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What this talk is about

Mike Hill, myself and Mike Hopkins.
Photo by Bill Browder, 2010.

In 2009 Mike Hill, Mike Hopkins and | proved the following.
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What this talk is about

Mike Hill, myself and Mike Hopkins.
Photo by Bill Browder, 2010.

In 2009 Mike Hill, Mike Hopkins and | proved the following.

Theorem

The element 0; € y+1_»S° associated with the Kervaire
invariant does not exist for j > 7.
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What this talk is about (continued)

Theorem

The element 0; € my11_,S° associated with the Kervaire
invariant does not exist forj > 7.
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What this talk is about (continued)

Theorem

The element 0; € my11_,S° associated with the Kervaire
invariant does not exist forj > 7.

Our method of proof involved a ring spectrum Q with three

properties:
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What this talk is about (continued)

Theorem

The element 0; € my11_,S° associated with the Kervaire
invariant does not exist forj > 7.

Our method of proof involved a ring spectrum Q with three
properties:

(i) Detection Theorem If §; exists it has a nontrivial image in
7.Q under the unit map S° — Q.
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What this talk is about (continued)

Theorem

The element 0; € my11_,S° associated with the Kervaire
invariant does not exist forj > 7.

Our method of proof involved a ring spectrum Q with three
properties:
(i) Detection Theorem If §; exists it has a nontrivial image in
7.Q under the unit map S° — Q.

(i) Periodicity Theorem ¥2%6Q ~ Q, so 7xQ depends only on
the value of kK modulo 256.
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What this talk is about (continued)

Theorem

The element 0; € my11_,S° associated with the Kervaire
invariant does not exist forj > 7.

Our method of proof involved a ring spectrum Q with three
properties:

(i) Detection Theorem If §; exists it has a nontrivial image in
7.Q under the unit map S° — Q.

(i) Periodicity Theorem ¥2%6Q ~ Q, so 7xQ depends only on
the value of kK modulo 256.

(iii) Gap Theorem 7_Q = 0.
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What this talk is about (continued)

Theorem

The element 0; € my11_,S° associated with the Kervaire
invariant does not exist forj > 7.

Our method of proof involved a ring spectrum Q with three
properties:

(i) Detection Theorem If §; exists it has a nontrivial image in
7.Q under the unit map S° — Q.

(i) Periodicity Theorem ¥2%6Q ~ Q, so 7xQ depends only on
the value of kK modulo 256.

(iii) Gap Theorem 7_Q = 0.
The second two of these imply that 7p+1_oQ =0forj > 7,
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What this talk is about (continued)

Theorem

The element 0; € my11_,S° associated with the Kervaire
invariant does not exist forj > 7.

Our method of proof involved a ring spectrum Q with three
properties:
(i) Detection Theorem If §; exists it has a nontrivial image in
7.Q under the unit map S° — Q.

(i) Periodicity Theorem ¥2%6Q ~ Q, so 7xQ depends only on
the value of kK modulo 256.

(iii) Gap Theorem 7_Q = 0.

The second two of these imply that my11_,Q = 0 for j > 7, so (i)
implies that ¢; does not exist for such j.
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What this talk is about (continued)

The construction and study of the spectrum Q involves
equivariant stable homotopy theory.
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What this talk is about (continued)

The construction and study of the spectrum Q involves
equivariant stable homotopy theory. The group G is question
will always be a finite cyclic 2-group.
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What this talk is about (continued)

The construction and study of the spectrum Q involves
equivariant stable homotopy theory. The group G is question
will always be a finite cyclic 2-group.

Notational convention:
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What this talk is about (continued)

The construction and study of the spectrum Q involves
equivariant stable homotopy theory. The group G is question
will always be a finite cyclic 2-group.

Notational convention:
We will denote the cyclic group of order n by
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What this talk is about (continued)

The construction and study of the spectrum Q involves
equivariant stable homotopy theory. The group G is question
will always be a finite cyclic 2-group.

Notational convention:
We will denote the cyclic group of order n by

{ C, Wwhen it acts on something
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What this talk is about (continued)

The construction and study of the spectrum Q involves
equivariant stable homotopy theory. The group G is question
will always be a finite cyclic 2-group.

Notational convention:
We will denote the cyclic group of order n by

C, when it acts on something
Z/n when it is the value of some functor.
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What this talk is about (continued)

The construction and study of the spectrum Q involves
equivariant stable homotopy theory. The group G is question
will always be a finite cyclic 2-group.

Notational convention:
We will denote the cyclic group of order n by

C, when it acts on something
Z/n when it is the value of some functor.

When it appears as an index, we will abbreviate it by n.
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What this talk is about (continued)

The complex cobordism spectrum MU
has a C,-action defined in terms of
complex conjugation.

Plastic explosives

Mike Hill
Mike Hopkins
Doug Ravenel

What this talk is about
The poster

The HHR theorem

The C, case

The slice spectral

sequence

The classical Postnikov
construction

Thecase G = C,
General G
Mackey functors

Fixed point Mackey functors

Mackey functor homotopy
and homology

The category of Mackey
functors

G-CW spectra

Dugger's slice spectral
sequence

The Cy4 case
The spectra Ky and ky
The reduced £, -term



What this talk is about (continued)

a+bi

a-"bi

The complex cobordism spectrum MU
has a Cs-action defined in terms of
complex conjugation.
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What this talk is about (continued)

a+bi

a-"bi

The complex cobordism spectrum MU
has a C,-action defined in terms of
complex conjugation. The resulting
C»-equivariant spectrum is denoted by
MUg. Here are some people who have
studied it.
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What this talk is about

a+bt a-bi

Peter Landweber

(continued)

The complex cobordism spectrum MU
has a Cs-action defined in terms of
complex conjugation. The resulting
C»-equivariant spectrum is denoted by
MUg. Here are some people who have
studied it.
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What this talk is about

a+bt a-bi

o]
Shoro Araki
1930-2005

(continued)

The complex cobordism spectrum MU
has a Cs-action defined in terms of
complex conjugation. The resulting
C»-equivariant spectrum is denoted by
MUg. Here are some people who have
studied it.
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What this talk is about

a+bt a-bi

Shoro Araki
1930-2005

(continued)

The complex cobordism spectrum MU
has a Cs-action defined in terms of
complex conjugation. The resulting
C»-equivariant spectrum is denoted by
MUR. Here are some people who have
studied it.

Igor Kriz and Po Hu
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What this talk is about (continued)

a-"bi

a+bi

The complex cobordism spectrum MU
has a Cs-action defined in terms of
complex conjugation. The resulting
C»-equivariant spectrum is denoted by
MUg. Here are some people who have
studied it.

Igor Kriz and Po Hu

Shoro A}aki Nitu Kitchloo Steve Wilson

1930-2005
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What this talk is about (continued)

For any C,-spectrum X, there is a
Cg-action defined on its 4-fold smash
power X(*). This Cg-spectrum is de-
noted by NSX,
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What this talk is about (continued)

For any C,-spectrum X, there is a
Cg-action defined on its 4-fold smash
power X(*). This Cg-spectrum is de-
noted by NSX, the norm N being a
functor from C,-spectra to Cg-spectra.
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What this talk is about (continued)

For any C,-spectrum X, there is a
Cg-action defined on its 4-fold smash
power X(*). This Cg-spectrum is de-
noted by NSX, the norm N being a
functor from C,-spectra to Cg-spectra.
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What this talk is about (continued)

For any C,-spectrum X, there is a
Cg-action defined on its 4-fold smash
power X(*). This Cg-spectrum is de-
noted by NSX, the norm N being a
functor from C,-spectra to Cg-spectra.

