ON β-ELEMENTS IN THE ADAMS-NOVIKOV SPECTRAL SEQUENCE

October 20, 2008

hirofumi nakai and douglas c. RAVENEL
Dedicated to Professor Takao Matumoto on his sixtieth birthday

The second author acknowledges support from NSF Grants DMS-9802516 and DMS-0404651.

Abstract

In this paper we detect invariants in the comodule consisting of β-elements over the Hopf algebroid $(A(m+1), G(m+1))$ defined in[Rav02], and we show that some related Ext groups vanish below a certain dimension. The result obtained here will be extensively used in [NR] to extend the range of our knowledge for $\pi_{*}(T(m))$ obtained in[Rav02].

Contents

1. Introduction 1
2. The construction of $B_{m+1} \quad 5$
3. Basic methods for finding comodule primitives 9
4. 0-primitives in $B_{m+1} \quad 11$
5. 1-primitives in $B_{m+1} \quad 13$
6. j-primitives in B_{m+1} for $j>1 \quad 16$
7. Higher Ext groups for $j=1 \quad 21$

Appendix A. Some results on binomial coefficients 22
Appendix B. Quillen operations on β-elements 25
References $\quad 27$

1. Introduction

In this paper we describe some tools needed in the method of infinite descent, which is an approach to finding the E_{2}-term of the Adams-Novikov spectral sequence converging to the stable homotopy groups of spheres. It is the subject of [Rav86, Chapter 7], [Rav04, Chapter 7] and [Rav02].

We begin by reviewing some notation. Fix a prime p. Recall the Brown-Peterson spectrum $B P$. Its homotopy groups and those of $B P \wedge B P$ are known to be

[^0]polynomial algebras
$$
\pi_{*}(B P)=\mathbf{Z}_{(p)}\left[v_{1}, v_{2} \ldots\right] \quad \text { and } \quad B P_{*}(B P)=B P_{*}\left[t_{1}, t_{2} \ldots\right]
$$

In [Rav86, Chapter 6] the second author constructed intermediate spectra

$$
S_{(p)}^{0}=T(0) \longrightarrow T(1) \longrightarrow T(2) \longrightarrow T(3) \longrightarrow \cdots \longrightarrow B P
$$

with $T(m)$ is equivalent to $B P$ below the dimension of v_{m+1}. This range of dimensions grows exponentially with $m . T(m)$ is a summand of p-localization of the Thom spectrum of the stable vector bundle induced by the map $\Omega S U\left(p^{m}\right) \rightarrow \omega S U=B U$. In [Rav02] we constructed truncated versions $T(m)_{(j)}$ for $j \geq 0$ with

$$
T(m)=T(m)_{(0)} \longrightarrow T(m)_{(1)} \longrightarrow T(m)_{(2)} \longrightarrow \cdots \longrightarrow T(m+1)
$$

These spectra satisfy

$$
\begin{aligned}
B P_{*}(T(m)) & =\pi_{*}(B P)\left[t_{1}, \ldots, t_{m}\right] \\
\text { and } \quad B P_{*}\left(T(m)_{(j)}\right) & =B P_{*}(T(m))\left\{t_{m+1}^{\ell}: 0 \leq \ell<p^{j}\right\}
\end{aligned}
$$

Thus $T(m)_{(j)}$ has p^{j} 'cells,' each of which is a copy of $T(m)$.
For each $m \geq 0$ we define a Hopf algebroid

$$
\begin{aligned}
\Gamma(m+1) & =\left(B P_{*}, B P_{*}(B P) /\left(t_{1}, t_{2}, \ldots, t_{m}\right)\right) \\
& =B P_{*}\left[t_{m+1}, t_{m+2}, \ldots\right]
\end{aligned}
$$

with structure maps inherited from $B P_{*}(B P)$, which is $\Gamma(1)$ by definition. Let

$$
\begin{aligned}
A & =B P_{*}, \\
A(m) & =\mathbf{Z}_{(p)}\left[v_{1}, \ldots, v_{m}\right] \\
\text { and } \quad G(m+1) & =A(m+1)\left[t_{m+1}\right]
\end{aligned}
$$

with t_{m+1} primitive. Then there is a Hopf algebroid extension

$$
\begin{equation*}
(A(m+1), G(m+1)) \rightarrow(A, \Gamma(m+1)) \rightarrow(A, \Gamma(m+2)) . \tag{1.1}
\end{equation*}
$$

In order to avoid excessive subscripts, we will use the notation

$$
\widehat{v}_{i}=v_{m+i}, \quad \text { and } \quad \widehat{t_{i}}=t_{m+i}
$$

We will use the usual notation without hats when $m=0$. We will use the notation

$$
\widehat{v}_{i}=v_{m+i}, \quad \widehat{t}_{i}=t_{m+i}, \quad \widehat{\beta}_{i / e_{1}, e_{0}}=\frac{\widehat{v}_{2}^{i}}{p^{e_{0}} v_{1}^{e_{1}}} \quad \text { and } \quad \widehat{\beta}_{i / e_{1}}^{\prime}=\frac{\widehat{v}_{2}^{i}}{p i v_{1}^{e_{1}}}
$$

We will also use the notations $\widehat{\beta}_{i / e_{1}}=\widehat{\beta}_{i / e_{1}, 1}$ and $\widehat{\beta}_{i / e_{1}}^{\prime}=\widehat{\beta}_{i / e_{1}, 1}^{\prime}$ for short. We will use the usual notation without hats when $m=0$.

Given a Hopf algebroid (B, Γ) and a Γ-comodule M, we will abbreviate $\operatorname{Ext}_{\Gamma}(B, M)$ by $\operatorname{Ext}_{\Gamma}(M)$ and $\operatorname{Ext}_{\Gamma}(B)$ by $\operatorname{Ext}_{\Gamma}$. With this in mind, there are change-of-rings isomorphisms

$$
\begin{aligned}
\operatorname{Ext}_{B P_{*}(B P)}\left(B P_{*}(T(m))\right) & =\operatorname{Ext}_{\Gamma(m+1)} \\
\text { and } \operatorname{Ext}_{B P_{*}(B P)}\left(B P_{*}\left(T(m)_{(j)}\right)\right) & =\operatorname{Ext}_{\Gamma(m+1)}\left(T_{m}^{(j)}\right) \\
\text { where } T_{m}^{(j)} & =A\left\{\hat{t}_{1}^{\ell}: 0 \leq \ell<p^{j}\right\} .
\end{aligned}
$$

Very briefly, the method of infinite descent involves determining the groups

$$
\operatorname{Ext}_{\Gamma(m+1)}\left(T_{m}^{(j)}\right) \quad \text { and } \quad \pi_{*}\left(T(m)_{(j)}\right)
$$

by downward induction on m and j.
To begin with, we know that

$$
\operatorname{Ext}_{\Gamma(m+1)}^{0}\left(A\left\{t_{m+1}^{\ell}: 0 \leq \ell<p^{j}\right\}\right)=A(m)\left\{\widehat{v}_{1}^{\ell}: 0 \leq \ell<p^{j}\right\}
$$

To proceed further, we make use of a short exact sequence of $\Gamma(m+1)$-comodules

$$
\begin{equation*}
0 \longrightarrow B P_{*} \xrightarrow{\iota_{0}} D_{m+1}^{0} \xrightarrow{\rho_{0}} E_{m+1}^{1} \longrightarrow 0 \tag{1.2}
\end{equation*}
$$

where D_{m+1}^{0} is weak injective (meaning that its higher Ext groups vanish) with ι_{0} inducing an isomorphism in Ext ${ }^{0}$. It has the form

$$
D_{m+1}^{0}=A(m)\left[\widehat{\lambda}_{1}, \widehat{\lambda}_{2}, \ldots\right] \subset \mathbf{Q} \otimes B P_{*}
$$

with

$$
\widehat{\lambda}_{i}=p^{-1} \widehat{v}_{i}+\cdots
$$

Thus we have an explicit description of E_{m+1}^{1}, which is a certain subcomodule of the chromatic module $N^{1}=B P_{*} /\left(p^{\infty}\right)$.

It follows that the connecting homomorphism δ_{0} associated with (1.2) is an isomorphism

$$
\operatorname{Ext}_{\Gamma(m+1)}^{s}\left(E_{m+1}^{1}\right) \xrightarrow{\cong} \operatorname{Ext}_{\Gamma(m+1)}^{s+1}
$$

and more generally

$$
\operatorname{Ext}_{\Gamma(m+1)}^{s}\left(E_{m+1}^{1} \otimes T_{m}^{(j)}\right) \xrightarrow{\cong} \operatorname{Ext}_{\Gamma(m+1)}^{s+1}\left(T_{m}^{(j)}\right)
$$

for each $s \geq 0$. The determination of this group for $s=0$ will be the subject of [Nak]. In this paper we will limit our attention to the case $s>0$.

Unfortunately there is no way to embed E_{m+1}^{1} in a weak injective comodule in a way that induces an isomorphism in Ext ${ }^{0}$ as in (1.2). (This is explained in [NR, Remark7.4].) Instead we will study the Cartan-Eilenberg spectral sequence for $\operatorname{Ext}_{\Gamma(m+1)}\left(E_{m+1}^{1} \otimes T_{m}^{(j)}\right)$ associated with the extension (1.1). Its E_{2}-term is

$$
\begin{align*}
\tilde{E}_{2}^{s, t}\left(T_{m}^{(j)}\right)= & \operatorname{Ext}_{G(m+1)}^{s}\left(\operatorname{Ext}_{\Gamma(m+2)}^{t}\left(T_{m}^{(j)} \otimes E_{m+1}^{1}\right)\right) \\
= & \operatorname{Ext}_{G(m+1)}^{s}\left(\bar{T}_{m}^{(j)} \otimes \operatorname{Ext}_{\Gamma(m+2)}^{t}\left(E_{m+1}^{1}\right)\right) \tag{1.3}\\
& \quad \text { where } \bar{T}_{m}^{(j)}=A(m+1)\left\{\widehat{t}_{1}^{\ell}: 0 \leq \ell<p^{j}\right\}
\end{align*}
$$

and differentials $\tilde{d}_{r}: \tilde{E}_{2}^{s, t} \rightarrow \tilde{E}_{2}^{s+r, t-r+1}$. Note that $T_{m}^{(j)}=A \otimes_{A(m+1)} \bar{T}_{m}^{(j)}$. We use the tilde to distinguish this spectral sequence from the resolution spectral sequence. We did not use this notation in [Rav02].

The short exact sequence of $\Gamma(m+1)$-comodules (1.2) is also a one of $\Gamma(m+2)$ comodules, and D_{m+1}^{0} is also weak injective over $\Gamma(m+2)$ (this was proved in [Rav02, Lemma 2.2]), but this time the map ι_{0} does not induce an isomorphism in Ext ${ }^{0}$. However, the connecting homomorphism

$$
\delta_{0}: \operatorname{Ext}_{\Gamma(m+2)}^{t}\left(E_{m+1}^{1} \otimes T_{m}^{(j)}\right) \rightarrow \operatorname{Ext}_{\Gamma(m+2)}^{t+1}\left(T_{m}^{(j)}\right)
$$

is an isomorphim of $G(m+1)$-comdules for $t>0$. Note that over $\Gamma(m+2), T_{m}^{(j)}$ is a direct sum of p^{j} suspended copies of A, so the isomorphism above is the tensor product with $\bar{T}_{m}^{(j)}$ with

$$
\delta_{0}: \operatorname{Ext}_{\Gamma(m+2)}^{t}\left(E_{m+1}^{1}\right) \rightarrow \operatorname{Ext}_{\Gamma(m+2)}^{t+1}
$$

We will abbreviate the group on the right by U_{m+1}^{t+1}. Its structure up to dimension $\left(p^{2}+p\right)\left|\widehat{v}_{2}\right|$ was determined in [NR, Theorem 7.10]. It is p-torsion for all $t \geq 0$ and v_{1}-torsion for $t>0$. Moreover, it is shown that each U_{m+1}^{t} for $t \geq 2$ is a certain suspension of U_{m+1}^{2} below dimension $p\left|\widehat{v}_{3}\right|$.

Let $\bar{E}_{m+1}^{1}=\operatorname{Ext}_{\Gamma(m+2)}^{0}\left(E_{m+1}^{1}\right)$. For $j=0$, the Cartan-Eilenberg E_{2}-term of (1.3) is

$$
\tilde{E}_{2}^{s, t}\left(T_{m}^{(0)}\right)= \begin{cases}\operatorname{Ext}_{G(m+1)}^{s}\left(\bar{E}_{m+1}^{1}\right) & \text { for } t=0 \\ \operatorname{Ext}_{G(m+1)}^{s}\left(U_{m+1}^{t+1}\right) & \text { for } t \geq 1\end{cases}
$$

While it is impossible to embed the $\Gamma(m+1)$-comodule E_{m+1}^{1} into a weak injective by a map inducing an isomorphism in Ext 0, it is possible to do this for the $G(m+1)$ comodule \bar{E}_{m+1}^{1}. In Theorem 2.4 below we will show that there is a pullback diagram of $G(m+1)$-comodules

where W_{m+1} is weak injective, ι_{1} induces an isomorphism in Ext^{0}, and B_{m+1} is the $A(m+1)$-submodule of $\bar{E}_{m+1}^{1} /\left(v_{1}^{\infty}\right)$ generated by

$$
\left\{\frac{\widehat{v}_{2}^{i}}{i p v_{1}^{i}}: i>0\right\}
$$

The object of this paper is to study B_{m+1} and related Ext groups. Since the ith element above is $\widehat{\beta}_{i / i}^{\prime}$, the elements of B_{m+1} are the beta elements of the title.

