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1.1

1 Introduction

This talk began in discussions last summer with

Agnes Beaudry

Mark Behrens

Prasit Bhattacharya

Dominic Culver

Zhouli Xu

1.2

What is Z and what is its telescope?

Z is a finite CW spectrum constructed re-
cently by Prasit Bhattacharya and Philip Eg-
ger.

It has 32 cells in dimensions ranging from 0 to 16. Mahowald would say it is “half of A(2).”

It admits a self map Σ6Z → Z realizing multiplication by v2. Its telescope is the colimit obtained
by iterating this map.

The homotopy of its K(2)-localization is very nice.

It could be an interesting test case for the Telescope Conjecture, which says that its telescope and
K(2)-localization are the same.

Z might have a motivic analog. This could lead to additional structure in its Adams spectral
sequence. 1.3
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What is the Telescope Conjecture?
I first made the Telescope Conjecture in the late ’70s and published it in 1984.

It has a version for each prime p and each integer n ≥ 0.

The n = 1 case is due to
Mahowald for p = 2 and to
Miller for odd primes.

1.4

What is the Telescope Conjecture? (continued)

In 1989 there was
a homotopy theory
program at MSRI.

Something happened there that led me to think I could disprove the conjecture for n ≥ 2.

Earthquake of October 17, 1989
1.5

What is the Telescope Conjecture? (continued)
A few years later the proof fell through.

In 1999 I wrote a paper about it with
Mark Mahowald and Paul Shick.

DISCLAIMER: Having bet on both
sides of this question, my credibil-
ity now stands at ZERO.

1.6
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2 The triple loop space approach

The triple loop space approach
Recall that the mod 2 dual Steenrod algebra is

A∗ = Z/2[ξ1,ξ2, . . . ] with |ξn|= 2n −1.

Mahowald had a spectrum Y with H∗Y =Z/2[ξ1]/(ξ
4
1 ) or “half” of A(1)∗ =Z/2[ξ1,ξ2]/(ξ

4
1 ,ξ

2
2 ).

It has a self map

Σ2Y
v1 // Y // Cv1 = cofiber

with
H∗Cv1 = A(1)∗ = Z/2[ξ1,ξ2]/(ξ

4
1 ,ξ

2
2 ).

The Bhattacharya-Egger spectrum Z has

H∗Z = Z/2[ξ1,ξ2]/(ξ
8
1 ,ξ

4
2 ).

and a self map

Σ6Z
v2 // Z // Cv2 = cofiber

with
H∗Cv2 = Z/2[ξ1,ξ2,ξ3]/(ξ

8
1 ,ξ

4
2 ,ξ

2
3 ) = A(2)∗.

1.7

The triple loop space approach (continued)
The Bhattacharya-Egger spectrum Z has

H∗Z = Z/2[ξ1,ξ2]/(ξ
8
1 ,ξ

4
2 ).

and a self map

Σ6Z
v2 // Z // Cv2 = cofiber.

with
H∗Cv2 = Z/2[ξ1,ξ2,ξ3]/(ξ

8
1 ,ξ

4
2 ,ξ

2
3 ) = A(2)∗.

In MRS we have spectra y(n) for all n > 0 with

H∗y(n) = Z/2[ξ1,ξ2, . . . ,ξn].

Unlike Y and Z, it is an associative ring spectrum. 1.8

The triple loop space approach (continued)
In MRS we have associative ring spectra y(n) for all n > 0 with

H∗y(n) = Z/2[ξ1,ξ2, . . . ,ξn].

It has a self-map

Σ2(2n−1)y(n)
vn // y(n)

inducing an isomorphism in K(n)∗(−), the nth Morava K-theory.

The Telescope Conjecture says that v−1
n y(n), the colimit or telescope obtained by iterating the

self map, and LK(n)y(n), the Bousfield localization with respect K(n), are the same.

We have ways to study the homotopy groups of both of them. 1.9
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3 The construction of y(n)

The construction of y(n)
Consider the diagram

S1 f //

i ""

BO

Ω2S3
g

;;

where

• f represents the nontrivial element of π1BO = Z/2,
• i is the adjoint of the identity map on Σ2S1 = S3 and
• g is the extension of f given by the infinite loop space structure on BO.

We know that

H∗Ω
2S3 = Z/2[u1,u2, . . . ] with |un|= 2n −1 = |ξn|.

1.10

The construction of y(n) (continued)

S1 f //

i ""

BO

Ω2S3
g

;;

H∗Ω
2S3 = Z/2[u1,u2, . . . ] with |un|= 2n −1 = |ξn|.

Let y(∞) denote the Thom spectrum induced by g. Long ago Mahowald showed that it is the mod
2 Eilenberg-Mac Lane spectrum HZ/2.

We will construct subspaces Wn of Ω2S3 with

H∗Wn = Z/2[u1,u2, . . . ,un],

and y(n) will be the corresponding Thom spectrum. 1.11

The construction of y(n) (continued)
In the early 50s Ioan James defined the reduced prod-
uct JkX (for any space X) as a certain quotient of X×k

and showed that J∞X is equivalent to ΩΣX .