Inverting a certain element D € 7% N8MUg gives a
256-periodic Cg-spectrum Q = D' NS MUg.
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What this talk is about (continued)

For any C,-spectrum X, there is a
Cg-action defined on its 4-fold smash

power X*). This Cg-spectrum is de- \ o .
noted by N§X, the norm N§ being a —— e —

functor from C,-spectra to Cg-spectra.

Inverting a certain element D € 7% N8MUg gives a
256-periodic Cg-spectrum Q = D~'N§MUg. The ordinary
spectrum Q used in the proof of the theorem is the fixed point
spectrum,
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What this talk is about (continued)

For any C,-spectrum X, there is a
Cg-action defined on its 4-fold smash

power X*). This Cg-spectrum is de- \ o .
noted by N§X, the norm N§ being a —— e —

functor from C,-spectra to Cg-spectra.

Inverting a certain element D € 7% N8MUg gives a
256-periodic Cg-spectrum Q = D~'N§MUg. The ordinary
spectrum Q used in the proof of the theorem is the fixed point

spectrum,
Q=Q%,
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What this talk is about (continued)

We developed a new tool for studying such spectra called the
slice spectral sequence.
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What this talk is about (continued)

We developed a new tool for studying such spectra called the
slice spectral sequence. | will say more about it later.
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What this talk is about (continued)

We developed a new tool for studying such spectra called the
slice spectral sequence. | will say more about it later. It is
indispensable for proving the Gap Theorem.
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What this talk is about (continued)

We developed a new tool for studying such spectra called the
slice spectral sequence. | will say more about it later. It is
indispensable for proving the Gap Theorem.

The homotopy groups of Q and Q are inaccessibly
complicated,
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What this talk is about (continued)

We developed a new tool for studying such spectra called the
slice spectral sequence. | will say more about it later. It is
indispensable for proving the Gap Theorem.

The homotopy groups of Q and Q are inaccessibly
complicated, at least for now.
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What this talk is about (continued)

We developed a new tool for studying such spectra called the
slice spectral sequence. | will say more about it later. It is
indispensable for proving the Gap Theorem.

The homotopy groups of Q and Q are inaccessibly
complicated, at least for now.

Analogous constructions with Cg replaced by C, or C, are not
so bad.
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What this talk is about (continued)

We developed a new tool for studying such spectra called the
slice spectral sequence. | will say more about it later. It is
indispensable for proving the Gap Theorem.

The homotopy groups of Q and Q are inaccessibly
complicated, at least for now.

Analogous constructions with Cg replaced by C, or C, are not
so bad. This talk is about those cases.
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The C> case

In the C, case we start with MU itself,
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The C> case

In the C, case we start with MUy itself, invert a 2-dimensional
generator in its equivariant homotopy,
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The C> case

In the C, case we start with MUy itself, invert a 2-dimensional
generator in its equivariant homotopy, and throw out some
redundant higher dimensional generators.
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The C> case

In the C, case we start with MUy itself, invert a 2-dimensional
generator in its equivariant homotopy, and throw out some
redundant higher dimensional generators. The resulting
spectrum is real K-theory Kg,
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The C> case

In the C, case we start with MUy itself, invert a 2-dimensional
generator in its equivariant homotopy, and throw out some
redundant higher dimensional generators. The resulting
spectrum is real K-theory Kgr, meaning the complex K-theory
spectrum K equipped with complex conjugation.
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The C> case

In the C, case we start with MUy itself, invert a 2-dimensional
generator in its equivariant homotopy, and throw out some
redundant higher dimensional generators. The resulting
spectrum is real K-theory Kgr, meaning the complex K-theory
spectrum K equipped with complex conjugation.

It was originally studied by
Atiyah in 1966 in a paper
called K-theory and reality.
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The C> case

In the C, case we start with MUy itself, invert a 2-dimensional
generator in its equivariant homotopy, and throw out some
redundant higher dimensional generators. The resulting
spectrum is real K-theory Kgr, meaning the complex K-theory
spectrum K equipped with complex conjugation.

It was originally studied by
Atiyah in 1966 in a paper
called K-theory and reality.
Its C> fixed point set is the or-
thogonal K-theory spectrum
KO.

Sir Michael Atiyah

Plastic explosives

Mike Hill
Mike Hopkins
Doug Ravenel

%

What this talk is about
The poster
The HHR theorem
The construction of

The slice spectral
sequence

The classical Postnikov
construction

Thecase G = C,
General G

Mackey functors
Fixed point Mackey functors

Mackey functor homotopy
and homology

The category of Mackey
functors

G-CW spectra

Dugger's slice spectral
sequence

The Cy4 case
The spectra Ky and ky
The reduced £, -term



The C> case

In the C, case we start with MUp itself, invert a 2-dimensional

generator in its equivariant homotopy, and throw out some
redundant higher dimensional generators. The resulting
spectrum is real K-theory Kgr, meaning the complex K-theory
spectrum K equipped with complex conjugation.

Sir Michael Atiyah

It was originally studied by
Atiyah in 1966 in a paper
called K-theory and reality.
Its C> fixed point set is the or-
thogonal K-theory spectrum
KO. It is known to be
8-periodic.
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The C, case (continued)

The slice spectral sequence for
Kr was the subject of Dan Dug-
ger’s thesis.

e
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The C, case (continued)

INSIELLS

Daniel

-

The slice spectral sequence for
Kr was the subject of Dan Dug-
ger’s thesis. It gave a novel and
elegant way to understand the
2-torsion in m, KO, the subject of
the real case of the Bott Period-
icity Theorem.
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The slice spectral sequence

The slice spectral sequence is an equivariant analog of the
Postnikov filtration.
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The slice spectral sequence

The slice spectral sequence is an equivariant analog of the
Postnikov filtration. In the latter we filter a spectrum X by its
(n — 1)-connected covers {P,X}.
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The slice spectral sequence

The slice spectral sequence is an equivariant analog of the
Postnikov filtration. In the latter we filter a spectrum X by its
(n—1)-connected covers {P,X}. The cofiber of the map
Pni1X — X is the spectrum obtained from X by killing all
homotopy groups above dimension n.

Plastic explosives

Mike Hill
Mike Hopkins
Doug Ravenel

%

What this talk is about
The poster
The HHR theorem
The construction of
The C, case

The slice spectral
sequence

The case G = C,
General G

Mackey functors
Fixed point Mackey functors

Mackey functor homotopy
and homology

The category of Mackey
functors

G-CW spectra

Dugger's slice spectral
sequence

The Cy4 case
The spectra Ky and ky
The reduced Ej-term



The slice spectral sequence

The slice spectral sequence is an equivariant analog of the
Postnikov filtration. In the latter we filter a spectrum X by its
(n—1)-connected covers {P,X}. The cofiber of the map
Pni1X — X is the spectrum obtained from X by killing all
homotopy groups above dimension n. It is the nth Postnikov
section of X, denoted by P"X.
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The slice spectral sequence

The slice spectral sequence is an equivariant analog of the
Postnikov filtration. In the latter we filter a spectrum X by its
(n—1)-connected covers {P,X}. The cofiber of the map
Pni1X — X is the spectrum obtained from X by killing all
homotopy groups above dimension n. It is the nth Postnikov
section of X, denoted by P"X.

This collection of cofiber sequences leads to what might be
called the Postnikov spectral sequence.