In [NR] we construct a variant of the Cartan-Eilenberg spectral sequence converging to $\operatorname{Ext}_{\Gamma(m+1)}\left(T_{m}^{(j)}\right)$. Its \tilde{E}_{1}-term has the following chart:

	\vdots	\vdots	\vdots	\vdots	
$t=2$	0	$\operatorname{Ext}^{0}\left(U^{3}\right)$	$\operatorname{Ext}^{1}\left(U^{3}\right)$	$\operatorname{Ext}^{2}\left(U^{3}\right)$	\cdots
$t=1$	0	$\operatorname{Ext}^{0}\left(U^{2}\right)$	$\operatorname{Ext}^{1}\left(U^{2}\right)$	$\operatorname{Ext}^{2}\left(U^{2}\right)$	\cdots
$t=0$	$\operatorname{Ext}^{0}(\bar{D})$	$\operatorname{Ext}^{0}(W)$	$\operatorname{Ext}^{0}(B)$	$\operatorname{Ext}^{1}(B)$	\cdots
	$s=0$	$s=1$	$s=2$	$s=3$	

where all Ext groups are over $G(m+1)$ and the tensor product signs and subscripts (equal to $m+1$) on U^{t+1}, \bar{D}^{0}, W and B have been omitted to save space.

Tensoring (1.4) with $\bar{T}_{m}^{(j)}$, we also have the following diagram:

	\vdots	\vdots	\vdots	\vdots	
$t=1$	0	$\operatorname{Ext}^{0}\left(\bar{T}_{m}^{(j)} U^{3}\right)$	$\operatorname{Ext}^{1}\left(\bar{T}_{m}^{(j)} U^{3}\right)$	$\operatorname{Ext}^{2}\left(\bar{T}_{m}^{(j)} U^{3}\right)$	\cdots
$t=0$	0	$\operatorname{Ext}^{0}\left(\bar{T}_{m}^{(j)} U^{2}\right)$	$\operatorname{Ext}^{1}\left(\bar{T}_{m}^{(j)} U^{2}\right)$	$\operatorname{Ext}^{2}\left(\bar{T}_{m}^{(j)} U^{2}\right)$	\cdots
$\operatorname{Ext}^{0}\left(\bar{T}_{m}^{(j)} \bar{D}\right)$	$\operatorname{Ext}^{0}\left(\bar{T}_{m}^{(j)} W\right)$	$\operatorname{Ext}^{0}\left(\bar{T}_{m}^{(j)} B\right)$	$\operatorname{Ext}^{1}\left(\bar{T}_{m}^{(j)} B\right)$	\cdots	
	$s=0$	$s=1$	$s=2$	$s=3$	

The construction of B_{m+1} will be given in $\S 2$. After introducing our basic methodology in $\S 3$, we determine the groups

$$
\operatorname{Ext}^{0}\left(\bar{T}_{m}^{(j)} \otimes B_{m+1}\right)
$$

for the cases $j=0, j=1$ and $j>1$ in the next three sections. Here

$$
\bar{T}_{m}^{(j)}=A(m+1)\left\{t_{m+1}^{\ell}: 0 \leq \ell<p^{j}\right\}
$$

In $\S 7$ we determine the higher Ext groups for $j=1$ in a range of dimensions. Our calculations require some results about binomial coefficients and Quillen operations that are collected in Appendices A and B respectively.

2. The construction of B_{m+1}

Proposition 2.1. A 4-term exact sequence of $G(m+1)$-comodules. The short exact sequence (1.2) gives a 4-term exact sequence

$$
\begin{aligned}
& A(m+1) \\
& \| \\
& 0 \longrightarrow U_{m+1}^{0} \xrightarrow{\iota_{0}} A(m)\left[p^{-1} \widehat{v}_{1}\right] \xrightarrow{\rho_{0}} \bar{E}_{m+1}^{1} \xrightarrow{\delta_{0}} U_{m+1}^{1} \longrightarrow 0 .
\end{aligned}
$$

Let

$$
\begin{aligned}
V_{m+1} & =A(m)\left[p^{-1} \widehat{v}_{1}\right] / A(m+1) \\
& =A(m+1)\left\{\frac{\widehat{v}_{1}^{i}}{p^{i}}: i>0\right\} \subset B P_{*} /\left(p^{\infty}\right)
\end{aligned}
$$

There is a short exact sequence of $G(m+1)$-comodules

$$
0 \longrightarrow V_{m+1} \longrightarrow \bar{E}_{m+1}^{1} \longrightarrow U_{m+1}^{1} \longrightarrow 0
$$

which is not split.
Proof. The comodule D_{m+1}^{0} was described explicitly in [Rav02, Theorem 3.9]. It has the form

$$
D_{m+1}^{0}=A(m)\left[\widehat{\lambda}_{1}, \ldots\right] \subset p^{-1} B P_{*}
$$

with

$$
\widehat{\lambda}_{i}= \begin{cases}\frac{\widehat{v}_{1}}{p} & \text { for } i=1 \\ \frac{\widehat{v}_{2}}{p}+\frac{\widehat{v}_{1} v_{1}^{p \omega}}{p^{2}}+\frac{\left(p^{p-1}-1\right) v_{1} \widehat{v}_{1}^{p}}{p^{p+1}} & \text { for } i=2 \\ \frac{v_{i}}{p}+\ldots & \text { for } i>2\end{cases}
$$

and

$$
\eta_{R}\left(\widehat{\lambda}_{i}\right)= \begin{cases}\widehat{\lambda}_{1}+\widehat{t}_{1} & \text { for } i=1 \\ \widehat{\lambda}_{2}+\widehat{t}_{2}+\left(p^{p-1}-1\right) v_{1} \sum_{0<j<p} p^{-1}\binom{p}{j} \widehat{\lambda}_{1}^{p-j} \widehat{t}_{1}^{j} & \text { for } i=2 \\ \widehat{\lambda}_{i}+\widehat{t}_{i}+\ldots & \text { for } i>2\end{cases}
$$

It follows that $\operatorname{Ext}_{\Gamma(m+2)}^{0}\left(D_{m+1}^{0}\right)=A(m)\left[\widehat{\lambda}_{1}\right]$ as claimed.
In order to understand the relation between \bar{E}_{m+1}^{1} and U_{m+1}^{1}, consider the following diagram of $\Gamma(m+2)$-comodules with exact rows.

The vertical maps are monomorphisms, and there is no obvious map either way between D_{m+1}^{0} and D_{m+2}^{0}. The description of the $U_{m+1}^{1}=\operatorname{Ext}_{\Gamma(m+2)}^{1}$ above is in terms of the connecting homomorphism for the bottom row. The element

$$
\frac{\widehat{v}_{2}^{i}}{p i} \in E_{m+2}^{1}
$$

is invariant and maps to the similarly named element in U_{m+1}^{1}. To describe its image in terms of the cobar complex, we pull it back to $\widehat{v}_{2}^{i} / p i \in D_{m+2}^{0}$ and compute its coboundary, which is

$$
d\left(\widehat{v}_{2}^{i} / p i\right)=\left(\left(\widehat{v}_{2}+p \widehat{t}_{2}\right)^{i}-\widehat{v}_{2}^{i}\right) / p i=\widehat{v}_{2}^{i-1} \widehat{t}_{2}+\ldots
$$

However, the element $\widehat{v}_{2}^{i} / p i$ is not present in E_{m+1}^{1}. To see this, consider the case $i=1$. In $p^{-1} B P_{*}$ we have

$$
\begin{aligned}
\frac{\widehat{v}_{2}}{p} & =\widehat{\lambda}_{2}-\frac{\widehat{v}_{1} v_{1}^{p \omega}}{p^{2}}+\frac{\left(1-p^{p-1}\right) v_{1} \widehat{v}_{1}^{p}}{p^{p+1}} \\
& =\widehat{\lambda}_{2}-\frac{\widehat{\lambda}_{1} v_{1}^{p \omega}}{p}+\frac{\left(1-p^{p-1}\right) v_{1} \widehat{\lambda}_{1}^{p}}{p} \\
& \notin D_{m+1}^{0}=A(m)\left[\widehat{\lambda}_{1}, \widehat{\lambda}_{2}, \ldots\right]
\end{aligned}
$$

Instead of \widehat{v}_{2} / p, consider the element $\widehat{\lambda}_{2}$ itself. Its image in E_{m+1}^{1} is invariant, so it defines a nontrivial element in \bar{E}_{m+1}^{1}. The computation of the image of $\left(p \widehat{\lambda}_{2}\right)^{i} / p i$ under the connecting homomorphism gives the same answer as before.

The right unit formula above implies that the short exact sequence does not split.

Definition 2.2. Let M be a graded torsion $G(m+1)$-comodule of finite type, and let M_{i} have order $p^{a_{i}}$. Then the Poincaré series for M is defined by

$$
\begin{equation*}
g(M)=\sum a_{i} t^{i} \tag{2.3}
\end{equation*}
$$

Given two such power series $f_{1}(t)$ and $f_{2}(t)$, the inequality $f_{1}(t) \leq f_{2}(t)$ means that each coefficient of $f_{1}(t)$ is dominated by the corresponding one in $f_{2}(t)$.

Theorem 2.4. Construction of B_{m+1}. Let $B_{m+1} \subset \bar{E}_{m+1}^{1} /\left(v_{1}^{\infty}\right)$ be the sub-$A(m+1)$-module generated by the elements

$$
\widehat{\beta}_{i / i}^{\prime}=\frac{\widehat{v}_{2}^{i}}{i p v_{1}^{i}}
$$

for all $i>0$. It is a $G(m+1)$-subcomodule whose Poincaré series is

$$
g\left(B_{m+1}\right)=g_{m+1}(t) \sum_{k \geq 0} \frac{x^{p^{k+1}}\left(1-y^{p^{k}}\right)}{\left(1-x^{p^{k+1}}\right)\left(1-x_{2}^{p^{k}}\right)}
$$

where

$$
\begin{aligned}
y & =t^{\left|v_{1}\right|}, \\
x & =t^{\left|\hat{v}_{1}\right|}, \\
x_{i} & =t^{\left|\hat{v}_{i}\right|} \quad \text { for } i>1 \\
\text { and } \quad g_{m+1}(t) & =\prod_{1 \leq i \leq m+1} \frac{1}{1-t^{\left|v_{i}\right|}} .
\end{aligned}
$$

Let W_{m+1} be the pullback in the diagram (1.4). Then W_{m+1} is a weak injective with $\operatorname{Ext}_{G(m+1)}^{0}\left(W_{m+1}\right)=\operatorname{Ext}_{G(m+1)}^{0}\left(\bar{E}_{m+1}^{1}\right)$, i.e., the map $\bar{E}_{m+1}^{1} \rightarrow W_{m+1}$ induces an isomorphism in Ext^{0}.

Proof. To show that B_{m+1} is a $G(m+1)$-subcomodule, note that

$$
\begin{array}{rlll}
\eta_{R}\left(\widehat{v}_{2}\right) & \equiv \widehat{v}_{2}+v_{1} \widehat{t}_{1}^{p}-v_{1}^{p \omega} \widehat{t}_{1} & \bmod p \\
\text { so } & \left.\eta_{R}\left(\widehat{v}_{2}\right)^{i}\right) & =\left(\widehat{v}_{2}+v_{1} \widehat{t}_{1}^{p}-v_{1}^{p \omega} \widehat{t}_{1}\right)^{p} & \bmod p i \\
\text { and } \quad \eta_{R}\left(\widehat{\beta}_{i / i}^{\prime}\right) & \in B_{m+1} \otimes G(m+1) .
\end{array}
$$

so B_{m+1} is a $G(m+1)$-comodule.
For the Poincaré series, let $F_{k} B_{m+1} \subset B_{m+1}$ denote the submodule of exponent p^{k} with $F_{0} B_{m+1}=\phi$. Then the Poincaré series of

$$
F_{k} B_{m+1} / F_{k-1} B_{m+1}=A(m+1) / I_{1}\left\{\widehat{\beta}_{i p^{k-1} / i p^{k-1}, p^{k}}: i>0\right\}
$$

is

$$
\begin{aligned}
g\left(F_{k} B_{m+1} / F_{k-1} B_{m+1}\right) & =g\left(A(m+1) / I_{2}\right) \sum_{i>0} x^{i p^{k}} \frac{1-y^{i p^{k-1}}}{1-y} \\
& =g_{m+1}(t) \sum_{i>0}\left(x^{i p^{k}}-\left(x^{p} y\right)^{i p^{k-1}}\right) \\
& =g_{m+1}(t) \sum_{i>0}\left(x^{i p^{k}}-x_{2}^{i p^{k-1}}\right) \\
& =g_{m+1}(t)\left(\frac{x^{p^{k}}}{1-x^{p^{k}}}-\frac{x_{2}^{p^{k-1}}}{1-x_{2}^{p^{k-1}}}\right)
\end{aligned}
$$

Summing these for all positive k gives the desired formula.
To show $\operatorname{Ext}_{G(m+1)}^{0}\left(W_{m+1}\right)$ is as claimed it is enough to show that the connecting homomorphism

$$
\operatorname{Ext}_{G(m+1)}^{0}\left(B_{m+1}\right) \longrightarrow \operatorname{Ext}_{G(m+1)}^{1}\left(\bar{E}_{m+1}^{1}\right)
$$

is monomorphic. Since the target group is in the Cartan-Eilenberg \tilde{E}_{2}-term converging to $\operatorname{Ext}_{\Gamma(m+1)}^{1}\left(E_{m+1}^{1}\right)$, we have the composition

$$
\eta: \operatorname{Ext}_{G(m+1)}^{0}\left(B_{m+1}\right) \longrightarrow \operatorname{Ext}_{\Gamma(m+1)}^{1}\left(E_{m+1}^{1}\right) \xrightarrow{\delta_{0}} \operatorname{Ext}_{\Gamma(m+1)}^{2}
$$

So it is sufficient to show that η is monomorphic. Since B_{m+1} is in $\operatorname{Ext}_{\Gamma(m+2)}^{0}\left(N^{2}\right)$, we have the following diagram

The right equality holds because $\operatorname{Ext}_{\Gamma(m+1)}^{1}\left(M^{0}\right)=0$, and the top row is exact. Since $\operatorname{Ext}_{\Gamma(m+1)}^{0}\left(M^{1}\right)$ is the $v_{1}^{-1} A(m)$-module generated by $\widehat{v}_{1}^{i} / i p$ the map η is monomorphic as desired.

