycle.

There are two ways to leverage the third and fourth differentials of (11.3) into information about k[2].
(i) They both lead to differentials in the slice spectral sequence for the C2 spectrum i∗G�k[2]. They are spelled

out ind (11.6) andwill be studied in detail below in Section 12. They completely determine the slice spec-
tral sequence E∗,⋆∗ (G/G�) for both k[2] and K[2]. Since uλ restricts to uλ, which is isomorphic to u2σ2 , we
get some information about differentials on powers of uλ. The d3 on u2σ2 forces a d3(uλ) = ηaλ. The target
of d7([u22σ2 ]) turns out to be the exotic restriction of an element in filtration 5, leading to d5([uλ]2) = νa2λ .
We will also see that even though [u42σ2 ] is a permanent cycle, [u4λ ] (its preimage under the restriction
map res42) is not.

(ii) One can norm up the differentials on u2σ2 and its square using Corollary 4.8, converting the d3 and d7 to
a d5 and a d13. The source of the latter is [aσu4λ ], which implies that [u4λ ] is not a permanent cycle.
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The differentials of (11.3) lead to Massey products which are permanent cycles,

⟨2, a2σ , f1⟩ = [2u2σ] = trGG� (u2σ) ∈
{
{
{

E0,2−2σ6 MU((G))(G/G) for G = C4,
E0,2−2σ4 MUℝ(G/G) for G = C2,

⟨2, a4σ , f3⟩ = [2u22σ] = trGG� (u4σ) ∈
{
{
{

E0,4−4σ14 MU((G))(G/G) for G = C4,
E0,4−4σ8 MUℝ(G/G) for G = C4,

and (by Theorem 4.4) to exotic transfers

aσ f1 = {
tr42(uσ) ∈ E

4,5−σ
∞ MU((G))(G/G) for G = C4 (filtration jump 4),

tr21(uσ) ∈ E
2,3−σ
∞ MUℝ(G/G) for G = C2 (filtration jump 2),

a3σ f3 = {
tr42(u

3
σ) ∈ E12,15−3σ∞ MUℝ(G/G) for G = C4 (filtration jump 12),

tr21(u
3
σ) ∈ E6,9−3σ∞ MUℝ(G/G) for G = C2 (filtration jump 6).

}}}}}}
}}}}}}
}

(11.4)

Since aσ and 2aλ kill transfers by Lemma 4.2, we have Massey products,

[u2σ tr42(x)] = tr42(u
2
σx) = ⟨aσ f1, aσ , tr42(x)⟩ with 2aλ[u2σ tr42(x)] = 0. (11.5)

Now, as before, let G = C4 and G� = C2 ⊆ G. We need to translate the d3 above in the slice spectral
sequence for MUℝ into a statement about the one for k[2] as a G�-spectrum. We have an equivariant multipli-
cation map m of G�-spectra

MU((G))

MUℝ
ηL

// MUℝ ∧MUℝ
m

// MUℝ

rG
�

1
� // rG1,0 + r

G
1,1

� // rG
�

1

a3σ(rG1,0 + r
G
1,1)

� // a3σrG
�

1

rG
�

3
� // 5rG1,0r

G
1,1(r

G
1,0 + r

G
1,1) + (rG1,1)3 mod (rG2 , r

G
3 )

� // rG
�

3 ,

where the elements lie in πG�

ρ2 ( ⋅ )(G
�/G�) and πG�

3ρ2 ( ⋅ )(G
�/G�). In the slice spectral sequence for MU((G)) as

a G�-spectrum, d3(u2σ) and d7(u22σ)must be G-invariant since u2σ is, and theymustmap respectively to a3σrG
�

1
and a7σrG

�

3 , so we have

d3(u2σ2 ) = d3(uλ) = a3σ2 (r
G
1,0 + r

G
1,1) = a2σ2 (η0 + η1)

d7([u22σ2 ]) = d7([u
2
λ ]) = a7σ2(5r

G
1,0r

G
1,1(r

G
1,0 + r

G
1,1) + (rG1,1)3 + ⋅ ⋅ ⋅ )

= a7σ2 (r
G
1,0)

3 + ⋅ ⋅ ⋅ since a3σ2 (r
G
1,0 + r

G
1,1) = 0 in E4.

}}}
}}}
}

(11.6)

We get similar differentials in the slice spectral sequence for k[2] as a C2-spectrum in which the missing
terms in d7(u2λ) vanish.

Pulling back along the isomorphism r42 gives

d3(res42(uλ)) = d3(uλ) = [a2σ2 ](η0 + η1) = res42(aλη),

d7(res42(u
2
λ )) = d7(u

2
λ) = res42(a

2
λ)η

3
0 = res42(a

2
λν).

}
}
}

(11.7)

These imply that
d3(uλ) = aλη and d5(u2λ) = a

2
λν.

The differential on uλ leads to the following Massey products, the second two of which are permanent
cycles:

[u2λ ] = ⟨aλ , η, aλ , η⟩ ∈ E0,4−2λ4 (G/G),

[2uλ] = ⟨2, η, aλ⟩ ∈ E0,2−λ4 (G/G),

ν := [aσuλ] = ⟨aσ , η, aλ⟩ ∈ E1,3−σ−λ4 (G/G),

}}}}
}}}}
}

(11.8)
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where ν satisfies

a2σν = ⟨a3σ , η, aλ⟩ = aσ[a2σuλ]
= aσ[2aλu2σ] = [2aσaλu2σ] = 0,

res42(ν) = [a3σ2 r1,ϵ]uσ ∈ E3,5−σ−λ4 (G/G�) (exotic restriction with filtration jump 2 by Theorem 4.4 (i)),
2ν = tr42(res

4
2(ν)) = tr42(uσ[a

3
σ2 r1,ϵ])

= η�aλ ∈ E3,5−σ−λ4 (G/G) (exotic group extension with jump 2),
tr42(x)ν = tr42(x ⋅ res

4
2(ν)) = tr42(x[a

3
σ2 r1,0]uσ),

ην = tr42([aσ2 r1,1])ν
= tr42([a

4
σ2 r1,0r1,1]uσ) = a

2
λ d̄1 tr

4
2(u

2
σ)

= aλd̄1⟨2, aσ , aσ f1⟩ = ⟨2, aσ , f 21 ⟩,
η�ν = a2λ d̄1 tr

4
2(u

3
σ) = 0,

d7([u2λ ]) = [a7σ2 r
3
1,0] in E4

= res42(ν) res
4
2(a

2
λ d̄1)

= res42(νa
2
λ d̄1)

= res42(d5(u
2
λ)),

d5([u2λ ]) = νa
2
λ d̄1 = a2λν,

d7([2u2λ ]) = (2ν)a2λ d̄1 = a3λη
�d̄1.

Note that ν = νd̄1, with the exotic restriction and group extension on ν being consistent with those on ν.

The differential on [u2λ ] yields Massey products

[a2σu2λ ] = ⟨a2σ , ν, a2λ d̄1⟩,
[η�u2λ] = ⟨η�, ν, a2λ d̄1⟩.

} (11.9)

Theorem 11.10 (Normed up slice differentials for k[2] and K[2]). In the slice spectral sequences for k[2] and
K[2] we have

d5([aσu2λ ]) = 0 and d13([aσu4λ ]) = a
7
λ [u

2
2σ]d̄

3
1.

Proof. The two slice differentials over G� are

d3(u2σ2 ) = a3σ2 r
G�

1 = a3σ2 (r1,0 + r1,1),

d7([u22σ2 ]) = a
7
σ2 r

G�

3 = a7σ2 (5r
2
1,0r1,1 + 5r1,0r21,1 + r

3
1,1).

We need to find the norms of both sources and targets. Lemma 4.9 tells us that

N4
2(a

k
σ2 ) = a

k
λ ,

N4
2(u

k
2σ2 ) = u

2k
λ /uk2σ in E2(G/G).

