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CHAPTER 5

The Chromatic Spectral Sequence

The spectral sequence of the title is a mechanism for organizing the Adams–
Novikov E2-term and ultimately π∗(S

0) itself. The basic idea is this. If an element
x in the E2-term, which we abbreviate by Ext(BP∗) (see 5.1.1), is annihilated by a
power of p, say pi, then it is the image of some x′ ∈ Ext(BP∗/p

i) under a suitable
connecting homomorphism. In this latter group one has multiplication by a suitable
power of v1 (depending on i), say vm1 . x′ may or may not be annihilated by some

power of vm1 , say vmj
1 . If not, we say x is v1-periodic; otherwise x′ is the image of

some x′′ ∈ Ext(BP∗/(p
i, vmj

1 )) and we say it is v1-torsion. In this new Ext group
one has multiplication by vn2 for some n. If x is v1-torsion, it is either v2-periodic
or v2-torsion depending on whether x′′ is killed by some power of vn2 . Iterating
this procedure one obtains a complete filtration of the original Ext group in which
the nth subgroup in the vn-torsion and the nth subquotient is vn-periodic. This is
the chromatic filtration and it is associated with the chromatic spectral sequence of
5.1.8. The chromatic spectral sequence is like a spectrum in the astronomical sense
in that it resolves stable homotopy into periodic components of various types.

Recently we have shown that this algebraic construction has a geometric origin,
i.e., that there is a corresponding filtration of π∗(S

0). The chromatic spectral
sequence is based on certain inductively defined short exact sequences of comodules
5.1.5. In Ravenel [?] we show that each of these can be realized by a cofibration

Nn →Mn → Nn+1

with N0 = S0 so we get an inverse system

S0 ← Σ−1N1 ← Σ−2N2 ← · · · .

The filtration of π∗(S
0) by the images of π∗(Σ

−nNn) is the one we want. Applying
the Novikov Ext functor to this diagram yields the chromatic spectral sequence,
and applying homotopy yields a geometric form of it. For more discussion of this
and related problems see Ravenel [?].

The chromatic spectral sequence is useful computationally as well as conceptu-
ally. In 5.1.10 we introduce the chromatic cobar complex CC(BP∗). Even though
it is larger than the already ponderous cobar complex C(BP∗), it is easier to work
with because many cohomology classes (e.g., the Greek letter elements) have far
simpler cocycle representatives in CC than in C.

In Section 1 the basic properties of the chromatic spectral sequence are given,
most notably the change-of-rings theorem 5.1.14, which equates certain Ext groups
with the cohomology of certain Hopf algebras Σ(n), the nth Morava stabilizer alge-
bra. This isomorphism enables one to compute these groups and was the original
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144 5. THE CHROMATIC SPECTRAL SEQUENCE

motivation for the chromatic spectral sequence. These computations will be the sub-
ject of the next chapter. Section 1 also contains various computations (5.1.20–5.1.22
and 5.1.24) which illustrate the use of the chromatic cobar complex.

In Section 2 we compute various Ext1 groups (5.2.6, 5.2.11, 5.2.14, and 5.2.17)
and recover as a corollary the Hopf invariant one theorem (5.2.8), which says almost

all elements in the Adams spectral sequence E1,∗
2 are not permanent cycles. Our

method of proof is to show they are not in the image of the Adams–Novikov E1,∗
2

after computing the latter.
In Section 3 we compute the v1-periodic part of the Adams–Novikov spectral

sequence and its relation to the J-homomorphism and the µ-family of Adams [?].
The main result is 5.3.7, and the resulting pattern in the Adams–Novikov spectral
sequence for p = 2 is illustrated in 5.3.8.

In Section 4 we describe Ext2 for all primes (5.4.5), referring to the original
papers for the proofs, which we cannot improve upon. Corollaries are the nontrivi-
ality of γt, (5.4.4) and a list of elements in the Adams spectral sequence E2,∗

2 which
cannot be permanent cycles (5.4.7). This latter result is an analog of the Hopf
invariant one theorem. The Adams spectral sequence elements not so excluded
include the Arf invariant and ηj families. These are discussed in 5.4.8–5.4.10.

In Section 5 we compile all known results about which elements in Ext2 are
permanent cycles, i.e., about the β-family and its generalizations. We survey the
relevant work of Smith and Oka for p ≥ 5, Oka and Toda for p = 3, and Davis and
Mahowald for p = 2.

In Section 6 we give some fragmentary results on Exts for s ≥ 3. We describe
some products of α’s and β’s and their divisibility properties. We close the chapter
by describing a possible obstruction to the existence of the δ-family.

Since the appearance of the first edition, many computations related to the
chromatic spectral sequence have been made by Shimomura. A list of some of
them can be found in Shimomura [?]. A description of the first three columns of
the chromatic spectral sequence (meaning the rational, v1- and v2-periodic parts)
for the sphere can be found in Shimomura and Wang [?] for p = 2, in Shimomura
and Wang [?] for p = 3, and in Shimomura and Yabe [?] for p ≥ 5. Analogous
computations for the mod p Moore spectrum can be found in Shimomura [?] for
p = 2, in Shimomura [?] for p = 3 and in Shimomura [?] for p ≥ 5.

1. The Algebraic Construction

In this section we set up the chromatic spectral sequence converging to the
Adams–Novikov E2-term, and use it to make some simple calculations involving
Greek letter elements (1.3.17 and 1.3.19). The chromatic spectral sequence was
originally formulated by Miller, Ravenel, and Wilson [?]. First we make the follow-
ing abbreviation in notation, which will be in force throughout this chapter: given
a BP∗(BP ) comodule M (A1.1.2), we define

(5.1.1) Ext(M) = ExtBP∗(BP )(BP∗,M).

To motivate our construction recall the short exact sequence of comodules given
by 4.3.2(c)

(5.1.2) 0→ Σ2(pn−1)BP∗/In
vn−−→ BP∗/In → BP∗/In+1 → 0
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and let

δn : Exts(BP∗/In+1)→ Exts+1(BP∗/In)

denote the corresponding connecting homomorphism.

5.1.3. Definition. For t, n > 0 let

α
(n)
t = δ0δ1 · · · δn−1(v

t
n) ∈ Extn(BP∗). �

Here α(n) stands for the nth letter of the Greek alphabet. The status of these
elements in πS

∗ is described in 1.3.11, 1.3.15, and 1.3.18. The invariant prime ideals
in In in 5.1.2 can be replaced by invariant regular ideals, e.g., those provided by
4.3.3. In particular we have

5.1.4. Definition. αspi/i+1 ∈ Ext1,qsp
i

(BP∗) (where q = 2p− 2) is the image

of vsp
i

1 under the connecting homomorphism for the short exact sequence

0→ BP∗
pi+1

−−−→ BP∗ → BP∗/(p
i+1)→ 0. �

We will see below that for p > 2 these elements generate Ext1(BP∗) (5.2.6)
and that they are nontrivial permanent cycles in im J . We want to capture all of
these elements from a single short exact sequence; those of 5.1.4 are related by the
commutative diagram

0 // BP∗
pi

// BP∗

p

��

// BP∗/(p
i)

��

// 0

0 // BP∗
pi+1

// BP∗ // BP∗/(p
i+1) // 0

Taking the direct limit we get

0→ BP∗ → Q⊗BP∗ → Q/Z(p) ⊗BP∗ → 0;

we denote these three modules by N0, M0, and N1, respectively. Similarly, the
direct limit of the sequences

0→ BP∗/(p
i+1)

vpi+j

1−−−−→ Σ−qpi+j

BP∗/(p
i+1)→ Σ−1pi+j

BP∗/(p
i+1, vp

i+j

1 )→ 0

gives us

0→ BP∗/(p
∞)→ v−1

1 BP∗/(p
∞)→ BP∗/(p

∞, v∞1 )→ 0

and we denote these three modules by N1, M1, and N2, respectively. More gener-
ally we construct short exact sequences

(5.1.5) 0→ Nn →Mn → Nn+1 → 0

inductively by Mn = v−1
n BP∗ ⊗BP∗ Nn. Hence Nn and Mn are generated as

Z(p)-modules by fractions x
y where x ∈ BP∗ for Nn and v−1

n BP∗ for Mn and y

is a monomial in the ideal (pv1 · · · vn−1) of the subring Z(p)[v1, . . . , vn−1] of BP∗.
The BP∗-module structure is such that vx/y = 0 for v ∈ BP∗ if this fraction when
reduced to lowest terms does not have its denominator in the above ideal. For
example, the element 1

pivj
1

∈ N2 is annihilated by the ideal (pi, vj1).

5.1.6. Lemma. 5.1.5 is an short exact sequence of BP∗(BP )-comodules.
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Proof. Assume inductively that Nn is a comodule and let N ′ ⊂ Nn be a
finitely generated subcomodule. Then N ′ is annihilated by some invariant regular
ideal with n generators given by 4.3.3. It follows from 4.3.3 that multiplication by
some power of vn, say vkn, is a comodule map, so

v−1
n N ′ = lim−→

vk
n

Σ− dim vki
n N ′

is a comodule. Alternatively, N ′ is annihilated by some power of In, so multiplica-
tion by a suitable power of vn is a comodule map by Proposition 3.6 of Landweber [?]
and v−1

n N ′ is again a comodule. Taking the direct limit over all such N ′ gives us a
unique comodule structure on Mn and hence on the quotient Nn+1. �

5.1.7. Definition. The chromatic resolution is the long exact sequence of co-
modules

0→ BP∗ →M0 de−−→M1 de−−→ · · ·
obtained by splicing the short exact sequences of 5.1.5. �

The associated resolution spectral sequence (A1.3.2) gives us

5.1.8. Proposition. There is a chromatic spectral sequence converging to
Ext(BP∗) with En,s

1 = Exts(Mn) and dr : E
n,s
r → En+r,s+1−r

r where d1 is the
map induced by de in 5.1.7. �

5.1.9. Remark. There is a chromatic spectral sequence converging to Ext(F )
where F is any comodule which is flat as a BP∗-module, obtained by tensoring the
resolution of 5.1.7 with F .

5.1.10. Definition. The chromatic cobar complex CC(BP∗) is given by

CCu(BP∗) =
⊕

s+n=u

Cs(Mn),

where C( ) is the cobar complex of A1.2.11, with d(x) = d∗e(x) + (−1)ndi(x) for
x ∈ Cs(Mn) where d∗e is the map induced by de in 5.1.7 (the external component of
d) and di (the internal component) is the differential in the cobar complex C(Mn).

�

It follows from 5.1.8 and A1.3.4 that H(CC(BP∗)) = H(C(BP∗)) = Ext(BP∗).
The embedding BP∗ → M0 induces an embedding of the cobar complex C(BP∗)
into the chromatic cobar complex CC(BP∗). Although CC(BP∗) is larger than
C(BP∗), we will see below that it is more convenient for certain calculations such
as identifying the Greek letter elements of 5.1.3.

This entire construction can be generalized to BP∗/Im as follows.

5.1.11. Definition. Let N0
m = BP∗/Im and define BP∗-modules Nn

m and Mn
m

inductively by short exact sequences

0→ Nn
m →Mn

m → Nn+1
m → 0

where Mn
m = v−1

m+nBP∗ ⊗BP∗ Nn
m. �

Lemma 5.1.6 can be generalized to show that these are comodules. Splicing
them gives an long exact sequence

0→ BP∗/Im →M0
m

de−−→M1
m

de−−→ · · ·
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and a chromatic spectral sequence as in 5.1.8. Moreover BP∗/Im can be replaced by
any comodule L having an increasing filtration {FiL} such that each subquotient
Fi/Fi−1 is a suspension of BP∗/Im, e.g., L = BP∗/I

k
m. We leave the details to the

interested reader.
Our main motivation here, besides the Greek letter construction, is the com-

putability of Ext(M0
n); it is essentially the cohomology of the automorphism group

of a formal group law of height n (1.4.3 and A2.2.17). This theory will be the subject
of Chapter 6. We will state the first major result now. We have M0

n = v−1
n BP∗/In,

which is a comodule algebra (A1.1.2), so Ext(M0
n) is a ring (A1.2.14). In partic-

ular it is a module over Ext0(M0
n). The following is an easy consequence of the

Morava–Landweber theorem, 4.3.2.

5.1.12. Proposition. For n > 0, Ext0(M0
n) = Z/(p)[vn, v

−1
n ]. We denote this

ring by K(n)∗. [The case n = 0 is covered by 5.2.1, so it is consistent to denote Q
by K(0)∗.] �

5.1.13.Definition. Make K(n)∗ a BP∗-module by defining multiplication by vi
to be trivial for i 6= n. Then let Σ(n) = K(n)∗ ⊗BP∗ BP∗(BP )⊗BP∗ K(n)∗. �

Σ(n), the nth Morava stabilizer algebra, is a Hopf algebroid which will be
closely examined in the next chapter. It has previously been called K(n)∗K(n),
e.g., in Miller, Ravenel, and Wilson [?], Miller and Ravenel [?], and Ravenel [?, ?].
K(n)∗ is also the coefficient ring of the nth Morava K-theory; see Section 4.2 for
references. We have changed our notation to avoid confusion with K(n)∗(K(n)),
which is Σ(n) tensored with a certain exterior algebra.

The starting point of Chapter 6 is

5.1.14. Change-of-Rings Theorem (Miller and Ravenel [?]).

Ext(M0
n) = ExtΣ(n)(K(n)∗,K(n)∗). �

We will also show (6.2.10)

5.1.15. Morava Vanishing Theorem. If (p − 1) - n then Exts(M0
n) = 0 for

s > n2. �

Moreover this Ext satisfies a kind of Poincaré duality, e.g.,

Exts(M0
n) = Extn

2−s(M0
n),

and it is essentially the cohomology of a certain n stage nilpotent Lie algebra of
rank n2. If we replace Σ(n) with a quotient by a sufficiently large finitely generated
subalgebra, then this Lie algebra becomes abelian and the Ext [even if (p − 1)
divides n] becomes an exterior algebra over K(n)∗ on n2 generators of degree one.

To connect these groups with the chromatic spectral sequence we have

5.1.16. Lemma. There are short exact sequences of comodules

0→Mn−1
m+1

j−→ Σdim vmMn
m

vm−−→Mn
m → 0

and Bockstein spectral sequences converging to Ext(Mn
m) with

Es,∗
1 = Exts(Mn−1

m+1)⊗ P (am)

where multiplication by am in the Bockstein spectral sequence corresponds to division
by vm in Ext(Mn

m). dr is not a derivation but if dr(a
r
mx) = y 6= 0 then dr(a

r+i
m x) =

vimy.
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Proof. The spectral sequence is that associated with the increasing filtration
of Mn

m defined by FiM
n
m = ker vim (see A1.3.9). Then E0Mn

m = Mn−1
m+1⊗P (am). �

Using 5.1.16 n times we can in principle get from Ext(M0
n) to Ext(Mn

0 ) =
Ext(Mn) and hence compute the chromatic E1-term (5.1.8). In practice these
computations can be difficult.