The Poincaré series of W_{m+1} is given by

$$
\begin{aligned}
g\left(W_{m+1}\right) & =g\left(\bar{E}_{m+1}^{1}\right)+g\left(B_{m+1}\right)=g\left(V_{m+1}\right)+g\left(U_{m+1}^{1}\right)+g\left(B_{m+1}\right) \\
& =g_{m+1}(t)\left(\frac{x}{1-x}+\sum_{j \geq 0} \frac{x_{2}^{p^{j}}}{1-x_{2}^{p^{j}}}+\sum_{j \geq 0} \frac{x^{p^{j+1}}\left(1-y^{p^{j}}\right)}{\left(1-x^{p^{j+1}}\right)\left(1-x_{2}^{p^{j}}\right)}\right) \\
& =g_{m+1}(t)\left(\frac{x}{1-x}+\sum_{j \geq 0} \frac{x^{p^{j+1}}}{1-x^{p^{j+1}}}\right)=g_{m+1}(t) \sum_{j \geq 0} \frac{x^{p^{j}}}{1-x^{p^{j}}} \\
& =\frac{g\left(\operatorname{Ext}_{\Gamma(m+1)}^{1}\right)}{1-x} \quad \text { by }[\operatorname{Rav} 02, \text { Theorem 3.17] } \\
& =\frac{g\left(\operatorname{Ext}_{G(m+1)}^{0}\left(W_{m+1}\right)\right)}{1-x} .
\end{aligned}
$$

This means that W_{m+1} is weak injective by [Rav02, Theorem 2.6].

3. Basic methods for finding comodule primitives

From now on, all Ext groups are understood to be over $G(m+1)$.
Definition 3.1. [Rav04, Definition 7.1.8] A $G(m+1)$-comodule M is called j-free if the comodule tensor product $\bar{T}_{m}^{(j)} \otimes_{A(m+1)} M$ is weak injective, i.e.,

$$
\operatorname{Ext}^{n}\left(A(m+1), \bar{T}_{m}^{(j)} \otimes_{A(m+1)} M\right)=0
$$

for $n>0$. The elements of Ext^{0} are called j-primitives.
We will often abbreviate $\operatorname{Ext}(A(m+1), N)$ by $\operatorname{Ext}(N)$ for short. We will see in Proposition 3.3 that it is enough to consider a certain subgroup $L_{j}(M)$ of M to detect elements of $\operatorname{Ext}^{0}\left(\bar{T}_{m}^{(j)} \otimes M\right)$. Given a right $G(m+1)$-comodule M and the structure $\operatorname{map} \psi_{M}: M \rightarrow G(m+1) \otimes M$, define the Quillen operation $\widehat{r}_{i}: M \rightarrow M$ $(i \geq 0)$ on $z \in M$ by $\psi_{M}(z)=\sum_{i} \widehat{r}_{i}(z) \otimes \widehat{t_{1}^{i}}$. In this paper all comodules are right comodules. In most cases the structure map is determined by the right unit formula.

Definition 3.2. The group $L_{j}(M)$. Denote the subgroup $\bigcap_{n \geq p^{j}} \operatorname{ker} \widehat{r}_{n}$ of M by $L_{j}(M)$. By definition, we have a sequence of inclusions

$$
L_{0}(M) \subset L_{1}(M) \subset \cdots \cdots \subset L_{j}(M) \subset \cdots \cdots
$$

and $L_{0}(M)=\operatorname{Ext}^{0}(M)$.
The following result allows us to identify j-primitives with $L_{j}(M)$.
Proposition 3.3. [Rav02, Lemma 1.12] Identification of the j-primitives with $L_{j}(m)$. For a $G(m+1)$-comodule M, the map

$$
(c \otimes 1) \psi_{M}: L_{j}(M) \longrightarrow \operatorname{Ext}^{0}\left(\bar{T}_{m}^{(j)} \otimes M\right)
$$

is an isomorphism between $A(m+1)$-modules, where c is the conjugation map.
When we detect elements of $L_{j}(M)$, it is enough to consider elements killed by $\widehat{r}_{p^{j}}(j \geq 0)$, as one sees by the following proposition.
Proposition 3.4. A property of Quillen operations. If the Quillen operation $\widehat{r}_{p^{j}}$ on a $G(m+1)$-comodule M is trivial, then all operations \widehat{r}_{n} for $p^{j} \leq n<p^{j+1}$ are trivial.

Proof. Since $\widehat{r}_{i} \widehat{r}_{j}=\binom{i+j}{i} \widehat{r}_{i+j}$ [Nak, Lemma 3.1] we have a relation $\widehat{r}_{n-p^{j}} \widehat{r}_{p^{j}}=\binom{n}{p^{j}} \widehat{r}_{n} . \quad$ Observing that the congruence $\binom{n}{p^{j}} \equiv s \bmod (p)$ for $s p^{j} \leq n<(s+1) p^{j},\binom{n}{p^{j}}$ is invertible in $\mathbf{Z}_{(p)}$ whenever $p^{j} \leq n<p^{j+1}$, and the result follows.

In the following sections we will determine the structure of $L_{0}\left(B_{m+1}\right)$ in Proposition 4.2 and 4.4 and $L_{1}\left(B_{m+1}\right)$ in Proposition 5.1 and 5.4 in all dimensions, and $L_{j}\left(B_{m+1}\right)(j>1)$ in Theorem 6.1 below dimension $\left|\widehat{v}_{2}^{p^{j}+1} / v_{1}^{p^{j}}\right|$. Then we need a method for checking whether all j-primitives $(j>1)$ are listed or not.

The following lemma gives an explicit criterion the j-freeness of a comodule M.

Lemma 3.5. A Poincaré series characterization of j-free comodules. For a graded torsion connective $G(m+1)$-comodule M of finite type, we have an inequality

$$
\begin{equation*}
g(M)\left(1-x^{p^{j}}\right) \leq g\left(L_{j}(M)\right) \quad \text { where } x=t^{\left|\widehat{v}_{1}\right|} \tag{3.6}
\end{equation*}
$$

with equality holding iff M is j-free.
Proof. Let $I \subset A(m+1)$ be the maximal ideal. We have the inequality

$$
g\left(\bar{T}_{m}^{(j)} \otimes M\right) \leq g\left(\operatorname{Ext}^{0}\left(\bar{T}_{m}^{(j)} \otimes M\right)\right) \cdot g(G(m+1) / I)
$$

by [Rav04] Theorem 7.1.34, where the equality holds iff M is a weak injective. Observe that

$$
\begin{aligned}
g\left(\bar{T}_{m}^{(j)} \otimes M\right) & =g(M) \frac{1-x^{p^{j}}}{1-x} \\
g(G(m+1) / I) & =\frac{1}{1-x} \\
\text { and } g\left(\operatorname{Ext}^{0}\left(\bar{T}_{m}^{(j)} \otimes M\right)\right) & =g\left(L_{j}(M)\right)
\end{aligned}
$$

Lemma 3.7. A Poincaré series formula for the first Ext ${ }^{1}$ group. For a graded torsion connective $G(m+1)$-comodule M of finite type, suppose

$$
\frac{g\left(L_{j}(M)\right)}{1-x^{p^{j}}}-g(M) \equiv c t^{d} \quad \bmod t^{d+1}
$$

Then the first nontrivial element in $\operatorname{Ext}^{1}\left(\bar{T}_{m}^{(j)} \otimes M\right)$ occurs in dimension d, and the order of the group $G=\operatorname{Ext}^{1, d}\left(\bar{T}_{m}^{(j)} \otimes M\right)$ is p^{c}.

Proof. Since the inequality of (3.6) is an equality below dimension d, M is j-free in that range, so $\operatorname{Ext}^{1}\left(\bar{T}_{m}^{(j)} \otimes M\right)$ vanishes below dimension d. Each element $x \in G$ is represented by a short exact sequence of the form

$$
0 \longrightarrow \bar{T}_{m}^{(j)} \otimes M \longrightarrow M^{\prime} \longrightarrow \Sigma^{d} A(m+1) \longrightarrow 0
$$

If x has order p^{i}, then we get a diagram

Since G is a finite abelian p-group, it is a direct sum of cyclic groups. We can do the above for each of its generators and assemble them into an extension

$$
0 \longrightarrow \bar{T}_{m}^{(j)} \otimes M \longrightarrow M^{\prime \prime \prime} \longrightarrow \Sigma^{d} G \otimes \mathbf{z}_{(p)} A(m+1) \longrightarrow 0
$$

with $\operatorname{Ext}_{G(m+1)}^{0}\left(M^{\prime \prime \prime}\right)=L_{j}(M)$ through dimension d and $\operatorname{Ext}_{G(m+1)}^{1, d}\left(M^{\prime \prime \prime}\right)=0$, so $M^{\prime \prime \prime}$ is weak injective through dimension d.

If $|G|=p^{b}$, then we have

$$
\begin{aligned}
g\left(M^{\prime \prime \prime}\right) & =g\left(\bar{T}_{m}^{(j)} \otimes M\right)+g\left(\Sigma^{d} G \otimes_{\mathbf{z}_{(p)}} A(m+1)\right) \\
& =g(M)\left(\frac{1-x^{p^{j}}}{1-x}\right)+b t^{d} g_{m+1}(t)
\end{aligned}
$$

Since $M^{\prime \prime \prime}$ is weak injective through dimension d, we have

$$
\begin{aligned}
g\left(M^{\prime \prime \prime}\right) & \equiv \frac{g\left(\operatorname{Ext}_{G(m+1)}^{0}\left(M^{\prime \prime \prime}\right)\right)}{1-x} \bmod t^{d+1} \\
& \equiv \frac{g\left(L_{j}(M)\right)}{1-x} \\
& \equiv g(M)\left(\frac{1-x^{p^{j}}}{1-x}\right)+c t^{d}
\end{aligned}
$$

so $b=c$.

4. 0-PRIMITIVES IN B_{m+1}

In this section we determine the structure of $\operatorname{Ext}^{0}\left(B_{m+1}\right)$, i.e., the primitives in B_{m+1} in the usual sense. We treat the cases $m>0$ and $m=0$ separately. The latter is more complicated because v_{1} is not invariant over $\Gamma(1)$. Recall that the $G(m+1)$-comodule structure of B_{m+1} is given by the right unit map η_{R}.

Lemma 4.1. An approximation of the right unit. The right unit map $\eta_{R}: A(m+2)_{*} \rightarrow G(m+2)$ on the Hazewinkel generators are expressed by

$$
\begin{aligned}
\eta_{R}\left(\widehat{v}_{1}\right) & =\widehat{v}_{1}+p \widehat{t}_{1} \\
\eta_{R}\left(\widehat{v}_{2}\right) & \equiv \widehat{v}_{2}+v_{1} \widehat{t}_{1}^{p}-v_{1}^{p \omega} \widehat{t}_{1} \quad \bmod (p)
\end{aligned}
$$

where $\omega=p^{m}$.
Proof. These directly follow from [MRW] (1.1) and (1.3).

For a given integer n, denote the exponent of a prime p in the factorization of n by $\nu_{p}(n)$ as usual. In particular, $\nu_{p}(0)=\infty$. When the integer is a binomial coefficient $\binom{n}{k}$, we will write $\nu_{p}\binom{n}{k}$ instead of $\nu_{p}\left(\binom{n}{k}\right)$.