Previous calculations give

N4
2(r1,0 + r1,1) = −t2 by (9.10),

N4
2(5r

2
1,0r1,1 + 5r1,0r21,1 + r

3
1,1) = −d̄1(5t

2
2 − 20t2d̄1 + 11d̄21) by (9.11).

For the first differential, Corollary 4.8 tells us that

a3λ t2 = d5(aσu2λ/u2σ)
= d5(aσu2λ)/u2σ − aσu

2
λd5(u2σ)/[u

2
2σ]

= d5(aσu2λ)/u2σ − aσu
2
λa

3
σaλd̄1/[u22σ].
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Multiplying both sides by the permanent cycle [u22σ] gives

[u2σd5(aσu2λ)] = a
3
λ [u

2
2σ]t2 + aσu

2
λa

3
σaλd̄1

= a3λ [u
2
2σ]t2 + 4a3λ [u

2
2σ]d̄1

= a3λ [u
2
2σ]t2,

d5(aσu2λ) = a
3
λ [u2σ t2].

We have seen that
ηη� = aλ[u2σ t2].

This implies that a2λ [u2σ t2] vanishes in E5 since aλη is killed by d3. It follows that d5(aσu
2
λ) = a

3
λ [u2σ t2] = 0,

as claimed.
For the second differential we have

d13([aσu4λ/u
2
2σ]) = a

7
λ d̄1(−5t

2
2 + 20t2d̄1 + 9d̄21),

d13([aσu4λ ]) = a
7
λ [u

2
2σ]d̄1(−5t

2
2 + 20t2d̄1 + 9d̄21)

= a7λ [u
2
2σ]d̄1(−t

2
2 + d̄21)

since aλ has order 4. As we saw above, a2λ [u2σ t2] vanishes in E5, so d13([aσu
4
λ ]) is as claimed.

We can use this to find the differential on [u4λ ]. We have

d([u4λ ]) = [2u2λ ]d([u
2
λ ]) = [2u2λ ]νa

2
λ d̄1 = (2ν)a2λ [u

2
λ ]d̄1

= η�a3λ [u
2
λ ]d̄1 = [η�u2λ ]a

3
λ d̄1 = ⟨η�, ν, a2λ d̄1⟩a

3
λ d̄1.

} (11.11)

The differential on u2σ yields
[xu2σ] = ⟨x, a2σ , f1⟩

for any permanent cycle x killed by a2σ. Possible values of x include 2, η, η� (each of which is killed by aσ as
well) and ν. For the last of these we write

ξ := [νu2σ] = ⟨ν, a2σ , f1⟩ = ⟨[aσuλ], a2σ , f1⟩ ∈ E
1,5−3σ−λ
6 (G/G), (11.12)

which satisfies

res42(ξ) = a
3
σ2u

3
σr1,ϵ ∈ E

3,7−3σ−λ
4 (G/G�) (exotic restriction with jump 2),

2ξ = tr42(res
4
2(ξ)) = η

�aλu2σ ∈ E3,7−3σ−λ4 (G/G) (exotic group extension with jump 2),
d5([u2σu2λ ]) = a

3
σaλu2λ d̄1 + νa

2
λu2σd̄1 = (a3σu2λ + νu2σ)a

2
λ d̄1

= (2aσaλuλu2σ + ξ)a2λ d̄1 = ξa2λ d̄1,
d7([2u2σu2λ ]) = 2ξ ⋅ a2λ d̄1 = η�a3λu2σd̄1,

res42(d5([u2σu
2
λ ])) = u

3
σa3σ2 r1,ϵ res

4
2(a

2
λ d̄1) = u

2
σa7σ2 r

3
1,0 = u2σd7(u

2
λ).

Theorem 11.13 (The differentials on powers of uλ and u2σ). The following differentials occur in the slice spec-
tral sequence for k[2]; here uλ denotes res42(uλ):

d3(uλ) = aλη = tr42(a
3
σ2 r1,ϵ),

d3(uλ) = res42(aλ)(η0 + η1) = [a3σ2 (r1,0 + r1,1)],
d5(u2σ) = a3σaλd̄1,
d5([u2λ ]) = a

2
λaσuλd̄1 = a2λνd̄1 = a2λν for ν as in (11.8),

d5([u2σu2λ ]) = a
3
σaλu2λ d̄1 + νa

2
λu2σd̄1 = (a3σu2λ + νu2σ)a

2
λ d̄1 = ξa2λ d̄1 for ξ as in (11.12),

d7([2u2σu2λ ]) = η
�a3λu2σd̄1,

d7([2u2λ ]) = 2a2λνd̄1 = a3λη
�d̄1,

d7([u2λ ]) = res42(a
2
λ)η

3
0 = a7σ2 r

3
1,0,

d7([u4λ ]) = [η�u2λ ]a
3
λ d̄1 = ⟨η�, ν, a2λ d̄1⟩a

3
λ d̄1.
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The elements
uσ , [2uλ] = ⟨2, η, aλ⟩,

[2u2σ] = ⟨2, a2σ , f1⟩ = tr42(u
2
σ), [4u2λ ] = ⟨2, η�, a3λ d̄1⟩ = tr41(u

4
σ2 ),

[u22σ] = ⟨a2σ , f1, a2σ , f1⟩ [2u2λ ] = ⟨2, a6σ2 , aσ2 r
3
1,0⟩ = tr21(u

4
σ2 ),

[2u2σuλ] = ⟨[2u2σ], η, aλ⟩, [2u4λ ] = ⟨2, η�, ν, a5λ d̄
2
1⟩ = tr42(u

4
λ),

[u4λ ] = ⟨a7σ2 , r
3
1,0, a7σ2 , r

3
1,0⟩, [u8λ ] = ⟨[η�u2λ ], a

3
λ d̄1, [η

�u2λ ], a
3
λ d̄1⟩

are permanent cycles.
We also have the following exotic restriction and transfers:

res42(aσuλ) = uσ res
4
2(aλ)ηϵ = uσa

3
σ2 r1,ϵ (filtration jump 2),

tr42(u
k
σ) =

{{{
{{{
{

a2σaλd̄1u
(k−1)/2
2σ = aσ f1u(k−1)/22σ for k ≡ 1mod 4 (filtration jump 4),

2uk/22σ for k even,
0 for k ≡ 3mod 4,

tr21(u
k
σ2 ) =

{{{
{{{
{

a2σ2 (r1,0 + r1,1)u
(k−1)/2
λ = aσ2 (η0 + η1)u

(k−1)/2
λ for k ≡ 1mod 4 (filtration jump 2),

2uk/2λ for k even
a6σ2 r

3
1,0u

(k−3)/2
λ for k ≡ 3mod 4 (filtration jump 6).

Proof. All differentials were established above.
The differential on u2λ does not lead to an exotic transfer because neither [u

2
λ ] nor [uλa2λ d̄1] is a permanent

cycle as required by Theorem 4.4.
We need to discuss the element [2u2σuλ] = ⟨[2u2σ], η, aλ⟩. To see that this Toda bracket is defined, we

need to verify that [2u2σ]η = 0. For this we have

[2u2σ]η = [2u2σ] tr42(η0) = tr42(2u
2
ση0) = tr42(0) = 0.

The exotic restriction and transfers are applications of Theorem 4.4 to the differentials on uλ and
on [u(k+1)/22σ ] and [u(k+1)/2λ ] for odd k. For even k we have

tr42(u
k
σ) = tr42(res

4
2([u

k/2
2σ ])) = [2uk/22σ ] since tr42(res

4
2(x)) = (1 + γ)x,

and similarly for even powers of uσ2 .
As remarked above, we lose no information by inverting the class D, which is divisible by d̄1. It is

shown in [6, Theorem 9.16] that inverting the latter makes u22σ a permanent cycle. One can also see this
from (11.3). Since d5(u2σ) = a3σaλd̄1, we have d5(u2σd̄−11 ) = a3σaλ. This means that d13([u22σ]) = a

7
σa3λ d̄3 is

trivial in E6(G/G). It turns out that there is no possible target for a higher differential.