Plastic explosives

Mike Hill
Mike Hopkins
Doug Ravenel

%

What this talk is about
The poster
The HHR theorem
The construction of
The C, case

The slice spectral
sequence

The case G = C,
General G

Mackey functors
Fixed point Mackey functors

Mackey functor homotopy
and homology

The category of Mackey
functors

G-CW spectra

Dugger's slice spectral
sequence

The Cy4 case
The spectra Ky and ky
The reduced Ej-term



The slice spectral sequence

The slice spectral sequence is an equivariant analog of the
Postnikov filtration. In the latter we filter a spectrum X by its
(n—1)-connected covers {P,X}. The cofiber of the map
Pni1X — X is the spectrum obtained from X by killing all
homotopy groups above dimension n. It is the nth Postnikov
section of X, denoted by P"X.

This collection of cofiber sequences leads to what might be
called the Postnikov spectral sequence. There is a good
reason you have may not heard of it before:

Plastic explosives

Mike Hill
Mike Hopkins
Doug Ravenel

%

What this talk is about
The poster
The HHR theorem
The construction of Q
The C, case

The slice spectral
sequence

The case G = C,
General G

Mackey functors
Fixed point Mackey functors

Mackey functor homotopy
and homology

The category of Mackey
functors

G-CW spectra

Dugger's slice spectral
sequence

The Cy4 case
The spectra Ky and ky
The reduced Ej-term



The slice spectral sequence

The slice spectral sequence is an equivariant analog of the
Postnikov filtration. In the latter we filter a spectrum X by its
(n—1)-connected covers {P,X}. The cofiber of the map
Pni1X — X is the spectrum obtained from X by killing all
homotopy groups above dimension n. It is the nth Postnikov
section of X, denoted by P"X.

This collection of cofiber sequences leads to what might be
called the Postnikov spectral sequence. There is a good
reason you have may not heard of it before: it is useless.
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The slice spectral sequence

The slice spectral sequence is an equivariant analog of the
Postnikov filtration. In the latter we filter a spectrum X by its
(n—1)-connected covers {P,X}. The cofiber of the map
Pni1X — X is the spectrum obtained from X by killing all
homotopy groups above dimension n. It is the nth Postnikov
section of X, denoted by P"X.

This collection of cofiber sequences leads to what might be
called the Postnikov spectral sequence. There is a good
reason you have may not heard of it before: it is useless. lIts
input and output are both 7, X.
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The slice spectral sequence (continued)

Nevertheless, note that P,8, the category of (n — 1)-connected
spectra,
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The slice spectral sequence (continued)

Nevertheless, note that P,8, the category of (n — 1)-connected
spectra, is the smallest subcategory of § (the category of all
spectra), containing the set
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The slice spectral sequence (continued)

Nevertheless, note that P,8, the category of (n — 1)-connected
spectra, is the smallest subcategory of § (the category of all
spectra), containing the set

T,={S": m>n}
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The slice spectral sequence (continued)

Nevertheless, note that P,8, the category of (n — 1)-connected
spectra, is the smallest subcategory of § (the category of all
spectra), containing the set

T,={S": m>n}

and closed under mapping cones, infinite wedges and retracts.
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The slice spectral sequence (continued)

Nevertheless, note that P,8, the category of (n — 1)-connected
spectra, is the smallest subcategory of § (the category of all
spectra), containing the set

T,={S": m>n}

and closed under mapping cones, infinite wedges and retracts.
Hence the cofiber of a map between (n — 1)-connected spectra
is again (n — 1)-connected,
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The slice spectral sequence (continued)

Nevertheless, note that P,8, the category of (n — 1)-connected
spectra, is the smallest subcategory of § (the category of all
spectra), containing the set

T,={S": m>n}

and closed under mapping cones, infinite wedges and retracts.
Hence the cofiber of a map between (n — 1)-connected spectra
is again (n — 1)-connected, but the fiber of such a map need
not be.
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The slice spectral sequence for G = C,

Again, P,8, the category of (n — 1)-connected spectra, is

generated by the set

T,={S":m>n}
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The slice spectral sequence for G = C,

Again, P,8, the category of (n — 1)-connected spectra, is
generated by the set

T,={S":m>n}

We need an equivariant generalization of the set T,,.
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The slice spectral sequence for G = C,

Again, P,8, the category of (n — 1)-connected spectra, is
generated by the set
T,={S":m>n}

We need an equivariant generalization of the set T,. For
G = C; consider the following spectra for each integer m.
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The slice spectral sequence for G = C,

Again, P,8, the category of (n — 1)-connected spectra, is
generated by the set

T,={S":m>n}

We need an equivariant generalization of the set T,. For
G = C; consider the following spectra for each integer m.

G.AS" 8™ and S™1.
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The slice spectral sequence for G = C,

Again, P,8, the category of (n — 1)-connected spectra, is
generated by the set

T,={S":m>n}

We need an equivariant generalization of the set T,. For
G = C; consider the following spectra for each integer m.

G.AS" 8™ and S™1.

Here G, A 8™ is the wedge of two m-spheres that are
interchanged by the generator v € Co.
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The slice spectral sequence for G = C,

Again, P,8, the category of (n — 1)-connected spectra, is
generated by the set

T,={S":m>n}

We need an equivariant generalization of the set T,. For
G = C; consider the following spectra for each integer m.

G.AS" 8™ and S™1.

Here G, A 8™ is the wedge of two m-spheres that are
interchanged by the generator v € C>. S™ is the one point
compactification of mp, where p denotes the regular
representation of C,. The latter is underlain by S?™. Its
desuspension is S™ ', underlain by S2™1.

We will call these spectra slice spheres.
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The slice spectral sequence for G = C, (continued)

For G = C. the generalization of

T,={S":m>n}
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The slice spectral sequence for G = C, (continued)

For G = C. the generalization of

T,={S":m>n}

TE={G AS™ m>ntu{S™ “:2m—e>n,e=0,1}.
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The slice spectral sequence for G = C, (continued)

For G = C. the generalization of
T, ={S": m>n}
is
TE={G AS™ m>ntu{S™ “:2m—e>n,e=0,1}.

Let 8¢ denote the category of G-spectra. Define P,8€ to be the
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The slice spectral sequence for G = C, (continued)

For G = C. the generalization of
T, ={S": m>n}
is
TE={G AS™ m>ntu{S™ “:2m—e>n,e=0,1}.

Let 8¢ denote the category of G-spectra. Define P,8€ to be the
subcategory generated by the elements of T¢, i.e., by slice
spheres of dimension > n.
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The slice spectral sequence for G = C, (continued)

For G = C. the generalization of
T, ={S": m>n}
is
TE={G AS™ m>ntu{S™ “:2m—e>n,e=0,1}.

Let 8¢ denote the category of G-spectra. Define P,8€ to be the
subcategory generated by the elements of T¢, i.e., by slice
spheres of dimension > n.

This filtration of 8¢ leads to the slice spectral sequence.
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The slice spectral sequence for G = C, (continued)

For G = C. the generalization of
T, ={S": m>n}
is
TE={G AS™ m>ntu{S™ “:2m—e>n,e=0,1}.
Let 8¢ denote the category of G-spectra. Define P,8€ to be the

subcategory generated by the elements of T¢, i.e., by slice
spheres of dimension > n.

This filtration of 8¢ leads to the slice spectral sequence. It
maps to the classical one under the forgetful functor ¢ — 8.
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The slice spectral sequence for G = C, (continued)

For G = C. the generalization of
T, ={S": m>n}
is
TE={G AS™ m>ntu{S™ “:2m—e>n,e=0,1}.

Let 8¢ denote the category of G-spectra. Define P,8€ to be the
subcategory generated by the elements of T¢, i.e., by slice
spheres of dimension > n.