Let \widehat{h}_{j} be the 1-dimensional cohomology class of $\widehat{t}_{1}^{p^{j}}$.
Proposition 4.2. Structure of $\operatorname{Ext}^{0}\left(B_{m+1}\right)$ for $m>0$. For $m>0, \operatorname{Ext}^{0}\left(B_{m+1}\right)$ is the $A(m)$-module generated by

$$
\left\{p^{k} \widehat{v}_{1}^{s} \widehat{\beta}_{i p^{k} / t}^{\prime}: \quad i>0, s \geq 0, k \geq 0,0<t \leq p^{k} \text { and } \nu_{p}(i) \leq \nu_{p}(s)\right\}
$$

The first nontrivial element in $\operatorname{Ext}^{1}\left(B_{m+1}\right)$ is

$$
\widehat{h}_{0} \widehat{\beta}_{1} \in \operatorname{Ext}^{1,2(p+1)(p \omega-1)}\left(B_{m+1}\right)
$$

Proof. We may put $s=a p^{\ell}$ and $i=b p^{\ell}$ with $p \nmid b$ and $a \geq 0$. Observe that

$$
\begin{aligned}
\psi\left(\frac{\widehat{v}_{1}^{a p^{\ell}} \widehat{v}_{2}^{b p^{\ell+k}}}{b p^{\ell+1} v_{1}^{t}}\right) & =\frac{\widehat{v}_{1}^{a p^{\ell}}\left(\widehat{v}_{2}^{p^{k}}+v_{1}^{p^{k}} \widehat{t}_{1}^{p^{k+1}}-v_{1}^{p^{k+1} \omega} \widehat{t}_{1}^{k}\right)^{b p^{\ell}}}{b p^{\ell+1} v_{1}^{t}} \text { since } p \nmid b \\
& =\frac{\widehat{v}_{1}^{a p^{\ell}} \widehat{v}_{2}^{b p^{\ell+k}}}{b p^{\ell+1} v_{1}^{t}} \text { since } t \leq p^{k}
\end{aligned}
$$

and so the exhibited elements are invariant. On the other hand, we have nontrivial Quillen operations

$$
\begin{aligned}
\widehat{r}_{1}\left(p^{k} \widehat{v}_{1}^{s} \widehat{\beta}_{i p^{k} / t}^{\prime}\right) & =-\frac{\widehat{v}_{1}^{s} \widehat{v}_{2}^{i p^{k}-1}}{p^{1-k} v_{1}^{t-p \omega}}+\frac{s}{i} \cdot \frac{\widehat{v}_{1}^{s-1} \widehat{v}_{2}^{i p^{k}}}{v_{1}^{t}} & \text { if } \nu_{p}(s)<\nu_{p}(i) \\
\text { and } \widehat{r}_{p^{k+1}}\left(p^{k} \widehat{v}_{1}^{s} \widehat{\beta}_{i p^{k} / t}^{\prime}\right) & =\frac{\widehat{v}_{1}^{s} \vec{v}_{2}^{p^{k}(i-1)}}{p v_{1}^{t-p^{k}}}+\cdots & \text { if } t>p^{k},
\end{aligned}
$$

where the missing terms in the second expression involve lower powers of \widehat{v}_{1} in the numerator or smaller powers of v_{1} in the denominator.

This means each element $p^{k} \widehat{v}_{1}^{s} \widehat{\beta}_{i^{k} / t}^{\prime}$ with $\nu_{p}(s)<\nu_{p}(i)$ supports a nontrivial \widehat{r}_{1}, the targets of which are linearly independent. Similarly, each such monomial with $t>p^{k}$ supports a nontrivial $\widehat{r}_{p^{k+1}}$. It follows that no linear combination of such elements is invariant, so Ext ${ }^{0}$ is as stated.

For the second statement, note that \widehat{h}_{0} and $\widehat{\beta}_{1}$ are the first nontrivial elements in Ext ${ }^{1}$ and $\operatorname{Ext}^{0}\left(B_{m+1}\right)$ respectively, so if their product is nontrivial, the claim follows. It is nontrivial because there is no $x \in B_{m+1}$ with $\widehat{r}_{1}(x)=\widehat{\beta}_{1}$.

We now turn to the case $m=0$.
Lemma 4.3. Right unit in $G(1)$. The right unit $\eta_{R}: A(1) \rightarrow G(1)$ on the chromatic fraction $\frac{1}{i p v_{1}^{t}}$ is

$$
\eta_{R}\left(\frac{1}{i p v_{1}^{t}}\right)=\sum_{k \geq 0}\binom{t+k-1}{k} \frac{\left(-t_{1}\right)^{k}}{i p^{1-k} v_{1}^{t+k}}
$$

Note that this sum is finite because a chromatic fraction is nontrivial only when its denominator is divisible by p.

Proof. Recall the expansion

$$
\begin{aligned}
\frac{1}{(x+y)^{t}}=(x+y)^{-t} & =x^{-t}(1+y / x)^{-t}=x^{-t} \sum_{k \geq 0}\binom{-t}{k} \frac{y^{k}}{x^{k}} \\
& =\sum_{k \geq 0}\binom{t+k-1}{k} \frac{(-y)^{k}}{x^{k+t}}
\end{aligned}
$$

and the formula $\eta_{R}\left(v_{1}^{t}\right)=\left(v_{1}+p t_{1}\right)^{t}$ by Lemma 4.1.

Proposition 4.4. Structure of $\operatorname{Ext}^{0}\left(B_{1}\right)$. For $m=0$, $\operatorname{Ext}^{0}\left(B_{1}\right)$ is the $\mathbf{Z}_{(p)}{ }^{-}$ module generated by

$$
\left\{p^{k} \beta_{i p^{k} / t}^{\prime}: \quad i>0, k \geq 0,0<t \leq p^{k} \text { and } \nu_{p}(i) \leq \nu_{p}(t)\right\}
$$

The first nontrivial element in $\operatorname{Ext}^{1}\left(B_{1}\right)$ is

$$
h_{0} \beta_{1} \in \operatorname{Ext}^{1,2\left(p^{2}-1\right)}\left(B_{m+1}\right)
$$

Proof. When i and t are as stated, we may set $t=a p^{\ell}$ and $i=b p^{\ell}$ with $p \nmid b$ and $a>0$. Observe that

$$
\begin{aligned}
& \eta_{R}\left(\frac{v_{2}^{b p^{\ell+k}}}{b p^{\ell+1} v_{1}^{a p^{\ell}}}\right)=\left(v_{2}^{p^{k}}+v_{1}^{p^{k}} t_{1}^{p^{k+1}}-v_{1}^{p^{k+1}} t_{1}^{p^{k}}\right)^{b p^{\ell}} \\
& \sum_{n \geq 0}\binom{a p^{\ell}+n-1}{n} \frac{\left(-t_{1}\right)^{n}}{b p^{\ell+1-n} v_{1}^{a p^{\ell}+n}}
\end{aligned}
$$

For $n>0$, the binomial coefficient is divisible by $p^{\ell+1-n}$ by Lemma A. 3 below, so the expression simplifies to

$$
\eta_{R}\left(\frac{v_{2}^{b p^{\ell+k}}}{b p^{\ell+1} v_{1}^{a p^{\ell}}}\right)=\frac{\left(v_{2}^{p^{k}}+v_{1}^{p^{k}} t_{1}^{p^{k+1}}-v_{1}^{p^{k+1}} t_{1}^{p^{k}}\right)^{b p^{\ell}}}{b p^{\ell+1} v_{1}^{a p^{\ell}}}
$$

and $p^{k} \beta_{i p^{k} / t}^{\prime}$ is invariant by an argument similar to that of Lemma 4.2. On the other hand if either of the conditions on i and t fails, we have nontrivial Quillen operations

$$
\begin{aligned}
r_{1}\left(p^{k} \beta_{i p^{k} / t}^{\prime}\right) & =-\frac{v_{2}^{i p^{k}-1}}{p^{1-k} v_{1}^{t-p}}-\frac{t}{i} \cdot \frac{v_{2}^{i p^{k}}}{v_{1}^{t+1}} & \text { if } \nu_{p}(i)>\nu_{p}(t) \\
\text { or } \quad r_{p^{k+1}}\left(p^{k} \beta_{i p^{k} / t}^{\prime}\right) & =\frac{v_{2}^{(i-1) p^{k}}}{p v_{1}^{t-p^{k}}} & \text { if } t>p^{k} .
\end{aligned}
$$

The rest of the argument, inclduing the identifation of the first nontrivial element in $\operatorname{Ext}^{1}\left(B_{1}\right)$, is the same as in the case $m>0$.

5. 1-PRIMITIVES IN B_{m+1}

In this section we determine the structure of $L_{1}\left(B_{m+1}\right)$, which includes all elements of $\operatorname{Ext}^{0}\left(B_{m+1}\right)$ determined in the previous section. By observing that $\widehat{r}_{1}\left(\widehat{v}_{1} \widehat{\beta}_{p}^{\prime}\right)=\widehat{\beta}_{p}$ and $\widehat{r}_{p^{j}}\left(\widehat{v}_{1} \widehat{\beta}_{p}^{\prime}\right)=0$ for $j \geq 1$, the first element of the quotient $L_{1}\left(B_{m+1}\right) / L_{0}\left(B_{m+1}\right)$ is $\widehat{v}_{1} \widehat{\beta}_{p}^{\prime}$ for $m>0$. In general, we have

Proposition 5.1. Structure of $L_{1}\left(B_{m+1}\right)$ for $m>0$. For $m>0, L_{1}\left(B_{m+1}\right)$ is isomorphic to the $A(m)$-module generated by $p^{k} \widehat{v}_{1}^{s}{\widehat{\beta}_{i p^{k} / t}^{\prime}}^{\prime}$, where $i>0, s \geq 0, k \geq 0$ and $0<t \leq p^{k}$, and the integers i and s satisfy the following condition: there is a non-negative integer n such that $s \equiv 0,1, \ldots p-1 \bmod \left(p^{n+1}\right)$ and $\nu_{p}(i)<n+p$.

Note that the description of $L_{1}\left(B_{m+1}\right)$ differs from that of $L_{0}\left(B_{m+1}\right)$ given in Proposition 4.2 only in the restriction on i and s. In that case it was $\nu_{p}(i) \leq \nu_{p}(s)$. If $\nu_{p}(s)=n+1$ (i.e., $s \equiv 0 \bmod \left(p^{n+1}\right)$), then an integer i satisfying $\nu_{p}(i) \leq n+1$ also satisfies $\nu_{p}(i)<n+p$. Hence we have $L_{0}\left(B_{m+1}\right) \subset L_{1}\left(B_{m+1}\right)$ as desired.

Proof. In Proposition 4.2 we have already seen that $p^{k} \widehat{\beta}_{i p^{k} / t}^{\prime}$ is invariant iff $0<t \leq$ p^{k}. If follows that

$$
\widehat{r}_{p^{\ell}}\left(p^{k} \widehat{v}_{1}^{s} \widehat{\beta}_{i p^{k} / p^{k}}^{\prime}\right)=\widehat{r}_{p^{\ell}}\left(\widehat{v}_{1}^{s}\right) \cdot p^{k} \widehat{\beta}_{i p^{k} / p^{k}}^{\prime}=p^{p^{\ell}}\binom{s}{p^{\ell}} \widehat{v}_{1}^{s-p^{\ell}} \cdot \frac{\widehat{v}_{2}^{i p^{k}}}{i p v_{1}^{p^{k}}}
$$

Since we are dealing with 1-primitives, we can ignore the case $\ell=0$. For $\ell=1$, this is clearly trivial if $s<p$. When $s \geq p$, choose an integer n such that $p^{n} \left\lvert\,\binom{ s}{p}\right.$. By Lemma A. 4 this means $n=0$ unless s is p-adically close to an integer ranging from 0 to $p-1$. Then \widehat{r}_{p} is trivial if $\nu_{p}(i)<n+p$. We can show that all Quillen operations $\widehat{r}_{p^{\ell}}$ for $\ell>1$ are trivial under the same condition since

$$
\nu_{p}\left(p^{p}\binom{s}{p}\right) \leq \nu_{p}\left(p^{p^{\ell}}\binom{s}{p^{\ell}}\right)
$$

which follows from

$$
\begin{aligned}
& q \nu_{p}\left(p^{p^{\ell}}\binom{s}{p^{\ell}}\right)=p^{\ell}+1+\alpha\left(s-p^{\ell}\right)-\alpha(s) \\
& \text { by Lemma A.2 } \\
& q\left[\nu_{p}\left(p^{p^{\ell}}\binom{s}{p^{\ell}}\right)-\nu_{p}\left(p^{p}\binom{s}{p}\right)\right]=p^{\ell}-p+\alpha\left(s-p^{\ell}\right)-\alpha(s-p) \\
& \geq \alpha\left(p^{\ell}-p\right)+\alpha\left(s-p^{\ell}\right)-\alpha(s-p) \\
& \geq 0
\end{aligned}
$$

and

Note also that the condition on i and s in Proposition 5.1 is automatically satisfied whenever $i<p^{p}$, which means that we may set $n=0$. Since

$$
\widehat{r}_{p}\left(\widehat{v}_{1}^{s}\right)=p^{p}\binom{s}{p} \widehat{v}_{1}^{s-p}
$$

and p^{p} kills all of B_{m+1} below the dimension of $\widehat{\beta}_{p^{p} / p^{p}}, \widehat{v}_{1}$ is effectively invariant in this range, making B_{m+1} an $A(m+1)$-module.
Corollary 5.2. Poincaré series for $L_{1}\left(B_{m+1}\right)$. For $m>0$, the Poincaré series for $L_{1}\left(B_{m+1}\right)$ below dimension $p^{p}\left|\widehat{v}_{2}\right|$ is

$$
\begin{equation*}
g_{m+1}(t) \sum_{k \geq 0} \frac{x^{p^{k+1}}-x_{2}^{p^{k}}}{1-x_{2}^{p^{k}}} \tag{5.3}
\end{equation*}
$$

and in the same range we have

$$
L_{1}\left(B_{m+1}\right)=A(m+1)\left\{p^{k} \widehat{\beta}_{i p^{k} / t}^{\prime}: \quad i>0, k \geq 0 \text { and } 0<t \leq p^{k}\right\}
$$

Proof. As is explained in the above, we may consider $L_{1}\left(B_{m+1}\right)$ as an $A(m+1)$ module in that range. To determine the Poincaré series $g\left(L_{1}\left(B_{m+1}\right)\right)$, decompose $L_{1}\left(B_{m+1}\right)$ into the following two direct summands:
(1) $S_{0}=A(m+1) / I_{2}\left\{\widehat{\beta}_{i}^{\prime}: i>0\right\}$
(2) $S_{k}=A(m+1) / I_{2}\left\{p^{k} \widehat{\beta}_{i p^{k} / t}^{\prime}: i>0\right.$ and $\left.p^{k-1}<t \leq p^{k}\right\}$ for $k>0$