12 k[2] as a C2-spectrum
Before studying the slice spectral sequence for the C4-spectrum k[2] further, it is helpful to explore its restric-
tion to G� = C2, for which the Z-bigraded portion

E∗,∗2 i∗G�k[2](G�/G�) ≅ E∗,(G
� ,∗)

2 k[2](G/G) ≅ E∗,∗2 k[2](G/G�)

(see Theorem 2.13 for these isomorphisms) is the isomorphic image of the subring of Corollary 10.3. In the
followingwe identify Σ2,ϵ, δ1 and r1,ϵ (see Table 3)with their images under r42. From the differentials of (11.6)
we get

d3(Σ2,ϵ) = η2ϵ (η0 + η1) = a3σr
2
1,ϵ(r1,0 + r1,1),

d3(δ1) = η20η1 + η0η
2
1 = a3σr1,0r1,1(r1,0 + r1,1),

d7([δ21]) = d7(u
2
2σ)r

2
1,0r

2
1,1 = a7σr

G�

3 r
2
1,0r

2
1,1 = a7σ(5r

2
1,0r1,1 + 5r1,0r21,1 + r

3
1,1)r

2
1,0r

2
1,1.

}}}
}}}
}

(12.1)
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The differentials d3 abovemake all monomials in η0 and η1 of any given degree ≥ 3 the same in E4(G/G�)
and E4(G�/G�), so d7(δ21) = η

7
0. Similar calculations show that

d7([Σ22,ϵ]) = η
7
0 = a7σr

7
1,0.

The image of the periodicity element D here is as in (7.4).
We have the following values of the transfer on powers of uσ:

tr21(u
i
σ) =

{{{{{{
{{{{{{
{

[2ui/22σ ] for i even,
[a2σu

(i−1)/2
2σ ](r1,0 + r1,1) for i ≡ 1mod 4,

[u42σ](i−3)/8a6σr
3
1,0 = [u42σ](i−3)/8a6σr

3
1,1 for i ≡ 3mod 8,

0 for i ≡ 7mod 8.

This leads to the following, for which Figure 8 is a visual aid.

Theorem 12.2 (The slice spectral sequence for k[2] as a C2-spectrum). Using the notation of Table 1 and Def-
inition 5.3, we have

E∗,∗2 (G�/{e}) = Z[r1,0, r1,1] with r1,ϵ ∈ E0,22 (G�/{e}),
E∗,∗2 (G�/G�) = Z[δ1, Σ2,ϵ , ηϵ : ϵ = 0, 1]/(2ηϵ , δ21 − Σ2,0Σ2,1, ηϵΣ2,ϵ+1 + η1+ϵδ1),

so

Es,t2 =

{{{{{{{{{{{{{
{{{{{{{{{{{{{
{

◻ ⊕⨁ℓ ◻̃ for (s, t) = (0, 4ℓ) with ℓ ≥ 0,

⨁ℓ+1 ◻̃ for (s, t) = (0, 4ℓ + 2) with ℓ ≥ 0,

∙ ⊕⨁u+ℓ ∙̃ for (s, t) = (2u, 4ℓ + 4u) with ℓ ≥ 0 and u > 0,

⨁u+ℓ ∙̃ for (s, t) = (2u − 1, 4ℓ + 4u − 2) with ℓ ≥ 0 and u > 0,

0 otherwise.

The first set of differentials and determined by

d3(Σ2,ϵ) = η2ϵ (η0 + η1) and d3(δ1) = η0η1(η0 + η1)

and there is a second set of differentials determined by

d7(Σ22,ϵ) = d7(δ
2
1) = η

7
0.

Corollary 12.3 (Some nontrivial permanent cycles). The elements listed below in Es,8i+2s2 k[2](G/G�) are non-
trivial permanent cycles. Their transfers in Es,8i+2s2 k[2](G/G) are also permanent cycles.
∙ Σ2i−j2,ϵ δ

j
1 for 0 ≤ j ≤ 2i (4i + 1 elements of infinite order including δ2i1 ), i even and s = 0.

∙ ηϵΣ
2i−j
2,ϵ δ

j
1 for 0 ≤ j < 2i and ηϵδ2i1 (4i + 2 elements or order 2) for i even and s = 1.

∙ η2ϵΣ
2i−j
2,ϵ δ

j
1 for 0 ≤ j < 2i and δ2i1 {η20, η0η1, η

2
1} (4i + 3 elements or order 2) for i even and s = 2.

∙ ηs0δ
2i
1 for 3 ≤ s ≤ 6 (four elements or order 2) and i even.

∙ Σ2i−j2,ϵ δ
j
1 + δ

2i
1 for 0 ≤ j ≤ 2i (4i + 1 elements of infinite order including 2δ2i1 ), i odd and s = 0.

∙ ηϵΣ
2i−j
2,ϵ δ

j
1 + δ

2i
1 for 0 ≤ j ≤ 2i − 1 and η0δ2i−11 (Σ2,1 + δ1) = η1δ2i−11 (Σ2,0 + δ1) (4i + 1 elements of order 2),

i odd and s = 1.
∙ η2ϵΣ

2i−j
2,ϵ δ

j
1 + δ

2i
1 for 0 ≤ j ≤ 2i − 1, η20δ

2i−1
1 (Σ2,1 + δ1) = η0η1δ2i−11 (Σ2,0 + δ1) and η0η1δ2i−11 (Σ2,1 + δ1) =

η21δ
2i−1
1 (Σ2,0 + δ1) (4i + 2 elements of order 2) for i odd and s = 2.

In E0,8i+42 k[2](G/G�)we have 2Σ2i+1−j2,ϵ δj1 for 0 ≤ j ≤ 2i and 2δj1, 4i + 3 elements of infinite order, each in the
image of the transfer tr21.
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Figure 8. The slice spectral sequence for k[2] as a C2-spectrum. The Mackey functor symbols are defined in Table 1. The
C4-structure of the Mackey functors is not indicated here. In each bidegree we have a direct sum of the indicated number of
copies of the indicated Mackey functor. Each d3 has maximal rank, leaving a cokernel of rank 1, and each d7 has rank 1. Blue
lines indicate exotic transfers. The ones raising filtration by 2 have maximal rank while the ones raising it by 6 have rank 1. The
resulting E8 = E∞-term is shown below.
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Remark 12.4. In the RO(G)-graded slice spectral sequence for k[2] one has

d3(u2σ) = a3σ(r1,0 + r1,1) and d7([u22σ]) = a
7
σr
G�

3 = a7σr
3
1,0,

but a7 itself, and indeed all higher powers of a, survive to E8 = E∞. Hence the E∞-term of this spectral
sequence does not have the horizontal vanishing line that we see in E8-term of Figure 7. However when we
pass from k[2] to K[2], rG

�

3 = 5r21,0r1,1 + 5r1,0r21,1 + r
3
1,1 becomes invertible and we have

d7((rG
�

3 )−1[u22σ]) = d7(r
−3
1,0[u22σ]) = a

7.

On the other hand, r1,0 + r1,1 is not invertible, so we cannot divide u2σ by it.