5.1.17. Remark. We will not actually use the Bockstein spectral sequence of
5.1.16 but will work directly with the long exact sequence

→ Exts(Mn−1
m+1)

j−→ Exts(Mn
m)

vm−−→ Exts(Σ−2pm+2Mn
m)

δ−→ Exts+1(Mn−1
m+1)→ · · ·

by induction on s. Given an element x ∈ Ext(Mn−1
m+1) which we know not to be

in im δ, we try to divide j(x) by vm as many times as possible. When we find an
x′ ∈ Ext(Mn

m) with vrmx′ = j(x) and δ(x′) = y 6= 0 then we will know that j(x)
cannot be divided any further by vm. Hence δ serves as reduction mod Im+1. This
state of affairs corresponds to dr(a

r
mx) = y in the Bockstein spectral sequence of

5.1.16. We will give a sample calculation with δ below (5.1.20).
We will now make some simple calculations with the chromatic spectral se-

quence starting with the Greek letter elements of 5.1.3. The short exact sequence
of 5.1.2 maps to that of 5.1.5, i.e., we have a commutative diagram

0 // BP∗/In

i

��

vn // Σ− dim vnBP∗/In

��

// Σ− dim vnBP∗/In+1

i

��

// 0

0 // Nn // Mn // Nn+1 // 0

with

i(vtn+1) =
vtn+1

pv1 · · · vn
.

Hence α
(n)
t can be defined as the image of i(vtn) under the composite of the connect-

ing homomorphisms of 5.1.5, which we denote by α : Ext0(Nn)→ Extn(BP∗). On
the other hand, the chromatic spectral sequence has a bottom edge homomorphism

Ext0(Mn) En,0
1

Ext0(Nn)

OO

// ker d1

OO

// En,0
∞

// Extn(BP∗)

which we denote by
κ : Ext0(Nn)→ Extn(BP∗).

κ and α differ by sign, i.e.,

5.1.18. Proposition. κ = (−1)[(n+1)/2]α, where [x] is the largest integer not
exceeding x.

Proof. The image y0 of i(vtn) in Mn is an element in the chromatic complex
(5.1.10) cohomologous to some class in the cobar complex C(BP∗). Inductively
we can find xs ∈ Cs(Mn−s−1), and ys ∈ Cs(Mn−s) such that de(xs) = ys and
di(xs) = ys+1. Moreover yn ∈ Cn(M0) is the image of some xn ∈ Cn(BP∗).
It follows from the definition of the connecting homomorphism that xn is a co-

cycle representing α(i(vtn)) = α
(n)
t . On the other hand, ys is cohomologous to
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(−1)n−sys+1 in CC(BP∗) by 5.1.10 and
∏n−1

s=0 (−1)n−s = (−1)[n+1/2] so xn repre-

sents (−1)[n+1/2]κ(i(vtn)). �

5.1.19. Definition. If x ∈ Ext0(Mn) is in the image of Ext0(Nn) (and hence
gives a permanent cycle in the chromatic spectral sequence) and has the form

vtn

pi0vi11 · · · v
in−1

n−1

mod In

(i.e., x is the indicated fraction plus terms with larger annihilator ideals) then we

denote α(x) by α
(n)
t/in−1,...,i0

; if for some m < n, ik = 1 for k ≤ m then we abbreviate

α(x) by α
(n)
t/in−1,...,im+1

. �

5.1.20. Examples and Remarks. We will compute the image of βt in
Ext2(BP∗/I2) for p > 2 in two ways.

(a) We regard βt as an element in Ext0(M2) and compute its image under
connecting homomorphisms δ0 to Ext1(M1

1 ) and then δ1 to Ext2(M0
2 ), which is

E0,2
1 in the chromatic spectral sequence for Ext(BP∗/I2). To compute δ0, we pick

an element in x ∈M2 such that px = βt, and compute its coboundary in the cobar
complex C(M2). The result is necessarily a cocycle of order p, so it can be pulled
back to Ext1(M1

1 ). To compute δ1 on this element we take a representative in
C1(M1

1 ), divide it by v1, and compute its coboundary.

Specifically βt is
vt
2

pv1
∈M2, so we need to compute the coboundary of x =

vt
2

p2v1
.

It is convenient to write x as
vp−1
1 vt

2

p2vp
1
, then the denominator is the product of elements

generating an invariant regular ideal, which means that we need to compute ηR on
the numerator only. We have

ηR(v
p−1
1 ) ≡ vp−1

1 − pvp−2
1 t1 mod (p2)

and

ηR(v
t
2) ≡ vt2 + tvt−1

2 (v1t
p
1 + pt2) mod (p2, pv1, v

2
1).

These give

d

(
vp−1
t vt2
p2vp1

)
=
−vt2t1
pv21

+
tvt−1

2

pv1
(t2 − t1+p

1 ).

This is an element of order p in C1(M2), so it is in the image of C1(M1
1 ). In this

group the p in the denominator is superfluous, since everything has order p, so we
omit it. To compute δ1 we divide by v1 and compute the coboundary; i.e., we need
to find

d

(
−vt2t1
v31

+
tvt−1

2 (t2 − t1+p
1 )

v21

)
.

Recall (4.3.15)

∆(t2) = t2 ⊗ 1 + t1 ⊗ tp1 + 1⊗ t2 + v1b10

where

b10 = −
∑

0<i<p

1

p

(
p

i

)
ti1 ⊗ tp−i

1
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as in 4.3.14. From this we get

d

(
−vt2t1
v31

+
tvt−1

2

v21
(t2 − t1+p

1 )

)
=
−tvt−1

2 tp1|t1
v21

−
(
t

2

)
vt−2
2

v1
t2p1 |t1

+ t(t− 1)
vt−2
2

tp1
|(t2 − t1+p

1 )

+ t
vt−1
2

v21
(−v1b10 + tp1|t1)

=

(
t

2

)
vt−2
2

v1
(2tp1|t2 − 2tp1|t

1+p
1 − t2p1 |t1)

− t
vt−1
2

v1
b10.

We will see below that Ext2(M0
2 ) has generators k0 represented by 2tp1|t2−2t

p
1|t

1+p
1 −

t2p1 |t1 and b10. Hence the mod I2 reduction of −βt is(
t

2

)
vt−2
2 k0 + tvt−1

2 b1,0.

(b) In the chromatic complex CC(BP∗) (5.1.10), βt ∈ M2 is cohomologous to
elements in C1(M1) and C2(M0). These three elements pull back to N2, C1(N1),
and C2(N0), respectively. In theory we could compute the element in C2(N0) =
C2(BP∗) and reduce mod I2, but this would be very laborious. Most of the terms
of the element in C0(BP∗) are trivial mod I2, so we want to avoid computing them
in the first place. The passage from C0(N2) to C2(BP∗) is based on the four-term
exact sequence

0→ BP∗ →M0 →M1 → N2 → 0.

Since
vt
2

pv1
∈ N2 is in the image of Σ−qBP∗/I2, we can replace this sequence with

0→ BP∗
p−→ BP∗

v1−−→ Σ−qBP∗/I1 → Σ−qBP∗/I2 → 0.

We are going to map the first BP∗ to BP∗/I2; we can extend this to a map of
sequences to

0→ BP∗/I2
p−→ BP∗/(p

2, pv1, v
2
1)

v1−−→ Σ−qBP∗/(p, v
3
1)→ Σ−qBP∗/I2 → 0,

which is the identity on the last comodule. [The reader may be tempted to replace
the middle map by

BP∗/(p
2, v1)

v1−−→ Σ−qBP∗/(p, v
2
1)

but BP∗/(p
2, v1) is not a comodule.] This sequence tells us which terms we can

ignore when computing in the chromatic complex, as we will see below.

Specifically we find (ignoring signs) that
vt
2

pv1
∈M2 is cohomologous to

tvt−1
2 tp1
p

+

(
t

2

)
v1v

t−2
2

p
t2p1 + higher terms.

Note that the first two terms are divisible by v1 and v21 respectively in the image
of C1(Σ−qBP∗/(p)) in C1(M1). The higher terms are divisible by v31 and can
therefore be ignored.
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In the next step we will need to work mod I22 in the image of C2(BP∗) in
C2(M0) via multiplication by p. From the first term above we get

t(t− 1)vt−2
2 t2|tp1 + tvt−1

2 b10,

while the second term gives (
t

2

)
vt−2
2 t1|t2p1

and their sum represents the same element obtained in (a).

Our next result is

5.1.21. Proposition. For n ≥ 3,

α
(n)
1 = (−1)nα1α

(n−1)
p−1 . �

For n = 3 this gives γ1 = −α1βp−1. In the controversy over the nontriviality
of γ1 (cf. the paragraph following 1.3.18) the relevant stem was known to be
generated by α1βp−1, so what follows is an easy way (given all of our machinery)
to show γ1 6= 0.

Proof of 5.1.2. α1 is easily seen to be represented by t1 in C(BP∗), while

α
(n)
1 and α

(n−1)
p−1 are represented by

(−1)[n+1/2] vn
pv1 · · · vn−1

∈Mn and (−1)[n/2]
vp−1
n−1

pv1 · · · vn−2
∈Mn−1,

respectively. Hence (−1)nα1α
(n−1)
p−1 = −α(n−1)

p−1 α1 is represented by

(−1)[n/2]
vp−1
n−1t1

pv1 · · · vn−2
∈ C1(Mn−1) ⊂ CCn(BP∗)

and it suffices to show that this element is cohomologous to (−1)[n+1/2]vn
(pv1···vn−1)

in

CC(BP∗).
Now consider

x =
v−1
n−1vn

pv1 · · · vn−2
−

vpn−1

pv1 · · · vn−3v
1+p
n−2

∈Mn−1.

Clearly

de(x) =
vn

pv1 · · · vn−1
.

To compute di(x) we need to know ηR(v
−1
n−1vn) mod In−1 and ηR(v

p
n−1)

mod (p, v1, . . . , vn−3, v
1+p
n−2) since di(x) = ηR(x)− x. We know

ηR(vn) ≡ vn + vn−1t
pn−1

1 − vpn−1t1 mod In−1

by 4.3.21, so

ηR(v
p
n−1) ≡ vpn−1 + vpn−2t

pn−1

1 − vp
2

n−2t
p
1 mod In−2.

Hence

ηR(v
−1
n−1vn)− v−1

n−1vn ≡ tp
n−1

1 − vp−1
n−1t1 mod In−1

and

ηR(v
p
n−1)− vpn−1 ≡ vpn−2t

pn−1

1 mod (p, v1, . . . , vn−3, v
1+p
n−2).
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It follows that

di(x) =
−vp−1

n−1t1

pv1 · · · vn−2
so

d(x) =
vn

pv1 · · · vn−1
+ (−1)n

vp−1
n−1t1

pv1 · · · vn−2

and a simple sign calculation gives the result. �

For p = 2 5.1.21 says α
(n)
1 = αn−2

1 α
(2)
1 for n ≥ 2. We will show that each of

these elements vanishes and that they are killed by higher differentials (dn−1) in
the chromatic spectral sequence. We do not know if there are nontrivial dr’s for all
r ≥ 2 for odd primes.

5.1.22. Theorem. In the chromatic spectral sequence for p = 2 there are ele-
ments xn ∈ E1,n−2

n−1 for n ≥ 2 such that

dn−1(xn) =
vn

2v1 · · · vn−1
∈ En,0

n−1.

Proof. Fortunately we need not worry about signs this time. Equation 4.3.1
gives ηR(v1) = v1 − 2t1 and ηR(v2) ≡ v2 + v1t

2
1 + v21t1 mod (2). We find then that

x2 =
v21 + 4v−1

1 v2
8

has the desired property. For n > 2 we represented xn by

[(t2 − t31 + v−1
1 v2t1)|t1| · · · |t1|]

2
∈ Cn−2(M1)

with n− 3 t1’s. To compute dn−1(xn) let

x̃n = xn +

n−2∑
i=1

(v2i+1 − v2i v
−1
i+1vi+2)t1| · · · |t1

2v1 · · · vi−1v3i
∈ CC(BP∗),

where the ith term has (n− 2− i) t1’s. Then one computes

d(x̃n) =
vn

2v1 · · · vn−1
,

so
dn−1(xn) =

vn
2v1 · · · vn−1

unless this element is killed by an earlier differential, in which case xn, would
represent a nontrivial element in Extn−1,2n(BP∗), which is trivial by 5.1.23 below.

�

5.1.23. Edge Theorem.
(a) For all primes p Exts,t(BP∗) = 0 for t < 2s,
(b) for p = 2 Exts,2s(BP∗) = Z/(2) for s ≥ 1, and
(c) for p = 2 Exts,2s+2(BP∗) = 0 for s ≥ 2.

Proof. We use the cobar complex C(BP∗) of A1.2.11. Part (a) follows from
the fact that Cs,t for t < 2s. Cs,2s is spanned by t1| · · · |t1 while Cs,2s+2 is spanned
by v1t1| · · · |t1 and ej = t1| · · · t1|t21|t1 · · · t1 with t21 in the jth position, 1 ≤ j ≤ s.
Since d(t31) = −3t1|t21 − 3t21|t1, the ej ’s differ by a coboundary up to sign. Part (b)
follows from

d(e1) = 2t1| · · · |t1 = −d(v1t1| · · · |t1)
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and (c) follows from

d(t2|t1| · · · |t1) = −v1t1| · · · |t1 − e1.

�

We conclude this section by tying up some loose ends in Section 4.4. For p > 2 we
need

5.1.24. Lemma. For odd primes, α1βp is divisible by p but not by p2. (This
gives the first element of order p2 in Exts(BP∗) for s ≥ 2.)

Proof. Up to sign α1βp is represented by
vp
2 t1
pv1

. Now
vp
2 t1

p2v1
is not a cocycle, but

if we can get a cocycle by adding a term of order p then we will have the desired

divisibility. It is more convenient to write this element as
vp−1
1 vp

2 t1
p2vp

1
; then the factors

of the denominator form an invariant sequence [i.e., ηR(v
p
1) ≡ vp1 mod (p2)], so to

compute the coboundary it suffices to compute ηR(v
p−1
1 v2) mod (p2, vp1). We find

d

(
vp−1
1 vp2
p2vp1

t1

)
=
−vp2t1|t1

pv21
=

1

2
d

(
vp2t

2
1

pv21

)
so the desired cocycle is

vp−1
1 vp2t1
p2vp1

− 1

2

vp2t
2
1

pv21
.

This divisibility will be generalized in (5.6.2).
To show that α1βp is not divisible by p2 we compute the mod (p) reduction of

our cocycle. More precisely we compute its image under the connecting homomor-
phism associated with

0→M1
1 →M2

0
p−→M2

0 → 0

(see 5.1.16). To do this we divide by p and compute the coboundary. Our divided
(by p) cocycle is

vp
2−1

1 vp2t1

p3vp
2

1

− 1

2

vp−2
1 vp2t

2
1

p2vp1

and its coboundary is

vp2(t
2
1|t1 + t1|t21)
pv31

+
vp−1
2 t2|t1
pv1

− 1

2

vp−1
2 tp1|t21
pv1

− vp−1
2 t1+p

1 |t1
pv1

We can eliminate the first term by adding 1
3
vp
2 t

3
1

pv3
i

(even if p = 3). For p > 3 the

resulting element in C2(M1
1 ) is

vp−1
2 (t2|t1 − t1+p

1 |t1 − tp1|t2)
v1

.

Reducing this mod I2 in a similar fashion gives a unit multiple of φ̄ in 4.1.14. For

p = 3 we add
−v2t

6
1

3v2
1

to the divided cocycle and get

vp−1
2 (t2|t1 − · · · )

v1
+

v2
v1

(t31|t61 + t61|t31),

which still gives a nonzero element in Ext2(M1
1 ). �

For p = 2 we need to prove 4.4.38 and 4.4.40, i.e.,
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5.1.25. Lemma. In the notation of 4.4.32 for p = 2 (a) δ0(β3) ≡ β2
2/2 + η1

mod (2),
(b) δ0(η2) ≡ c0 mod (2).