The Poincaré series for these sets are given by

$$
\begin{aligned}
& g\left(S_{0}\right)=g_{m+1}(t) \cdot(1-y) \sum_{n \geq 0} y^{-1} \frac{x_{2}^{p^{n}}}{1-x_{2}^{p^{n}}} \\
& \text { and } \begin{aligned}
g\left(S_{k}\right) & =g_{m+1}(t) \cdot(1-y) \sum_{n>0} \frac{y^{-p^{k}}\left(1-y^{p^{k}-p^{k-1}}\right)}{1-y} \cdot \frac{x_{2}^{p^{n+k-1}}}{1-x_{2}^{p^{n+k-1}}} \\
& =g_{m+1}(t) \sum_{n \geq 0}\left(y^{-p^{k}}-y^{-p^{k-1}}\right) \frac{x_{2}^{p^{n+k}}}{1-x_{2}^{p^{n+k}}}
\end{aligned} .
\end{aligned}
$$

which gives

$$
\begin{aligned}
\frac{g\left(L_{1}\left(B_{m+1}\right)\right)}{g_{m+1}(t)} & =\sum_{n \geq 0}\left(y^{-1}-1\right) \frac{x_{2}^{p^{n}}}{1-x_{2}^{p^{n}}}+\sum_{0<k \leq n}\left(y^{-p^{k}}-y^{-p^{k-1}}\right) \frac{x_{2}^{p^{n}}}{1-x_{2}^{p^{n}}} \\
& =\sum_{n \geq 0}\left(y^{-1}-1\right) \frac{x_{2}^{p^{n}}}{1-x_{2}^{p^{n}}}+\sum_{n>0}\left(y^{-p^{n}}-y^{-1}\right) \frac{x_{2}^{p^{n}}}{1-x_{2}^{p^{n}}} \\
& =\left(y^{-1}-1\right) \frac{x_{2}}{1-x_{2}}+\sum_{n>0}\left(y^{-p^{n}}-1\right) \frac{x_{2}^{p^{n}}}{1-x_{2}^{p^{n}}} \\
& =\sum_{n \geq 0} \frac{x_{2}^{p^{n}}\left(y^{-p^{n}}-1\right)}{1-x_{2}^{p^{n}}}
\end{aligned}
$$

which is equal to (5.3).
Now we turn to the case $m=0$, for which we make use of Lemma 4.3 again. Observing that $\widehat{r}_{1}\left(\beta_{p}^{\prime}\right)=-\beta_{p / 2}$ and $\widehat{r}_{p^{j}}\left(\beta_{p}^{\prime}\right)=0$ for $j \geq 1$, the first element of the quotient $L_{1}\left(B_{m+1}\right) / L_{0}\left(B_{m+1}\right)$ is β_{p}^{\prime}. In general, we have

Proposition 5.4. Structure of $L_{1}\left(B_{1}\right)$. For $m=0, L_{1}\left(B_{1}\right)$ is isomorphic to the $\mathbf{Z}_{(p)}$-module generated by $p^{k} \beta_{i p^{k} / t}^{\prime}$, where $k \geq 0, i>0$ and $0<t \leq p^{k}$ satisfying the following condition: there is a non-negative integer n such that $-t=0,1, \ldots, p-1$ $\bmod \left(p^{n+1}\right)$ and $p^{p+n} \nmid i$.

Proof. We have

$$
\psi\left(\frac{v_{2}^{i p^{k}}}{i p v_{1}^{t}}\right)=\left(v_{2}^{p^{k}}+v_{1}^{p^{k}} t_{1}^{p^{k+1}}-v_{1}^{p^{k+1}} t_{1}^{p^{k}}\right)^{i} \sum_{r \geq 0}\binom{t+r-1}{r} \frac{\left(-p t_{1}\right)^{r}}{i p v_{1}^{t+r}}
$$

in which there are terms

Since $t \leq p^{k}$, the first and the second are trivial, which gives

$$
\widehat{r}_{p^{\ell}}\left(p^{k} \beta_{i p^{k} / t}\right)=(-p)^{p^{\ell}}\binom{t+p^{\ell}-1}{p^{\ell}} \frac{v_{2}^{i p^{k}}}{i p v_{1}^{t+p^{\ell}}}
$$

Choose an integer n such that $p^{n} \left\lvert\,\binom{ t+p-1}{p}\right.$, which occurs iff $-t=0,1, \ldots, p-1 \bmod \left(p^{n+1}\right)$ by Lemma A.4. Then \widehat{r}_{p} is trivial if $p^{p+n} \nmid i$. We can also observe that all the higher Quillen operations $\widehat{r}_{\ell}(\ell \geq 1)$ are trivial since $\nu_{p}\left(p^{p}\binom{t+p-1}{p}\right) \leq \nu_{p}\left(p^{p^{\ell}}\binom{t+p^{\ell}-1}{p^{\ell}}\right)$ (see the proof of Proposition 5.1).

Corollary 5.5. $L_{1}\left(B_{1}\right)$ as an $A(1)$-module. For $m=0$, we have

$$
L_{1}\left(B_{1}\right)=A(1)\left\{p^{k} \beta_{i p^{k} / t}^{\prime}: i>0, k \geq 0 \text { and } 0<t \leq p^{k}\right\}
$$

below dimension $p^{p}\left|v_{2}\right|$. The Poincaré series for $L_{1}\left(B_{1}\right)$ in this range is the same as (5.3).

Applying Lemma 3.5 and 3.7 to the Poincaré series (5.3), we have the following result.

Corollary 5.6. 1-free range for B_{m+1}. For $m \geq 0, B_{m+1}$ is 1 -free below dimension $p(p+1)\left|\widehat{v}_{1}\right|$, and the first element in $\operatorname{Ext}^{1}\left(\bar{T}_{m}^{(1)} \otimes B_{m+1}\right)$ is $\widehat{\beta}_{p / p} \widehat{h}_{1}$.

Here we use the notation $\widehat{\beta}_{p / p}$ for its image under the map $(c \otimes 1) \psi_{B_{m+1}}(c f .(3.3))$.
Proof. By comparing $g\left(B_{m+1}\right)$ and $g\left(L_{1}\left(B_{m+1}\right)\right)$ and using Lemma 3.7, we see that the first nontrivial element of $\operatorname{Ext}^{1}\left(\bar{T}_{m}^{(1)} \otimes B_{m+1}\right)$ occurs in the indicated dimension, where the group has order p. The fact that $\widehat{\beta}_{p / p} \widehat{h}_{1}$ is nontrivial in Ext ${ }^{1}$ follows by direct calculation.

6. j-PRIMITIVES IN B_{m+1} FOR $j>1$

In this section we determine the structure of $L_{j}\left(B_{m+1}\right)$ for $j \geq 2$ and $m>0$ (See [Rav04] Lemma 7.3 .1 for the $m=0$ case). The first element of the quotient $L_{j}\left(B_{m+1}\right) / L_{j-1}\left(B_{m+1}\right)$ is $\widehat{\beta}_{p^{j-2}+1 / p^{j-2}+1}$, which has nontrivial Quillen operation

$$
\widehat{r}_{p^{j-1}}\left(\widehat{\beta}_{p^{j-2}+1 / p^{j-2}+1}\right)=\widehat{\beta}_{1} .
$$

In general, we have
Theorem 6.1. Structure of $L_{j}\left(B_{m+1}\right)$ in low dimensions for $j>1$.
(i) Below dimension $p^{j+1}\left|\widehat{v}_{2}\right|, L_{j}\left(B_{m+1}\right)$ is the $A(m+1)$-module generated by $\left\{\widehat{\beta}_{i / t}^{\prime}: 0<t \leq \min \left(i, p^{j-1}\right)\right\} \cup\left\{\widehat{\beta}_{a p^{j}+b / t}: p^{j-1}<t \leq p^{j}, a>0\right.$ and $\left.0 \leq b<p^{j-1}\right\}$.
(ii) B_{m+1} is j-free below dimension $\left|\widehat{v}_{1}^{p^{j+1}} \widehat{v}_{2}\right|$.
(iii) The first element in Ext^{1} is the p-fold Massey product

$$
\langle\widehat{\beta}_{1+p^{j-1} / p^{j-1}}, \underbrace{\widehat{h}_{1, j}, \ldots, \widehat{h}_{1, j}}_{p-1}\rangle
$$

For the basic properties of Massey products, we refer the reader to [Rav86, A1.4] or [Rav04, A1.4]

Proof. (i) The listed elements are the only j-primitives below dimensions $p^{j+1}\left|\widehat{v}_{2}\right|$ by Proposition B.3, and the first statement follows.
(ii) To show that B_{m+1} is j-free below the indicated dimension, we need to compute some Poincaré series. This will be a lengthy calculation.

Decompose $L_{j}\left(B_{m+1}\right)$ into the following three direct summands:

$$
\begin{aligned}
S_{0,1} & =A(m+1)\left\{\widehat{\beta}_{i / t}^{\prime}: 0<t \leq i<p^{j-1}\right\} \\
S_{0,2} & =A(m+1)\left\{\widehat{\beta}_{i / t}^{\prime}: 0<t \leq p^{j-1} \leq i\right\} \\
S_{j} & =A(m+1)\left\{\widehat{\beta}_{a p^{j}+b / t}: p^{j-1}<t \leq p^{j}, a>0 \text { and } 0 \leq b<p^{j-1}\right\} .
\end{aligned}
$$

We will always work below the dimension of $\widehat{\beta}_{2 p^{j} / p^{j}}$, which is $\left|\widehat{v}_{1}^{j+1} \widehat{v}_{2}^{p^{j}}\right|$. This means that in the description of S_{j} above, the only relevant value of a is 1 .

Observe that

$$
S_{0,1}=\bigcup_{0<k<j} A(m+1) / I_{2}\left\{\frac{\widehat{v}_{2}^{i p^{k-1}}}{p^{k} v_{1}^{i p^{k-1}-\ell}}: 0 \leq \ell<i p^{k-1}, 0<i<p^{j-k}\right\}
$$

so

$$
\begin{aligned}
g\left(S_{0,1}\right) & =g\left(A(m+1) / I_{2}\right) \sum_{0<k<j} \sum_{0<i<p^{j-k}} \frac{\left(1-y^{i p^{k-1}}\right)\left(x^{p^{k}}\right)^{i}}{1-y} \\
& =g_{m+1}(t) \sum_{0<k<j} \sum_{0<i<p^{j-k}}\left(x^{i p^{k}}-x_{2}^{i p^{k-1}}\right) \\
\frac{g\left(S_{0,1}\right)}{g_{m+1}(t)} & =\sum_{0<k<j}\left(\frac{x^{p^{k}}\left(1-\left(x^{p^{k}}\right)^{p^{j-k}-1}\right)}{1-x^{p^{k}}}-\frac{x_{2}^{p^{k-1}}\left(1-\left(x_{2}^{p^{k-1}}\right)^{p^{j-k}-1}\right)}{1-x_{2}^{p^{k-1}}}\right) \\
& =\sum_{0<k<j}\left(\frac{x^{p^{k}}-x^{p^{j}}}{1-x^{p^{k}}}-\frac{x_{2}^{p^{k-1}}-x_{2}^{p^{j-1}}}{1-x_{2}^{p^{k-1}}}\right)
\end{aligned}
$$

For $S_{0,2}$, we have

$$
S_{0,2}=A(m+1)\left\{\frac{\widehat{v}_{2}^{i}}{i p v_{1}^{p^{j-1}-\ell}}: 0 \leq \ell<p^{j-1}, i \geq p^{j-1}\right\}
$$

which is the quotient of

$$
\begin{aligned}
& \bigcup_{k>0} A(m+1) / I_{2}\left\{\frac{\widehat{v}_{2}^{i p^{k-1}}}{p^{k} v_{1}^{p^{j-1}-\ell}}: 0 \leq \ell<p^{j-1}, i>0\right\} \\
& \bigcup_{0<k<j} A(m+1) / I_{2}\left\{\frac{\widehat{v}_{2}^{i p^{k-1}}}{p^{k} v_{1}^{p^{j-1}-\ell}}: 0 \leq \ell<p^{j-1}, 0<i<p^{j-k}\right\}
\end{aligned}
$$

by

Hence the Poincaré series of $S_{0,2}$ is

$$
\begin{aligned}
g\left(S_{0,2}\right)= & g\left(A(m+1) / I_{2}\right) \cdot \frac{\left(1-y^{p^{j-1}}\right) y^{-p^{j-1}}}{1-y} \\
& \left(\sum_{k>0} \sum_{i>0}\left(x_{2}^{p^{k-1}}\right)^{i}-\sum_{0<k<j} \sum_{0<i<p^{j-k}}\left(x_{2}^{p^{k-1}}\right)^{i}\right) \\
\frac{g\left(S_{0,2}\right)}{g_{m+1}(t)}= & \left(y^{-p^{j-1}}-1\right) \\
& \left(\sum_{k>0} \frac{x_{2}^{p^{k-1}}}{\left.1-x_{2}^{p^{k-1}}-\sum_{0<k<j} \frac{x_{2}^{p^{k-1}}\left(1-\left(x_{2}^{p^{k-1}}\right)^{p^{j-k}-1}\right)}{1-x_{2}^{p^{k-1}}}\right)} \begin{array}{rl}
& \left(y^{-p^{j-1}}-1\right)\left(\sum_{k>0} \frac{x_{2}^{p^{k-1}}}{1-x_{2}^{p^{k-1}}}-\sum_{0<k<j} \frac{x_{2}^{p^{k-1}}-x_{2}^{p^{j-1}}}{1-x_{2}^{p^{k-1}}}\right) \\
= & \left(y^{-p^{j-1}}-1\right)\left(\sum_{k>j} \frac{x_{2}^{p^{k-1}}}{\left.1-x_{2}^{p^{k-1}}+\sum_{0<k \leq j} \frac{x_{2}^{p^{j-1}}}{1-x_{2}^{p^{k-1}}}\right)}\right. \\
\equiv & \left(y^{-p^{j-1}}-1\right) x_{2}^{p^{j}}+\sum_{0<k \leq j} \frac{x^{p^{j}}-x_{2}^{p^{j-1}}}{1-x_{2}^{p^{k-1}}}
\end{array}\right.
\end{aligned}
$$