This filtration of 8¢ leads to the slice spectral sequence. It
maps to the classical one under the forgetful functor ¢ — 8.
For a G-spectrum X it enables us to define G-analogs of
connective covers.
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The slice spectral sequence for G = C, (continued)

For G = C. the generalization of
T, ={S": m>n}
is
TE={G AS™ m>ntu{S™ “:2m—e>n,e=0,1}.
Let 8¢ denote the category of G-spectra. Define P,8€ to be the

subcategory generated by the elements of T¢, i.e., by slice
spheres of dimension > n.

This filtration of 8¢ leads to the slice spectral sequence. It
maps to the classical one under the forgetful functor ¢ — 8.
For a G-spectrum X it enables us to define G-analogs of
connective covers. The nth slice P] X is the cofiber of the map
Ppi1X — PpX
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The slice spectral sequence for general groups G

The slice spectral sequence is more interesting than the
Postnikov spectral sequence for the following reason.
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The slice spectral sequence for general groups G

The slice spectral sequence is more interesting than the
Postnikov spectral sequence for the following reason. The fixed
point set of an n-dimensional slice sphere need not be

(n — 1)-connected.
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The slice spectral sequence for general groups G

The slice spectral sequence is more interesting than the
Postnikov spectral sequence for the following reason. The fixed
point set of an n-dimensional slice sphere need not be

(n — 1)-connected.

The definitions above can be generalized to an arbitrary finite
group G.
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The slice spectral sequence for general groups G

The slice spectral sequence is more interesting than the
Postnikov spectral sequence for the following reason. The fixed
point set of an n-dimensional slice sphere need not be

(n — 1)-connected.

The definitions above can be generalized to an arbitrary finite
group G. For each subgroup H C G, we define

G, N\ STPH—¢
+ H

to be a slice sphere of dimension m|H| — e,
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The slice spectral sequence for general groups G

The slice spectral sequence is more interesting than the
Postnikov spectral sequence for the following reason. The fixed
point set of an n-dimensional slice sphere need not be

(n — 1)-connected.

The definitions above can be generalized to an arbitrary finite
group G. For each subgroup H C G, we define

G, N\ STPH—¢
+ H

to be a slice sphere of dimension m|H| — ¢, where py is the
regular representation of H,
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The slice spectral sequence for general groups G

The slice spectral sequence is more interesting than the
Postnikov spectral sequence for the following reason. The fixed
point set of an n-dimensional slice sphere need not be

(n — 1)-connected.

The definitions above can be generalized to an arbitrary finite
group G. For each subgroup H C G, we define

G, N\ STPH—¢
+ H

to be a slice sphere of dimension m|H| — ¢, where py is the
regular representation of H, mis any integer
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The slice spectral sequence for general groups G

The slice spectral sequence is more interesting than the
Postnikov spectral sequence for the following reason. The fixed
point set of an n-dimensional slice sphere need not be

(n — 1)-connected.

The definitions above can be generalized to an arbitrary finite
group G. For each subgroup H C G, we define

G, N\ STPH—¢
+ H

to be a slice sphere of dimension m|H| — ¢, where py is the
regular representation of H, mis any integer and e is 0 or 1.
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The slice spectral sequence for general groups G

The slice spectral sequence is more interesting than the
Postnikov spectral sequence for the following reason. The fixed
point set of an n-dimensional slice sphere need not be

(n — 1)-connected.

The definitions above can be generalized to an arbitrary finite
group G. For each subgroup H C G, we define

mpy—e
G; A S
to be a slice sphere of dimension m|H| — ¢, where py is the
regular representation of H, mis any integer and e is 0 or 1.
Then we define

TnG:{GJr/F\ISmF’H‘E:m|H|—ezn,Hc G,e:0,1},
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The slice spectral sequence for general groups G

The slice spectral sequence is more interesting than the
Postnikov spectral sequence for the following reason. The fixed
point set of an n-dimensional slice sphere need not be

(n — 1)-connected.

The definitions above can be generalized to an arbitrary finite
group G. For each subgroup H C G, we define

mpy—e
G; A S
to be a slice sphere of dimension m|H| — ¢, where py is the
regular representation of H, mis any integer and e is 0 or 1.
Then we define

TnG:{GJr/F\ISmF’H‘E:m|H|—ezn,Hc G,e:0,1},

the set of slice spheres of dimension > n.
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The slice spectral sequence for general groups G (continued)

We use the resulting filtration of 8¢ to define
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The slice spectral sequence for general groups G (continued)

We use the resulting filtration of 8¢ to define “connective
covers” P, X, “Postnikov sections” P"X
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The slice spectral sequence for general groups G (continued)

We use the resulting filtration of 8¢ to define “connective
covers” P, X, “Postnikov sections” P"X and slices P, X as
before.
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The slice spectral sequence for general groups G (continued)

We use the resulting filtration of 8¢ to define “connective
covers” P, X, “Postnikov sections” P"X and slices P, X as
before.

Determining the slices of a G-spectrum X is not easy in
general.
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The slice spectral sequence for general groups G (continued)

We use the resulting filtration of 8¢ to define “connective
covers” P, X, “Postnikov sections” P"X and slices P, X as
before.

Determining the slices of a G-spectrum X is not easy in
general. The main technical computation of HHR is the
identification of these slices for the spectra of interest in the

paper.
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The slice spectral sequence for general groups G (continued)

We use the resulting filtration of 8¢ to define “connective
covers” P, X, “Postnikov sections” P"X and slices P, X as
before.

Determining the slices of a G-spectrum X is not easy in
general. The main technical computation of HHR is the
identification of these slices for the spectra of interest in the
paper. These spectra are all relatives of MUg.
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The slice spectral sequence for general groups G (continued)

We use the resulting filtration of 8¢ to define “connective
covers” P, X, “Postnikov sections” P"X and slices P, X as
before.

Determining the slices of a G-spectrum X is not easy in
general. The main technical computation of HHR is the
identification of these slices for the spectra of interest in the
paper. These spectra are all relatives of MUg. In each case the
nth slice is contractible for odd n,
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The slice spectral sequence for general groups G (continued)

We use the resulting filtration of 8¢ to define “connective
covers” P, X, “Postnikov sections” P"X and slices P, X as
before.

Determining the slices of a G-spectrum X is not easy in
general. The main technical computation of HHR is the
identification of these slices for the spectra of interest in the
paper. These spectra are all relatives of MUg. In each case the
nth slice is contractible for odd n, and for even n it has the form

PIX = W, A HZ,

Plastic explosives

Mike Hill
Mike Hopkins
Doug Ravenel

%

What this talk is about
The poster
The HHR theorem
The construction of Q
The C, case

The slice spectral
sequence

The classical Postnikov
construction

The case G = C,

Mackey functors
Fixed point Mackey functors

Mackey functor homotopy
and homology

The category of Mackey
functors

G-CW spectra

Dugger's slice spectral
sequence

The Cy4 case
The spectra Ky and ky
The reduced Ej-term



The slice spectral sequence for general groups G (continued)

We use the resulting filtration of 8¢ to define “connective
covers” P, X, “Postnikov sections” P"X and slices P, X as
before.

Determining the slices of a G-spectrum X is not easy in
general. The main technical computation of HHR is the
identification of these slices for the spectra of interest in the
paper. These spectra are all relatives of MUg. In each case the
nth slice is contractible for odd n, and for even n it has the form

PIX = W, A HZ,

where W, is a wedge of n-dimensional slice spheres
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The slice spectral sequence for general groups G (continued)

We use the resulting filtration of 8¢ to define “connective
covers” P, X, “Postnikov sections” P"X and slices P, X as
before.