He showed there is a 2-local fiber sequence

Ω
2S2n+1+1 → J2n−1S2 → ΩS3 → ΩS2n+1+1.

Note that ΩS3 is equivalent to a CW complex with a single cell in each even dimension. J2n−1S2

is its (2n+1 −1)-skeleton.

Our space Wn is ΩJ2n−1S2, so it maps to Ω2S3 as desired. The MRS spectrum y(n) is the Thomi-
fication of

ΩJ2n−1S2 // Ω2S3 g // BO.

1.12
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The construction of y(n) (continued)
The MRS spectrum y(n) is the Thomification of

ΩJ2n−1S2 // Ω2S3 g // BO.

From James’ 2-local fiber sequence

Ω
3S2n+1+1 → ΩJ2n−1S2 → Ω

2S3

we get maps of spectra

Σ
∞S|vn| → Σ

∞
Ω

3S2n+1+1 → y(n)→ HZ/2.

where the map S|vn| → Ω3S2n+1+1 is the inclusion of the bottom cell. Since y(n) is the Thom
spectrum for a loop map, it is an associative ring spectrum. The composite map above leads to the
desired vn-self map of y(n). 1.13

4 The Adams-Novikov spectral sequence for LK(n)y(n)

The Adams-Novikov spectral sequence for LK(n)y(n)
Let Y (n) denote the telescope associated with y(n). Then we have

BP∗ = Z(2)[v1,v2, . . . ] where |vi|= 2i+1 −2

BP∗(BP) = BP∗[t1, t2, . . . ] where |ti|= 2i+1 −2
BP∗(y(n)) = (BP∗/In)[t1, t2, . . . tn]

where In = (2,v1, ..vn−1)

BP∗(Y (n)) = BP∗(LK(n)y(n)) = v−1
n BP∗(y(n))

The Adams-Novikov E2-term for LK(n)y(n) is

E2 = Z/2[v±1
n ,vn+1, . . .v2n]⊗E(hn+i, j : 1 ≤ i ≤ n,0 ≤ j < n)

where hn+i, j = [t2 j

n+i]. The second factor is an exterior algebra on n2 generators. This E2-term is
finitely generated as a module over the ring

R(n) = Z/2[v±1
n ,vn+1, . . .v2n].

1.14

5 The Adams spectral sequences for y(n) and Y (n)

The Adams spectral sequences for y(n) and Y (n)
Since

H∗y(n) = Z/2[ξ1,ξ2, . . . ,ξn],

a standard change-or-rings argument shows that

ExtA∗ (Z/2,H∗y(n))∼= ExtA[n]∗ (Z/2,Z/2)

where
A[n]∗ = Z/2[ξn+1,ξn+2, . . . ].

This leads to an Adams E1-term of the form

E1 = P(vn,vn+1, . . .)⊗P(hn+i, j : i > 0, j ≥ 0)
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where, for such i and j,

vn+i−1 = [ξn+i] ∈ E1,2n+i−1
1 ,

hn+i, j = [ξ 2 j+1

n+i ] ∈ E1,2 j(2n+i−1)
1

and d(v2 j

2n+i) = ∑
0≤k<i

v2 j

n+khn+i+ j−k,n+k = v2 j

n hn+i+ j,n + . . .

1.15

Localizing the Adams spectral sequence for y(n)
The Adams spectral sequence for a spectrum X is based on an Adams resolution, which is a

diagram of the form
X = X0 X1oo X2oo X3oo . . .oo

with certain properties. When X = y(2), the self map Σ6Xi → Xi lifts to Xi+1, and we get a diagram

X0
��

X1oo

��
X2oo

��
X3oo

��
. . .oo

Σ−6X0

��
Σ−6X1oo

��
Σ−6X2oo

��
Σ−6X3oo

��
Σ−6X4oo

��
. . .oo

Σ−12X0
��

Σ−12X1oo
��

Σ−12X2oo
��

Σ−12X3oo
��

Σ−12X4oo
��

Σ−12X5oo
��

. . .oo

...
...

...
...

...
...

This leads to a localized Adams spectral sequence converging to the homotopy of

Y (n) = v−1
n y(n).

1.16

Localizing the Adams spectral sequence for y(n) (continued)
This localization converts

E1 = P(vn,vn+1, . . .)⊗P(hn+i, j : i > 0, j ≥ 0)

converging to π∗y(n) to

E2 = P(v±1
n ,vn+1, . . . ,v2n)⊗P(hn+i, j : i > 0,0 ≤ j < n)

converging to π∗Y (n). For n = 2 this reads

E2 = P(v±1
2 ,v3,v4)⊗P(h2+i,0,h2+i,1 : i > 0).

It is likely that for i > 0 there are Adams differentials

d2h4+i,0 = v2h2
2+i,1

d4h3+i,1 = v2h4
2+i,0.