in our range of dimensions.
Adding these two gives

$$
\begin{aligned}
\frac{g\left(S_{0,1} \cup S_{0,2}\right)}{g_{m+1}(t)}= & \frac{g\left(S_{0,1}\right)+g\left(S_{0,2}\right)}{g_{m+1}(t)} \\
= & \sum_{0<k<j}\left(\frac{x^{p^{k}}-x^{p^{j}}}{1-x^{p^{k}}}-\frac{x_{2}^{p^{k-1}}-x_{2}^{p^{j-1}}}{1-x_{2}^{p^{k-1}}}\right) \\
& \quad+\left(y^{-p^{j-1}}-1\right) x_{2}^{p^{j}}+\sum_{0<k \leq j} \frac{x^{p^{j}}-x_{2}^{p^{j-1}}}{1-x_{2}^{p^{k-1}}} \\
= & \sum_{0<k<j}\left(\frac{x^{p^{k}}-x^{p^{j}}}{1-x^{p^{k}}}+\frac{x^{p^{j}}-x_{2}^{p^{k-1}}}{1-x_{2}^{p^{k-1}}}\right)+\frac{x^{p^{j}}-x_{2}^{p^{j-1}}}{1-x_{2}^{p^{j-1}}} \\
& \quad+\left(y^{-p^{j-1}}-1\right) x_{2}^{p^{j}} \\
= & \sum_{0<k<j} \frac{\left(1-x^{p^{j}}\right)\left(x^{p^{k}}-x_{2}^{p^{k-1}}\right)}{\left(1-x^{p^{k}}\right)\left(1-x_{2}^{p^{k-1}}\right)}+\frac{x^{p^{j}}-x_{2}^{p^{j-1}}}{1-x_{2}^{p^{j-1}}} \\
& +x^{p^{j+1}}\left(y^{q p^{j-1}}-y^{p^{j}}\right) .
\end{aligned}
$$

We also observe that

$$
\begin{aligned}
g\left(S_{j}\right) & =g\left(A(m+1) / I_{2}\right) \frac{x^{p^{j+1}}\left(1-y^{q p^{j-1}}\right)}{1-y} \cdot \frac{1-x_{2}^{p^{j-1}}}{1-x_{2}} \\
& =g_{m+1}(t) \cdot \frac{x^{p^{j+1}}\left(1-y^{q p^{j-1}}\right)\left(1-x_{2}^{p^{j-1}}\right)}{1-x_{2}}
\end{aligned}
$$

Summing these three Poincaré series, we obtain

$$
\begin{aligned}
& \frac{g\left(S_{0,1} \cup S_{0,2} \cup S_{j}\right)}{g_{m+1}(t)} \\
& =\frac{g\left(S_{0,1}\right)+g\left(S_{0,2}\right)+g\left(S_{j}\right)}{g_{m+1}(t)} \\
& =\sum_{0<k<j} \frac{\left(1-x^{p^{j}}\right)\left(x^{p^{k}}-x_{2}^{p^{k-1}}\right)}{\left(1-x^{p^{k}}\right)\left(1-x_{2}^{p^{k-1}}\right)}+\frac{x^{p^{j}}-x_{2}^{p^{j-1}}}{1-x_{2}^{p^{j-1}}} \\
& +x^{p^{j+1}}\left(y^{q p^{j-1}}-y^{p^{j}}\right)+\frac{x^{p^{j+1}}\left(1-y^{q p^{j-1}}\right)\left(1-x_{2}^{p^{j-1}}\right)}{1-x_{2}} \\
& =\sum_{0<k<j} \frac{\left(1-x^{p^{j}}\right)\left(x^{p^{k}}-x_{2}^{p^{k-1}}\right)}{\left(1-x^{p^{k}}\right)\left(1-x_{2}^{p^{k-1}}\right)}+\frac{x^{p^{j}}-x_{2}^{p^{j-1}}}{1-x_{2}^{p^{j-1}}} \\
& +\frac{x^{p^{j+1}}\left(\left(1-y^{q p^{j-1}}\right)\left(1-x_{2}^{p^{j-1}}\right)+\left(y^{q p^{j-1}}-y^{p^{j}}\right)\left(1-x_{2}\right)\right)}{1-x_{2}} \\
& =\sum_{0<k<j} \frac{\left(1-x^{p^{j}}\right)\left(x^{p^{k}}-x_{2}^{p^{k-1}}\right)}{\left(1-x^{p^{k}}\right)\left(1-x_{2}^{p^{k-1}}\right)}+\frac{x^{p^{j}}-x_{2}^{p^{j-1}}}{1-x_{2}^{p^{j-1}}} \\
& +\frac{x^{p^{j+1}}\left(1-x_{2}^{p^{j-1}}+y^{q p^{j-1}} x_{2}^{p^{j-1}}-y^{p^{j}}-x_{2} y^{q p^{j-1}}+x_{2} y^{p^{j}}\right)}{1-x_{2}} \\
& =\sum_{0<k<j} \frac{\left(1-x^{p^{j}}\right)\left(x^{p^{k}}-x_{2}^{p^{k-1}}\right)}{\left(1-x^{p^{k}}\right)\left(1-x_{2}^{p^{k-1}}\right)}+\frac{x^{p^{j}}-x_{2}^{p^{j-1}}}{1-x_{2}^{p^{j-1}}} \\
& +\frac{x^{p^{j+1}}\left(1-x_{2}^{p^{j-1}}-y^{q p^{j-1}}\left(x_{2}-x_{2}^{p^{j-1}}\right)-y^{p^{j}}\left(1-x_{2}\right)\right)}{1-x_{2}} .
\end{aligned}
$$

On the other hand, Theorem 2.4 gives

$$
\begin{aligned}
\frac{g\left(B_{m+1}\right)}{g_{m+1}(t)} & \equiv \sum_{0<k \leq j+1} \frac{x^{p^{k}}-x_{2}^{p^{k-1}}}{\left(1-x^{p^{k}}\right)\left(1-x_{2}^{p^{k-1}}\right)} \\
& \equiv \sum_{0<k<j} \frac{x^{p^{k}}-x_{2}^{p^{k-1}}}{\left(1-x^{p^{k}}\right)\left(1-x_{2}^{p^{k-1}}\right)}+\frac{x^{p^{j}}-x_{2}^{p^{j-1}}}{\left(1-x^{p^{j}}\right)\left(1-x_{2}^{p^{j-1}}\right)}+\frac{x^{p^{j+1}}-x_{2}^{p^{j}}}{1-x^{p^{j+1}}}
\end{aligned}
$$

below dimension $\left|x^{p^{j+1}} x_{2}^{p^{j}}\right|$, so

$$
\begin{gathered}
\frac{g\left(B_{m+1}\right)\left(1-x^{p^{j}}\right)}{g_{m+1}(t)}=\sum_{0<k<j} \frac{\left(x^{p^{k}}-x_{2}^{p^{k-1}}\right)\left(1-x^{p^{j}}\right)}{\left(1-x^{p^{k}}\right)\left(1-x_{2}^{p^{k-1}}\right)}+\frac{x^{p^{j}}-x_{2}^{p^{j-1}}}{1-x_{2}^{p^{j-1}}} \\
+\frac{x^{p^{j+1}}\left(1-y^{p^{j}}\right)\left(1-x^{p^{j}}\right)}{1-x^{p^{j+1}}} .
\end{gathered}
$$

This means

$$
\begin{aligned}
& \frac{g\left(S_{0,1} \cup S_{0,2} \cup S_{j}\right)-g\left(B_{m+1}\right)\left(1-x^{p^{j}}\right)}{g_{m+1}(t)} \\
& =\frac{x^{p^{j+1}}\left(1-x_{2}^{p^{j-1}}-y^{q p^{j-1}}\left(x_{2}-x_{2}^{p^{j-1}}\right)-y^{p^{j}}\left(1-x_{2}\right)\right)}{1-x_{2}} \\
& \quad \equiv \frac{-\frac{x^{p^{j+1}}\left(1-y^{p^{j}}\right)\left(1-x^{p^{j}}\right)}{1-x^{p^{j+1}}}}{} \begin{array}{l}
\quad \frac{x^{p^{j+1}}\left(1-y^{q p^{j-1}} x_{2}-y^{p^{j}}\left(1-x_{2}\right)\right)}{1-x_{2}}-\frac{x^{p^{j+1}}\left(1-y^{p^{j}}-x_{2}+x_{2} y^{p^{j}}\right.}{\left.1-x_{2}\right)} \\
=\frac{x^{p^{j+1}} x_{2}\left(1-y^{q p^{j-1}}\right)}{1-x_{2}} .
\end{array}
\end{aligned}
$$

By Lemma 3.5, this means that B_{m+1} is j-free in the range claimed and that the first nontrivial Ext ${ }^{1}$ has order p.
(iii) To show that the generator of is Ext ${ }^{1}$ the element specified, we first show that the indicated Massey product is defined.

For $j>1$ and $1<k<p$ we claim

$$
d\left(\widehat{\beta}_{1+k p^{j-1} / k p^{j-1}}\right)=\langle\widehat{\beta}_{1+p^{j-1} / p^{j-1}}, \underbrace{\widehat{h}_{1, j}, \ldots, \widehat{h}_{1, j}}_{k-1}\rangle
$$

This can be shown by induction on k and direct calculation as follows. Let

$$
s=\widehat{t}_{1}^{p}-v_{1}^{p \omega-1} \widehat{t}_{1} \in \bar{T}_{m}^{(j)} \subset G(m+1)
$$

It follows that $w=\widehat{v}_{2}-v_{1} s$ is invariant. Note that its p^{j-1} th power does not lie in $\bar{T}_{m}^{(j)}$. Then we have

$$
\begin{aligned}
\eta_{R}\left(\widehat{\beta}_{1+k p^{j-1} / k p^{j-1}}\right) & =\eta_{R}\left(\frac{\widehat{v}_{2}^{k p^{j-1}} w}{p v_{1}^{k p^{j-1}}}\right) \\
& =\sum_{0<\ell \leq k}\binom{k p^{j-1}}{\ell p^{j-1}} \frac{\widehat{v}_{2}^{\ell p^{j-1}} w}{p v_{1}^{\ell p^{j-1}}} \otimes s^{(k-\ell) p^{j-1}} \\
& =\sum_{0<\ell \leq k}\binom{k}{\ell} \frac{\widehat{v}_{2}^{\ell p^{j-1}} w}{p v_{1}^{\ell p^{j-1}}} \otimes s^{(k-\ell) p^{j-1}} \\
& =\sum_{0<\ell \leq k}\binom{k}{\ell} \widehat{\beta}_{1+\ell p^{j-1} / \ell p^{j-1}} \otimes s^{(k-\ell) p^{j-1}} \\
& =\langle\widehat{\beta}_{1+p^{j-1} / p^{j-1}}, \underbrace{\widehat{h}_{1, j}, \ldots, \widehat{h}_{1, j}}_{k-1}\rangle
\end{aligned}
$$

This means that our p-fold Massey product is defined.

We claim the first element in Ext ${ }^{1}$ is represented by

$$
\begin{aligned}
\sum_{0<\ell<p} \frac{1}{p}\binom{p}{\ell} & \widehat{\beta}_{1+\ell p^{j-1} / \ell p^{j-1}} \otimes s^{(p-\ell) p^{j-1}} \\
& =\sum_{0<\ell<p} \frac{1}{p}\binom{p}{\ell} \widehat{\beta}_{1+\ell p^{j-1} / \ell p^{j-1}} \otimes\left(\widehat{t}_{1}^{p^{j}}-v_{1}^{p^{j-1}(p \omega-1)} \widehat{t}_{1}^{p^{j-1}}\right)^{p-\ell} \\
& =\sum_{0<\ell<p} \frac{1}{p}\binom{p}{\ell} \widehat{\beta}_{1+\ell p^{j-1} / \ell p^{j-1}} \otimes \widehat{t}_{1}^{p^{j}(p-\ell)} \\
& =\widehat{\beta}_{1+q p^{j-1} / q p^{j-1}} \otimes \widehat{t}_{1}^{p^{j}}+\cdots
\end{aligned}
$$

The only element in B_{m+1} in this dimension is $\widehat{\beta}_{1+p^{j} / p^{j}}$, which is primitive, so this element in Ext ${ }^{1}$ is notrivial.