Determining the slices of a G-spectrum X is not easy in
general. The main technical computation of HHR is the
identification of these slices for the spectra of interest in the
paper. These spectra are all relatives of MUg. In each case the
nth slice is contractible for odd n, and for even n it has the form

PIX = W, A HZ,

where W, is a wedge of n-dimensional slice spheres and HZ is
the integer Eilenberg-Mac Lane spectrum with trivial G-action.
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The slice spectral sequence for general groups G (continued)

If you know the homotopy groups of the fixed point sets of the

slices of X,
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The slice spectral sequence for general groups G (continued)

If you know the homotopy groups of the fixed point sets of the
slices of X, then you can use the slice spectral sequence to
learn the same about X itself.
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The slice spectral sequence for general groups G (continued)

If you know the homotopy groups of the fixed point sets of the
slices of X, then you can use the slice spectral sequence to
learn the same about X itself.

The best way to keep track of this information is to use Mackey
functors.
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The slice spectral sequence for general groups G (continued)

If you know the homotopy groups of the fixed point sets of the
slices of X, then you can use the slice spectral sequence to
learn the same about X itself.

The best way to keep track of this information is to use Mackey
functors. Mackey functors are to equivariant homotopy theory
what abelian groups are to ordinary homotopy theory.
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The slice spectral sequence for general groups G (continued)

If you know the homotopy groups of the fixed point sets of the
slices of X, then you can use the slice spectral sequence to
learn the same about X itself.

The best way to keep track of this information is to use Mackey
functors. Mackey functors are to equivariant homotopy theory
what abelian groups are to ordinary homotopy theory.

Here is another such slogan.
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The slice spectral sequence for general groups G (continued)

If you know the homotopy groups of the fixed point sets of the
slices of X, then you can use the slice spectral sequence to
learn the same about X itself.

The best way to keep track of this information is to use Mackey
functors. Mackey functors are to equivariant homotopy theory
what abelian groups are to ordinary homotopy theory.

Here is another such slogan. Indecomposable finite G-sets are
the equivariant analog of points in ordinary homotopy theory.

Plastic explosives

Mike Hill
Mike Hopkins
Doug Ravenel

%

What this talk is about
The poster
The HHR theorem
The construction of
The C, case

The slice spectral
sequence

The classical Postnikov
construction

The case G = C,

Mackey functors
Fixed point Mackey functors

Mackey functor homotopy
and homology

The category of Mackey
functors

G-CW spectra

Dugger's slice spectral
sequence

The Cy4 case
The spectra Ky and ky
The reduced Ej-term



The slice spectral sequence for general groups G (continued)

If you know the homotopy groups of the fixed point sets of the
slices of X, then you can use the slice spectral sequence to
learn the same about X itself.

The best way to keep track of this information is to use Mackey
functors. Mackey functors are to equivariant homotopy theory
what abelian groups are to ordinary homotopy theory.

Here is another such slogan. Indecomposable finite G-sets are
the equivariant analog of points in ordinary homotopy theory.

I will explain what a Mackey functor is shortly.
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The slice spectral sequence for general groups G (continued)

If you know the homotopy groups of the fixed point sets of the
slices of X, then you can use the slice spectral sequence to
learn the same about X itself.

The best way to keep track of this information is to use Mackey
functors. Mackey functors are to equivariant homotopy theory
what abelian groups are to ordinary homotopy theory.

Here is another such slogan. Indecomposable finite G-sets are
the equivariant analog of points in ordinary homotopy theory.

| will explain what a Mackey functor is shortly. For the moment
suffice it to say that they form an abelian category.
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The slice spectral sequence for general groups G (continued)

If you know the homotopy groups of the fixed point sets of the
slices of X, then you can use the slice spectral sequence to
learn the same about X itself.

The best way to keep track of this information is to use Mackey
functors. Mackey functors are to equivariant homotopy theory
what abelian groups are to ordinary homotopy theory.

Here is another such slogan. Indecomposable finite G-sets are
the equivariant analog of points in ordinary homotopy theory.

| will explain what a Mackey functor is shortly. For the moment
suffice it to say that they form an abelian category. This means
one can have a spectral sequence of Mackey functors.

Plastic explosives

Mike Hill
Mike Hopkins
Doug Ravenel

%

What this talk is about
The poster
The HHR theorem
The construction of
The C, case

The slice spectral
sequence

The classical Postnikov
construction

The case G = C,

Mackey functors
Fixed point Mackey functors

Mackey functor homotopy
and homology

The category of Mackey
functors

G-CW spectra

Dugger's slice spectral
sequence

The Cy4 case
The spectra Ky and ky
The reduced Ej-term



The slice spectral sequence for general groups G (continued)

If you know the homotopy groups of the fixed point sets of the
slices of X, then you can use the slice spectral sequence to
learn the same about X itself.

The best way to keep track of this information is to use Mackey
functors. Mackey functors are to equivariant homotopy theory
what abelian groups are to ordinary homotopy theory.

Here is another such slogan. Indecomposable finite G-sets are
the equivariant analog of points in ordinary homotopy theory.

| will explain what a Mackey functor is shortly. For the moment
suffice it to say that they form an abelian category. This means
one can have a spectral sequence of Mackey functors.

God help us!
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What is a Mackey functor?

Fix a group G.
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What is a Mackey functor?

Fix a group G. Assume for simplicity that it is finite and abelian.
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What is a Mackey functor?

Fix a group G. Assume for simplicity that it is finite and abelian.
The examples of interest to us are finite cyclic 2-groups.
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What is a Mackey functor?

Fix a group G. Assume for simplicity that it is finite and abelian.

The examples of interest to us are finite cyclic 2-groups.

Formally a Mackey functor M assigns an abelian group to
every finite G-set
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What is a Mackey functor?

Fix a group G. Assume for simplicity that it is finite and abelian.

The examples of interest to us are finite cyclic 2-groups.

Formally a Mackey functor M assigns an abelian group to
every finite G-set and is additive on disjoint unions,
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What is a Mackey functor?

Fix a group G. Assume for simplicity that it is finite and abelian.

The examples of interest to us are finite cyclic 2-groups.

Formally a Mackey functor M assigns an abelian group to
every finite G-set and is additive on disjoint unions,

M(ATLB) = M(A) & M(B).
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What is a Mackey functor?

Fix a group G. Assume for simplicity that it is finite and abelian.

The examples of interest to us are finite cyclic 2-groups.

Formally a Mackey functor M assigns an abelian group to
every finite G-set and is additive on disjoint unions,

M(ATLB) = M(A) & M(B).

Hence M is determined by its values on G/H for subgroups H.
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What is a Mackey functor?

Fix a group G. Assume for simplicity that it is finite and abelian.

The examples of interest to us are finite cyclic 2-groups.

Formally a Mackey functor M assigns an abelian group to
every finite G-set and is additive on disjoint unions,

M(ATLB) = M(A) & M(B).

Hence M is determined by its values on G/H for subgroups H.
It is both covariant and contravariant.
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What is a Mackey functor?

Fix a group G. Assume for simplicity that it is finite and abelian.

The examples of interest to us are finite cyclic 2-groups.

Formally a Mackey functor M assigns an abelian group to
every finite G-set and is additive on disjoint unions,

M(ATLB) = M(A) & M(B).

Hence M is determined by its values on G/H for subgroups H.
It is both covariant and contravariant. Given subgroups

KcHcG
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What is a Mackey functor?

Fix a group G. Assume for simplicity that it is finite and abelian.

The examples of interest to us are finite cyclic 2-groups.

Formally a Mackey functor M assigns an abelian group to
every finite G-set and is additive on disjoint unions,

M(ATLB) = M(A) & M(B).

Hence M is determined by its values on G/H for subgroups H.
It is both covariant and contravariant. Given subgroups

KcHcG

we get maps
M(G/H)
)\TrZ
M(G/K),

called and transfers,
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What is a Mackey functor?

