Complex Cobordism and
Stable Homotopy Groups of Spheres

Douglas C. Ravenel

Department of Mathematics, University of Rochester, Rochester,
New York
To my wife, Michelle
Contents

List of Figures v
List of Tables vii
Preface to the second edition ix
Preface to the first edition xi
Commonly Used Notations xiii

Chapter 1. An Introduction to the Homotopy Groups of Spheres 1

1. Classical Theorems Old and New 2
2. Methods of Computing \(\pi_*(S^n) \) 5
4. More Formal Group Law Theory, Morava’s Point of View, and the Chromatic Spectral Sequence 20
5. Unstable Homotopy Groups and the EHP Spectral Sequence 24

Chapter 2. Setting up the Adams Spectral Sequence 41

1. The Classical Adams Spectral Sequence 41
 Mod \((p) \) Eilenberg–Mac Lane spectra. Mod \((p) \) Adams resolutions. Differentials. Homotopy inverse limits. Convergence. The extension problem. Examples: integral and mod \((p') \) Eilenberg–Mac Lane spectra.
2. The Adams Spectral Sequence Based on a Generalized Homology Theory 49
 \(E_\infty \)-Adams resolutions. \(E \)-completions. The \(E_\infty \)-Adams spectral sequence. Assumptions on the spectrum \(E \). \(E_\infty (E) \) is a Hopf algebroid. The canonical Adams resolution. Convergence. The Adams filtration.
3. The Smash Product Pairing and the Generalized Connecting Homomorphism 53
 The smash product induces a pairing in the Adams spectral sequence. A map that is trivial in homology raises Adams filtration. The connecting homomorphism in Ext and the geometric boundary map.

Chapter 3. The Classical Adams Spectral Sequence 59

1. The Steenrod Algebra and Some Easy Calculations 59
2. The May Spectral Sequence 67
3. The Lambda Algebra 76
4. Some General Properties of Ext
5. Survey and Further Reading

Chapter 4. \textit{BP-Theory and the Adams–Novikov Spectral Sequence}

1. Quillen’s Theorem and the Structure of $BP_*(BP)$
 Complex cobordism. Complex orientation of a ring spectrum. The formal group law associated with a complex oriented homology theory. Quillen’s theorem equating the Lazard and complex cobordism rings. Landweber and Novikov’s theorem on the structure of $MU_*(MU)$. The Brown-Peterson spectrum BP. Quillen’s idempotent operation and p-typical formal group laws. The structure of $BP_*(BP)$.

2. A Survey of BP-Theory

3. Some Calculations in $BP_*(BP)$

4. Beginning Calculations with the Adams–Novikov Spectral Sequence

Chapter 5. The Chromatic Spectral Sequence

1. The Algebraic Construction
 Greek letter elements and generalizations. The chromatic resolution, spectral sequence, and cobar complex. The Morava stabilizer algebra $\Sigma(n)$. The change-of-rings theorem. The Morava vanishing theorem. Signs of Greek letter elements. Computations with β_i. Decomposibility of γ_1. Chromatic differentials at $p=2$. Divisibility of α_1/β_p.

2. $\text{Ext}^i_*(BP_*/I_n)$ and Hopf Invariant One
 $\text{Ext}^0_*(BP_*)$. $\text{Ext}^0_*(B^0_*)$. $\text{Ext}^1_*(BP_*)$. Hopf invariant one elements. The Miller-Wilson calculation of $\text{Ext}^1_*(BP_*/I_n)$.

3. Ext(M^1) and the J-Homomorphism 163
 Ext(M^1). Relation to im J. Patterns of differentials at p = 2. Computations with
 the mod (2) Moore spectrum.
4. Ext^2 and the Thom Reduction 170
 Results of Miller, Ravenel and Wilson (p > 2) and Shimomura (p = 2) on
 Ext^2(BP_n). Behavior of the Thom reduction map. Arf invariant differentials at
 p > 2. Mahowald's counterexample to the doomsday conjecture.
5. Periodic Families in Ext^2 175
 Smith's construction of \(\beta_n \). Obstructions at p = 3. Results of Davis, Mahowald,
 Oka, Smith and Zahler on permanent cycles in Ext^2. Decomposables in Ext^2.
6. Elements in Ext^3 and Beyond 181
 Products of alphas and betas in Ext^3. Products of betas in Ext^4. A possible
 obstruction to the existence of \(V(4) \).