7. Higher Ext groups for $j=1$

In this section we exhibit some calculations of $\operatorname{Ext}^{s}\left(\bar{T}_{m}^{(j)} \otimes B_{m+1}\right)$ for $s>0$. Recall the small descent spectral sequence, constructed in [Rav02, Theorem 1.17], which converges to $\operatorname{Ext}\left(\bar{T}_{m}^{(j)} \otimes B_{m+1}\right)$ with

$$
E_{1}^{*, s}=E\left(\widehat{h}_{j}\right) \otimes P\left(\widehat{b}_{j}\right) \otimes \operatorname{Ext}\left(\bar{T}_{m}^{(j+1)} \otimes B_{m+1}\right)
$$

with $\widehat{h}_{j} \in E_{1}^{1,0}$ and $\widehat{b}_{j} \in E_{1}^{2,0}$, and $d_{r}: E_{r}^{s, t} \rightarrow E_{r}^{s+r, t-r+1}$. In particular, d_{1} is induced by the action of $\widehat{r}_{p^{j}}$ on B_{m+1} for s even and $\widehat{r}_{q p^{j}}$ for s odd. The case $m=0$ has already been treated in [Rav04, Chapter 7], so we may assume that $m>0$. We examine the simplest case, $j=1$. Recall that B_{m+1} is 2 -free below dimension $\left|\widehat{v}_{2}^{p^{2}+1} / v_{1}^{p^{2}}\right|$ and $\operatorname{Ext}^{0}\left(\bar{T}_{m}^{(2)} \otimes B_{m+1}\right)$ is the $A(m+1)$-module generated by

$$
\begin{equation*}
\left\{\widehat{\beta}_{i / t}^{\prime}: 0<t \leq \min (i, p)\right\} \cup\left\{\widehat{\beta}_{p^{2} / t}: p<t \leq p^{2}\right\} \tag{7.1}
\end{equation*}
$$

by Theorem 6.1. Then the spectral sequence collapses from E_{2}. We can compute d_{1} on elements (7.1) using Proposition B.2: The action of \widehat{r}_{p} on $\operatorname{Ext}^{0}\left(\bar{T}_{m}^{(2)} \otimes B_{m+1}\right)$ is given by $\widehat{r}_{p}\left(\widehat{\beta}_{i / e_{1}}^{\prime}\right)=\widehat{\beta}_{i-1 / e_{1}-1}$ and $\widehat{r}_{p}\left(\widehat{\beta}_{p i / e_{1}}\right)=0$, and the action of $\widehat{r}_{q p}$ is obtained by composing \widehat{r}_{p} up to unit scalar. In order to understand the behavior of d_{1}, the following picture for $p=3$ may be helpful.

Here each arrow represents the action of the Quillen operation \widehat{r}_{3} up to unit scalar. For a general prime p, the analogous picture would show a directed graph with $2 p$ components, two of which have p vertices, and in which the arrow shows the action of the Quillen operation \widehat{r}_{p} up to unit scalar. Each component corresponds to an $A(m+1)$-summand of the E_{2}-term, with the caveat that $p \widehat{\beta}_{p / e_{1}}^{\prime}=\widehat{\beta}_{p / e_{1}}$ and $v_{1} \widehat{\beta}_{i / e}^{\prime}=\widehat{\beta}_{i / e-1}^{\prime}$. Notice that the entire configuration is \widehat{v}_{2}^{p}-periodic. Corresponding to the diagonal containing $\widehat{\beta}_{1}$ in (7.2), the subgroup of E_{1} generated by

$$
\left\{\widehat{\beta}_{1}, \widehat{\beta}_{2 / 2}, \widehat{\beta}_{3 / 3}^{\prime}\right\} \otimes E\left(\widehat{h}_{1,1}\right) \otimes P\left(\widehat{b}_{1,1}\right)
$$

reduces on passage to E_{2} to simply $\left\{\widehat{\beta}_{1}\right\}$. Similarly, the subset

$$
\left\{\widehat{\beta}_{2}, \widehat{\beta}_{3 / 2}^{\prime}\right\} \otimes E\left(\widehat{h}_{1,1}\right) \otimes P\left(\widehat{b}_{1,1}\right)
$$

reduces to $\left\{\widehat{\beta}_{2}, \widehat{\beta}_{3 / 2}^{\prime} \widehat{h}_{1,1}\right\} \otimes P\left(\widehat{b}_{1,1}\right)$, where

$$
\begin{aligned}
\widehat{\beta}_{3 / 2}^{\prime} \widehat{h}_{1,1} & =\left\langle\widehat{h}_{1,1}, \widehat{h}_{1,1}, \widehat{\beta}_{2}\right\rangle \\
\text { and } \quad \widehat{h}_{1,1}\left(\widehat{\beta}_{3 / 2}^{\prime} \widehat{h}_{1,1}\right) & =\widehat{h}_{1,1}\left\langle\widehat{h}_{1,1}, \widehat{h}_{1,1}, \widehat{\beta}_{2}\right\rangle=\left\langle\widehat{h}_{1,1}, \widehat{h}_{1,1}, \widehat{h}_{1,1}\right\rangle \widehat{\beta}_{2}=\widehat{b}_{1,1} \widehat{\beta}_{2} .
\end{aligned}
$$

These observations give us the following result.
Proposition 7.3. Structure of $\operatorname{Ext}\left(\bar{T}_{m}^{(1)} \otimes B_{m+1}\right)$. In dimensions less than $\left|\widehat{v}_{2}^{p^{2}+1} / v_{1}^{p^{2}}\right|, \operatorname{Ext}\left(\bar{T}_{m}^{(1)} \otimes B_{m+1}\right)$ is a free module over $A(m+1) / I_{2}$ with basis

$$
\left\{\widehat{\beta}_{1+p i}, \widehat{\beta}_{p+p i} ; \widehat{\beta}_{p^{2} / k}\right\} \oplus P\left(\widehat{b}_{1,1}\right) \otimes\left\{\begin{array}{c}
\left\{\widehat{\beta}_{p i+s}^{\prime} ; \widehat{\beta}_{p i+p / s} ; \widehat{\beta}_{p^{2} / \ell}\right\} \\
\oplus \\
\widehat{h}_{1,1}\left\{\widehat{\beta}_{p i+p / t}^{\prime} ; \widehat{\beta}_{p i+r / p} ; \widehat{\beta}_{p^{2} / \ell}\right\}
\end{array}\right.
$$

where $0 \leq i<p, 1 \leq k \leq p^{2}-p+1, p^{2}-p+2 \leq \ell \leq p^{2}, 2 \leq s \leq p, 1 \leq t \leq p-1$ and $p \leq u \leq 2 p-2$, subject to the caveat that $v_{1} \widehat{\beta}_{p / e}=\widehat{\beta}_{p / e-1}$ and $p \widehat{\beta}_{p / e}^{\prime}=\widehat{\beta}_{p / e}$. In particular $\operatorname{Ext}^{0}\left(\bar{T}_{m}^{(1)} \otimes B_{m+1}\right)$ has basis

$$
\left\{\widehat{\beta}_{1+p i}^{\prime}, \ldots, \widehat{\beta}_{p+p i}^{\prime} ; \widehat{\beta}_{p+p i / p}, \ldots, \widehat{\beta}_{p+p i / 1} ; \widehat{\beta}_{p^{2} / p^{2}}, \ldots, \beta_{p^{2} / 1}\right\}
$$

Note that for $m>0$, this range of dimensions exceeds $p\left|\widehat{v}_{3}\right|$.

Appendix A. Some results on binomial coefficients

Fix a prime number p.
Definition A.1. $\alpha(n)$, the sum of the p-adic digits of n. For a nonnegative integer $n, \alpha(n)$ denotes sum of the digits in the p-adic expansion of n, i.e., for $n=\sum_{i \geq 0} a_{i} p^{i} \quad$ with $0 \leq a_{i} \leq p-1$, we define $\alpha(n)=\sum_{i \geq 0} a_{i}$.

As before, let $\nu_{p}(n)$ denote the p-adic valuation of n, i.e., the exponent that makes n a p-local unit multiple of $p^{\nu_{p}(n)}$. When the integer is a binomial coefficient $\binom{i}{j}$, we will write $\nu_{p}\binom{i}{j}$ instead of $\left.\nu_{p}\binom{i}{j}\right)$. Then we have

Lemma A.2. p-adic valuation of a binomial coefficient.

$$
q \nu_{p}\binom{n}{k}=\alpha(k)+\alpha(n-k)-\alpha(n)
$$

where $q=p-1$. In particular,

$$
q \nu_{p}\binom{n}{p^{j}}=1+\alpha\left(n-p^{j}\right)-\alpha(n) .
$$

Proof. Recall that $q \nu_{p}(n!)=n-\alpha(n)$, and observe that

$$
\begin{aligned}
q \nu_{p}\binom{n}{k} & =q \nu_{p}\left(\frac{n!}{(n-k)!k!}\right) \\
& =q\left(\nu_{p}(n!)-\nu_{p}((n-k)!)-\nu_{p}(k!)\right) \\
& =n-\alpha(n)-(n-k)+\alpha(n-k)-k+\alpha(k) \\
& =-\alpha(n)+\alpha(n-k)+\alpha(k)
\end{aligned}
$$

Using this lemma we can determine the number how many times a binomial coefficient is divisible by a prime p. For example, we have

Lemma A.3. Divisibility of a binomial coefficient. Assume that pX a and $0<n \leq \ell$. Then the binomial coefficient $\binom{a p^{\ell}+n-1}{n}$ is divisible by $p^{\ell+1-n}$.
Proof. Since $a \not \equiv 0 \bmod (p)$, we have $\alpha(a-1)=\alpha(a)-1$. Let $m=\nu_{p}(n)$ and $n=n^{\prime} p^{m}$. Then $\alpha\left(n^{\prime}-1\right)=\alpha\left(n^{\prime}\right)-1$, and we have

$$
\begin{aligned}
q \nu_{p}\binom{a p^{\ell}+n-1}{n} & =q \nu_{p}\binom{a p^{\ell}+n^{\prime} p^{m}-1}{n^{\prime} p^{m}} \\
& =\alpha\left(n^{\prime} p^{m}\right)+\alpha\left(a p^{\ell}-1\right)-\alpha\left(a p^{\ell}+n^{\prime} p^{m}-1\right) \\
& =\alpha\left(n^{\prime}\right)+\alpha(a-1)+q \ell-\alpha\left(a p^{\ell-m}+n^{\prime}-1\right)-q m \\
& =\alpha\left(n^{\prime}\right)+\alpha(a-1)+q \ell-\alpha(a)-\alpha\left(n^{\prime}-1\right)-q m \\
& =q(\ell-m) \geq q(\ell+1-n)
\end{aligned}
$$

We consider this type of binomial coefficients in Proposition 4.4. The other types we need are the followings:
Lemma A.4. Divisibility of another binomial coefficient. Assume that p is a prime and that a positive integer s is expressed as $s=s_{1} p^{\ell}+s_{0}>0$ with $0 \leq s_{0}<p^{\ell}$. Then we have $\nu_{p}\binom{s}{p^{\ell}}=\nu_{p}\left(s_{1}\right)$. In particular, we have $p^{n} \left\lvert\,\binom{ s}{p^{\ell}}\right.$ iff $s \equiv 0,1, \ldots, p^{\ell}-1 \bmod \left(p^{n+\ell}\right)$.
Proof. Observe that

$$
\begin{aligned}
q \nu_{p}\binom{s}{p^{\ell}} & =\alpha\left(p^{\ell}\right)+\alpha\left(s-p^{\ell}\right)-\alpha(s) \\
& =1+\alpha\left(\left(s_{1}-1\right) p^{\ell}+s_{0}\right)-\alpha\left(s_{1} p^{\ell}+s_{0}\right) \\
& =\alpha(1)+\alpha\left(s_{1}-1\right)-\alpha\left(s_{1}\right) \\
& =q \nu_{p}\left(s_{1}\right)
\end{aligned}
$$

This implies that $\nu_{p}\binom{s}{p^{\ell}}=n$ iff $s \equiv s_{0} \bmod \left(p^{n+\ell}\right)$.
In Appendix B it is required to know how many times the binomial coefficient $\binom{i-1}{p^{j-1}-1}$ is divisible by p.

For $0<i<p^{j-1}$ it is clear that $\binom{i-1}{p^{j-1}-1}=0$. For $i \geq p^{j-1}$, the number $\nu_{p}\binom{i-1}{p^{j-1}-1}$ can be determined explicitly in the following results.

Proposition A.5. A third divisibility statement. For $i \geq p^{j-1}$, define nonnegative integers i_{0} and i_{1} by

$$
\begin{equation*}
i=i_{1} p^{j-1}+i_{0} \quad\left(i_{1}>0 \text { and } 0 \leq i_{0}<p^{j-1}\right) \tag{A.6}
\end{equation*}
$$

Then we have
(1) $\binom{i-1}{p^{j-1}-1}$ is divisible by p iff $i_{0} \neq 0$;
(2) More generally, $\binom{i-1}{p^{j-1}-1}$ is divisible by $p^{j-k}(0 \leq k<j)$ iff

$$
\begin{equation*}
\nu_{p}\left(i_{0}\right) \leq k-1+\nu_{p}\left(i_{1}\right) \tag{A.7}
\end{equation*}
$$

or equivalently $i_{0} \neq 0$ and $p^{k+\nu_{p}\left(i_{1}\right)} \nmid i_{0}$.
In particular, the inequality (A.7) is automatically satisfied if $\nu_{p}\left(i_{1}\right) \geq j-k-1$.
Proof. Observe that

$$
\begin{aligned}
\nu_{p}\binom{i-1}{p^{j-1}-1} & =\nu_{p}\left(p^{j-1}\right)+\nu_{p}\binom{i}{p^{j-1}}-\nu_{p}(i) \\
& =(j-1)+\nu_{p}\left(i_{1}\right)-\left\{\begin{array}{ll}
\left(j-1+\nu_{p}\left(i_{1}\right)\right) & \text { if } i_{0}=0 \\
\nu_{p}\left(i_{0}\right) & \text { if } i_{0} \neq 0
\end{array}\right. \text { by Lemma A.4 } \\
& = \begin{cases}0 & \text { if } i_{0}=0 \\
j-1+\nu_{p}\left(i_{1}\right)-\nu_{p}\left(i_{0}\right) & \text { if } i_{0} \neq 0\end{cases}
\end{aligned}
$$

If $i_{0} \neq 0$, then we have $j-1+\nu_{p}\left(i_{1}\right)-\nu_{p}\left(i_{0}\right)>0$ since $\nu_{p}\left(i_{0}\right) \leq j-2$, and so the binomial coefficient is divisible by p. Since $i_{0}=0$ is equivalent to $p^{j-1} \mid i$, the statement (1) follows.