Proof. For (a) we have

d

(
v1v

3
2

4v21
+

v2v3
2v21

)
=

v22t
4
1

2v21
+

v3t
2
1 + v2t

2
2 + v22t2 + v2t

6
1

2v1
,

which gives the result.
For (b) we use Massey products. We have η2〈η1, v1, β1〉 so by A1.4.11 we have

δ0(η2) ≡ 〈η1, h10, β1〉 mod (2). Hence we have to equate this product with c0,
which by 4.4.31 is represented by x22

v1
, where x22 is defined by 4.4.25. To expedite

this calculation we will use a generalization of Massey products not given in A1.4
but fully described by May [?]. We regard η1 as an element in Ext1(M1

1 ), and h10,
and β1 as elements in Ext1(BP∗/I1) and use the pairing M1

1 ⊗ BP∗/I1 → M1
1 to

define the product. Hence the cocycles representing η1, h10 and β1 are

v3t
2
1 + v2(t

2
2 + t61) + v22t2
v1

, t1, and t21 + v1t1,

respectively. The cochains whose coboundaries are the two successive products are

v3(t2 + t31) + v2(t3 + t1t
2
2 + t41t2 + t71) + v22(t

4
1 + t1t2)

v1
and t2.

If we alter the resulting cochain representative of the Massey product by the
coboundary of

v3t
2
1t2 + v2(t

3
2 + t2t

6
1 + t91) + v22(t

6
1 + t22)

v1
+

v42(t2 + t31)

v41
+

v52t1
v51

we get the desired result. �

2. Ext1(BP∗/In) and Hopf Invariant One

In this section we compute Ext1(BP∗/In) for all n. For n > 0 our main results

are 5.2.14 and 5.2.17. For n = 0 this group is E1,∗
2 in the Adams–Novikov spectral

sequence and is given in 5.2.6. In 5.2.8 we will compute its image in the classical
Adams spectral sequence, thereby obtaining proofs of the essential content of the
Hopf invariant one theorems 1.2.12 and 1.2.14. More precisely, we will prove that
the specified hi’s are not permanent cycles, but we will not compute d2(hi). The
computation of Ext1(BP∗/In) is originally due to Novikov [?] for n = 0 and to
Miller and Wilson [?] for n > 0 (except for n = 1 and p ≥ 2).

To compute Ext1(BP∗) with the chromatic spectral sequence we need to know
Ext1(M0) and Ext0(M1). For the former we have

5.2.1. Theorem. (a) Exts,t(M0) =

{
Q if s = t = 0

0 otherwise

(b) Ext0,t(BP∗) =

{
Z(p) if t = 0

0 otherwise
.

Proof. (a) Since M0 = Q ⊗ BP∗, we have Ext(M0) = ExtΓ(A,A) where
A = M0 and Γ = Q ⊗ BP∗(BP ). Since tn is a rational multiple of ηR(vn) − vn
modulo decomposables, Γ is generated by the image of ηR and ηL and is therefore
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a unicursal Hopf algebroid (A1.1.11). Let v̄n = ηR(vn), so Γ = A[v̄1, v̄2, . . . ]. The
coproduct in Γ is given by ∆(vn) = vn⊗ 1 and ∆(v̄n) = 1⊗ v̄n. The map ηR : A→
Γ = A⊗A Γ makes A a right Γ-comodule. Let R be the complex Γ⊗E(y1, y2, . . . )
where E(y1, y2, . . . ) is an exterior algebra on generators yi of degree 1 and dimension
2(pi − 1). Let the coboundary d be a derivation with d(yn) = d(v̄n) = 0 and
d(vn) = yn. Then R is easily seen to be acyclic with H0(R) = A. Hence R is
a suitable resolution for computing ExtΓ(A,A) (A1.2.4). We have HomΓ(A,R) =
A⊗E(y1, . . . ) and this complex is easily seen to be acyclic and gives the indicated
Ext groups for M0.

For (b) Ext0 BP∗ = ker de ⊂ Ext0(M0
0 ) and de(x) 6= 0 if x is a unit multiple of

a negative power of p. �

To get at Ext(M1) we start with

5.2.2. Theorem.
(a) For p > 2, Ext(M0

1 ) = K(1)∗ ⊗ E(h0) where h0 ∈ Ext1,q is represented by
t1 in C1(M0

1 ) (see 5.1.12) and q = 2p− 2 as usual.
(b) For p = 2, Ext(M0

1 ) = K(1)∗ ⊗ P (h0) ⊗ E(ρ1), where h0 is as above and
ρ1 ∈ Ext1,0 is represented by v−3

1 (t2 − t31) + v−4
1 v2t1. �

This will be proved below as 6.3.21.
Now we use the method of 5.1.17 to find Ext0(M1); in the next section we will

compute all of Ext(M1) in this way. From 4.3.3 we have ηR(v
pi

1 ) ≡ vp
i

1 mod (pi+1),

so
vspi

1

pi+1 ∈ Ext0(M1). For p odd we have

(5.2.3) ηR(v
spi

1 ) ≡ vsp
i

1 + spi+1vsp
i−1

1 t1 mod (pi+2)

so in 5.1.17 we have

δ

(
vsp

i

1

pi+1

)
= svsp

i−1
1 h0 ∈ Ext1(M0

1 )

for p - s, and we can read off the structure of Ext0(M0
1 ) below.

For p = 2, 5.2.3 fails for i > 0, e.g.,

ηR(v
2
1) = v21 + 4v1t1 + 4t21 mod (8).

The element t21 + v1t1 ∈ C1(M0
1 ) is the coboundary of v−1

1 v2, so

α2/3 =
(v21 + 4v−1

1 v2)

8
∈ Ext0(M1);

i.e., we can divide by at least one more power of p than in the odd primary case. In
order to show that further division by 2 is not possible we need to show that α2/3

has a nontrivial image under δ (5.1.17). This in turn requires a formula for ηR(v2)
mod (4). From 4.3.1 we get

(5.2.4) ηR(v2) = v2 + 13v1t
2
1 − 3v21t1 − 14t2 − 4t31.

[This formula, as well as ηR(v1) = v1 − 2t1, are in terms of the vi defined by
Araki’s formula A2.2.2. Using Hazewinkel’s generators defined by A2.2.1 gives
ηR(v1) = v1 + 2t1 and ηR(v2) = v2 − 5v1t

2
1 − 3v21t1 + 2t2 − 4t31.]

Let x1,1 = v21 + 4v−1
1 v2. Then 5.2.4 gives

(5.2.5) ηR(x1,1) ≡ x1,1 + 8(v−1
1 t2 + v−1

1 t31 + v−2
1 v2t1) mod (16)

so δ(α2/3) = v21ρ1 6= 0 ∈ Ext1(M0
1 ).



156 5. THE CHROMATIC SPECTRAL SEQUENCE

5.2.6. Theorem.
(a) For p odd

Ext0,t(M1) =


0 if q - t where q = 2p− 2

Q/Z(p) if t = 0

Z/(pi+1) if t = spi and p - s

These groups are generated by

vsp
i

1

pi+1
∈M1.

(b) For p odd

Ext1,t(BP∗) =

{
Ext0,t(M1) if t > 0

0 if t = 0

(c) For p = 2

Ext0,t(M1) =


0 if t is odd

Q/Z(2) if t = 0

Z/(2) if t ≡ 2 mod 4

Z/(2i+3) if t = 2i+2s for odd s

These groups are generated by
vs
1

2 and
x2is
1,1

2i+3 ∈M1 where x1,1 is as in 5.2.5.
(d) For p = 2

Ext1,t(BP∗) =


0 if t ≤ 0

Ext0,t(M1) if t > 0 and t 6= 4

Z/(4) if t = 4

and Ext1,4(BP∗) is generated by α2,2 = ±v2
1

4 .

We will see in the next section (5.3.7) that in the Adams–Novikov spectral
sequence for p > 2, each element of Ext1(BP∗) is a permanent cycle detecting an
element in the image of the J-homomorphism (1.1.13). For p = 2 the generators
of Ext1,2t are permanent cycles for t ≡ 0 and 1 mod (4) while for t ≡ 2 and 3 the
generators support nontrivial d3’s (except when t = 2) and the elements of order 4

in Ext1,8t+4 are permanent cycles. The generators of E1,4t
4 = E1,4t

∞ detect elements
in im J for all t > 0.

Proof of 5.2.6. Part (a) was sketched above. We get Q/Z(p) in dimension

zero because 1/pi is a cocycle for all i > 0. For (b) the chromatic spectral sequence
gives an short exact sequence

0→ E1,0
∞ → Ext1(BP∗)→ E0,1

∞ → 0

and E0,1
∞ by 5.2.1. E1,0

∞ = E1,0
2 = ker de/ im de. An element in E1,0

1 = Ext0(M1)
has a nontrivial image under de iff it has terms involving negative powers of v1,
so ker de ⊂ E1,0

1 is the subgroup of elements in nonnegative dimensions. The

zero-dimensional summand Q/Z(p) is the image of de, so E1,0
2 = Ext1(BP∗) is as

stated.
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For (c) the computation of Ext0(M0
1 ) is more complicated for p = 2 since 5.2.3

no longer holds. From 5.2.5 we get

(5.2.7) ηR(x
2is
1,1) ≡ x2is

1,1 + 2i+3x2is−1
1,1 (v−1

1 t2 + v−1
1 t31 + v−2

1 v2t1) mod (2i+4)

for odd s, from which we deduce that
x2is
1,1

2i+3 is a cocycle whose image under δ (see

5.1.17) is v2
i+1s

1 ρ1. Equation 5.2.3 does hold for p = 2 when i = 0, so Ext0,2s(M0
1 )

is generated by
vs
1

2 for odd s. This completes the proof of (c).
For (d) we proceed as in (b) and the situation in nonpositive dimensions is the

same. We need to compute de

(
x2is
1,1

2i+3

)
. Since x1,1 = v21 + 4v−1

1 v2, we have

x2is
1,1

2i+3
=

v2
is

1 + s− 2i+2v2
is−3

1 v2
2i+3

.

For 2is = 1 (but for no 2is > 1) this expression has a negative power of v1 and we
get

de

(x1,1

8

)
=

v2
2v1
∈M2.

This gives a chromatic d1 (compare 5.1.21) and accounts for the discrepancy be-
tween Ext0,4(M1) and Ext1,4(BP∗). �

Now we turn to the Hopf invariant one problem. Theorems 1.2.12 and 1.2.14
say which elements of filtration 1 in the classical Adams spectral sequence are per-
manent cycles. We can derive these results from our computation of Ext1(BP∗) as
follows. The map BP → H/(p) induces a map Φ from the Adams–Novikov spectral
sequence to the Adams spectral sequence. Since both spectral sequences converge
to the same thing there is essentially a one-to-one correspondence between their
E∞-terms. A nontrivial permanent cycle in the Adams spectral sequence of filtra-
tion s corresponds to one in the Adams–Novikov spectral sequence of filtration ≤ s.

To see this consider BP∗ and mod (p) Adams resolutions (2.2.1 and 2.1.3)

S0 X0

��

X1

��

oo · · ·oo

S0 Y0 Y1
oo · · ·oo

where the vertical maps are the ones inducing Φ. An element x ∈ π∗(S
0) has

Adams filtration s if it is in imπ∗(Ys) but not in imπ∗(Ys+1). Hence it is not in
imπ∗(Xs+1) and its Novikov filtration is at most s.

We are concerned with permanent cycles with Adams filtration 1 and hence of
Novikov filtration 0 or 1. Since Ext0(BP∗) is trivial in positive dimensions [5.2.1(b)]
it suffices to prove

5.2.8. Theorem. The image of

Φ: Ext1(BP∗)→ Ext1A∗
(Z/(p),Z/(p))

is generated by h1, h2, and h3, for p = 2 and by h0 ∈ Ext1,q for p > 2. (These
elements are permanent cycles; cf. 1.2.11 and 1.2.13.)
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Proof. Recall that A∗ = Z/(p)[t1, t2, . . . ]⊗ E(e0, e1, . . . ) with

∆(tn) =
∑

0≤i≤n

ti ⊗ tp
i

n−i and ∆(en) = 1⊗ en +
∑

1≤i≤n

ei ⊗ tp
i

n−i

where t0 = 1. Here tn and en are the conjugates of Milnor’s ξn and τn (3.1.1). The
map BP∗(BP )→ A∗ sends tn ∈ BP∗(BP ) to tn ∈ A∗.

Now recall the I-adic filtration of 4.4.4. We can extend it to the comodules Mn

and Nn by saying that a monomial fraction vI

vJ is in F k iff the sum of the exponents
in the numerator exceeds that for the denominator by at least k. (This k may be
negative and there is no k such that F kMn = Mn or F kNn = Nn. However, there
is such a k for any finitely generated subcomodule of Mn or Nn.) For each k ∈ Z
the sequence

0→ F kNn → F kMn → F kNn+1 → 0

is exact. It follows that α : Exts(Nn)→ Exts+n(BP∗) (5.1.18) preserves the I-adic
filtration and that if x ∈ F 1 Ext0(N1) then Φα(x) = 0.

Easy inspection of 5.2.6 shows that the only elements in Ext0(M1) not in F 1

are α1 and, for p = 2, α2/2, and α4/4, and the result follows. �

Now we turn to the computation of Ext1(BP∗/In) for n > 0; it is a module
over Ext0(BP∗/In) which is Z/(p)[vn] by 4.3.2. We denote this ring by k(n)∗. It is
a principal ideal domain and Ext1(BP∗/In) has finite type so the latter is a direct
sum of cyclic modules, i.e., of free modules and modules of the form k(n)∗/(v

i
n)

for various i > 0. We call these the vn-torsion free and vn-torsion summands,
respectively. The rank of the former is obtained by inverting vn, i.e., by computing
Ext1(M0

n). The submodule of the vn-torsion which is annihilated by vn is precisely
the image of Ext0(BP∗/In+1) = k(n+1)∗ under the connecting homomorphism for
the short exact sequence

(5.2.9) 0→ Σdim vnBP∗/In
vn−−→ BP∗/In → BP∗/In+1 → 0.

We could take these elements in Ext1(BP∗/In) and see how far they can be divided
by vn by analyzing the long exact sequence for 5.2.9, assuming we know enough
about Ext1(BP∗/In+1) to recognize nontrivial images of elements of Ext1(BP∗/In)
when we see them. This approach was taken by Miller and Wilson [?].

The chromatic spectral sequence approach is superficially different but one ends
up having to make the same calculation either way. From the chromatic spectral
sequence for Ext(BP∗/In) (5.1.11) we get an short exact sequence

(5.2.10) 0→ E1,0
∞ → Ext1(BP∗/In)→ E0,1

∞ → 0,

where E1,0
∞ = E1,0

2 is a subquotient of Ext0(M1
n+1) and is the vn-torsion summand,

while E0,1
∞ = E0,1

3 Ext1(M0
n) is the vn-torsion free quotient. To get at Ext0(M1

n+1)
we study the long exact sequence for the short exact sequence

0→M0
n+1

j−→ Σdim vnM1
n

vn−−→M1
n → 0

as in 5.1.17; this requires knowledge of Ext0(M0
n+1) and Ext1(M0

n+1). To determine

the subgroup E0,1
∞ of Ext1(M0

n) we need the explicit representatives of generators
of the latter constructed by Moreira [?, ?].