Fix a group G. Assume for simplicity that it is finite and abelian.

The examples of interest to us are finite cyclic 2-groups.

Formally a Mackey functor M assigns an abelian group to
every finite G-set and is additive on disjoint unions,

M(ATLB) = M(A) & M(B).

Hence M is determined by its values on G/H for subgroups H.
It is both covariant and contravariant. Given subgroups

KcHcG

we get maps
M(G/H)
)\TrZ
M(G/K),

called and transfers, with certain properties.
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What is a Mackey functor? (continued)

Rather than spell out these properties, we give two instructive

examples.
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What is a Mackey functor? (continued)

Rather than spell out these properties, we give two instructive

examples.

Example 1. Let ZG denote the integral group ring of G,
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What is a Mackey functor? (continued)

Rather than spell out these properties, we give two instructive

examples.

Example 1. Let ZG denote the integral group ring of G, and let
M be ZG-module.
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What is a Mackey functor? (continued)

Rather than spell out these properties, we give two instructive

examples.

Example 1. Let ZG denote the integral group ring of G, and let
M be ZG-module. Associated with it is the fixed point Mackey
functor M defined by
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What is a Mackey functor? (continued)

Rather than spell out these properties, we give two instructive
examples.

Example 1. Let ZG denote the integral group ring of G, and let
M be ZG-module. Associated with it is the fixed point Mackey
functor M defined by

M(G/H) = M", the fixed point set of H in M.
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What is a Mackey functor? (continued)

Rather than spell out these properties, we give two instructive
examples.

Example 1. Let ZG denote the integral group ring of G, and let

M be ZG-module. Associated with it is the fixed point Mackey
functor M defined by

M(G/H) = M", the fixed point set of H in M.
Then the restriction map
MH
MK

is obvious:
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What is a Mackey functor? (continued)

Rather than spell out these properties, we give two instructive
examples.

Example 1. Let ZG denote the integral group ring of G, and let
M be ZG-module. Associated with it is the fixed point Mackey
functor M defined by

M(G/H) = M", the fixed point set of H in M.
Then the restriction map
MH
MK

is obvious: an element of M that is fixed by H is also fixed by
the smaller subgroup K.
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What is a Mackey functor? (continued)

Rather than spell out these properties, we give two instructive
examples.

Example 1. Let ZG denote the integral group ring of G, and let

M be ZG-module. Associated with it is the fixed point Mackey

functor M defined by
M(G/H) = M", the fixed point set of H in M.

Then the restriction map
MH
MK
is obvious: an element of M that is fixed by H is also fixed by

the smaller subgroup K. In this example the restriction map is
one-to-one,
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What is a Mackey functor? (continued)

Rather than spell out these properties, we give two instructive
examples.

Example 1. Let ZG denote the integral group ring of G, and let

M be ZG-module. Associated with it is the fixed point Mackey

functor M defined by
M(G/H) = M", the fixed point set of H in M.

Then the restriction map
MH
MK
is obvious: an element of M that is fixed by H is also fixed by

the smaller subgroup K. In this example the restriction map is
one-to-one, but in general it need not be.
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What is a Mackey functor? (continued)
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Example 2. Let X by a G-spectrum and n € Z. Then its nth Doug Ravenel
equivariant homotopy group is the Mackey functor defined by !
EnX(G/H) = ﬂ-nXHa What this talk is about
The poster
the nth ordinary homotopy group of the fixed point spectrum T ot 2
XH. The restriction map for K ¢ H ¢ Gis induced by the e Ca cese
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that induces the desired map of ordinary homotopy groups.



The category of Mackey functors

The category of Mackey functors is abelian, with kernels and
cokernels defined in the obvious way.
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The category of Mackey functors

The category of Mackey functors is abelian, with kernels and
cokernels defined in the obvious way. In the first example
above we defined a functor to it from the category of
ZG-modules. This functor is not exact.

Plastic explosives

Mike Hill
Mike Hopkins
Doug Ravenel

%

What this talk is about
The poster
The HHR theorem
The construction of
The C, case

The slice spectral

sequence
The classical Postnikov
construction
The case G = C,
General G

Mackey functors

Fixed point Mackey functors

Mackey functor homotopy
and homology

G-CW spectra

Dugger's slice spectral
sequence

The Cy4 case
The spectra Ky and ky
The reduced Ej-term



The category of Mackey functors

The category of Mackey functors is abelian, with kernels and
cokernels defined in the obvious way. In the first example
above we defined a functor to it from the category of
ZG-modules. This functor is not exact. Given a module map

¢ : M — N, the kernel and cokernel of the Mackey functor map

¢
M%N

need not be fixed point Mackey functors.
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The category of Mackey functors

The category of Mackey functors is abelian, with kernels and
cokernels defined in the obvious way. In the first example
above we defined a functor to it from the category of
ZG-modules. This functor is not exact. Given a module map

¢ : M — N, the kernel and cokernel of the Mackey functor map

¢
M%N

need not be fixed point Mackey functors. This is actually a
good thing.
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The category of Mackey functors

The category of Mackey functors is abelian, with kernels and
cokernels defined in the obvious way. In the first example
above we defined a functor to it from the category of
ZG-modules. This functor is not exact. Given a module map

¢ : M — N, the kernel and cokernel of the Mackey functor map

¢
M%N

need not be fixed point Mackey functors. This is actually a
good thing.

An example is cokernel of the map

+
ZG——2G

where G = C, with generator ~.
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The category of Mackey functors

The category of Mackey functors is abelian, with kernels and
cokernels defined in the obvious way. In the first example
above we defined a functor to it from the category of
ZG-modules. This functor is not exact. Given a module map

¢ : M — N, the kernel and cokernel of the Mackey functor map

¢
M%N

need not be fixed point Mackey functors. This is actually a
good thing.

An example is cokernel of the map

+
ZG——2G

where G = C, with generator ~.

Consider this a homework problem.
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The category of Mackey functors (continued)
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The category of Mackey functors (continued)

We will denote Mackey functors M for G = C, and G = C4 by
diagrams
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The category of Mackey functors (continued)

We will denote Mackey functors M for G = C, and G = C4 by

diagrams
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The category of Mackey functors (continued)

We will denote Mackey functors M for G = C, and G = C4 by
diagrams

M(G/G)

Res;{ Mr:

and  M(G/C)
Res?( I
M(G/e)
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The category of Mackey functors (continued)
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We will denote Mackey functors M for G = C, and G = C4 by Doug Ravenel

diagrams !
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G-CW spectra

A G-CW spectrum is built out of “cells” of the form

Plastic explosives

Mike Hill
Mike Hopkins
Doug Ravenel

What this talk is about
The poster
The HHR theorem
The construction of
The C, case

The slice spectral

sequence
The classical Postnikov
construction

Thecase G = C,
General G

Mackey functors
Fixed point Mackey functors
Mackey functor homotopy
and homology

The category of Mackey
functors

Dugger's slice spectral
sequence

The Cy4 case
The spectra Ky and ky
The reduced E,-term



G-CW spectra

A G-CW spectrum is built out of “cells” of the form

G+QD”

for a subgroup H C G.
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G-CW spectra

A G-CW spectrum is built out of “cells” of the form

G, ﬁ D" for a subgroup H c G.

Its boundary is a wedge of |G/H)| copies of S"~' which are
permuted by G and fixed by H.
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G-CW spectra

A G-CW spectrum is built out of “cells” of the form

G, ﬁ D" for a subgroup H c G.