We now give the Poincaré series computation analogous to the one following Remark 8.7, using the notation
of (8.8). In RO(G�)-graded slice spectral sequence for k[2] we have

E2(G
�/G�) = Z[aσ , u2σ , r1,0, r1,2]/(2aσ),
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so
g(E2(G

�/G�)) = (
1

1 − t
+

â
1 − â)

1
(1 − û)(1 − r̂)2

,

g(E4(G
�/G�)) = g(E2(G

�/G�)) −
û + r̂â3

(1 − â)(1 − û2)(1 − r̂)2

=
1 + tû

(1 − t)(1 − û2)(1 − r̂)2
+

â + â2

(1 − û2)(1 − r̂)2
+

â3

(1 − â)(1 − û2)(1 − r̂)
as before. The next differential leads to

g(E8(G
�/G�)) = g(E4(G

�/G�)) −
û2 + r̂3â7

(1 − â)(1 − û4)(1 − r̂)

= g(E4(G
�/G�)) −

û2

(1 − û4)(1 − r̂)
−

û2â
(1 − â)(1 − û4)(1 − r̂)

−
r̂3â7

(1 − â)(1 − û4)(1 − r̂)

=
1 + tû

(1 − t)(1 − û2)(1 − r̂)2
+

â + â2

(1 − û2)(1 − r̂)2
+

â3

(1 − â)(1 − û2)(1 − r̂)
−

û2

(1 − û4)(1 − r̂)

−
û2(â + â2)

(1 − û4)(1 − r̂)
−

û2â3

(1 − â)(1 − û4)(1 − r̂)
−

r̂3â7

(1 − â)(1 − û4)(1 − r̂)

=
(1 + tû)(1 + û2) − (1 − t)(1 − r̂)û2

(1 − t)(1 − û4)(1 − r̂)2
+
(â + â2)(1 + û2 − û2(1 − r̂))

(1 − û4)(1 − r̂)2
+
â3(1 + û2) − û2â3 − r̂3â7

(1 − â)(1 − û4)(1 − r̂)

=
1 + tû + (t + r̂ − tr̂)û2 + tû3

(1 − t)(1 − û4)(1 − r̂)2
+
(â + â2)(1 + û2 r̂)
(1 − û4)(1 − r̂)2

+
â − â7 + â7 − r̂3â7

(1 − â)(1 − û4)(1 − r̂)

=
1 + tû + (t + r̂ − tr̂)û2 + tû3

(1 − t)(1 − û4)(1 − r̂)2
+
(â + â2)(1 + û2 r̂)
(1 − û4)(1 − r̂)2

+
â3 + â4 + â6 + â6

(1 − û4)(1 − r̂)
+
â7(1 + r̂ + r̂2)
(1 − â)(1 − û4)

.

The fourth term of this expression represents the elements with filtration above six, and the first term repre-
sents the elements of filtration 0. The latter include

[2u2σ] ∈ ⟨2, a2σ , aσ(r1,0 + r1,1)⟩,

[2u22σ] ∈ ⟨2, aσ , a6σr
3
1,0⟩,

[(r1,0 + r1,1)u22σ] ∈ ⟨a4σ , aσr
3
1,0, r1,0 + r1,1⟩ with (r1,0 + r1,1)[2u22σ] = 2[(r1,0 + r1,1)u22σ],

[2u32σ] ∈ ⟨2, a2σ(r1,0 + r1,1), a2σ , a6σr
3
1,0⟩,

[u42σ] ∈ ⟨a4σ , a3σr
3
1,0a4σ , a3σr

3
1,0⟩

with notation as in Remark 4.1.
As indicated in Remark 12.4, we can get rid of them by formally adjoining w := (rG

�

3 )−1u22σ to E2(G�/G�).
As before we denote the enlarged spectral sequence terms by E�r(G�/G�) This time let ŵ = r̂−3û2 = xy−7. Then
we have

E�r(G
�/G�) = (

1 − û2

1 − ŵ )Er(G
�/G�) for r = 2 and r = 4

and

g(E�8(G
�/G�)) = g(E�4(G

�/G�)) −
ŵ + â7

(1 − â)(1 − ŵ2)(1 − r̂)

= g(E�4(G
�/G�)) −

ŵ
(1 − ŵ2)(1 − r̂)

−
(â + â2)ŵ

(1 − ŵ2)(1 − r̂)
−

â3ŵ + â7

(1 − â)(1 − ŵ2)(1 − r̂)

=
1 + tû

(1 − t)(1 − ŵ)(1 − r̂)2
+

â + â2

(1 − ŵ)(1 − r̂)2
+

â3

(1 − â)(1 − ŵ)(1 − r̂)
−

ŵ
(1 − ŵ2)(1 − r̂)

−
(â + â2)ŵ

(1 − ŵ2)(1 − r̂)
−

â3ŵ + â7

(1 − â)(1 − ŵ2)(1 − r̂)

=
(1 + tû)(1 + ŵ) − (1 − t)(1 − r̂)ŵ

(1 − t)(1 − ŵ2)(1 − r̂)2
+
(â + â2)(1 − (1 − r̂)ŵ)

(1 − ŵ2)(1 − r̂)2
+
â3(1 + ŵ) − â3ŵ − â7

(1 − â)(1 − ŵ2)(1 − r̂)

=
1 + tû + (t + r̂ − tr̂)ŵ + tŵû

(1 − t)(1 − ŵ2)(1 − r̂)2
+
(â + â2)(1 + r̂ŵ)
(1 − ŵ2)(1 − r̂)2

+
â3 + â4 + â5 + â6

(1 − ŵ2)(1 − r̂)
.
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Again the first term represents the elements of filtration 0. These include

[2u2σ] ∈ ⟨2, a2σ , aσ(r1,0 + r1,1)⟩,
[2w] ∈ ⟨2, aσ , a6σ⟩,

[(r1,0 + r1,1)w] ∈ ⟨a4σ , a3σ , r1,0 + r1,1⟩
with (r1,0 + r1,1)[2w] = 2[(r1,0 + r1,1)w],

[2u2σw] ∈ ⟨2, a2σ(r1,0 + r1,1), a2σ , a6σ⟩
and [w2] ∈ ⟨a4σ , a3σa4σ , a3σ⟩

where, as indicated above, w = (rG
�

3 )−1u22σ.

13 The effect of the first differentials over C4
Theorem 10.2 lists elements in the slice spectral sequence for k[2] over C4 in terms of

r1, s2, d̄1; η, aσ , aλ; uλ , uσ , u2σ .

All but the u are permanent cycles, and the action of d3 on uλ, uσ, u2σ is described above in Theorem 11.13.

Proposition 13.1 (d3 on elements in Theorem 10.2). We have the following d3s, subject to the conditions on i,
j, k and ℓ of Theorem 10.2:
∙ On X2ℓ,2ℓ:

d3(a
j
λu

ℓ
2σu

2ℓ−j
λ d̄2ℓ1 ) =

{
{
{

aj+1λ ηuℓ2σu
2ℓ−j−1
λ d̄2ℓ1 ∈ π∗X2ℓ,2ℓ+1(G/G) for j odd,

0 for j even,

d3(a2kσ a2ℓλ u
ℓ−k
2σ d̄2ℓ1 ) = 0.

∙ On X2ℓ+1,2ℓ+1:

d3(δ2ℓ+11 ) = ηu2ℓ+1σ res42(aλu
2ℓ
λ d̄2ℓ+11 ) ∈ π∗X2ℓ+1,2ℓ+2(G/G

�),

d3(u2ℓ+1σ res42(a
j
λu

2ℓ+1−j
λ d̄2ℓ+11 )) =

{
{
{

ηu2ℓ+1σ res42(a
j+1
λ u2ℓ−jλ d̄2ℓ+11 ) ∈ π∗X2ℓ+1,2ℓ+2(G/G�) for j even,

0 for j odd,

d3(aσa
j
λu

2ℓ
σ u

2ℓ+1−j
λ d̄2ℓ+11 ) =

{
{
{

ηaσa
j+1
λ u2ℓσ u

2ℓ−j
λ d̄2ℓ+11 ∈ π∗X2ℓ+1,2ℓ+2(G/G) for j even,

0 for j odd,

d3(a2k+1σ a2ℓ+1λ uℓ−k2σ d̄2ℓ+11 ) = 0.