The following result (to be proved later as 6.3.12) then is relevant to both E0,1
∞

and E1,0
∞ in 5.2.10.
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5.2.11. Theorem. Ext1(M0
n) for n > 0 is the K(n)∗-vector space generated by

hi ∈ Ext1,p
iq for 0 ≤ i ≤ n−1 represented by tp

i

1 , ζn ∈ Ext1,0 (for n ≥ 2)represented

for n = 2 by v−1
2 t2 + v−p

2 (tp2 − tp
2+p

1 ) − v−1−p
2 v3t

p
1, and (if p = 2 and n ≥ 1)

ρn ∈ Ext1,0. (ζn and ρn will be defined in 6.3.11). �

5.2.12. Remark. For i ≥ n, hi does not appear in this list because the equation

ηR(vn+1) ≡ vn+1 + vnt
pn

1 − vpnt1 mod In

leads to a cohomology between hn+i and v
(p−1)pi

n hi.

Now we will describe Ext0(M1
n) and E1,0

∞ . The groups are vn-torsion modules.

The submodule of the former annihilated by vn is generated by
{

vt
n+1

vn
: t ∈ Z

}
.

Only those elements with t > 0 will appear in E1,0
∞ ; if t = 0 the element is in im d1,

and ker d1 is generated by those elements with t ≥ 0. We need to see how many
times we can divide by vn and (still have a cocycle). An easy calculation shows

that if t = spi with p - s, then vt
n+1

vpi
n

is a cocycle whose image in Ext1(M0
n+1) is

sv
(s−1)pi

n+1 hn+i, but by 5.2.12 these are not linearly independent, so this is not the
best possible divisibility result. For example, for n = 1 we find that

vp
2

2

v1+p2

1

− vp
2−p+1

2

v21
− v−p

2 vp3
v1

is a cocycle.
The general result is this.

5.2.13. Theorem. As a k(n)∗-module, Ext0(M1
n) is the direct sum of

(i) the cyclic submodules generated by
xs
n+1,i

v
an+1,i
n

for i ≥ 0, p - s; and
(ii) K(n)∗/k(n)∗, generated by 1

vj
n
for j ≥ 1.

The xn,i are defined as follows.

x1,0 = v1,

x1,1 = vp1 if p > 2 and v21 + 4v−1
1 v2 if p = 2,

x1,i = xp
1,i−1 for i ≥ 2,

x2,0 = v2,

x2,1 = vp2 − vp1v
−1
2 v3,

x2,2 = xp
2,1 − vp

2−1
1 vp

2−p+1
2 − vp

2+p−1
1 vp

2−2p
2 v3,

x2,i = x2
2,i−1 for i ≥ 3 if p = 2

and

xp
2,i−1 − 2v

b2,i
1 v

(p−1)pi−1+1
2 for i ≥ 3 if p > 2,
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where

b2,i = (p+ 1)(pi−1 − 1),

xn,0 = vn for n > 2,

xn,1 = vpn − vpn−1v
−1
n vn+1,

xn,i = xp
n,i−1 for i > 1 and i 6≡ 1 mod (n− 1),

xn,i = xp
n,i−1 − v

bn,i

n−1v
pi−pi−1+1
n for i > 1, and i ≡ 1 mod (n− 1)

where

bn,i =
(pi−1 − 1)(pn − 1)

pn−1 − 1
for i ≡ 1 mod (n− 1).

The an,i are defined by

a1,0 = 1

a1,i = i+ 2 for p = 2 and i ≥ 1,

ai,1 = i+ 1 for p > 2 and i ≥ 1,

a2,0 = 1,

a2,i = pi + pi−1 − 1 for p > 2 and i ≥ 1 or p = 2 and i = 1,

a2,i = 3 · 2i−1 for p = 2 and i > 1,

an,0 = 1 for n > 2,

an,1 = p,

an,i = pan,i−1 for i > 1 and i 6≡ 1 mod (n− 1),

and

an,i = pan,i + p− 1 for i > 1 and i ≡ 1 mod (n− 1).

�

This is Theorem 5.10 of Miller, Ravenel, and Wilson [?], to which we refer the
reader for the proof.

Now we need to compute the subquotient E1,0
2 of Ext0(M1

n). It is clear that the
summand of (ii) above is in the image of d1 and that ker d1 is generated by elements

of the form
xs
n+1,i

vj
1

for s ≥ 0. Certain of these elements for s > 0 are not in ker d1;

e.g., we saw in 5.2.6 that d1

(
x1,1

8

)
6= 0. More generally we find d1

(
xn+1,is

vj
n

)
6= 0 iff

s = 1 and pi < j ≤ an+1,i (see Miller and Wilson [?]), so we have

5.2.14. Corollary. The vn-torsion summand of Ext1(BP∗/In) is generated
by the elements listed in 5.2.13(i) for s > 0 with (when s = 1)

xn+1,i

v
an+1,i
n

replaced by
xn+1,i

vpi
n

. �

Now we consider the k(n)∗-free summand E0,1
∞ ⊂ Ext1(M0

n). We assume n > 1
(n = 1 is the subject of 5.2.2); 5.2.11 tells us that E0,1

∞ has rank n+1 for p > 2 and
n+2 for p = 2. We need to determine the image of Ext1(BP∗/In) in Ext1(M0

n). To
show that an element in the former is not divisible by vn we must show that it has
a nontrivial image in Ext1(BP∗/In+1). The elements hi ∈ Ext1(M0

n) clearly are in
the image of Ext1(BP∗/In) and have nontrivial images in Ext1(BP∗/In+1). The
elements ζn and ρn are more complicated. The formula given in 5.2.11 for ζ2 shows
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that v1+p
2 ζ2 pulls back to Ext1(BP∗/I2) and projects to v3h1 ∈ Ext1(BP∗/I3). This

element figures in the proof of 5.2.13 and in the computation of Ext2(BP∗) to be
described in Section 4.

The formula of Moreira [?] for a representative of ζn is

(5.2.15) Tn =
∑

1≤i≤j≤k≤n

upk−i

2n−kt
pn−i

j c(tk−j)
pn−i+j

where the un+i ∈M0
n are defined by

(5.2.16) un = v−1
n and

∑
0≤i≤k

un+iv
pi

n+k−i = 0 for k > 0.

One sees from 5.2.16 that un+i−1v
(pi−1)/(p−1)
n ∈ BP∗/In so T̂n = v

(pn−1)/(p−1)
n Tn ∈

BP∗(BP )/In. In 5.2.15 the largest power of v−1
n occurs in the term with i = j =

k = 1; in Tn this term is v
(pn−1)/(p−1)
n u2n−1t

pn−1

1 and its image in Ext1(BP∗/In+1)

is (−1)n+1v
(pn−1−1)/(p−1)
n+1 hn−1.

The formula of Moreira [?] for a representative Un of ρn is very complicated

and we will not reproduce it. From it one sees that v2
2n−1+2n−1

n Un ∈ BP∗(BP )/In

reduces to v2
2n−1−1

n+1 t2
n−1

1 ∈ BP∗(BP )/In+1.
Combining these results gives

5.2.17. Theorem. The k(n)∗-free quotient E0,1
∞ of Ext1(BP∗/In) for n ≥ 1

is generated by hi ∈ Ext1,p
iq for 0 ≤ i ≤ n − 1, ζ̂ = v

(pn−1)/(p−1)
n ζn, and (for

p = 2) ρ̂n = v2
2n+2n−1−1

n ρn. The imagas of ζ̂n and ρ̂n in Ext1(BP∗/In+1) are

(−1)n+1v
(pn−1−1)/(p−1)
n+1 hn−1 and v2

2n−1−1
n+1 hn−1, respectively. �

3. Ext(M1) and the J-Homomorphism

In this section we complete the calculation of Ext(M1) begun with 5.2.6 and
describe the behavior of the resulting elements in the chromatic spectral sequence
and then in the Adams–Novikov spectral sequence. Then we will show that the
elements in Ext1(BP∗) (and, for p = 2, Ext2 and Ext3) detect the image of the
homomorphism J : π∗(SO) → πS

∗ (1.1.12). This proof will include a discussion of
Bernoulli numbers. Then we will compare these elements in the Adams–Novikov
spectral sequence with corresponding elements in the Adams spectral sequence.

We use the method of 5.1.17 to compute Ext(M1); i.e., we study the long exact
sequence of Ext groups for

(5.3.1) 0→M0
1

j−→M1 p−→M1 → 0.

Ext(M0
1 ) is described in 5.2.6 and the computation of Ext0(M1) is given in 5.2.6

Let δ be the connecting homomorphism for 5.3.1. Then from the proof of 5.2.6 we
have

5.3.2. Corollary. The image of δ in Ext1(M0
1 ) is generated by (a) vt1h0 for

all t 6= 1 when p is odd and
(b) vt1h0 for all even t and vt1ρ1 for all t 6= 0 when p = 2. �

For odd primes this result alone determines all of Ext(M1). Exts(M0
1 ) = 0

for s > 1 and there is only one basis element of Ext1(M0
1 ) not in im δ, namely
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v−1
1 h0. Its image under j is represented by

v−1
1 t1
p . Since Ext2(M0

1 ) = 0, there is no

obstruction to dividing j(v−1
1 h0) by any power of p, so we have

(5.3.3) Ext1,t(M1) =

{
Q/Z(p) for t = 0

0 for t 6= 0

for any odd prime p. We can construct a representative of an element of order pk in
Ext1,0(M1) as follows. From 4.3.1 we have ηR(v1) = v1 = put1 where u = 1−pp−1.
Then a simple calculation shows that

(5.3.4) yk = −
∑
1=i

(−1)i v
−i
1 uiti1

ipk+1−i

is the desired cocycle. (This sum is finite although the ith term for some i >

k could be nonzero if p | i.) The group Ext1,0(M1) + E1,1,0
1 cannot survive in

the chromatic spectral sequence because it would give a nontrivial Ext2,0(BP∗)
contradicting the edge theorem, 5.1.23. It can be shown (lemma 8.10 of Miller,
Ravenel, and Wilson [?]) that this group in fact supports a d1 with trivial kernel.
Hence we have

5.3.5. Theorem.
(a) for p > 2 the group Exts,t(M1) is

Q/Z(p) generated by 1
pk for (s, t) = (0, 0).

Z/(pi+1) generated by
vrpi

1

pi+1 for p - r and (s, t) = (0, rpiq),

Q/Z(p) generated by yk (5.3.4) for (s, t) = (1, 0) and
0 otherwise.

(b) In the chromatic spectral sequence, where Exts,t(M1) = E1,s,t
1 E1,0,0

1 ⊂ im d1
and ker d1

⊕
t≥0 E

1,0,t
1 , so E1,∗

∞ = Ext1(BP∗) and ker d1 =
⊕

t≥0 E
1,0,t
1 , so E1,∗

∞ =

Ext1(BP∗) is generated by the groups Ext0,t(M1) for t > 0. �

We will see below that each generator of Ext1(BP∗) for p > 2 is a permanent
cycle in the Adams–Novikov spectral sequence detecting an element in the image
of J (1.1.12).

The situation for p = 2 is more complicated because Ext(M0
1 ) has a polynomial

factor not present for odd primes. We use 5.3.2 and 5.2.2 to compute Exts(M1)
for s > 1. The elements of order 2 in Ext1,0(M1) are the images under j (5.3.1) of
vt1h0 for t odd and vt1ρ1 for t odd and t = 0.

We claim j(ρ1) is divisible by any power of 2, so Ext1,0(M1) contains a sum-
mand isomorphic to Q/Z(2) as in the odd primary case. To see this use 5.2.4 to
compute

ηR

(v−3
1 v2
4

)
=

v−3
1 (−v1t21 + v21t1 + v2)

4
+

v−4
1

2
(v2t1 + v1t

3
1 + v1t2),

showing that y2 (5.3.4) represents j(ρ1); the same calculation shows that y1 =
v−1
1 t1+v−2

1 t21
2 is a coboundary. Hence the yk for k ≥ 2 give us the cocycles we need.
Next we have to deal with j(vt1h0) and j(vt1ρ1) for odd t. These are not divisible

by 2 since an easy calculation gives δj(v
t
1x) = vt−1

1 h0x for t odd and x = hi+1
0 or

hi
0ρ1 for any i ≥ 0. Indeed this takes care of all the remaining elements in the short

exact sequence for 5.3.1 and we get
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5.3.6. Theorem.
(a) For p = 2, Exts,t(M1) is

Q/Z(2) generated by 1
2j

for (s, t) = (0, 0),

Z/(2) generated by
vr
1

2
for (s, t) = (0, 2r) and r odd,

Z/(2i+3) generated by
xr2i

1,1

2i+3

for (s, t) = (0, r2i+2) and r odd,

Q/Z(2) ⊕ Z/(2) generated by yk (k ≥ 2) and
v−1
1 t1
2

for (s, t) = (1, 0),
Z/(2) generated by j(vr1h

s
0)

for s > 0, t = 2(r + s), r odd, and (s, t) 6= (1, 0)
Z/(2) generated by j(vr1ρ1h

s−1
0 )

for s > 0, t+ 2(r + s− 1), and r odd,
and

0 otherwise.

(b) In the chromatic spectral sequence for p = 2, E1,2,t
∞ is

Exts,t(M1) for t = 2s+ 2r and r ≥ 1, r 6= 2,

Z/(4) generated by
v2
1

4 for (s, t) = (0, 4), and µ2t−1 ∈ πS
8t+1,

and
0 otherwise

(See 5.1.22 for a description of differentials originating in E1,s,2s+4
r .) In other

words the subquotient of Ext(BP∗) corresponding to E1,∗
∞ is generated by Ext1(BP∗)

(5.2.6) and products of its generators (excluding α2/2 ∈ Ext1,4) with all positive

powers of α1 ∈ Ext1,2.

Proof. Part (a) was proved above. For (b) the elements said to survive, i.e.,

those in E1,0
1 and j(vr1ρ1h

s−1
0 ) for s > 0 with odd r ≥ 5 and j(vr1h

s
0) for s > 0 with

odd r ≥ 1, are readily seen to be permanent cycles. The other elements in E1,s
1 for

s > 0 have to support nontrivial differentials by the edge theorem, 5.1.23. �

Now we describe the behavior of the elements of 5.3.5(b) and 5.3.6(b) in the
Adams–Novikov spectral sequence. The result is

5.3.7. Theorem.
(a) For p > 2, each element in Ext1(BP∗) is a permanent cycle in the Adams–

Novikov spectral sequence represented by an element of im J (1.1.13) having the
same order.

(b) For p = 2 the behavior of Ext1,2t(BP∗) in the Adams–Novikov spectral
sequence depends on the residue of t mod (4) as follows. If t ≡ 1 mod 4 the
generator αt is a permanent cycle represented by the element µ2t−1 ∈ πS

8t−1 of order
2 constructed by Adams [?]. In particular α1 is represented by η (1.1.13). α1αt is
represented by µ2t = ηµ2t−1 and α2

1αt is represented by an element of order 2 in
im J ⊂ πS

2t+1 (the order of this group is an odd multiple of 8). αs+3αt = d3(α
s
1αt+2)

for all s ≥ 0.
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If t ≡ 0 mod (4) then the generator ᾱt of Ext1,2t(BP∗) is a permanent cycle
represented by an element of im J having the same order, as are α1ᾱt, and α2

1ᾱt.
αs+3
1 ᾱt = d3(α

s
1αt+2/3) for s ≥ 0. In particular y4 is represented by σ ∈ πS

7 (1.1.13).
If t ≡ 2 mod (4), αt/2 (twice the generator except when t = 2) is a permanent

cycle represented by an element in im J of order 8. (αt/2 has order 4 and 4 times

the generator of im J represents α2
1αt−2 as remarked above). In particular α2/2 is

represented by ν ∈ πS
3 (1.1.13). �

This result says that the following pattern occurs for p = 2 in the Adams–
Novikov spectral sequence E∞-term as a direct summand for all k > 0:

(5.3.8)

Where all elements have order 2 except α4k+2/2, which has order 4, and ᾱ4k, whose
order is the largest power of 2 dividing 16k; the broken vertical line indicates a
nontrivial group extension. The image of J represents all elements shown except
α4k+1 and α1α4k+1.