Its boundary is a wedge of |G/H)| copies of S"~' which are
permuted by G and fixed by H. Attaching maps are equivariant.
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G-CW spectra

A G-CW spectrum is built out of “cells” of the form

G, ﬁ D" for a subgroup H c G.

Its boundary is a wedge of |G/H)| copies of S"~' which are

permuted by G and fixed by H. Attaching maps are equivariant.

Such a spectrum X has a cellular chain complex C,(X) of
ZG-modules.

Plastic explosives

Mike Hill
Mike Hopkins
Doug Ravenel

%

What this talk is about
The poster
The HHR theorem
The construction of
The C, case

The slice spectral

sequence
The classical Postnikov
construction
The case G = C,
General G

Mackey functors

Fixed point Mackey functors

Mackey functor homotopy
and homology

The category of Mackey
functors

Dugger's slice spectral
sequence

The Cy4 case
The spectra Ky and ky
The reduced Ej-term



G-CW spectra

A G-CW spectrum is built out of “cells” of the form

G, ﬁ D" for a subgroup H c G.

Its boundary is a wedge of |G/H)| copies of S"~' which are

permuted by G and fixed by H. Attaching maps are equivariant.

Such a spectrum X has a cellular chain complex C,(X) of
ZG-modules. A cell of the above form gives an additive
summand of C,(X) of the form ZG/H.
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G-CW spectra

A G-CW spectrum is built out of “cells” of the form

G, ﬁ D" for a subgroup H c G.

Its boundary is a wedge of |G/H)| copies of S"~' which are

permuted by G and fixed by H. Attaching maps are equivariant.

Such a spectrum X has a cellular chain complex C,(X) of
ZG-modules. A cell of the above form gives an additive
summand of C,(X) of the form ZG/H.

The homology of this chain complex is the underlying
homology of X,
HiX =7 (X A HZ),
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G-CW spectra

A G-CW spectrum is built out of “cells” of the form

G, ﬁ D" for a subgroup H c G.

Its boundary is a wedge of |G/H)| copies of S"~' which are

permuted by G and fixed by H. Attaching maps are equivariant.

Such a spectrum X has a cellular chain complex C,(X) of
ZG-modules. A cell of the above form gives an additive
summand of C,(X) of the form ZG/H.

The homology of this chain complex is the underlying
homology of X,
HiX =7 (X A HZ),

which is a ZG-module.
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G-CW spectra (continued)

Applying the fixed point functor to C, X gives us a chain
complex C, X of fixed point Mackey functors.

Plastic explosives

Mike Hill
Mike Hopkins
Doug Ravenel

What this talk is about
The poster
The HHR theorem
The construction of
The C, case

The slice spectral
sequence

The classical Postnikov
construction

Thecase G = C,
General G

Mackey functors
Fixed point Mackey functors

Mackey functor homotopy
and homology

The category of Mackey
functors

Dugger's slice spectral
sequence

The Cy4 case
The spectra Ky and ky
The reduced £, -term



G-CW spectra (continued)

Applying the fixed point functor to C, X gives us a chain
complex C, X of fixed point Mackey functors. Its homology is a
graded Mackey functor.
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G-CW spectra (continued)

Applying the fixed point functor to C, X gives us a chain
complex C, X of fixed point Mackey functors. Its homology is a
graded Mackey functor. It may not be a graded fixed point
Mackey functor,
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G-CW spectra (continued)

Applying the fixed point functor to C, X gives us a chain
complex C, X of fixed point Mackey functors. Its homology is a
graded Mackey functor. It may not be a graded fixed point
Mackey functor, because the fixed point functor on ZG-modules

is not exact.
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G-CW spectra (continued)

Applying the fixed point functor to C. X gives us a chain
complex C, X of fixed point Mackey functors. Its homology is a
graded Mackey functor. It may not be a graded fixed point
Mackey functor, because the fixed point functor on ZG-modules
is not exact. What does this graded Mackey functor tell us?
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G-CW spectra (continued)

Applying the fixed point functor to C. X gives us a chain
complex C, X of fixed point Mackey functors. Its homology is a
graded Mackey functor. It may not be a graded fixed point
Mackey functor, because the fixed point functor on ZG-modules
is not exact. What does this graded Mackey functor tell us?

Warning: Fixed points do not respect smash products.
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G-CW spectra (continued)

Applying the fixed point functor to C. X gives us a chain
complex C, X of fixed point Mackey functors. Its homology is a
graded Mackey functor. It may not be a graded fixed point
Mackey functor, because the fixed point functor on ZG-modules
is not exact. What does this graded Mackey functor tell us?

Warning: Fixed points do not respect smash products. This
means that for K C G,

H. XK
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G-CW spectra (continued)

Applying the fixed point functor to C. X gives us a chain
complex C, X of fixed point Mackey functors. Its homology is a
graded Mackey functor. It may not be a graded fixed point
Mackey functor, because the fixed point functor on ZG-modules
is not exact. What does this graded Mackey functor tell us?

Warning: Fixed points do not respect smash products. This
means that for K C G,

H. XK = 7 (XK A HZ)
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G-CW spectra (continued)

Applying the fixed point functor to C. X gives us a chain
complex C, X of fixed point Mackey functors. Its homology is a
graded Mackey functor. It may not be a graded fixed point
Mackey functor, because the fixed point functor on ZG-modules
is not exact. What does this graded Mackey functor tell us?

Warning: Fixed points do not respect smash products. This
means that for K C G,

H XK = 7, (XK A HZ) = . (XK A HZK)
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G-CW spectra (continued)

Applying the fixed point functor to C. X gives us a chain
complex C, X of fixed point Mackey functors. Its homology is a
graded Mackey functor. It may not be a graded fixed point
Mackey functor, because the fixed point functor on ZG-modules
is not exact. What does this graded Mackey functor tell us?

Warning: Fixed points do not respect smash products. This
means that for K C G,

H XK = 7, (XK A HZ) = . (XK A HZK)

is not the same as
™ (X A HZ)K) .
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G-CW spectra (continued)

Applying the fixed point functor to C. X gives us a chain
complex C, X of fixed point Mackey functors. Its homology is a
graded Mackey functor. It may not be a graded fixed point
Mackey functor, because the fixed point functor on ZG-modules
is not exact. What does this graded Mackey functor tell us?

Warning: Fixed points do not respect smash products. This
means that for K C G,

H XK = 7, (XK A HZ) = . (XK A HZK)

is not the same as
™ (X A HZ)K) .

It turns out that H,.(C,X)(G/K) is the latter group.
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Plastic explosives

G-CW spectra (continued)
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Slices again

Recall that for the G-spectra we are interested in,
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Slices again

Recall that for the G-spectra we are interested in, each slice
has the form W A HZ, where W is a wedge of slice spheres.
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Slices again

Recall that for the G-spectra we are interested in, each slice
has the form W A HZ, where W is a wedge of slice spheres.
For such a W it is easy to work out the structure of its
equivariant cellular chain complex C, W.
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Slices again
Recall that for the G-spectra we are interested in, each slice

has the form W A HZ, where W is a wedge of slice spheres.

For such a W it is easy to work out the structure of its
equivariant cellular chain complex C. W. We know that

H.(C,W) = =, W A HZ,
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Slices again

Recall that for the G-spectra we are interested in, each slice

has the form W A HZ, where W is a wedge of slice spheres.

For such a W it is easy to work out the structure of its
equivariant cellular chain complex C. W. We know that

H.(C,W) = =, W A HZ,

which is the input for the slice spectral sequence.
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Slices again

Recall that for the G-spectra we are interested in, each slice

has the form W A HZ, where W is a wedge of slice spheres.