∙ On Xi,2ℓ−i:

d3(uℓσs
ℓ−i
2 res42(u

ℓ
λd̄
i
1)) =

{
{
{

η3uℓ−1σ sℓ−i−12 res42(u
ℓ−1
λ d̄i1) ∈ π∗Xi,2ℓ+1−i(G/G�) for ℓ odd,

0 for ℓ even,

d3(η2ju
ℓ−j
σ sℓ−i−j2 res42(u

ℓ−j
λ d̄i1)) =

{
{
{

η2j+1uℓ−jσ sℓ−i−j2 res42(aλu
ℓ−j−1
λ d̄i1) ∈ π∗Xi,2ℓ+1−i(G/G�) for ℓ − j odd,

0 for ℓ − j even.

∙ On Xi,2ℓ+1−i:

d3(r1 res21(u
ℓ
σs

ℓ−i
2 ) res41(u

ℓ
λd̄
i
1)) = 0,

d3(η2j+1u
ℓ−j
σ sℓ−i−j2 res42(u

ℓ−j
λ d̄i1)) =

{
{
{

η2j+2uℓ−jσ sℓ−i−j2 res42(aλu
ℓ−j−1
λ d̄i1) ∈ π∗Xi,2ℓ+2−i(G/G�) for ℓ − j odd,

0 for ℓ − j even.

Note that in each case the first index of X is unchanged by the differential, and the second one is increased
by one. Since Xm,n is a summand of the 2(m + n)th slice, each d3 raises the slice degree by 2 as expected.
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Remark 13.2 (The spectra ym and Ym of Corollaries 10.5 and 10.6). Similar statements can be proved for the
case ℓ < 0. We leave the details to the reader, but illustrate the results in Figures 11 and 12.

The source of each differential in Proposition 13.1 is the product of some element in π⋆HZwith a power
of d̄1 or δ1. The target is the product of a different element in π⋆HZwith the same power. This means they are
differentials in the slice spectral sequence for the spectra ym of Corollary 10.5.

Similar differentials occur when we replace d̄i1 by any homogeneous polynomial of degree i in d̄1 and t2
in which the coefficient of d̄i1 is odd. This means they are also differentials in the slice spectral sequence for
the spectra Ym of Corollary 10.6.

These differentials are illustrated in the upper charts in Figures 9–12. In order to pass to E4 we need the
following exact sequences of Mackey functors:

0 // ∙ // ∘
d3
// ∙̂ // ∙ // 0,

0 // ̂ // ◻̂
d3
// ∙̂ // 0,

0 // ∙
d3
// ∙̂ // ë // 0,

0 // // ◻
d3
// ∙̂ // ë // 0.

The resulting subquotients of E4 are shown in the lower charts of Figures 9–12 and described below in
Theorem 13.3. In the latter the slice summands are organized as shown in the Figures rather than by orbit
type as in Theorem 10.2.
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Figure 9. The subquotient of the slice E2- and E4-terms for k[2] for the slice summands X4,n for n ≥ 4. Exotic transfers are shown
in blue and differentials are in red. The symbols are defined in Table 2. This is also the slice spectral sequence for y4 as in
Corollary 10.5 and Y4 (after tensoring with R) as in Corollary 10.6.
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Figure 10. The subquotient of the slice E2 and E4-terms for k[2] for the slice summands X5,n for n ≥ 5. Exotic restrictions and
transfers are shown in dashed green and solid blue lines respectively. This is also the slice spectral sequence for y5 as in
Corollary 10.5 and for Y5 (after tensoring with R) as in Corollary 10.6.
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Figure 11. The subquotient of the slice E2 and E4-terms for k[2] for the slice summands X−4,n for n ≥ −4. This is also the slice
spectral sequence for Y−4 (after tensoring with R) as in Corollary 10.6.
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Figure 12. The subquotient of the slice E2 and E4-terms for k[2] for the slice summands X−5,n for n ≥ −5. This is also the slice
spectral sequence for Y−5 (after tensoring with R) as in Corollary 10.6.

Theorem 13.3 (The slice E4-term for k[2]). The elements of Theorem 10.2 surviving to E4, which live in the ap-
propriate subquotients of π∗Xm,n, are as follows:
(i) In π∗X2ℓ,2ℓ (see the leftmost diagonal in Figure 9), on the 0-line we still have a copy of ◻ generated under

fixed point restrictions by ∆ℓ1 ∈ E0,8ℓ4 . In positive filtrations we have

∘ ⊆ E2j,8ℓ4 generated by
{
{
{

ajλu
ℓ
2σu

2ℓ−j
λ d̄2ℓ1 ∈ E2j,8ℓ4 (G/G), j even, 0 < j ≤ 2ℓ,

2ajλu
ℓ
2σu

2ℓ−j
λ d̄2ℓ1 = a2σa

j−1
λ uℓ+12σ u

2ℓ−j−1
λ d̄2ℓ1 ∈ E2j,8ℓ4 (G/G), j odd, 0 < j ≤ 2ℓ,

∙ ⊆ E2k+2ℓ,8ℓ4 generated by a2kσ a2ℓλ u
ℓ−k
2σ d̄2ℓ1 ∈ E2j+2k,8ℓ4 (G/G) for 0 < k ≤ ℓ.

(ii) In π∗X2ℓ,2ℓ+1 (see the second leftmost diagonal in Figure 9), in filtration 0 we have ◻̂, generated (under
transfers and the group action) by

r1 res21(u
2ℓ
σ res41(u

2ℓ
λ d̄2ℓ1 ) ∈ E0,8ℓ+22 (G/{e}).

In positive filtrations we have

∙̂ ⊆ E1,8ℓ+24 generated (under transfers and the group action) by ηu2ℓσ res42(uλd̄1)
2ℓ = E1,8ℓ+24 (G/G�),

∙ ⊆ E4k+1,8ℓ+24 for 0 < k ≤ ℓ generated by x = η4k+1u2ℓ−2kσ res42(uλd̄1)
2ℓ−2k ∈ E4k+1,8ℓ+24 (G/G�)

with (1 − γ)x = tr42(x) = 0.

(iii) In π∗X2ℓ+1,2ℓ+1 (see the leftmost diagonal in Figure 10), on the 0-line we have a copy of generated under
fixed point ∆(2ℓ+1)/21 ∈ E0,8ℓ+44 . In positive filtrations we have

∙ ⊆ E2j,8ℓ+42 generated by u2ℓ+1σ res42(a
j
λu

2ℓ+1−j
λ d̄2ℓ+11 ) ∈ E2j,8ℓ+42 (G/G�) for 0 < j ≤ 2ℓ + 1,

∙ ⊆ E2j+1,8ℓ+42 generated by aσa
j
λu

2ℓ
σ u

2ℓ+1−j
λ d̄2ℓ+11 ∈ E2j+2k,8ℓ+42 (G/G) for 0 ≤ j ≤ 2ℓ + 1,

∙ ⊆ E2k+4ℓ+3,8ℓ+42 generated by a2k+1σ a2ℓ+1λ uℓ−k2σ d̄2ℓ+11 ∈ E2k+4ℓ+2,8ℓ+42 (G/G) for 0 < k ≤ 2ℓ + 1.
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(iv) In π∗X2ℓ+1,2ℓ+2 (see the second leftmost diagonal in Figure 10), in filtration 0 we have ◻̂, generated (under
transfers and the group action) by

r1 res21(u
2ℓ+1
σ res41(u

2ℓ+1
λ d̄2ℓ+11 ) ∈ E0,8ℓ+64 (G/{e}).

In positive filtrations we have

ë ⊆ E4k+3,8ℓ+64 for 0 ≤ k ≤ ℓ generated under transfer by x = η4k+3∆ℓ−k1 ∈ E4k+3,8ℓ+64 (G/G�)

with (1 − γ)x = 0.