Our proof of 5.3.7 will be incomplete in that we will not prove that im J actually
has the indicated order. This is done up to a factor of 2 by [?] Adams [?], where
it is shown that the ambiguity can be removed by proving the Adams conjecture,
which was settled by Quillen [?] and Sullivan [?].

We will actually use the complex J-homomorphism J : π∗(U) → πS
∗ , where U

is the unitary group. Its image is known to coincide up to a factor of 2 with that
of the real J-homomorphism. We will comment more precisely on the difference
between them in due course.

An element x ∈ π2t−1(U) corresponds to a stable complex vector bundle ξ over
S2t. Its Thom spectrum T (ξ) is a 2-cell CW -spectrum S0∪e2t with attaching map
J(x) and there is a canonical map T (ξ)→MU . We compose it with the standard
map MU → BP and get a commutative diagram

(5.3.9) S0

��

// T (ξ)

��

// S2t

��
S0
(p)

// BP // BP

��
BP ∧BP

where the two rows are cofibre sequences. The map S2t → BP is not unique
but we do get a unique element e(x) ∈ π2t(BP ∧ BP )/ imπ2t(BP ). Now E1,2t

2 of
the Adams–Novikov spectral sequence is by definition a certain subgroup of this
quotient containing e(x), so we regard the latter as an element in Ext1,2t(BP∗).
Alternatively, the top row in 5.3.9 gives an short exact sequence of comodules
which is the extension corresponding to e(x). We need to show that if x generates
π2t−1(U) then e(x) generates Ext1(BP∗) up to a factor of 2.

For a generator xt of π2t−1(U) we obtain a lower bound on the order of e(x)
as follows. If je(xt) = 0 for some integer j then for the bundle given by x = jxt ∈
π2t−1(U) the map S2t → BP in 5.3.9 lifts to BP , so we get an element in π2t(BP ).
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Now consider the following diagram

(5.3.10) π∗(BU)

��

π∗(MU)

��

θ // Z

��
H∗(BU) ∼= H∗(MU) // Q

where the two left-hand vertical maps are the Hurewicz homomorphisms and θ is
some ring homomorphism; it extends as indicated since π∗(MU)⊗Q ∼= H∗(MU)⊗Q
by 3.1.5. Let φ be the composite map (not a ring homomorphism) from π∗(BU) to
Q. If φ(xt) has denominator jt, then jt divides the order of e(xt).

According to Bott [?] the image of xt in H2t(BU) is (t − 1)! st where st is a
primitive generator of H2t(BU). By Newton’s formula

s(z) =
z

b(z)

db(z)

dz
,

where s(z) =
∑

t≥0 stz
t and b(z) =

∑
t≥0 btz

t, the bt being the multiplicative

generators of H∗(BU) ∼= H∗(MU) (3.1.4).
Now by Quillen’s theorem, 4.1.6, θ defines a formal group law over Z (see

Appendix 2), and by 4.1.11

θ(b(z)) =
exp(z)

z
so

θ(s(z)) =
z

exp(z)

d exp(z)

dz
− 1,

where exp(z) is the exponential series for the formal group law defined by θ, i.e.,
the functional inverse of the logarithm (A2.1.5).

The θ we want is the one defining the multiplicative formal group law (A2.1.4)
x+ y + xy. An easy calculation shows exp(z) = ez − 1 so

θ(s(z)) =
zez

ez − 1
− 1.

This power series is essentially the one used to define Bernoulli numbers (see ap-
pendix B of Milnor and Stasheff [?]), i.e., we have

θ(s(z)) =
z

2
+

∑
k≥1

(−1)k+1Bkz
2k

(2k)!

where Bk is the kth Bernoulli number. Combining this with the above formula of
Bott we get

5.3.11. Theorem. The image of a generator xt of π2t−1(U) = π2t(BU) under
the map φ : π∗BU → Q of 5.3.10 is 1

2 if t = 1, 0 for odd t > 1, and ±Bk/2k for

t = 2k. Hence the order of xt in Ext1(BP∗) is divisible by 2 for t = 1, 1 for t > 1,
and the denominator j2k of Bk/2k for t = 2k. �

This denominator j2k is computable by a theorem of von Staudt proved in 1845;
references are given in Milnor and Stasheff [?]. The result is that p | j2k iff (p−1) | 2k
and that if pi is the highest power of such a prime which divides 2k then pi+1 is the
highest power of p dividing j2k. Comparison with 5.2.6 shows that Ext1,4k(BP∗)
also has order pi+1 except when p = 2 and k > 1, in which case it has order 2i+2.
This gives



166 5. THE CHROMATIC SPECTRAL SEQUENCE

5.3.12. Corollary. The subgroup of Ext1,2t(BP∗) generated by e(xt) (5.3.9),
i.e., by the image of the complex J-homomorphism, has index 1 for t = 1 and 2.
and 1 or 2 for t ≥ 3. Moreover each element in this subgroup is a permanent cycle
in the Adams–Novikov spectral sequence. �

This completes our discussion of im J for odd primes. We will see that the above
index is actually 2 for all t ≥ 3, although the method of proof depends on the congru-
ence class of t mod (4). We use the fact that the complex J-homomorphism factors
through the real one. Hence for t ≡ 3 mod (4), e(xt) = 0 because π2t−1(SO) = 0.

For t ≡ 0 the map π2t−1(U) → π2t−1(SO) has degree 2 in Bott [?] (and for
t ≡ 2 it has degree 1) so e(xt) is divisible by 2 and the generator y of Ext1(BP∗)
is as claimed in 5.3.7. This also shows that ηyt, and η2yt, detect elements in im J .
Furthermore η3 kills the generator of π2t−1(SO) by 3.1.26, so α3

1yt must die in the
Adams–Novikov spectral sequence. It is nonzero at E2, so it must be killed by a
higher differential and the only possibility is d3(αt+2/3) = α3

1yt [here we still have
t ≡ 0 mod (4)].

For t ≡ 1 the generator of π2t−1(SO) = Z/(2) is detected by η2yt−1 as observed
above, so e(xt) = 0. For t ≡ 2 we just saw that the generator αt/3 of Ext

1,2t supports
a nontrivial d3 for t > 2, so we must have e(xt) = αt/2.

To complete the proof of 5.3.7 we still need to show three things: for t ≡ 1
mod (4), αt is a permanent cycle, for t ≡ 3, d3(αt) = α3

tαt−2, and for t ≡ 2m αt is
represented by an element of order 4 whose double is detected by α2

1αt−1. To do
this we must study the Adams–Novikov spectral sequence for the mod (2) Moore
spectrum M(2). Since BP∗(M(2)) = BP∗/(2) is a comodule algebra, the Adams–
Novikov E2-term for M(2), Ext(BP∗/(2)), is a ring (A1.2.14). However, since M(2)
is not a ring spectrum, the Adams–Novikov spectral sequence differentials need not
respect this ring structure. The result we need is

5.3.13. Theorem. (a) Ext(BP∗/(2)) contains Z/(2)[v1, h0]⊗{1, u} as a direct
summand where v1 ∈ Ext0,2, h0 ∈ Ext1,2, and u ∈ Ext1,8 are represented by v1, t1,
and t41 + v1t

3
1, v

2
1t

2
1 + v1t2 + v2t1 respectively. This summand maps isomorphically

to E0,∗
∞ in the chromatic spectral sequence for Ext(BP∗/(2)) (5.1.11).
(b) In the Adams–Novikov spectral sequence for M(2), vt1h

s
0u

e is a permanent
cycle for s ≥ 0, e = 0, 1, and t ≡ 0 or 1 mod (4). If t ≡ 2 or 3 then d3(v

t
1h

s
0u

e) =
vt−2
1 hs+3

0 ue. For t ≡ 3, vt1u
e is represented by an element of order 4 in π2t+7e(M(2))

whose double is detected by h2
0v

t−1
1 ue.

(c) Under the reduction map BP∗ → BP∗/(2) induced by S0 → M(2), if t is
odd then the generator αt of Ext

1,2t(BP∗) maps to vt−1
1 h0. If t is even and at least

4 then the generator yt of Ext
1,2t(BP∗) maps to vt−4

1 u.

(d) Under the connecting homomorphism δ : Exts(BP∗/(2)) → Exts+1(BP∗)
induced by M(2) → S1 (2.3.4), vt1 maps to αt ∈ Ext1,2t(BP∗) for all t > 0; uv1
maps to α1yt+3 if t is odd and to 0 if t is even. �

In other words, the Adams–Novikov E∞-term for M(2) has the following pat-
tern as a summand in low dimensions:

(5.3.14)

where the broken vertical line represents a nontrivial group extension. [Compare
this with 3.1.28(a) and 5.3.8.] The summand of (a) also contains the products of
these elements with v4t1 ue for t ≥ 0 and e = 0, 1. The only other generators of
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Exts,t(BP∗/(2)) for t − s ≤ 13 are β1 ∈ Ext1,4, β2
1 ∈ Ext2,8, hs

0β2/2 ∈ Ext1+s,8+2s

for s = 0, 1, 2 (where h2
0β2/2 = β3

1), and hs
0β2 ∈ Ext1+s,10+2s for s = 0, 1.

Before proving this we show how it implies the remaining assertions of 5.3.7
listed above. For t ≡ 1 mod (4), αt = δ(vt1) by (d) and is therefore a permanent
cycle by (b). For t ≡ 3, α1 = δ(vt1) and δ commutes with differentials by 2.3.4, so

d3(αt) = δd3(v
t
1) = δ(h3

0v
t−2
1 )

= α3
1αt−2.

For the nontrivial group extension note that for t ≡ 1 α2
1αt maps to an element

killed by a differential so it is represented in π∗(S
0) by an element divisible by 2.

Alternatively, αt+1 is not the image under δ of a permanent cycle so it is not
represented by an element of order 2.

Proof of 5.3.13. Recall that in the chromatic spectral sequence converging
to Ext(BP∗/(2)), Ext

0,∗
1 = Ext(M0

1 ), which is described in 5.2.2. Once we have de-

termined the subgroup E1,∗
∞ ⊂ E1,∗

1 then (c) and (d) are routine calculations, which
we will leave to the reader. Our strategy for proving (b) is to make low-dimensional
computations by brute force (more precisely by comparison with the Adams spec-
tral sequence) and then transport this information to higher dimensions by means
of a map α : Σ8M(2)→M(2) which induces multiplication by v41 in BP -homology.
[For an odd prime p there is a map α : ΣqM(p)→M(p) inducing multiplication by
v1. v

4
1 is the smallest power of v1 for which such a map exists at p = 2.]
To prove (a), recall (5.2.2) that Ext(v−1

1 BP∗/(2)) = K(1)∗[h0, ρ1]/(ρ
2
1) with

h0 ∈ Ext1,2 and ρ1 ∈ Ext1,0. We will determine the image of Ext(BP∗/(2)) in this
group. The element u maps to v41ρ1. [Our representative of u differs from that
of v41ρ1 given in 5.2.2 by an element in the kernel of this map. We choose this u
because it is the mod (2) reduction of y4 ∈ Ext1,8(BP∗).] It is clear that the image
contains the summand described in (a). If the image contains v−1

1 hs
0 or v

4−t
1 h2

0ρ1 for
any t > 0, then it also contains that element times any positive power of h0. One
can show then that such a family of elements in Ext(BP∗/(2)) would contradict
the edge theorem, 5.1.23.

To prove (b) we need some simple facts about π∗(S
0) in dimensions ≤ 8 which

can be read off the Adams spectral sequence (3.2.11). First we have η3 = 4ν in
π3(S

0). This means h3
0x must be killed by a differential in the Adams–Novikov

spectral sequence for M(2) for any permanent cycle x. Hence we get d3(v
2
1) = h3

0

and d3(v
3
1) = v1h

3
0. Next, if we did not have π2(M(2)) = Z/(4) then v1 ∈ π1(M(2))

would extend to a map Σ2(M(2))→ M(2) and by iterating it we could show that
all powers of v1 are permanent cycles, contradicting the above.

Now suppose we can show that v41 and u are permanent cycles representing
elements of order 2 in π∗(M(2)), i.e., maps Sn →M(2) which extend to self-maps
ΣnM(2) → M(2). Then we can iterate the resulting α : Σ8M(2) → M(2) and
compare with the map extending u to generalize the low-results above to all of (b).

A simple calculation with the Adams spectral sequence shows that π7(M(2))
and π8(M(2)) both have exponent 2 and contain elements representing u and v41 ,
respectively, so we have both the desired self-maps. �
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4. Ext2 and the Thom Reduction

In this section we will describe Ext2(BP∗) and what is known about its behavior
in the Adams–Novikov spectral sequence. We will not give all the details of the
calculation; they can be found in Miller, Ravenel, and Wilson [?] for odd primes and
in Shimomura [?] for p = 2. The main problem is to compute Ext0(M2) and the
map d∗e from it to Ext0(M3). From this will follow (5.4.4) that the γt ∈ Ext3(BP∗)
are nontrivial for all t > 0 if p is odd. (We are using the notation of 5.1.19.) They
are known to be permanent cycles for p ≥ 7 (1.3.18).

We will also study the map Φ from Ext2 to E2,∗
2 of the Adams spectral sequence

as in 5.2.8 to show that most of the elements in the latter group, since they are not
imΦ, cannot be permanent cycles (5.4.7). The result is that imΦ is generated by

{Φ(βpn/pn−1),Φ(βpn/pn) : n ≥ 1}

and a certain finite number of other generators. It is known that for p = 2 the
Φ(βpn/pn−1) are permenet cycles. They are the ηn+2 ∈ ΠS

2n+2 constructed by
Mahowald [?] using Brown–Gitler spectra. For odd primes it follows that some
element closely resembling βpn/pn−i for 1 ≤ i ≤ pn − 1 is a nontrivial permanent
cycle (5.4.9) and there is a similar more complicated result for p = 2 (5.4.10).

For p = 2, Φ(β2n/2n) = b2n+1 is known to be a permanent cycle iff there is a

framed (2n+2−2)-manifold with Kervaire invariant one (Browder [?]), and such are
known to exist for 0 ≤ n ≤ 4 (Barratt et al. [?]). The resulting element in π2j+1−2

is known as θj and its existence is perhaps the greatest outstanding problem in
homotopy theory. It is known to have certain ramifications in the EHP sequence
(1.5.29).

For odd primes the situation with Φ(βpn/pn) is quite different. We showed in
Ravenel [?] that this element is not a permanent cycle for p ≥ 5 and n ≥ 1, and
that βpn/pn itself is not a permanent cycle in the Adams–Novikov spectral sequence
for p ≥ 3 and n ≥ 1; see 6.4.1.