The condition $p^{j-k} \left\lvert\,\binom{ i-1}{p^{j-1}-1}\right.$ is equivalent to the inequality $\nu_{p}\binom{i-1}{p^{j-1}-1} \geq j-k$, and if we suppose that $j-k>0$ then this inequality gives (A.7).

Note that (A.7) is always satisfied if $\nu_{p}\left(i_{1}\right) \geq j-k-1$ since $\nu_{p}\left(i_{0}\right) \leq j-2$ by definition.

The following is the obvious translation of Proposition A.5.
Corollary A.8. A fourth divisibility statement. Let i_{0} and i_{1} be as in (A.6) and assume that $p^{j-1}<i \leq p^{j-1+m}$. Then, we have $p^{j-k} \left\lvert\,\binom{ i-1}{p^{j-1}-1}\right.$ for $0 \leq k<j$ iff

$$
\nu_{p}\left(i_{0}\right) \leq k-1+\nu_{p}\left(i_{1}\right) \quad \text { with } 0 \leq \nu_{p}\left(i_{1}\right) \leq m
$$

Proof. The given range $p^{j-1}<i \leq p^{j-1+m}$ means that $0 \leq \nu_{p}\left(i_{1}\right) \leq m$ and the result follows from Proposition A.5.

Appendix B. Quillen operations on β-elements

In this section we discuss the action of the Quillen operations $\widehat{r}_{p^{j}}$ for $j>0$ on the β-elements.

First we consider the following easy cases.
Proposition B.1. Primitive β-elements. For $i>0$, the elements $\widehat{\beta}_{i / t}$ are primitive if $0<t \leq p^{\nu_{p}(i)}$, i.e., it satisfies $\widehat{r}_{\ell}\left(\widehat{\beta}_{i / t}\right)=0$ for all $\ell \geq 0$.
Proof. Set $\nu_{p}(i)=n$ and $i=i^{\prime} p^{n}$. By direct calculations we have

$$
\eta_{R}\left(\frac{\widehat{v}_{2}^{i}}{p v_{1}^{t}}\right)=\frac{\left(\widehat{v}_{2}^{p^{n}}+v_{1}^{p^{n}} \widehat{t}_{1}^{p^{n+1}}-v_{1}^{\left.p^{n+1} \omega \widehat{t}_{1}^{p^{n}}\right)^{i^{\prime}}}\right.}{p v_{1}^{t}}=\frac{\widehat{v}_{2}^{i}}{p v_{1}^{t}} .
$$

For the other cases, the Quillen operation $\widehat{r}_{p^{j}}$ is computed as follows:
Proposition B.2. Quillen operations on β-elements. When $j>0$, we have

$$
\widehat{r}_{p^{j}}\left(\widehat{\beta}_{i / t}^{\prime}\right)=\binom{i-1}{p^{j-1}} \widehat{\beta}_{i-p^{j-1} / t-p^{j-1}}^{\prime} \quad \text { for } t<p^{j-1}+p^{m+2}
$$

Proof. First assume that $m>0$. Observe that

$$
\begin{aligned}
\eta_{R}\left(\widehat{\beta}_{i / t}^{\prime}\right) & =\eta_{R}\left(\frac{\widehat{v}_{2}^{i}}{i p v_{1}^{t}}\right)=\frac{\left(\widehat{v}_{2}+v_{1} \widehat{t}_{1}^{p}-v_{1}^{p \omega} \widehat{t}_{1}\right)^{i}}{i p v_{1}^{t}} \\
& =\sum_{0 \leq k \leq \ell \leq i}(-1)^{k}\binom{i}{\ell}\binom{\ell}{k} \frac{\widehat{v}_{2}^{i-\ell}\left(v_{1} \widehat{t}_{1}^{p}\right)^{\ell-k}\left(v_{1}^{p \omega} \widehat{t}_{1}\right)^{k}}{i p v_{1}^{t}} \\
& =\sum_{0 \leq k \leq \ell \leq i}(-1)^{k}\binom{i-1}{\ell}\binom{\ell}{k} \frac{\widehat{v}_{2}^{i-\ell} \widehat{t}_{1}^{p(\ell-k)+k}}{(i-\ell) p v_{1}^{t-\ell+k-p \omega k}}
\end{aligned}
$$

Since $\widehat{r}_{p^{j}}\left(\widehat{\beta}_{i / t}^{\prime}\right)$ is the coefficient of $\widehat{t}_{1}^{p^{j}}$ in the above, we need to consider the terms satisfying $p(\ell-k)+k=p^{j}$. Note that k must be divisible by p and that we may set $k=p n$. Thus we have

$$
p^{j}=p(\ell-p n)+p n
$$

Now let

$$
\text { and } \begin{aligned}
\ell(n) & =\ell=p^{j-1}+q n \quad \text { where } q=p-1 \\
g(n) & =t-\ell+k-p \omega k \\
& =t-p^{j-1}-q n+p n-p^{m+2} n \\
& =t-p^{j-1}-n\left(p^{m+2}-1\right) .
\end{aligned}
$$

Then we have

$$
\widehat{r}_{p^{j}}\left(\widehat{\beta}_{i / t}^{\prime}\right)=\sum_{0 \leq n \leq p^{j-1}}(-1)^{p n}\binom{i-1}{\ell(n)}\binom{\ell(n)}{n p} \frac{\widehat{v}_{2}^{i-\ell(n)}}{(i-\ell(n)) p v_{1}^{g(n)}} .
$$

Given our assumption about t, the only value of n satisfying $g(n)>0$ is $n=0$, which gives

$$
\widehat{r}_{p^{j}}\left(\widehat{\beta}_{i / t}^{\prime}\right)=\binom{i-1}{p^{j-1}} \frac{\widehat{v}_{2}^{i-p^{j-1}}}{\left(i-p^{j-1}\right) p v_{1}^{t-p^{j-1}}} .
$$

The proof for $m=0$ is more complicated. Observe that

$$
\psi\left(\beta_{i / t}^{\prime}\right)=\sum_{0 \leq k \leq \ell \leq i} \sum_{r \geq 0}(-1)^{k+r}\binom{i-1}{\ell}\binom{\ell}{k}\binom{t+r-1}{r} p^{r} \frac{v_{2}^{i-\ell} t_{1}^{p(\ell-k)+k+r}}{(i-\ell) p v_{1}^{t+r-\ell+k-p k}},
$$

which shows that $\widehat{r}_{p^{j}}\left(\beta_{i / t}^{\prime}\right)$ is equal to
$\sum_{0 \leq n \leq p^{j-1}} \sum_{0 \leq r \leq n p}(-1)^{n p}\binom{i-1}{\ell(n, r)-1}\binom{\ell(n, r)-1}{n p-r-1}\binom{t+r-1}{r} \frac{p^{r} v_{2}^{i-\ell(n, r)}}{(n p-r) p v_{1}^{g(n, r)}}$,
where $\ell(n, r)=p^{j-1}+n q-r$ and $g(n, r)=t-p^{j-1}-n\left(p^{2}-1\right)+r(p+1)$. If $p^{r} \mid(n p-r)$ for a positive r, then we may put $r=s p$ and $n \geq p^{s p-1}+s$ for a positive s and the exponent of v_{1} is not positive since

$$
\begin{aligned}
g(n, r) & \leq t-p^{j-1}-\left(p^{s p-1}+s\right)\left(p^{2}-1\right)+s p(p+1) \\
& =t-p^{j-1}-(p+1)\left(p^{s p}-p^{s p-1}-s\right) \\
& \leq t-p^{j-1}-(p+1)\left(p^{p}-p^{p-1}-1\right) \\
& \leq t-p^{j-1}-\left(p^{2}-1\right) .
\end{aligned}
$$

Thus, the nontrivial term arises only when $r=0$. We can see that it is also required that $n=0$ by the same reason as the $m>0$ case, and the result follows.

To know the condition of triviality of $\widehat{r}_{p^{j}}$ in Proposition B.2, we need the results on the p-adic valuation of binomial coefficients obtained in Appendix A. In particular, we have

Proposition B.3. Some trivial actions of Quillen operations. Assume that $p^{j-1}<i \leq p^{j+1}$ and $t<p^{j-1}+p^{m+2}$. Then we have the following trivial Quillen operations:
(1) $\widehat{r}_{p^{\ell}}\left(\widehat{\beta}_{i / t}^{\prime}\right)(\ell \geq j)$ for $0<t \leq \min \left(i, p^{j-1}\right)$;
(2) $\widehat{r}_{p^{\ell}}\left(\widehat{\beta}_{a p^{j}+b / t}\right)(\ell \geq j)$ for $p^{j-1}<t \leq p^{j}$ and $0 \leq b<p^{j-1}$.

Proof. We will show the following Quillen operations on $p^{k} \widehat{\beta}_{i / t}^{\prime}$ are trivial:
(a) $\widehat{r}_{p^{\ell}}(\ell \geq j)$ for $0<t \leq \min \left(i, p^{j-1}\right)$ and $k \geq 0$;
(b) $\widehat{r}_{p^{\ell}}(\ell \geq j)$ for $p^{j-1}<t \leq p^{j}, i=a p^{j}+b p^{k}$ with $p \nmid a, p \nmid b$ and $0 \leq k<j-1$;
(c) $\widehat{r}_{p^{\ell}}(\ell \geq 0)$ for $p^{j-1}<t \leq p^{j}, i=a p^{j}$ with $0<a \leq p$ and $j=k$.

For the case (1), note that

$$
\widehat{r}_{p^{j}}\left(p^{k} \widehat{\beta}_{i / t}^{\prime}\right)=\binom{i-1}{p^{j-1}-1} \frac{\widehat{v}_{2}^{i-p^{j-1}}}{p^{j-k} v_{1}^{t-p^{j-1}}} .
$$

by Proposition B.2, which is clearly trivial when $0<t \leq p^{j-1}\left(\leq p^{\ell-1}\right)$. Even if $p^{j-1}<t \leq i$, it is trivial when the binomial coefficient $\binom{i-1}{p^{j-1}-1}$ is divisible by p^{j-k}, or equivalently when the inequality (A.7) holds.

When $0<k<j$, by the assumption we have

$$
p^{j-1}<i_{1} p^{j-1}+i_{0} \leq p^{j+1}
$$

(where $\nu_{p}\left(i_{0}\right)<j-1$ by definition) and $\nu_{p}\left(i_{1}\right) \leq 2$. Note that if $k>0$ and $p^{k} \nmid i$ then $p^{k} \widehat{\beta}_{i / t}^{\prime}$ itself is trivial and that we may assume that $\nu_{p}(i) \geq k$. These observations suggest that the only case satisfying the inequality (A.7) is $\left(\nu_{p}\left(i_{1}\right), \nu_{p}\left(i_{0}\right)\right)=(1, k)$, which gives the case (b).

When $j=k$, the Quillen operation $\widehat{r}_{p^{j}}\left(p^{j} \widehat{\beta}_{i / t}^{\prime}\right)$ is clearly trivial and $p^{j} \widehat{\beta}_{i / t}^{\prime}$ is nontrivial only if $p^{j} \mid i$, which gives the case (c).

For the case (b) and (c), observe that the Quillen operation $\widehat{r}_{p^{j+1}}\left(p^{k} \widehat{\beta}_{i / t}^{\prime}\right)$ is a unit scalar multiple of $\widehat{\beta}_{i-p^{j} / t-p^{j}}$ and $p^{k} \widehat{\beta}_{i / t}^{\prime}$ is not in $L_{j}\left(B_{m+1}\right)$, which means that the condition $t \leq p^{j}$ is required. Conbining (b) and (c) gives the case (2).

Note that no linear combination of β-elements can be killed by $\widehat{r}_{p^{j}}$ since the $\widehat{r}_{p^{j}}$-image has different exponents of \widehat{v}_{2} or v_{1} if $\widehat{\beta}_{i_{1} / t_{1}}^{\prime} \neq \widehat{\beta}_{i_{2} / t_{2}}^{\prime}$.

References

[MRW] H.R.Miller, D.C.Ravenel and W.S.Wilson, Periodic phenomena in the Adams-Novikov spectral sequence. Ann. Math. (2), 106:469-516, 1977.
[Nak] H. Nakai. An algebraic generalization of Image J, To appear in Homology, Homotopy and Applications.
[NR] H.Nakai and D. C. Ravenel. The method of infinite descent in stable homotopy theory II in preparation
[Rav86] D. C. Ravenel. Complex Cobordism and Stable Homotopy Groups of Spheres. Academic Press, New York, 1986.
[Rav02] D. C. Ravenel. The method of infinite descent in stable homotopy theory I. In D. M. Davis, editor, Recent Progress in Homotopy Theory, volume 293 of Contemporary Mathematics, pages 251-284, Providence, Rhode Island, 2002. American Mathematical Society.
[Rav04] D. C. Ravenel. Complex Cobordism and Stable Homotopy Groups of Spheres, Second Edition. American Mathematical Society, Providence, 2004. Available online at http://www.math.rochester.edu/people/faculty/doug/mu.html\#repub.

Department of Mathematics,Musashi Institute of Technology, Tokyo 158-8557, Japan
E-mail address: nakai@ma.ns.musashi-tech.ac.jp
Department of Mathematics, University of Rochester, Rochester, New York 14627
E-mail address: douglas.ravenel@rochester.edu

[^0]: Date: October 20, 2008.
 2000 Mathematics Subject Classification. 55Q99.
 Key words and phrases. Homotopy groups of spheres, Adams-Novikov spectral sequence.