The generator of E4k+3,8ℓ+64 (G/G�) is the exotic restriction of the one in E4k+1,8ℓ+44 (G/G).
(v) In π∗Xm,m+i for i ≥ 2 (see the rest of Figures 9 and 10), in filtration 0 we have

◻̂ ⊆ E0,4m+4j+2
4 generated under transfers and group action by

r1 res21(u
m+j
σ sj2) res

4
1(u

m+j
λ d̄m1 ) ∈ E

0,4m+4j+2
4 (G/{e}) for j ≥ 0,

̂ ⊆ E0,8ℓ+44 generated under transfers and group action by
r1 res21(u

m+j
σ sj2) res

4
1(u

m+j
λ d̄m1 ) ∈ E

0,8ℓ+4
4 (G/{e}) for ℓ ≥ m/2,

◻̂ ⊆ E0,8ℓ4 generated under transfers, restriction and group action by
x8ℓ,m = Σ2ℓ−m2,0 δm1 + ℓδ2ℓ1 ,

where
Σ2,ϵ = uρ2 s2,ϵ and δ1 = uρ2 res42(d̄1) ∈ E

0,8ℓ
4 (G/G�) for 0 ≤ m ≤ 2ℓ − 1.

In positive filtrations we have

∙̂ ⊆ E2,8ℓ+44 generated under transfers and group action by
η20 res

4
2(∆

ℓ
1) = η

2
0δ

2ℓ
1 = η20u

2ℓ
σ res42(uλd̄1)

2ℓ ∈ E2,8ℓ+44 (G/G�),

∙̂ ⊆ Es,8ℓ+2s4 generated under transfers and group action by
ηsϵx8ℓ,m ∈ Es,8ℓ+2s4 (G/G�) for s = 1, 2 and 0 ≤ m ≤ 2ℓ − 1.

Each generator of E2,8ℓ+44 (G/G�) is an exotic transfer of one in E0,8ℓ+24 (G/e).

Proposition 13.4 (Some nontrivial permanent cycles). The elements listed in Theorem 13.3 (v) other than
η2ϵδ2ℓ1 are all nontrivial permanent cycles.

Proof. Each such element is either in the image of E0,∗4 (G/{e}) under the transfer and therefore a nontrivial
permanent cycle, or it is one of the ones listed in Corollary 12.3.

In subsequent discussions and charts, starting with Figure 14, we will omit the elements in Proposition 13.4.
These elements all occur in Es,t4 for 0 ≤ s ≤ 2.

Analogous statements can bemade about the slice spectral sequence for K[2]. Each of its slices is a certain
infinitewedge spelled out in Corollary 10.4. Their homotopy groups are determined by the chain complex cal-
culations of Section 6 and illustrated in Figures 2 (with Mackey functor induction ↑42 applied) and 3. Analogs
of Figures 9–10 are shown in Figures 11–12. In each figure, exotic transfers and restrictions are indicated by
blue and dashed green lines respectively. As in the k[2] case, most of the elements shown in this chart can be
ignored for the purpose of calculating higher differentials. In the third quadrant the elements we are ignoring
all occur in Es,t4 for −2 ≤ s ≤ 0.

The resulting reduced E4 for K[2] is shown in Figure 16. The information shown there is very useful for
computing differentials and extensions. The periodicity theorem tells us that πnK[2] and πn−32K[2] are isomor-
phic. For 0 ≤ n < 32 these groups appear in the first and third quadrants respectively, and the information
visible in the spectral sequence can be quite different.

For example, we see that π0K[2] has summand of the form ◻, while π−32K[2] has a subgroup isomorphic
to . The quotient ◻/ is isomorphic to ∘. This leads to the exotic restrictions and transfer in dimension −32
shown in Figure 16. Information that is transparent in dimension 0 implies subtle information in dimen-
sion −32. Conversely, we see easily that π−4K[2] = ̇ while π28K[2] has a quotient isomorphic to . This leads
to the “long transfer” (which raises filtration by 12) in dimension 28.
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Figure 13. The slice E7-term for the C2-spectrum i∗G� k[2]. The Mackey functor symbols are defined in Table 1. A number n in front
of a symbol indicates an n-fold direct sum. Blue lines indicate exotic transfers and red lines indicate differentials.

14 Higher differentials and exotic Mackey functor extensions
We can use the results of the Section 12 to study higher differentials and extensions. The E7-term implied by
them is illustrated in Figure 13. For each ℓ, s ≥ 0 there is a generator

y8ℓ+s,s := ηs0δ
2ℓ
1 ∈ Es,8ℓ+2s7 (G/G�)

with
d7(y16k+s+8,s) = y16k+s+7,s+7.

Recall that
δ1 = uλr1,0r1,1 ∈ E0,42 k[2](G/G�) ≅ E0,(G

� ,4)
2 k[2](G/G),

and in the latter group we denote uλ by u2σ. We have

d3(δ1) = d3(uλ)r1,0r1,1 ≅ d3(u2σ)r1,0r1,1 = a3σ(r1,0 + r1,1)r1,0r1,1.

If the source has the form res42(x16k+s+8,s), then such an x must support a nontrivial dr for r ≤ 7. If it has
a nontrivial transfer x�16k+s+8,s, then such an x

� cannot support an earlier differential, and we must have

dr(x�16k+s+8,s) = tr42(d7(y16k+s+8,s)) = tr42(y16k+s+7,s+7) for some r ≥ 7.

We could get a higher differential (meaning r > 7) if y16k+s+7,s+7 supports an exotic transfer.
We have seen (Figure 14 and Theorem 13.3) that for s ≥ 3 and k ≥ 0,

Es,16k+8+2s5 =
{{{
{{{
{

∘ for s ≡ 0mod 4,
∙ for s ≡ 1, 2mod 4,
ë for s ≡ 3mod 4.

(14.1)

For s = 1, 2, Es,16k+8+2s5 has ∙ as a direct summand. For s = 0 it has ◻ as a summand, and the differentials on
it factor through its quotient ∘; see (5.2).

The corresponding statement in the third quadrant is

E−s,−16k−2s−245 =
{{{
{{{
{

∘ for s ≡ 3mod 4,
∙ for s ≡ 1, 2mod 4,
ë for s ≡ 0mod 4,
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for s ≥ 3 and k ≥ 0. For s = 1, 2 the groups have similar summands, and for s = 0 there is a summand of the
form , which has ë as a subgroup; again see (5.2). This is illustrated in Figure 16.

Theorem 14.2 (Differentials for C4 related to the d7s for C2). The differential

d7(y16k+s+8,s) = y16k+s+7,s+7 with s ≥ 3

has the following implications for the congruence classes of s modulo 4.
(i) For s ≡ 0, Es,16k+8+2s7 = ∘ and Es+7,16k+14+2s7 = ë. Hence y16k+s+8,s is a restriction with a nontrivial transfer,

and

d5(x16k+s+8,s) = x16k+s+7,s+5,
d7(2x16k+s+8,s) = d7(tr42(y16k+s+8,s)) = tr42(y16k+s+7,s+7) = x16k+s+7,s+7.

(ii) For s ≡ 1,

d7(y16k+s+8,s) = y16k+s+7,s+7,
d5(x16k+s+8,s+2) = tr42(y16k+s+7,s+7) = 2x16k+s+7,s+7.

This leaves the fate of x16k+s+7,s+7 undecided; see below.
(iii) For s ≡ 2, Es,16k+8+2s7 = ∙ and Es+7,16k+14+2s7 = ∙ . Neither the source nor target is a restriction or has a non-

trivial transfer, so no additional differentials are implied.
(iv) For s ≡ 3, Es,16k+8+2s7 = ë and Es+7,16k+14+2s7 = ∙ . In this case the source is an exotic restriction; again see

Figure 10). Thus we have

d7(y16k+s+8,s) = y16k+s+7,s+7,
d5(x16k+s+8,s−2) = x16k+s++7,s+3 with res42(x16k+s++7,s+3) = y16k+s+7,s+7.