To compute Ext2 with the chromatic spectral sequence we need to know E0,2
∞ ,

E1,1
∞ , and E0

∞. The first vanishes by 5.2.1; the second is given by 5.3.5 for p > 2 and

5.3.6 for p = 2. For odd primes Ext1(M1) = E1,1
1 vanishes in positive dimensions;

for p = 2 it gives elements in Ext2(BP∗) which are products of α1 with generators

in Ext2(BP∗). The main problem then is to compute E0,2
1 = Ext0(M2). We use

the short exact sequence

0→M1
1 →M2 p−→M2 → 0

and our knowledge of Ext0(M1
1 ) (5.2.13). The method of 5.1.17 requires us to

recognize nontrivial elements in Ext1(M1
1 ). This group is not completely known but

we have enough information about it to compute Ext0(M2). We know Ext1(M0
2 )

by 5.2.11, and in proving 5.2.13 one determines the image of Ext0(M1
1 ) in it. Hence

we know all the elements in Ext1(M1
1 ) which are annihilated by v1, so any other

element whose product with some vi1 is one of these must be nontrivial.
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To describe Ext0(M2) we need some notation from 5.2.13. We treat the odd
primary case first. There we have

x2,0 = v2,

x2,1 = vp2 − vp1v
−1
2 v3,

x2,2 = xp
2,1 − vp

2−1
1 vp

2−p+1
2 − vp

2+p−1
1 vp

2−2p
2 v3, and

x2,i = xp
2,i−1 − 2v

b2,i
1 v

(p−1)pi−1+1
2 for i ≥ 3,

where b2,i = (p + 1)(pi−1 − 1). Also a2,0 = 1 and a2,i = pi + pi−1 − 1 for i ≥ 1.
Then

5.4.1.Theorem (Miller, Ravenel, andWilson [?]). For odd primes p, Ext0(M2)
is the direct sum of cyclic p-groups generated by

(i)
xs
2,i

pk+1vj
1

with p - s, j ≥ 1, k ≥ 0 such that pk | j and j ≤ a2,i−k and either

pk+1 - j or ai−k−1 < j; and
(ii) 1

pk+1vj
1

for k ≥ 0, pk | j, and j ≥ 1. �

Note that s may be negative.
For p = 2 we define x2,i as above for 0 ≤ i ≤ 2, x2,i = x2

2,i−1 for i ≥ 3, a2,0 = 1,

a2,1 = 2, and a2,i = 3 · 2i−1 for i ≥ 2. We also need x1,0 = v1, x1,1 = v21 + 4v−1
1 v2,

and x1,i = x2
1,i−1 for i ≥ 2. In the following theorem we will describe elements

in Ext0(M2) as fractions with denominators involving x1,i, i.e., with denomina-
tors which are not monomials. These expressions are to be read as shorthand for
sums of fractions with monomial denominators. For example, in 1

8x1,1
we multiply

numerator and denominator by x1,1 to get
x1,1

8x2
1,1

. Now x2
1,1 ≡ v41 mod (8) so we

have
1

8x1,1
=

v21 + 4v−1
1 v2

8v41
=

1

8v21
+

v2
2v51

.

5.4.2. Theorem (Shimomura [?]). For p = 2, Ext0(M2) is the direct sum of
cyclic 2-groups generated by

(i)
vs
2

2v1
,

xs
2,1

2vj
1

,
xs
2,2

2vk
1
, and

xs
2,2

8x11
for s odd, j = 1 or 2 and k = 1, 3, 4, 5, or 6 (k = 2

is excluded because β4s/2 is divisible by 2);

(ii)
xs
2,i

2vj
1

for s odd, i ≥ 3, j ≤ a2,i, and either j is odd or a2,i−1 < j;

(iii)
xs
2,j

2k+1vj2k

1

for s odd, j, k ≥ 1, i ≥ 3, and a2,i−k−1 < j2k ≤ a2,i−k;

(iv)
xs
2,i

2k+2xj
1,k

for s odd i ≥ 3, k ≥ 1, j odd and ≥ 1, and 2kj ≤ a2,i−k−1; and

(v) 1

2vj
1

, 1

2k+2xj
1,k

for j odd and ≥ 1 and k ≥ 1. �

This result and the subsequent calculation of Ext2(BP∗) for p = 2 were obtained
independently by S.A.Mitchell.

These two results give us E2,0
1 in the chromatic spectral sequence. The image of

d1 is the summand of 5.4.1(ii) and 5.4.2(v) and, for p = 2, the summand generated
by β1; this is the same d1 that we needed to find Ext1(BP∗) (5.2.6). We know

that im d2 = 0 since its source, E0,1
2 , is trivial by 5.2.1. The problem then is

to compute d1 : E
2,0
1 → E3,0

1 . Clearly it is nontrivial on all the generators with
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negative exponent s. The following result is proved for p > 2 as lemma 7.2 in
Miller, Ravenel, and Wilson [?] and for p = 2 in section 4 of Shimomura [?].

5.4.3. Lemma. In the chromatic spectral sequence, d1 : E
2,0
1 → E3,0

1 is trivial
on all of the generators listed in 5.4.1 and 5.4.2 except the following :

(i) all generators with s < 0;
(ii)

x2,i

pvj
1

with pi < j ≤ a2,i, and i ≥ 2, the image of this generator being

−vpi−1

3

pvj−pi

1 vpi−1

2

; and

(iii) (for p = 2 only)
x2,2

8x1,1
, whose image is

v2
3

2v1v2
. �

From this one easily read off both the structure of Ext2(BP∗) and the kernel
of α : Ext0(N3)→ Ext3(BP∗), i.e., which Greek letter elements of the γ-family are
trivial. We treat the latter case first. The kernel of α consists of im d1⊕im d2⊕im d3.
For p = 2 we know that γ1 ∈ im d2 by 5.1.22. d2 for p > 2 and d3 for all primes
are trivial because E1,1

2 (in positive dimensions) and E0,2
3 are trivial by 5.3.5 and

5.2.1, respectively.

5.4.4. Corollary. The kernel of α : Ext0(N3)→ Ext3(BP∗) (5.1.18) is gen-
erated by γpi/pi,j for i ≥ 1 with 1 ≥ j ≥ pi − 1 for p > 2 and 1 ≤ j ≤ pi for p = 2;

and (for p = 2 only) γ1 and γ2. In particular 0 6= γt ∈ Ext3(BP∗) for all t > 0 if
p > 2 and for all t > 2 if p = 2.

5.4.5. Corollary.
(a) For p odd, Ext2(BP∗) is the direct sum of cyclic p-groups generated by

βspi/j,1+φ(i,j) for s ≥ 1, p - s, j ≥ 1, i ≥ 0, and φ(i, j) ≥ 0 where φ(i, j) is the

largest integer k such that pk | j and

j ≤

{
a2,i−k if s > 1 or k > 0

pi if s = 1 and k = 0

This generator has order p1+φ(i,j) and internal dimension 2(p2 − 1)spi − 2(p− 1)j.

It is the image under α (5.1.18) of the element
xs
2,i

p1+φ(i,j)vj
1

of 5.4.1.

(b) For p = 2, Ext2(BP∗) is the direct sum of cyclic 2-groups generated by
α1ᾱt, where ᾱt generates Ext1,2t(BP∗) for t ≥ 1 and t 6= 2 (see 5.2.6), and by
βs2i/j,1+φ(i,j) for s ≥ 1, s odd, j ≥ 1, i ≥ 0, and φ(i, j) ≥ 0 where

φ(i, j) =



0 if 2 | j and a2,i−1 < j ≤ a2,i,

0 if j is odd and j ≤ a2,i,

2 if j = 2 and i = 2,

k ≥ 2 if j ≡ 2k−1 mod (2k), j ≤ a2,i−k, and i ≥ 3,

k ≥ 1 if 2k | j, a2,i−k−1 < j ≤ a2,i−k, and i ≥ 3,

−1 otherwise

unless s = 1, in which case a2,i is replaced by 2i in cases above where φ(i, j) = 0,
φ(2, 2) = 1, and β1 is omitted. The order, internal dimension, and definition of
this generator are as in (a). �
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For example when p = 2, i = 3 and s is odd with s > 1, we have generators
β8s/j,2 =

x2s
2,2

4vj1
for j = 2, 4, 6

β8s/j =
x2s
2,2

2vj1
for 1 ≤ j ≤ 12 and j 6= 2, 4, 6,

but β8/j is not defined for 9 ≤ j ≤ 12. Similarly when p > 2, i = 4 and s is prime
to p with s > 1, we have generators

βp4s/p2,3 =
xs
2,4

p3vp
2

1

βp4s/j,2 =
xs
2,4

p2vj1
for p|j, j 6= p2 and j ≤ p3 + p2 − 1

βp4s/j =
xs
2,4

pvj1
for other j ≤ p4 + p3 − 1,

but βp4/j is not defined for p4 < j ≤ p4 + p3 − 1.

Next we study the Thom reduction map Φ from Ext2(BP∗) to E2,∗
2 in the

classical Adams spectral sequence. This map on Ext1 was discussed in 5.2.8. The
group E2,∗

2 was given in 3.4.1 and 3.4.2. The result is

5.4.6. Theorem. The generators of Ext2(BP∗) listed in 5.4.5 map to zero
under the Thom reduction map Φ: Ext(BP∗)→ ExtA∗(Z/(p),Z/(p)) with the fol-
lowing exceptions.

(a) (S.A.Mitchell). For p = 2

Φ(α2
1) = h2

1, Φ(α1α4/4) = h1h3,

Φ(β2j/2j ) = h2
j+1 for j ≥ 1,

Φ(β2j/2j−1) = h1hj+2 for j ≥ 2,

Φ(β4/2,2) = h2h4 and Φ(β8/6,2) = h2h5.

(b) (Miller, Ravenel, and Wilson [?]). For p > 2 Φ(βpj/pj ) = −bj for j ≥ 0;
Φ(βpj/pj−1) = h0hj+1 for j ≥ 1, and Φ(β2) = ±k0.

Proof. We use the method of 5.2.8. For (a) we have to consider elements of

Ext1(N1) as well as Ext0(N2). Recall (5.3.6) that the former is spanned by
vs
1ρ1

2

for odd s ≥ 5 and
vs
1t1
2 for odd s ≥ 1. We are looking for elements with I-adic

filtration ≥ 0, and the filtrations of t1 and ρ1 are 0 and −4, respectively. Hence we

need to consider only
v5
1ρ1

2 and v1t1
2 , which give the first two cases of (a).

The remaining cases come from Ext0(N2). The filtration of x2,i is p
i so βi/j,k

has filtration i−j−k, and this number is positive in all cases except those indicated
above. We will compute Φ(β2/2) and Φ(β4/2,2), leaving the other cases of (a) and (b)
to the reader. [The computation of Φ(β1) and Φ(β2) for p > 2 were essentially done

in 5.1.20.] Using the method of 5.1.20(a), we find that β2/2 reduces to
v2t

2
1

v1
mod (2),

which in turn reduces to t21|t21 mod I2, which maps under Φ to h2
2. Similarly, β4/2,2

reduces to
v3
2t

2
1

v1
+

v4
2(t

2
1+v1t1)

v4
1

mod (2) and to v22t
2
1|t21 + t81|t21 mod I2, which maps

under Φ to h2h4. �
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This result limits the number of elements in Ext2A∗
(Z/(p),Z/(p)) which can be

permanent cycles. As remarked above (5.2.8), any such element must correspond
to one having Novikov filtration ≤ 2. Theorem 5.4.6 tells us which elements in
Ext(BP∗)

2 map nontrivially to the Adams spectral sequence. Now we need to see
which elements in Ext1(BP∗) correspond to elements of Adams filtration 2. This
amounts to looking for elements in Ext0(N1) with I-adic filtration 1. From 5.2.8
we see that α2/2 and α4/4 for p = 2 have I-adic filtration 0, so α2 and α4/3 have
filtration 1 and correspond to h0h2 and h0h3, respectively. More generally, αt for
all primes has filtration t− 1 and therefore corresponds to an element with Adams
filtration ≥ t. Hence we get

5.4.7. Corollary. Of the generators of Ext2A∗
(Z/(p),Z(p)) listed in 3.4.1 and

3.4.2, the only ones which can be permanent cycles in the Adams spectral sequence
are

(a) for p = 2, h2
0, h0h2, h0h3, h

2
j for j ≥ 1, h1hj for j ≥ 3, h2h4, and h2h5;

and
(b) for p > 2, a20, bj for j ≥ 0, a1, a0h1 for p = 3, h0hj for j ≥ 2, and k0. �

Part (a) was essentially proved by Mahowald and Tangora [?], although their
list included h3h6. In Barratt, Mahowald, and Tangora [?] it was shown that h2h5

is not a permanent cycle. It can be shown that d3(β8/6,2) 6= 0, while β4/2,2 is a

permanent cycle. The elements h2
0, h0h2, h0h3 for p = 2 and a20, a1, a0h1 (p = 3)

for odd primes are easily seen to be permanent cycles detecting elements in im J .
This leaves two infinite families to be considered: the bj (or h2

j+1 for p = 2) for
j ≥ 0 and the h0hj (or h1hj+1 for p = 2) for j ≥ 1. These are dealt with in 3.4.4
and 4.4.22. In Section 6.4 we will generalize the latter to

5.4.8. Theorem. (a) In the Adams–Novikov spectral sequence for p ≥ 3,

d2p−1(βpj/pj ) ≡ α1β
p
pj−1/pj−1 6= 0

modulo a certain indeterminacy for j ≥ 1.
(b) In the Adams spectral sequence for p ≥ 5, bj is not a permanent cycle for

j ≥ 1. �

The restriction on p in 5.4.8(b) is essential; we will see (6.4.11) that b2 is a
permanent cycle for p = 3.

The proof of 3.4.4(b) does not reveal which element in Ext2(BP∗) detects

the constructed homotopy element. 5.4.5 implies that Ext2,(1+pj)q is a Z/(p)
vector space of rank [j/2]; i.e., it is spanned by elements of the form δ0(x) for
x ∈ Ext1(BP∗/(p)). (This group is described in 5.2.14 and 5.2.17.) The x that we

want must satisfy vp
j−1−2

1 x = δ1(v
pj

2 ). (δ0 and δ1 are defined in 5.1.2.) The fact
that the homotopy class has order p, along with 2.3.4, means that x itself [as well
as δ0(x)] is a permanent cycle, i.e., that the map f : Sm → S0 for m = q(1+pj)−3
given by 3.3.4(d) fits into the diagram

Sm f //

��

S0

ΣmM(p)
f̃ // Σ−1M(p)

OO
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where M(p) denotes the mod (p) Moore spectrum and the vertical maps are inclu-

sion of the bottom cell and projection onto the top cell. Now f̃ can be composed
with any iterate of the map α : ΣqM(p) → M(p) inducing multiplication by v1 in
BP -homology, and the result is a map Sm+qt → S0 detected by δ0(v

t
1x). This gives

5.4.9. Theorem. (R.Cohen [?]) Let ζj−1 ∈ πS
m−1 be the element given by

3.4.4(d), where m = (1+pj)q−2. It is detected by an element yj−1 ∈ Ext3,2+m(BP∗)
congruent to α1βpj−1/pj−1 modulo elements of higher I-adic filtration (i.e., modulo

kerΦ). Moreover for j ≥ 3 and 0 < i < pj−1 − pj−2 − pj−3ζj−1,i ∈ 〈ζj−1, p, α1〉 ⊂
πS
m−1+qi, obtained as above, is nontrivial and detected by an element in

Ext3,2+m+qi(BP∗) congruent to α1βpj−1/pj−1−i. �

The range of i in 5.4.9(b) is smaller than in (a) because α1βpj/pj−1+pj−2 = 0

for j ≥ 2. To see this compute the coboundary of
v1v

pj

2

p2v
(p+1)pj−2

1

.

The analogous results for p = 2 are more complicated. ηj ∈ πS
2j is not known

to have order 2, so we cannot extend it to a map Σ2jM(2)→ S0 and compose with
elements in π∗(M(2)) as we did in the odd primary case above. In fact, there is
reason to believe the order of ηj is 4 rather than 2. To illustrate the results one
might expect, suppose β2j/2j is a permanent cycle represented by an element of
order 2. (This would imply that the Kervaire invariant element θj+1 exists; see

1.5.29.) Then we get a map f : Σ2j+2−2M(2)→ S0 which we can compose with the
elements of π∗(M(2)) given by 5.3.13. In particular, fv4k1 would represent β2j/2j−4k,

which is nontrivial for k < 2j−2, fv1 would represent β2j/2j−1 (i.e., would be closely

related to ηj+2), and 2fv1 would represent α2
1β2j/2j , leading us to expect ηj+2 to

have order 4. Since the elements of 5.3.13 have filtration ≤ 3, the composites with f
would have filtration ≤ 5. Hence their nontriviality in Ext(BP∗) is not obvious.