Chapter 6. Morava Stabilizer Algebras 185

1. The Change-of-Rings Isomorphism 185
 Theorems of Ravenel and Miller. Theorems of Morava. General nonsense about
 Hopf algebroids. Formal group laws of Artin local rings. Morava's proof. Miller
 and Ravenel's proof.
2. The Structure of \(\Sigma(n) \) 191
 Relation to the group ring for \(S_n \). Recovering the grading via an eigenspace de-
 composition. A matrix representation of \(S_n \). A splitting of \(S_n \) when \(p \not| n \).
 Poincaré duality and periodic cohomology of \(S_n \).
3. The Cohomology of \(\Sigma(n) \) 196
 A May filtration of \(\Sigma(n) \) and the May spectral sequence. The open subgroup
 theorem. Cohomology of some associated Lie algebras. \(H^1 \) and \(H^2 \).
 \(H^*(S(n)) \) for \(n = 1, 2, 3 \)
4. The Odd Primary Kervaire Invariant Elements 210
 The nonexistence of certain elements and spectra. Detecting elements with the
 cohomology of \(\mathbb{Z}/(p) \). Differentials in the Adams spectral sequence.
5. The Spectra \(T(m) \) 218
 A splitting theorem for certain Thom spectra. Application of the open subgroup
 theorem. Ext^0 and Ext^1.

Chapter 7. Computing Stable Homotopy Groups with the Adams–Novikov
 Spectral Sequence 223

1. The method of infinite descent 225
2. The comodule \(E_{m+1}^2 \) 236
3. The homotopy of \(T(0)_{(2)} \) and \(T(0)_{(1)} \) 247
4. The proof of Theorem 7.3.15 260
5. Computing \(\pi_*(S^0) \) for \(p = 3 \) 275
6. Computations for \(p = 5 \) 280

Appendix A1. Hopf Algebras and Hopf Algebroids 299

1. Basic Definitions 301
 Hopf algebroids as cogroup objects in the category of commutative algebras.

2. Homological Algebra

3. Some Spectral Sequences

4. Massey Products

5. Algebraic Steenrod Operations

Appendix A2. Formal Group Laws

1. Universal Formal Group Laws and Strict Isomorphisms

2. Classification and Endomorphism Rings

Hazewinkel’s and Araki’s generators. The right unit formula. The height of a formal group law. Classification in characteristic p. Finite fields, Witt rings and division algebras. The endomorphism ring of a height n formal group law.

Appendix A3. Tables of Homotopy Groups of Spheres

The Adams spectral sequence for $p = 2$ below dimension 62. The Adams–Novikov spectral sequence for $p = 2$ below dimension 40. Comparison of Toda’s, Tangora’s and our notation at $p = 2$. 3-Primary stable homotopy excluding in J. 5-Primary stable homotopy excluding in J.