Moreover, tr42(y16k+8+s,s) is nontrivial and it supports a nontrivial d11 when 4k + s ≡ 3 mod 8. The other
case, 4k + s ≡ 7, will be discussed below.

Proof. (i) The target Mackey functor isë and y16k+s+7,s+7 is the exotic restriction of x16k+s+7,s+5; see Figure 10
and Theorem 13.3. The indicated d5 and d7 follow.

(ii) The differential is nontrivial on the G/G� component of

∙ = Es,16k+8+2s7
d7ÚÚ→ Es+7,16k+14+2s7 = ∘.

Thus the target has a nontrivial transfer, so the source must have an exotic transfer. The only option
is x16k+s+8,s+2, and the result follows.

(iv) We prove the statement about d11 by showing that

y16k+s+7,s+7 = ηs+70 δ4k1
supports an exotic transfer that raises filtration by 4. First note that

tr42(η0η1) = tr42(a
2
σ2 r1,0r1,0) = tr42(uσ res

4
2(aλd̄1)) = tr42(uσ)aλd̄1 = aσaλd̄1aλd̄1 by (11.4).

Next note that the three elements

y8,8 = η80 = res42(ϵ), y20,4 = η40δ
4
1 = res42(κ) and y32,0 = δ81 = res42(∆

4)

are all permanent cycles, so the same is true of all

y16m+4ℓ,4ℓ = η4ℓ0 δ
4m
1 for m, ℓ ≥ 0 and m + ℓ even.

It follows that for such ℓ and m,

η0η1y16m+4ℓ,4ℓ = η0η1η4ℓ0 δ
4m
1 = η4ℓ+20 δ4m1 = y16m+4ℓ+2,4ℓ+2 = η0η1 res42(x16m+4ℓ,4ℓ),

so
tr42(y16m+4ℓ+2,4ℓ+2) = tr42(η0η1)x16m+4ℓ,4ℓ = f 21 x16m+4ℓ,4ℓ.

This is the desired exotic transfer.
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We now turn to the unsettled part of Theorem 14.2 (iv).

Theorem 14.3 (The fate of x16k+s+8,s for 4k + s ≡ 7mod 8 and s ≥ 7). Each of these elements is the target of
a differential d7 and hence a permanent cycle.

Proof. Consider the element ∆21 ∈ E0,162 (G/G). We will show that

d7(∆21) = x15,7 = tr42(y15,7).

This is the case k = 0 and s = 7. The remaining cases will follow via repeated multiplication by ϵ, κ and ∆41.
We begin by looking at

∆1 = u2σu2λ d̄
2
1.

From Theorem 11.13 we have

d5(u2σ) = a3σaλd̄1 and d5(u2λ) = aσa
2
λuλd̄1.

Using the gold relation a2σuλ = 2aλu2σ, we have

d5(∆1) = d5(u2σu2λ)d̄1 = (a3σaλu2λ d̄1 + aσa
2
λuλu2σd̄1)d̄1

= aσaλuλ(a2σuλ + aλu2σ)d̄21
= aσaλuλ(2aλu2σ + aλu2σ)d̄21
= aσa2λuλu2σd̄

2
1 since 2aσ = 0

= νx4.

Since ν supports an exotic group extension, 2ν = x3, we have

2d5(∆1) = d7(2∆1) = x3x4.

From this it follows that
d7(∆21) = ∆1d7(2∆1) = x15,7

as claimed.

The resulting reduced E12-term is shown in Figure 15. It is sparse enough that the only possible remaining
differentials are the indicated differentials d13. In order to establish them we need the following.

The surviving class in E20,312 (G/G) is

x17,3 = f1∆21 = aσaλd̄1 ⋅ [u22σ]u
4
λ d̄

4
1 = (aσu4λ)(aλ[u

2
2σ]d̄

5
1).

The second factor is a permanent cycle, so Theorem 11.10 gives

d13(f1∆21) = (a7λ [u
2
2σ]d̄

3
1)(aλ[u

2
2σ]d̄

5
1) = a

8
λ [u

2
2σ]d̄

8
1 = ϵ2 = x44.

The surviving class in E32,212 (G/G) is

x30,2 = a2σu32σu
8
λ d̄

8
1 ∈ E32,212 (G/G)

and satisfies
ϵx30,2 = f1κx17,3 = f 21 x4∆

2
1,

so we have proved the following.

Theorem 14.4 (Differentials d13 in the slice spectral sequence for k[2]). There are differentials

d13(f ϵ1x
m
4 ∆

2n
1 ) = f ϵ−11 xm+4

4 ∆2(n−1)1

for ϵ = 1, 2, m + n odd, n ≥ 1 and m ≥ 1 − ϵ. The spectral sequence collapses from E14.
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Figure 14. The E4-term of the slice spectral sequence for k[2] with elements of Proposition 13.4 removed. Differentials are
shown in red. Exotic transfers and restrictions are shown as solid blue and dashed green lines respectively. The Mackey functor
symbols are as in Table 2.

0 4 8 12 16 20 24 28 32 36 40 44 48
0

4

8

12

16

20

24

28

2 22̂ 2̂ 2̂ 2̂ 2̂ 2̂ 2̂ 2̂ 2̂ 2̂ 2̂ 2̂
•̂ •̂ •̂N N N

H H H
N N◦

• • •
• • •

•̂ •̂ •̂ •̂ •̂ •̂• ••

Figure 15. The E12-term of the slice spectral sequence for k[2] with elements of Proposition 13.4 removed. Differentials are
shown in red. Exotic transfers and restrictions are shown as solid blue and dashed green lines respectively. The Mackey functor
symbols are as in Table 2.
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To finish the calculation we have

Theorem 14.5 (Exotic transfers from and restrictions to the 0-line). In π∗k[2], for i ≥ 0 we have

tr21(r1,ϵr
4i
1,0r

4i
1,1) = η

2
ϵ r

4i
1,0r

4i
1,1 ∈ π8i+2 (filtration jump 2),

tr41(r
8i+1
1,0 r

8i+1
1,1 ) = 2x4∆4i1 ∈ π32i+4 (filtration jump 4),

tr21((r
3
1,0 + r

3
1,1)r

8i
1,0r

8i
1,1) = η

3
0η

3
1δ

8i
1 ∈ π32i+6 (filtration jump 6),

tr41(r
8i+5
1,0 r

8i+5
1,1 ) = 2x4∆4i+21 ∈ π32i+20 (filtration jump 4),

tr21((r
3
1,0 + r

3
1,1)r

8i+4
1,0 r

8i+4
1,1 ) = η30η

3
1δ

8i+4
1 ∈ π32i+22 (filtration jump 6),

tr42(2δ
8i+7
1 ) = x34∆

4i+2
1 ∈ π32i+28 (filtration jump 12, the long transfer).

Let Mk denote the reduced value of πkk[2], meaning the one obtained by removing the elements of Propo-
sition 13.4. Its values are shown in purple in Figure 17, and each has at most two summands. For even k one of
them contains torsion free elements, and we denote it byM�

k. Its values depend on kmod 32 and are as follows,
with symbols as in Table 2.

k 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
M�
k ◻ ̂̇◻ ̂̇◻ ◻̂ ̂̇◻ ̂̇◻ ̇ ◻̂

Proof. We have two tools at our disposal: the periodicity theorem and Theorem 4.4, which relates exotic
transfers to differentials.

Figure 16 shows thatM�
k has the indicated value for −8 ≤ k ≤ 0 because the same is true of E0,k4 and there

is no room for any exotic extensions. On the other hand E0,k+324 does not have the same value for k = −8,
k = −6 and k = −4. This comparison via periodicity forces
∙ the indicated d5 and d7 in dimension 24, which together convert ◻ to . These were also established in

Theorem 14.2.
∙ the short transfer in dimension 26, which converts ◻̂ to ̂̇◻. It also follows from the results of Section 12.
∙ the long transfer in dimension 28, which converts to ̇ .