Now 5.3.13 describes 12 families of elements in Ext(BP∗/(2)) (each family has
the form {v4k1 x : k ≥ 0}) which are nontrivial permanent cycles: the six shown in
5.3.14 and their products with u. Since we do not know θj+1 exists we cannot show
that these are permanent cycles directly. However, five of them (v1α1, v1α

2
1, uv1

uv1α1, and uv1α
2
1) can be obtained by composing v1 with mod (2) reductions of

permanent cycles in Ext(BP∗), and hence correspond to compositions of ηj+1 with
elements in πS

∗ . Four of these five families have been shown to be nontrivial by
Mahowald [?] without use of the Adams–Novikov spectral sequence.

5.4.10. Theorem (Mahowald [?]). Let µ8k+1 ∈ πS
8k−1 be the generator con-

structed by Adams [?] and detected by α4k+1 ∈ Ext1,8k+2(BP∗), and let ρk ∈ πS
8k−1

be a generator of im J detected by a generator y4k of Ext1,8k(BP∗). Then for
0 < k < 2j−4 the compositions µ8k+1ηj, ηµ8k+1ηj, ρkηj, and ηρkηj are essential.
They are detected in the Adams spectral sequence respectively by P kh2

1hj, P
kh3

1hj,
P k−1c0hj, and P k−1c0h1hj. �

This result provides a strong counterexample to the “doomsday conjecture”,
which says that for each s ≥ 0, only finitely many elements of Es,∗

2 are permanent
cycles (e.g., 1.5.29 is false). This is true for s = 0 and 1 by the Hopf invariant one
theorem, 1.2.12, but 5.4.10 shows it is false for each s ≥ 2.
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5. Periodic Families in Ext2

This section is a survey of results of other authors concerning which elements
in Ext2(BP∗) are nontrivial permanent cycles. These theorems constitute nearly
all of what is known about systematic phenomena in the stable homotopy groups
of spheres.

First we will consider elements various types of β’s. The main result is 5.5.5.
Proofs in this area tend to break down at the primes 2 and 3. These difficulties
can sometimes be sidestepped by replacing the sphere with a suitable torsion-free
finite complex. This is the subject of 5.5.6 (p = 3) and 5.5.7 (p = 2).

In 5.5.8 we will treat decomposable elements in Ext2.
The proof of Smith [?] that βt is a permanent cycle for p ≥ 5 is a model for

all results of this type, the idea being to show that the algebraic construction of
βt can be realized geometrically. There are two steps here. First, show that the
first two short exact sequences of 5.1.2 can be realized by cofiber sequences, so
there is a spectrum M(p, v1) with BP∗(M(p, v1)) = BP∗/I2, denoted elsewhere
by V (1). [Generally if I = (q0, q1, . . . , qn−1) ∈ BP∗ is an invariant regular ideal
and there is a finite spectrum X with BP∗(X) = BP∗/I then we will denote X
by M(q0, . . . , qn−1).] This step is quite easy for any odd prime and we leave the
details to the reader. It cannot be done for p = 2. Easy calculations (e.g., 5.3.13)
show that the map S2 → M(2) realizing v1 does not have order 2 and hence
does not extend to the required map Σ2M(2) → M(2). Alternatively, one could
show that H∗(M(2, v1);Z/(2)), if it existed, would contradict the Adem relation
Sq2Sq2 = Sq3Sq1.

The second step, which fails for p = 3, is to show that for all t > 0, vt1 ∈
Ext0(BP∗/I2) is a permanent cycle in the Adams–Novikov spectral sequence for
M(p, v1). Then 2.3.4 tells us that βt = δ0δ1(v

t
2) detects the composite

S2t(p2−1) vt
2−−→M(p, v1)→ Σq+1M(p)→ Sq+2,

where q = 2p− 2 as usual. One way to do this is to show that the third short exact

sequence of 5.1.2 can be realized, i.e., that there is a map β : Σ2(p2−1)M(p, v1) →
M(p, v1) realizing multiplication by v2. This self-map can be iterated t times and
composed with inclusion of the bottom cell to realize vt2. To construct β one must
first show that v2 is a permanent cycle in the Adams–Novikov spectral sequence

for M(p, v1). One could then show that the resulting map S2(p2−1) → M(p, v1)

extends cell by cell to all of Σ2(p2−1)M(p, v1) by obstruction theory. However, this
would be unnecessary if one knew that M(p, v1) were a ring spectrum, which it is
for p ≥ 5 but not for p = 3. Then one could smash v2 with the identity on M(p, v1)
and compose with the multiplication, giving

Σ2(p2−1)M(p, v1)→M(p, v1) ∧M(p, v1)→M(p, v1),

which is the desired map β.
Showing that M(p, v1) is a ring spectrum, i.e., constructing the multiplication

map, also involves obstruction theory, but in lower dimensions than above.
We will now describe this calculation in detail and say what goes wrong for

p = 3. We need to know Exts,t(BP∗/I2) for t− s ≤ 2(p2 − 1). This deviates from

Ext(BP∗/I) = ExtP∗(Z/(p),Z/(p)) only by the class v2 ∈ Ext0,2(p
2−1). It follows

from 4.4.8 that there are five generators in lower dimensions, namely 1 ∈ Ext0,0,
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h0 ∈ Ext1,q, b0 ∈ Ext2,pq, h0b0 ∈ Ext3(p+1)q, h1 ∈ Ext1,pq, and Exts,t = 0 for
t− s = 2(p2 − 1)− 1 so v2 is a permanent cycle for any odd prime.

To show M(p, v1) is a ring spectrum we need to extend the inclusion S0 →
M(p, v1) to a suitable map from X = M(p, v1) ∧M(p, v1). We now assume p = 5
for simplicity. Then X has cells in dimensions 0, 1, 2, 9, 10, 11, 18, 19, and 20,
so obstructions occur in Exts,t for t − s one less than any of these numbers. The
only one of these groups which is nontrivial is Ext0,0 = Z/(p). In this case the
obstruction is p times the generator (since the 1-cells in X are attached by maps
of degree p), which is clearly zero. Hence for p ≥ 5 M(p, v1) is a ring spectrum and
we have the desired self-map β needed to construct the βt’s.

However, for p = 3 obstructions occur in dimensions 10 and 11, where the Ext
groups are nonzero. There is no direct method known for calculating an obstruction
of this type when it lies in a nontrivial group. In Toda [?] it is shown that the
nontriviality of one of these obstructions follows from the nonassociativity of the
multiplication of M(3).

We will sketch another proof now. If M(3, v1) is a ring spectrum then each βt

is a permanent cycle, but we will show that β4 is not. In Ext6,84(BP∗) one has
β2
1β4 and β1β

2
3/3. These elements are actually linearly independent, but we do not

need this fact now. It follows from 4.4.22 that d5(β1β
2
3/3) = ±α1β

4
1β3/3 6= 0. The

nontriviality of this element can be shown by computing the cohomology of P∗ in
this range.

Now β3
2 ∈ Ext6,84(BP∗) is a permanent cycle since β2 is. If we can show

(5.5.1) β3
2 = ±β1β

2
3/3 ± β2

1β4

then β2
1β4 and hence β4 will have to support a nontrivial d5. We can prove 5.5.1 by

reducing to Ext(BP∗/I2). By 5.1.20 the images of β1, β2, and β4 in this group are
±b10, ±v2b10 ± k0, and ±v32b10, respectively, and the image of β3/3 is easily seen

to be ±b11. Hence the images of β2
1β4, β1β

2
3/3, and β3

2 are ±v32b310, ±b10b211 and

±v32b310 ± k30 respectively. Thus 5.5.1 will follow if we can show k30 = ±b10b211. (At
any larger prime p we would have kp0 = 0.) k0 is the Massey product ±〈h0, h1, h1〉.
Using A1.4.6 we have up to sign

k20 = 〈h0, h1, h1〉〈h0, h1, h1〉
= 〈h0〈h0, h1, h1〉, h1, h1〉
= 〈〈h0, h0, h1〉h1, h1, h1〉
= 〈h0, h0, h1〉〈h1, h1, h1〉
= g0b11

and

k30 = 〈h0, h1, h1〉〈h0, h0, h1〉b11
= 〈h0〈h0, h0, h1〉, h1, h1〉b11
= 〈〈h0, h0, h0〉h1, h1, h1〉b11
= 〈h0, h0, h0〉〈h1, h1, h1〉b11
= b10b

2
11 as claimed.

5.5.2. Theorem (Smith [?]). Let p ≥ 5
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(a) βt ∈ Ext2,q((p+1)t−1) is a nontrivial permanent cycle in the Adams–Novikov
spectral sequence for all t > 0.

(b) There is a map β : Σ2(p2−1)M(p, v1)→M(p, v1) inducing multiplication by
v2 in BP -homology. βt detects the composite

S2t(p2−1) → Σ2t(p2−1)M(p, v1)
βt

−−→M(p, v1)→ S2p.

(c) M(p, v1) is a ring spectrum. �

5.5.3. Theorem (Behrens and Pemmaraju [?]). (a) For p = 3 the complex
V (1) admits a self-map realizing multiplication by v92 in BP -homology.

(b) The element βt ∈ Ext2,q((p+1)t−1) is a nontrivial permanent cycle in the
Adams–Novikov spectral sequence for t congruent to 0, 1,2, 5, or 6 modlulo 9.

To realize more general elements in Ext2(BP∗) one must replace I2 in the above
construction by an invariant regular ideal. For example a self-map β of M(p2, vp1)

inducing multiplication by vp
2

2 (such a map does not exist) would show that βtp2/p,2

is a permanent cycle for each t > 0. Moreover we could compose βt on the left with
maps other than the inclusion of the bottom cell to get more permanent cycles.
Ext0(BP∗/(p

2, vp1)) contains pvi1 for 0 ≤ i < p, and each of these is a permanent
cycle and using it we could show that βtp2/p−i is a permanent cycle.

It is easy to construct M(pi+1, vsp
i

1 ) for s > 0 and p odd. Showing that it is
a ring spectrum and constructing the appropriate self-map is much harder. The
following result is a useful step.

5.5.4. Theorem. (a) (Mahowald [?]). M(4, v4t1 ) is a ring spectrum for t > 0.

(b) (Oka [?]). M(2i+2, v2
it

1 + 2i+1tv2
it−3

1 v2) is a ring spectrum for i ≥ 2 and
t ≥ 2.

(c) (Oka [?]). For p > 2, M(pi+1vp
it

1 ) is a ring spectrum for i ≥ 0 and t ≥ 2
[Recall M(p, v1) is a ring spectrum for p ≥ 5 by 5.5.2(c).] �

Note that M(pi, vj1) is not unique; the theorem means that there is a finite ring
spectrum with the indicated BP -homology.

Hence we have a large number of four-cell ring spectra available, but it is still
hard to show that the relevant power of v2 is a permanent cycle in Ext0.

5.5.5. Theorem.
(a) (Davis and Mahowald [?], Theorem 1.3). For p = 2, there is a map

Σ48M(2, v41)→M(2, v41) inducing multiplication by v82, so β8t/4 and β8t/3 are per-
manent cycles for all t > 0.

(b) For p ≥ 5 the following spectra exist : M(p, vp−1
1 , vp2) (Oka [?, ?], Smith [?],

Zahler [?]); M(p, vp2 , v
tp
2 ) for t ≥ 2 (Oka [?]); M(p, v2p−2

1 , vp
2

2 ) (Oka [?]);

M(p, v2p2 , vtp
2

2 ) for t ≥ 2 (Oka [?]); M(p2, vp1 , v
tp2

2 ) for t ≥ 2 (Oka [?]); and conse-

quently the following elements in Ext2(BP∗) are nontrivial permanent cycles: βtp/i

for t > 0, 1 ≤ i ≤ p − 1; βtp/p for t ≥ 2; βtp2/i for t > 0, 1 ≤ i ≤ 2p − 2; βtp2/2p

and βtp2/2p−1 for t ≥ 2; and βtp2/p,2 for t ≥ 2.

(c) (Oka [?]). For p ≥ 5 the spectra M(p, v2n−2p
1 , vp

nt
2 ) for t ≥ 2 and n ≥ 3,

and M(p, v2
n−3p

1 , vp
n

2 ) for n ≥ 3 exist. Consequently the following elements are
nontrivial permanent cycles: βpnt/s for t ≥ 2, n ≥ 3, and 1 ≤ s ≤ 2n−2p; and

βpnt/s for t ≥ 1, n ≥ 3, and 1 ≤ s ≤ 2n−3p. In particular the p-rank of πS
k can be

arbitrarily large. �
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Note that in (a) M(2, v41) is not a ring spectrum since M(2) is not, so the proof
involves more than just showing that v82 ∈ Ext0(BP∗/(2, v

4
1)) is a permanent cycle.

When a spectrumM(pi, vj1, v
k
2 ) for an invariant ideal (pi, vj1, v

k
2 ) ⊂ BP∗ does not

exist one can look for the following sort of substitute for it. Take a finite spectrumX
with torsion-free homology and look for a finite spectrum XM(pi, vj1, v

k
2 ) whose BP

homology is BP∗(X) ⊗BP∗ BP∗/(p
i, vj1, v

k
2 ). Then the methods above show that

the image β̄k/j,i of βk/j,i induced by the inclusion S0 → X [assuming X is (−1)-
connected with a single 0-cell] is a permanent cycle. The resulting homotopy class
must “appear” on some cell of X, giving us an element in πS

∗ which is related to
βk/j,i. The first example of such a result is

5.5.6. Theorem (Oka and Toda [?]). Let p = 3 and X = S0 ∪β1
e11, the

mapping cone of β1.
(a) The spectrum XM(3, v1, v2) exists so β̄t ∈ Ext2(BP∗(X)) is a permanent

cycle for each t > 0.
(b) The spectrum XM(3, v21 , v

3
2) exists so β̄3t/2 ∈ Ext2(BP∗(X)) is a permanent

cycle for each t > 0.
Let p = 5 and X = S0 ∪β1

e39.

(c) The spectrum XM(5, v1, v2, v3) exists so γ̄t ∈ Ext3(BP∗(X)) is a permanent
cycle for all t > 0. �

Hence β̄t detects an element in π16t−6(X) which we also denote by β̄t. The
cofibration defining X gives an long exact sequence

· · · → πn(S
0)

i−→ πn(X)
j−→ πn−11(S

0)
β1−−→ πn−1(S

0)→ · · ·

where the last map is multiplication by β1 ∈ π10(S
0). If β̄t 6∈ im i then j(βt) 6= 0,

so for each t > 0 we get an element in either πS
16t−6 or πS

16t−17. For example, in
the Adams–Novikov spectral sequence for the sphere one has d5(β4) = α1β

2
1β3/3 so

β4 6∈ im i and j(β4) ∈ πS
47 is detected by α1β1β3/3, i.e., j(β4) = β1ε

′ (see 5.1.1). We
can regard j(βt) as a substitute for βt when the latter is not a permanent cycle.

In the above example we had BP∗(X) = BP∗ ⊕ ΣiBP∗ as a comodule, so
Ext(BP∗) is a summand of Ext(BP∗(X)). In the examples below this is not the
case, so it is not obvious that βk/j,i 6= 0.