Bibliography
List of Figures

<table>
<thead>
<tr>
<th>Figure No.</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.2.15</td>
<td>The Adams spectral sequence for $p = 3$, $t - s \leq 45$.</td>
<td>11</td>
</tr>
<tr>
<td>1.2.19</td>
<td>The Adams–Novikov spectral sequence for $p = 3$, $t - s \leq 45$.</td>
<td>13</td>
</tr>
<tr>
<td>1.5.9</td>
<td>The EPSS for $p = 2$ and $k \leq 7$.</td>
<td>27</td>
</tr>
<tr>
<td>1.5.24</td>
<td>A portion of the E_2-term of the spectral sequence of Theorem 1.5.23</td>
<td>36</td>
</tr>
<tr>
<td></td>
<td>converging to $J_*(\mathbb{R}P^\infty)$ and showing the d_2’s and d_3’s listed in Theorem 1.5.23, part (c).</td>
<td></td>
</tr>
<tr>
<td>3.2.9</td>
<td>The May E_2-term for $p = 2$ and $t - s \leq 13$.</td>
<td>71</td>
</tr>
<tr>
<td>3.2.17</td>
<td>The May spectral sequence for $\text{Ext}_{A(2),s}(\mathbb{Z}/(2), A(0,s))$.</td>
<td>75</td>
</tr>
<tr>
<td></td>
<td>(a) The spectral sequence for E_3; (b) the E_3-term; (c) differentials in E_3;</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(d) E_∞.</td>
<td></td>
</tr>
<tr>
<td>3.3.10</td>
<td>The EHP spectral sequence (3.3.7) for $t - s \leq 14$.</td>
<td>79</td>
</tr>
<tr>
<td>3.3.18</td>
<td>The unstable Adams E_2-term for S^3.</td>
<td>83</td>
</tr>
<tr>
<td>3.4.20</td>
<td>$\text{Ext}^{s-1,t}s H*(\bar{W})$.</td>
<td>91</td>
</tr>
<tr>
<td>4.4.16</td>
<td>$\text{Ext}^{s,t}{BP(BP)}(BP_, BP_*/I_1)$ for $p = 5$ and $t - s \leq 240$.</td>
<td>134</td>
</tr>
<tr>
<td>4.4.21</td>
<td>The Adams–Novikov spectral sequence for $p = 5$, $t - s \leq 240$, and $s \geq 2$.</td>
<td>136</td>
</tr>
<tr>
<td>4.4.23</td>
<td>(a) $\text{Ext}(BP_/I_1)$ for $p = 2$ and $t - s < 29$. (b) $\text{Ext}(BP_/I_2)$ for $t - s \leq 28$. (c) $\text{Ext}(BP_*/I_2)$ for $t - s \leq 27$.</td>
<td>138</td>
</tr>
<tr>
<td>4.4.32</td>
<td>$\text{Ext}(BP_*/I_1)$ for $p = 2$ and $t - s \leq 26$.</td>
<td>140</td>
</tr>
<tr>
<td>4.4.45</td>
<td>$\text{Ext}(BP_*)$ for $p = 2$, $t - s \leq 25$.</td>
<td>142</td>
</tr>
<tr>
<td>4.4.46</td>
<td>$\text{Ext}{A*(\mathbb{Z}/2,\mathbb{Z}/2)}$ for $t - s \leq 25$.</td>
<td>143</td>
</tr>
<tr>
<td>7.3.17</td>
<td>$\text{Ext}_{\Gamma(1)}(T^{(1)}_0)$.</td>
<td>259</td>
</tr>
<tr>
<td>A3.1a</td>
<td>The Adams spectral sequence for $p = 2$, $t - s \leq 29$.</td>
<td>362</td>
</tr>
<tr>
<td>A3.1b</td>
<td>The Adams spectral sequence for $p = 2$, $28 \leq t - s \leq 45$.</td>
<td>363</td>
</tr>
<tr>
<td>A3.1c</td>
<td>The Adams spectral sequence for $p = 2$, $44 \leq t - s \leq 61$. (Differentials tentative)</td>
<td>364</td>
</tr>
<tr>
<td>A3.2</td>
<td>The Adams–Novikov spectral sequence for $p = 2$, $t - s \leq 39$. (m_1-periodic elements omitted. Computations for $t - s \leq 30$ are tentative.)</td>
<td>365</td>
</tr>
</tbody>
</table>
List of Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.4.48</td>
<td>Correspondence between Adams–Novikov spectral sequence and Adams spectral sequence permanent cycles for (p = 2), (14 \leq t - s \leq 24)</td>
<td>144</td>
</tr>
<tr>
<td>A3.3</td>
<td>(\pi_n^S) at (p = 2^a)</td>
<td>366</td>
</tr>
<tr>
<td>A3.4</td>
<td>3-Primary Stable Homotopy Excluding im (J^a)</td>
<td>370</td>
</tr>
<tr>
<td>A3.5</td>
<td>5-Primary Stable Homotopy Excluding im (J)</td>
<td>371</td>
</tr>
<tr>
<td>A3.6</td>
<td>Toda’s calculation of unstable homotopy groups (\pi_n+k(\Sigma^n)) for (n \leq k + 2) and (k \leq 19).</td>
<td>377</td>
</tr>
</tbody>
</table>
Preface to the second edition

The subject of BP-theory has grown dramatically since the appearance of the first edition 17 years ago. One major development was the proof by Devinatz, Hopkins and Smith (see Devinatz, Hopkins and Smith [1] and Hopkins and Smith [2]) of nearly all the conjectures made in Ravenel [8]. An account of this work can be found in our book Ravenel [13]. The only conjecture of Ravenel [8] that remains is Telescope Conjecture. An account of our unsuccessful attempt to disprove it is given in Mahowald, Ravenel, and Shick [1].

Another big development is the emergence of elliptic cohomology and the theory of topological modular forms. There is still no comprehensive introduction to this topic. Some good papers to start with are Ando, Hopkins and Strickland [1], Hopkins and Mahowald [1], Landweber, Ravenel and Stong [8], and Rezk [?], which is an account of the still unpublished Hopkins-Miller theorem.

The seventh and final chapter of the book has been completely rewritten and is nearly twice as long as the original. We did this with an eye to carrying out future research in this area.

I am grateful to the many would be readers who urged me to republish this book and to the AMS for its assistance in getting the original manuscript retypeset. Peter Landweber was kind enough to provide me with a copious list of misprints he found in the first edition. Nori Minami and Igor Kriz helped in correcting some errors in § 4.3. Mike Hill and his fellow MIT students provided me with a timely list of typos in the online version of this edition. Hirofumi Nakai was very helpful in motivating me to make the revisions of Chapter 7.
Preface to the first edition

My initial inclination was to call this book *The Music of the Spheres*, but I was dissuaded from doing so by my diligent publisher, who is ever mindful of the sensibilities of librarians. The purpose of this book is threefold: (i) to make BP-theory and the Adams–Novikov spectral sequence more accessible to nonexperts, (ii) to provide a convenient reference for workers in the field, and (iii) to demonstrate the computational potential of the indicated machinery for determining stable homotopy groups of spheres. The reader is presumed to have a working knowledge of algebraic topology and to be familiar with the basic concepts of homotopy theory. With this assumption the book is almost entirely self-contained, the major exceptions (e.g., Sections 5.4, 5.4, A1.4, and A1.5) being cases in which the proofs are long, technical, and adequately presented elsewhere.