1.17

Localizing the Adams spectral sequence for y(n) (continued)
In the localized Adams spectral sequence for Y (2) we have

E2 = P(v±1
2 ,v3,v4)⊗P(h2+i,0,h2+i,1 : i > 0).

with likely differentials

d2h4+i,0 = v2h2
2+i,1 and d4h3+i,1 = v2h4

2+i,0.

This would leave

E5 = E∞ = P(v±1
2 ,v3,v4)⊗E(h3,0,h3,1,h4,0)⊗E(b3,0,b4,0,b5,0, . . .)

where bi,0 = h2
i,0. This is infinitely generated over the ring

R(2) = P(v±1
2 ,v3,v4)

while π∗LK(2)y(2) is finitely generated over it. 1.18
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6 Disproving the Telescope Conjecture for n ≥ 2?

Disproving the Telescope Conjecture for n ≥ 2?
We have just seen that, if all goes according to plan, the Adams-Novikov spectral sequence shows

that
π∗LK(2)y(2) = P(v±1

2 ,v3,v4)⊗E(h3,0,h3,1,h4,0,h4,1)

while the localized Adams spectral sequence shows that

π∗Y (2) = P(v±1
2 ,v3,v4)⊗E(h3,0,h3,1,h4,0)⊗E(b3,0,b4,0,b5,0, . . .).

There is a similar story for n > 2 and for odd primes. The Telescope Conjecture says these two
graded groups are the same, so this appears to disprove it.

What could go wrong? We do not have complete control over differentials in the localized Adams
spectral sequence. The ones we “know” about could be preempted by others that we don’t know
about. Mahowald, Shick and I were unable to rule out this possibility. 1.19

7 Going equivariant

Going equivariant
If this approach is to succeed, we need some more structure in the localized Adams spectral

sequence for Y (n). Here I will outline a way to get y(n) and Y (n) into a C2-equivariant setting.

Recall that the construction of y(n) involved the diagram

S1 i // Ω2S3 g // BO

ΩJ2n−1S2

OO

We can add another space and get

S1 i // Ω2S3 g // BO

ΩJ2n−1S2

OO

// Ω(SU(k+1)/SO(k+1))

OO

for k � 0.

1.20

Going equivariant (continued)

S1 i // Ω2S3 g // BO

ΩJ2n−1S2

OO

gn // Ω(SU(k+1)/SO(k+1)).

ak

OO

The map ak is related to Bott’s proof of his Periodicity Theorem. In mod 2 homology we have

H∗BO = Z/2[b1,b2, . . . ] where |bi|= i,

H∗Ω(SU(k+1)/SO(k+1)) = Z/2[b1, . . .bk]

and the loop map gn exists for k ≥ 2n −1. Thomifying the square on the right gives

HZ/2 // MO

y(n) //

OO

w(k),

OO

where w(k) is the Thom spectrum induced by the map ak. 1.21
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Going equivariant (continued)
One can show that

S1 i // Ω2S3 g // BO

ΩJ2n−1S2

OO

gn // Ω(SU(k+1)/SO(k+1)).

ak

OO

is the fixed point set of the following diagram of C2-spaces:

Sρ i // Ω1+ρ S1+2ρ
g // BUR

Ωρ J2n−1S2ρ
gn //

OO

Ωσ SU(k+1)R

ak

OO

where
• BUR and SUR denote the spaces BU and SU equipped with a C2-action related to complex

conjugation,
• σ denotes the sign representation of C2 and
• ρ = 1+σ denotes its regular representation.

1.22

Going equivariant (continued)
Here is our C2-diagram again.

Sρ i // Ω1+ρ S1+2ρ
g // BUR MUR

Ωρ J2n−1S2ρ
gn //

OO

Ωσ SU(k+1)R

ik
OO

X(k)R

OO

with Thom spectra indicated on the right. Taking 2-local fibers of the vertical maps in the square
gives

Ω1+ρ S1+2ρ
g // BUR

Ωρ J2n−1S2ρ
gn //

OO

Ωσ SU(k+1)R

ak
OO

Ω2+ρ S1+2n+1ρ //

OO

Ωρ(SU/SU(k+1))R

OO

The two fibers have the same connectivity when k = 2n+1 −2. 1.23

Going equivariant (continued)

Ω1+ρ S1+2ρ
g // BUR

Ωρ J2n−1S2ρ
gn //

OO

Ωσ SU(1+ |vn|)R

a|vn |
OO

Ω2+ρ S1+2n+1ρ //

OO

Ωρ(SU/SU(1+ |vn|))R

OO

It follows that we have a map y(n)→ w(|vn|) inducing a monomorphism in mod 2 homology, and
therefore maps

S|vn| → Ω
3S2n+1+1 → y(n)→ w(|vn|),

where w(k) is the geometric fixed point set of the Thom spectrum X(k)R. The above composite
leads to a telescope W (|vn|) which is the geometric fixed point spectrum of the telescope for a map

Σ
(1+|vn|)ρ−1X(|vn|)R → X(|vn|)R.

The underlying spectrum of this telescope is contractible because the underlying map is known
to be nilpotent. 1.24
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