5.5.7. Theorem (Davis and Mahowald [?] and Mahowald [?]). Let p = 2,
X = S0 ∪η e2, W = S0 ∪ν e4, and Y = X ∧ W . Part (a) below is essentially
theorem 1.4 of Davis and Mahowald [?], while the numbers in succeeding statements
refer to theorems in Mahowald [?]. Their Y and A1 are XM(2) and XM(2, v1) in
our notation.

(a) XM(2, v1, v
8
2) exists and β̄8t ∈ Ext2(BP∗(X)) is a nontrivial permanent

cycle.
(b) (1.4) In the Adams–Novikov spectral sequence for S0, β8t is not a permanent

cycle and β̄8t ∈ π4qt−4(X) projects under the pinching map X → S2 to an element
detected by α2

1β8t/3 if this element is nontrivial.

(c) (1.5) v̄8t+1
2 ∈ Ext0(BP∗(X)/I2) and β̄8t+1 ∈ (BP∗(X)) are nontrivial per-

manent cycles. β8t+1 ∈ Ext2(BP∗) is not a permanent cycle and β8t+1 ∈ π48t+2(X)
projects to an element detected by α1α4/4β8t/3 ∈ Ext4(BP∗) if this element is non-
trivial.



178 5. THE CHROMATIC SPECTRAL SEQUENCE

Proof. (a) Davis and Mahowald [?] showed that XM(2, v1) admits a self-map
realizing v82 . This gives the spectrum and the permanent cycles. To show β̄8t 6= 0
it suffices to observe that β8t ∈ Ext2(BP∗) is not divisible by α1.

(b) Mahowald [?] shows that β̄8t ∈ π48t−4(X) projects nontrivially to πS
48t−6.

By duality there is a map f : Σ48t−4(X) → S0 which is nontrivial on the bottom
cell. From 5.3.13 one can construct a map Σ48t−4X → Σ48t−10M(2) which is v1η

2

on the bottom cell and such that the top cell is detected by v31 ∈ Ext0(BP∗/(2)).
Now compose this with the extension of β8t/4Σ

48t−10M(2)→ S0 given by 5.5.4(a).

The resulting map g : Σ48t−4X → S0 is α2
1β8t/3 on the bottom cell and the top cell

is detected by β8t. Hence this map agrees with f modulo higher Novikov filtration.
If α2

1β8t/3 6= 0 ∈ Ext4(BP∗) it follows that the bottom cell on f is detected by that

element. [It is likely that α3
1β8t/3 = 0 (this is true for t = 1), so the differential on

β8t is not a d3.]
(c) As in (b) Mahowald [?] shows the projection of β8t+1 in πS

48t is nontriv-
ial. To show that α1α4/4β8t/3 detects our element if it is nontrivial we need to
make a low-dimensional computation in the Adams–Novikov spectral sequence for
M(2, v41) where we find that v31v2 ∈ Ext0,12(BP∗/(2, v

4
1)) supports a differential

hitting v1α4/4α
2
1 ∈ Ext3,14. It follows that 1ση ∈ π11(M(2, v41)) extends to a map

Σ10X → M(2, v41) with the top cell detected by v2v
3
1 . Suspending 48t − 10 times

and composing with the extension of β8t/4 to Σ48t−10M(2, v41) gives the result. �

Now we consider products of elements in Ext1.

5.5.8. Theorem. Let ᾱt be a generator of Ext1,qt(BP∗) (see 5.2.6).
(a) (Miller, Ravenel, and Wilson [?]). For p > 2, ᾱsᾱt = 0 for all s, t > 0.
(b) For p = 2

(i) If s or t is odd and neither is 2 then ᾱ1ᾱt = α1ᾱs+t−1 6= 0.
(ii) ᾱ2

2 = β2/2.

(iii) ᾱ2
4 = β4/4.

(Presumably, all other products of this sort vanish.)

Proof. Part (a) is given in Miller, Ravenel, and Wilson [?] as theorem 8.18.
The method used is similar to the proof of (b) below.

For (b)(i) assume first that s and t are both odd. Then ᾱs =
vs
1

2 and the

mod (2) reduction of ᾱt is v
t−1
1 t1. Hence ᾱsᾱt =

vs+t−1
1

2 t1 = ᾱs+t−1ᾱ1.
For s odd and t = 2 we have

αsᾱ2 =
vs1
2
(t21 + vt1) = d

(
vs−t
1 v2
2

)
so ᾱsᾱ2 = 0.

For t even and t > 2, recall that

ᾱt =
xt/2

4t
where x = v21 − 4v−1

1 v2

and

d(x) = 8ρ

where

ρ ≡ v−2
1 v2t1 − v−1

1 (t2 + t31) + 2(v1t1 + v−2
1 t41 + v−2

1 t1t2 + v−3
1 v2t

3
1) mod (4).
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Hence for even t > 2 the mod (2) reduction of ᾱt is v
t−2
1 ρ and for odd s

ᾱsᾱt =
vs+t−2
1

2
ρ =

v1x
(s+t−1)/2

2
ρ.

Since

d

(
v1x

(s+t+1)/2

23(s+ t+ 1)

)
=

v1
2
x(s+t−1)/2ρ+

x(s+t+1)/2t1
22(s+ t+ 1)

so ᾱsᾱt = ᾱ1ᾱs+t−1 as claimed.

For (ii) we have ᾱ2
2 =

v2
1(t

2
1+v1t1)
4 . The coboundary of

v4
1

25 +
v−2
1 v2

2

2 shows this is
cohomologous to β2/2.

For (iii) we have α2
4/4 ∈ Ext2,16 which is (Z/(2))3 generated by α1α7, β3, and

β4/4. α1α7 is not a permanent cycle (5.3.7) so α2
4/4 must be a linear combination

of β4/4 and β3. Their reductions mod I2, t
4
1|t41 and v2t

4
1|t1, are linearly independent

so it suffices to compute α2
4/4 mod I2. The mod I2 reduction of α4/4 is t41, so the

result follows. �

6. Elements in Ext3 and Beyond

We begin by considering products of elements in Ext2 with those in Ext1 and
Ext2. If x and y are two such elements known to be permanent cycles, then the
nontriviality of xy in Ext implies that the corresponding product in homotopy is
nontrivial, but if xy = 0 then the homotopy product could still be nontrivial and
represent an element in a higher Ext group. The same is true of relations among
and divisibility of products of permanent cycles; they suggest but do not imply
(without further argument) similar results in homotopy.

Ideally one should have a description of the subalgebra of Ext(BP∗) generated
by Ext1 and Ext2 for all primes p. Our results are limited to odd primes and fall
into three types (see also 5.5.8). First we describe the subgroup of Ext3 generated
by products of elements in Ext1 with elements of order p in Ext2 (5.6.1). Second we
note that certain of these products are divisible by nontrivial powers of p (5.6.2).
These two results are due to Miller, Ravenel, and Wilson [?], to which we refer for
most of the proofs.

Our third result is due to Oka and Shimomura [?] and concerns products of
certain elements in Ext2 (5.4.4–5.4.7). They show further that in certain cases when
a product of permanent cycles is trivial in Ext4, then the corresponding product in
homotopy is also trivial.

This brings us to γ’s and δ’s. Toda [?] showed that γt is a permanent cycle for
p ≥ 7 (1.3.18), but left open the case p = 5. In Section 7.5 we will make calcula-
tions to show that γ3 does not exist. We sketch the argument here. As remarked in
Section 4.4, 4.4.22 implies that d33(α1β

4
5/5) = β21

1 (up to a nonzero scalar). Calcula-

tions show that α1β
4
5/5 is a linear combination of β3

1γ3 and β1〈α1β3, β4, γ2〉. Hence

if the latter can be shown to be a permanent cycle then we must have d33(γ3) = β18
1 .

Each of the factors in the above Massey product is a permanent cycle, so it suffices
to show that the products α1β3β4 ∈ π323(S

0) and β4γ2 ∈ π619(S
0) both vanish.

Our calculation shows that both of these stems have trivial 5-torsion.
To construct δt one could proceed as in the proof of 5.5.2. For p ≥ 7 there

is a finite complex V (3) with BP∗(V (3)) = BP∗/I4. According to Toda [?] it is
a ring spectrum for p ≥ 11. Hence there is a self-map realizing multiplication by



180 5. THE CHROMATIC SPECTRAL SEQUENCE

v4 iff there is a corresponding element in π∗(V (3)). We will show (5.6.13) that

the group Ext2p−1,2(p4+p−2)(BP∗/I4) is nonzero for all p ≥ 3, so it is possible that
d2p−1(v4) 6= 0.

The following result was proved in Miller, Ravenel, and Wilson [?] as theo-
rem 8.6.

5.6.1. Theorem. Let m ≥ 0, p - s, s ≥ 1, 1 ≤ j ≤ a2,m (where a2,m is as in

5.4.1) for s > 1 and 1 ≤ j ≤ pm for s = 1. Then α1βspm/j 6= 0 in Ext3(BP∗) iff
one of the following conditions holds

(i) j = 1 and either s 6≡ −1 mod (p) or s ≡ −1 mod (pm+2).
(ii) j = 1 and s = p− 1.
(iii) j > 1 + a2,m−ν(j−1)−1.

In case (ii), we have α1βp−1 = −γ1 and for m ≥ 1, 2α1β(p−1)pm = −γpm/pm,pm .
The onfy linear relations among these classes are

α1βsp2/p+2 = sα1βsp2−1,

and
α1βsp2m+2/2+a2,m+1

= 2sα1βsp2m+2−pm for m ≥ 1. �

This result implies that some of these products vanish and therefore certain
Massey products (A1.4.1) are defined. For example, α1β(tp−1)pm = 0 if t > 1 and

pm+2 - t so we have Massey products such as 〈β2p−1, α1, α1〉 represented up to
nonzero scalar multiplication by

v2p2 t1

pv1+p
1

+
v2p−1
2 t21 − 2vp−1

2 v3t1
pv1

.

This product has order p2 but many others do not. For example, α1βp/2 = 0 and
〈βp/2, α1, α1〉 is represented by

2vp−1
1 vp2t1
p2vp1

− vp2t
2
1

pv21

which has order p2 and p〈βp/2, α1, α1〉 = α1βp up to nonzero scalar multiplication.
Similarly, one can show

α1βp2 = p〈βp2/2, α1, α1〉 = p2〈βp2/3, α1, α1, α1〉.
The following results were 2.8(c) and 8.17 in Miller, Ravenel, and Wilson [?].

5.6.2. Theorem. With notation as in 5.6.1, if α1βspm/j 6= 0 in Ext3(BP∗),

then it is divisible by at least pi whenever 0 < i ≤ m and j ≥ a2,m−i. �

5.6.3. Theorem. With notation as above and with t prime to p,
αspk/k+1βtpm/j = sα1βtpm/j−spk+1 in Ext3(BP∗). �

Now we consider products of elements in Ext2, which are studied in Oka and
Shimomura [?].

5.6.4. Theorem. For p ≥ 3 we have ijβsβt = stβiβj in Ext4 for i+ j = s+ t.

Proof. To compute βsβt we need the mod I2 reduction of βt, which was com-
puted in 5.1.20. Hence we find βsβt is represented by

−tvs+t−1
2 b10 +

(
t
2

)
vs+t−2
2 k0

pv1
.
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Now let

um =
vm2 vp−1

1 tp1
p2vp1

− vm2 t2
pv21

+
kvk−1

2

pv1
(tp1t2 − t2p+1

1 ).

A routine computation gives

d
( t

2
us+t−1

)
=

svs+t−1
2 b10
pv1

− s

2
(s+ t− 1)vs+t−2

2 k0

and hence βsβt is represented by − st
2

vs+t−2
2 k0

pv1
and the result follows. �

The analogous result in homotopy for p ≥ 5 was first proved by Toda [?]. The
next three results are 6.1, A, and B of Oka and Shimomura [?].

5.6.5. Theorem. For p ≥ 3 the following relations hold in Ext4 for s, t > 0.
(i) βsβtpk/r = 0 for k ≥ 1, t ≥ 2 and r < a2,k.
(ii) βsβtp2/p,2 = βs+t(p2−p)βtp/p.
(iii) For t, k ≥ 2,

β2βtpk/a2,k
= βs+(tp−1)(pk−1−p)βtp2/a2,2

= (t/2)βs+(tp−1)pk−1−(2p−1)pβ2p2/a2,2
. �

5.6.6. Theorem. For p ≥ 5, 0 < r ≤ p, with r ≤ p − 1 if t = 1, the element
βsβtp/r is trivial in π∗(S

0) if one of the following conditions holds.
(i) r ≤ p− 2.
(ii) r = p− 1 and s 6≡ −1 mod (p).
(iii) r = p− 1 or p and t ≡ 0 mod (p). �

5.6.7. Theorem. For p ≥ 5, s 6≡ 0 or 1, t 6≡ 0 mod (p), and t ≥ 2, the
elements βsβtp/p and βsβtp2/p,2 are nontrivial. �

Now we will display the obstruction to the existence of V (4), i.e., a nontrivial

element in Ext2p−1,2(p4+p−2)(BP∗/I4). This group is isomorphic to the correspond-
ing Ext group for P∗ = P [t1, t2, . . . ], the dual to the algebra of Steenrod reduced
powers. To compute this Ext we use a method described in Section 3.5. Let

P (1)∗ = P/(tp
2

1 , tp2, t3, . . . ), the dual to the algebra generated by P 1 and P p. We
will give P∗ a decreasing filtration so that P (1)∗ is a subalgebra of E0P∗. We let

t1, t2 ∈ F0, and tp
2

i , tpi+1, ti+2 ∈ F (pi−1)/(p−1) for i ≥ 1. Then as an algebra we have

(5.6.8) E0P∗ = P (1)∗ ⊗ T (ti+2,0, ti+1,1)⊗ P (ti,2),

where i ≥ 1, ti,j corresponds to t
pj

i , and T denotes the truncated polynomial algebra
of height p. Let R denote the tensor product of the second two factors in 5.6.8.
Then

(5.6.9) P (1)∗ → E0P∗ → R

is an extension of Hopf algebras (A1.1.5) for which there is a Cartan–Eilenberg
spectral sequence (A1.3.14) converging to

ExtE0P∗(Z/(p),Z/(p))

with

(5.6.10) E2 = ExtP (1)∗(Z/(p),ExtR(Z/(p),Z/(p))).
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The filtration of P∗ gives a spectral sequence (A1.3.9) converging to

ExtP∗(Z/(p), Z/(p))

with

(5.6.11) E2 = ExtE0P∗(Z/(p),Z/(p)).

In the range of dimensions we need to consider, i.e., for t− s ≤ 2(p4− 1) ExtR
is easy to compute. We leave it to the reader to show that it is the cohomology of
the differential P (1)∗-comodule algebra

E(h12, h21, h30, h13, h22, h31, h40)⊗ P (b12, b21, b30)

with d(h22) = h12h13, d(h31) = h21h13, and d(h40) = h30h13. In our range this
cohomology is

(5.6.12) E(h12, h21, h30, h13)/h13(h12, h21, h30)⊗ P (b12, b21, b30),

where the nontrivial action of P (1) is given by

P 1h30 = h21, P ph21 = h12, and P pb30 = b21.

We will not give all of the details of the calculations since our aim is merely to

find a generator of Ext2p−1,2(p4+p−2)
∗ . The element in question is

(5.6.13) bp−3
20 h11h20h12h21h30.

We leave it to the interested reader to decipher this notation and verify that it is a
nontrivial cocycle.