The subject matter is a difficult one and this book will not change that fact. We hope that it will make it possible to learn the subject other than by the only practical method heretofore available, i.e., by numerous exhausting conversations with one of a handful of experts. Much of the material here has been previously published in journal articles too numerous to keep track of. However, a lot of the foundations of the subject, e.g., Chapter 2 and Appendix 1, have not been previously worked out in sufficient generality and the author found it surprisingly difficult to do so.

The reader (especially if she is a graduate student) should be warned that many portions of this volume contain more than he is likely to want or need to know. In view of (ii), results are given (e.g., in Sections 4.3, 6.3, and A1.4) in greater strength than needed at present. We hope the newcomer to the field will not be discouraged by abundance of material.

The homotopy groups of spheres is a highly computational topic. The serious reader is strongly encouraged to reproduce and extend as many of the computations presented here as possible. There is no substitute for the insight gained by carrying out such calculations oneself.

Despite the large amount of information and techniques currently available, stable homotopy is still very mysterious. Each new computational breakthrough heightens our appreciation of the difficulty of the problem. The subject has a highly experimental character. One computes as many homotopy groups as possible with existing machinery, and the resulting data form the basis for new conjectures and new theorems, which may lead to better methods of computation. In contrast with physics, in this case the experimentalists who gather data and the theoreticians who interpret them are the same individuals.

The core of this volume is Chapters 2–6 while Chapter 1 is a casual nontechnical introduction to this material. Chapter 7 is a more technical description of actual computations of the Adams–Novikov spectral sequence for the stable homotopy
groups of spheres through a large range of dimensions. Although it is likely to be read closely by only a few specialists, it is in some sense the justification for the rest of the book, the computational payoff. The results obtained there, along with some similar calculations of Tangora, are tabulated in Appendix 3.

Appendices 1 and 2 are utilitarian in nature and describe technical tools used throughout the book. Appendix 1 develops the theory of Hopf algebroids (of which Hopf algebras are a special case) and useful homological tools such as relative injective resolutions, spectral sequences, Massey products, and algebraic Steenrod operations. It is not entertaining reading; we urge the reader to refer to it only when necessary.

Appendix 2 is a more enjoyable self-contained account of all that is needed from the theory of formal group laws. This material supports a bridge between stable homotopy theory and algebraic number theory. Certain results (e.g., the cohomology of some groups arising in number theory) are carried across this bridge in Chapter 6. The house they inhabit in homotopy theory, the chromatic spectral sequence, is built in Chapter 5.

The logical interdependence of the seven chapters and three appendixes is displayed in the accompanying diagram.

It is a pleasure to acknowledge help received from many sources in preparing this book. The author received invaluable editorial advice from Frank Adams, Peter May, David Pengelley, and Haynes Miller. Steven Mitchell, Austin Pearlman, and Bruce McQuistan made helpful comments on various stages of the manuscript, which owes its very existence to the patient work of innumerable typists at the University of Washington.

Finally, we acknowledge financial help from six sources: the National Science Foundation, the Alfred P. Sloan Foundation, the University of Washington, the Science Research Council of the United Kingdom, the Sonderforschungsbereich of Bonn, West Germany, and the Troisième Cycle of Bern, Switzerland.
Commonly Used Notations

\[
\begin{align*}
\mathbb{Z} & \quad \text{Integers} \\
\mathbb{Z}_p & \quad \text{\(p\)-adic integers} \\
\mathbb{Z}_{(p)} & \quad \text{Integers localized at } p \\
\mathbb{Z}/(p) & \quad \text{Integers mod } p \\
\mathbb{Q} & \quad \text{Rationals} \\
\mathbb{Q}_p & \quad \text{\(p\)-adic numbers} \\
P(x) & \quad \text{Polynomial algebra on generators } x \\
E(x) & \quad \text{Exterior algebra on generators } x \\
\boxdot & \quad \text{Cotensor product (Section A1.1)}
\end{align*}
\]

Given suitable objects \(A\), \(B\), and \(C\) and a map \(f: A \to B\), the evident map \(A \boxdot C \to B \boxdot C\) is denoted by \(f \boxdot C\).