The differential corresponding to the long transfer is

d13([2u7λ ]) = aσa
6
λu2σu

4
λ d̄

3
1,

so
d13(aσ[2u7λ ]) = a

2
σa6λu2σu

4
λ d̄

3
1 = 2a7λ [u

2
2σ]u

3
λ d̄

3
1.

This compares well with the d13 of Theorem 11.10, namely

d13(aσ[u4λ ]) = a
7
λ [u

2
2σ]d̄

3
1.

The statements in dimensions 4 and 20 have similar proofs, and we will only give the details for the
former. It is based on comparing the E4-term for K[2] in dimensions −28 and 4. They must converge to the
same thing by periodicity. From the slice E4-term in dimension 4 we see there is a short exact sequence

0 // ë // M�
4

// // 0

Z/2

0

��

Z/2

[10 ]
��

// 0

��

Z/2

��

1

TT

[10 ]
// Z/2 ⊕ Z−

[0 2 ]

��

[1 a ]

TT

[0 1 ]
// Z−

2

��

UU

0

TT

// Z−

[ b1 ]

TT

Z−,

1

TT

(14.6)
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while the (−28)-stem gives

0 // ̇ // M�
4

// ∙ // 0

Z/2

0

��

Z/2

[10 ]
��

// 0

��

Z−

2

��

1

TT

[ c1 ]
// Z/2 ⊕ Z−

[0 2 ]

��

[1 a ]

TT

[1 d ]
// Z/2

UU

��

Z−

1

TT

Z−

[ b1 ]

TT

// 0.

TT

The commutativity of the second diagram requires that

a + b = c = 1

and
b + d = c + d = 0,

giving
(a, b, c, d) = (0, 1, 1, 1).

The diagram for M4 is that of in Table 2.
In dimension 20 the short exact sequence of (14.6) is replaced by

0 → ∘ → M�
20 → → 0

and the resulting diagram for M�
20 is that of .

Similar arguments can be made in dimensions 6 and 22.

We could prove a similar statement about exotic restrictions hitting the 0-line in the third quadrant in dimen-
sions congruent to 0, 4, 6, 14, 16, 20 (where there is an exotic transfer) and 22. The problem is naming the
elements involved.

In Table 4 we show short or 4-term exact sequences in the sixteen even-dimensional congruence classes.
In each case the value ofM�

k is the symbol appearing in both rows of the diagram. For even kwith 0 ≤ k < 32,
we typically have short exact sequences

0 // E0,k−324
// M�

k
// quotient // 0

0 // subgroup // M�
k

// E0,k4
// 0,

where the quotient or subgroup is finite and may be spread over several filtrations. This happens for the
quotient in dimensions −32, −16 and −12, and for the subgroup in dimensions 6 and 22.

This is the situation in dimensions where no differential hits [originates on] the 0-line in the third [first]
quadrant. When such a differential occurs, we may need a 4-term sequence, such as the one in dimen-
sion −22.

In dimensions 8 and 24 there is more than one such differential, the targets being a quotient and sub-
group of the Mackey functor ∘ = ◻/ .

In dimension −18 we have a d7 hitting the 0-line. Its source is written as ∘ ⊆ E−7,−244 in Figure 16. Its
generator supports a d5, leaving a copy of ë in E−7,−247 .

There is no case in which we have such differentials in both the first and third quadrants.

Corollary 14.7 (The E∞-term of the slice spectral sequence for K[2]). The surviving elements in the spectral
sequence for K[2] are shown in Figure 17.

Brought to you by | University of Rochester
Authenticated

Download Date | 5/3/17 6:59 PM



M.A. Hill et al., The slice spectral sequence for the C4 analog of real K-theory | 445

−
4
8

−
44

−
4
0

−
36

−
3
2

−
28

−
24

−
2
0

−
16

−
12

−
8

−
4

0
4

8
1
2

1
6

2
0

24
2
8

3
2

3
6

4
0

44
4
8

−
2
4

−
2
0

−
1
6

−
1
2

−
8

−
4048

1
2

1
6

2
0

2
4

2̂
̂̇ 2

̂̇ 2
̂̇ 2

̂̇ 2
̂̇ 2

̂̇ 2
˙

˙
˙

˙
˙

˙
◦

◦
◦

◦
◦

◦
◦

◦
◦

◦
◦

◦
◦

◦
◦

◦
◦

◦
◦

◦
◦

◦

◦
◦

◦

◦
◦

•
•

•
•

•

•
•

•
•

•

•
•

•
•

•
•

•
•

•
•

•

•
•

•

•
•

•
•

•

•
•

•
•

•

•
•

•
•

•
•

•
•

•
•

•

•
•

•

H
H

H
H

H

H
H

H
H

H
H

H
H

H
H

H

H
H

H

H
H

2
2

2
2

2
2

2
2̂

2̂
2̂

2̂
2̂

2̂
2̂

2̂
2̂

2̂
2̂

2̂
•̂

•̂
•̂

•̂
•̂

•̂
•

•
•

•
•

•
◦

◦
◦

◦
◦

◦

◦
◦

◦
◦

◦
◦

◦
◦

◦
◦

◦

◦
◦

◦
◦

◦

◦
◦

◦
◦

◦
◦

◦
◦

•
•

•
•

•
•

•
•

•
•

•

•
•

•
•

•

•
•

•
•

•
•

•
•

•
•

•

•
•

•

•
•

•

•
•

•
•

•
•

•

•
•

•
•

•
•

•
•

H
H

H
H

H
H

H
H

H
H

H
H

H
H

H
H

H

H
H

H
H

H

H
H

H
H

H
H

H
H

•̂
•̂

•̂
•̂

•̂
•̂

Figure 16. The reduced E4-term of the slice spectral sequence for the periodic spectrum K[2]. Differentials are shown in red.
Exotic transfers and restrictions are shown in solid blue and dashed green vertical lines respectively. The Mackey functor
symbols are indicated in the table below Figure 17.
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Figure 17. The reduced E14 = E∞-term of the slice spectral sequence for K[2]. The exotic Mackey functor extensions lead to the
Mackey functors shown in violet in the second and fourth quadrants. The Mackey functor symbols are indicated in the table on
the right.
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Dimension Third quadrant Dimension Third quadrant
mod 32 First quadrant mod 32 First quadrant

0 // ◻ // ∘

0 // ◻ ◻

16 // // ë

// ◻
d7
// ∙

2, 10 ̂̇◻ // ̂̇◻ // 0

∙̂ // ̂̇◻ // ◻̂

18, 26 ̂̇◻ // ̂̇◻ // 0

∙̂ // ̂̇◻ // ◻̂

4 ̇ // // ∙

ë // //

20 ̇ // // ∘

∘ // //

6 ∙
d7
// // // ∙

◻̂ // // ê

22 // // ∙

∘ // // ◻̂

8 // // 0
// ◻

d5 ,d7
// ∘

24 // // 0
// ◻

d5 ,d7
// ∘

12 ∙
d13
// ̇ //

0 // //

28 ̇ // ̇ // 0

∙ // ̇ //

14 ë
d7
// // ◻̂

0 // ◻̂ // ◻̂

30 ◻̂ // ◻̂ // 0

0 // ◻̂ // ◻̂

Table 4. Infinite Mackey functors in the reduced E∞-term for K[2]. In each even degree there is an infinite Mackey functor on
the 0-line that is related to a summand of π2kK[2] in the manor indicated. The rows in each diagram are short or 4-term exact
sequences with the summand appearing in both rows.

Funding: The authors were supported by DARPA Grant FA9550-07-1-0555 and NSF Grants DMS-0905160,
DMS-1307896.
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