For such a W it is easy to work out the structure of its
equivariant cellular chain complex C. W. We know that

H.(C,W) =z, W A HZ,
which is the input for the slice spectral sequence.

For example suppose G = C> and W = §™°,
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Slices again

Recall that for the G-spectra we are interested in, each slice
has the form W A HZ, where W is a wedge of slice spheres.
For such a W it is easy to work out the structure of its
equivariant cellular chain complex C. W. We know that

H.(C,W) =z, W A HZ,
which is the input for the slice spectral sequence.

For example suppose G = C, and W = §™. Then we find that

CiW =
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Slices again

Recall that for the G-spectra we are interested in, each slice
has the form W A HZ, where W is a wedge of slice spheres.
For such a W it is easy to work out the structure of its
equivariant cellular chain complex C. W. We know that

H.(C.W) =1, W A HZ,
which is the input for the slice spectral sequence.
For example suppose G = C, and W = §™. Then we find that

Z=2ZG/(1—~) fori=m
CiWw =
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Slices again

Recall that for the G-spectra we are interested in, each slice
has the form W A HZ, where W is a wedge of slice spheres.
For such a W it is easy to work out the structure of its
equivariant cellular chain complex C. W. We know that

H.(C.W) =1, W A HZ,
which is the input for the slice spectral sequence.
For example suppose G = C, and W = §™. Then we find that

Z=2ZG/(1—~) fori=m
CW=<( ZG for |m| < |i] < |2m| and mi > 0
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Slices again

Recall that for the G-spectra we are interested in, each slice
has the form W A HZ, where W is a wedge of slice spheres.
For such a W it is easy to work out the structure of its
equivariant cellular chain complex C. W. We know that

which is the input for the slice spectral sequence.

For example suppose G = C, and W = §™. Then we find that

CiW =

Z=2G/(1-7)

H.(C,W) = =, W A HZ,

fori=m

for |m| < |i] < |2m| and mi > 0

otherwise.
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Slices again

Recall that for the G-spectra we are interested in, each slice
has the form W A HZ, where W is a wedge of slice spheres.
For such a W it is easy to work out the structure of its
equivariant cellular chain complex C. W. We know that

H.(C,W) =z, W A HZ,
which is the input for the slice spectral sequence.

For example suppose G = C, and W = §™. Then we find that

Z=2ZG/(1—~) fori=m
CW=<( ZG for |m| < |i] < |2m| and mi > 0
0 otherwise.

There is a unique ZG-linear boundary operator giving the
required homology,

H.(C.W) = H,S*™,
and it is easy to work out the graded Mackey functor H.(C, W).
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Classical K-theory and Dugger’s slice spectral sequence

Recall that

W*MU:Z[X1,X2,...]

where x; € ;.
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Classical K-theory and Dugger’s slice spectral sequence

Recall that
MU = Z[x1, X2,...] Where x; € my;.
Let G = C.. In the G-spectrum MUg, the maps x; : S% — MU

for i > 0 get replaced by maps X; : S” — MUg. They represent
elements in the RO(G)-graded homotopy of MUg.
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Classical K-theory and Dugger’s slice spectral sequence

Recall that
MU = Z[x1, X2,...] Where x; € my;.
Let G = C.. In the G-spectrum MUg, the maps x; : S% — MU

for i > 0 get replaced by maps X; : S” — MUg. They represent
elements in the RO(G)-graded homotopy of MUg.

It is known that if we invert Xy and kill suitably chosen
generators Xx; for i > 1,
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Classical K-theory and Dugger’s slice spectral sequence

Recall that
MU = Z[x1, X2,...] Where x; € my;.

Let G = C,. In the G-spectrum MUR,' the maps x; : S? — MU
for i > 0 get replaced by maps X; : S — MUgr. They represent
elements in the RO(G)-graded homotopy of MUg.

It is known that if we invert Xy and kill suitably chosen
generators X; for i > 1, we get Atiyah’s spectrum Kg, which is
underlain by the classical complex K-theory spectrum K.
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Classical K-theory and Dugger’s slice spectral sequence

Recall that
MU = Z[x1, X2,...] Where x; € my;.

Let G = C,. In the G-spectrum MUR,' the maps x; : S? — MU
for i > 0 get replaced by maps X; : S — MUgr. They represent
elements in the RO(G)-graded homotopy of MUg.

It is known that if we invert Xy and kill suitably chosen
generators X; for i > 1, we get Atiyah’s spectrum Kg, which is
underlain by the classical complex K-theory spectrum K. Kg is
known to be 8-periodic and to have KO as its fixed point set.
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Classical K-theory and Dugger’s slice spectral sequence

Recall that
MU = Z[x1, X2,...] Where x; € my;.

Let G = C,. In the G-spectrum MUR,' the maps x; : S? — MU
for i > 0 get replaced by maps X; : S — MUgr. They represent
elements in the RO(G)-graded homotopy of MUg.

It is known that if we invert Xy and kill suitably chosen
generators X; for i > 1, we get Atiyah’s spectrum Kg, which is
underlain by the classical complex K-theory spectrum K. Kg is
known to be 8-periodic and to have KO as its fixed point set.

We also know that its 2mth slice is S™ A HZ for each integer
m.
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Classical K-theory and Dugger’s slice spectral sequence

Recall that
MU = Z[x1, X2,...] Where x; € my;.

Let G = C,. In the G-spectrum MUR,' the maps x; : S? — MU
for i > 0 get replaced by maps X; : S — MUgr. They represent
elements in the RO(G)-graded homotopy of MUg.

It is known that if we invert Xy and kill suitably chosen
generators X; for i > 1, we get Atiyah’s spectrum Kg, which is
underlain by the classical complex K-theory spectrum K. Kg is
known to be 8-periodic and to have KO as its fixed point set.

We also know that its 2mth slice is S™ A HZ for each integer
m. The oddly indexed slices are contractible.
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Classical K-theory and Dugger’s slice spectral sequence

Recall that
MU = Z[x1, X2,...] Where x; € my;.

Let G = C,. In the G-spectrum MUR,' the maps x; : S? — MU
for i > 0 get replaced by maps X; : S — MUgr. They represent
elements in the RO(G)-graded homotopy of MUg.

It is known that if we invert Xy and kill suitably chosen
generators X; for i > 1, we get Atiyah’s spectrum Kg, which is
underlain by the classical complex K-theory spectrum K. Kg is
known to be 8-periodic and to have KO as its fixed point set.

We also know that its 2mth slice is S™ A HZ for each integer
m. The oddly indexed slices are contractible. This enables us
to compute the E,-term of the slice spectral sequence
converging to =, Kg.
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Classical K-theory and Dugger’s slice spectral sequence
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The C, case

We start with the C4-spectrum N3 MUg.
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The C, case

We start with the C4-spectrum Nj MUg. Its underlying
homotopy is

W:NgMUR =m.MUANMU= Z[X,’,y,' > O] where Xi, Yi € moj
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The C, case

We start with the C4-spectrum Nj MUg. Its underlying
homotopy is

W:NgMUR =m.MUANMU= Z[X,’,y,' > O] where Xi, Yi € moj

The action of a generator vy € G= Cy is
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The C, case

We start with the C4-spectrum Nj MUg. Its underlying
homotopy is

W:NgMUR =m.MUANMU= Z[X,’,y,' > O] where Xi, Yi € moj
The action of a generator vy € G= Cy is

(i) = (=1)'x;.
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The C, case

We start with the C4-spectrum Nj MUg. Its underlying
homotopy is

WngMUR =m.MUANMU= Z[X,’,y,' > O] where Xi, Yi € moj
The action of a generator vy € G= Cy is

vxi)=y; and () = (=1)x;.

Then we invert

D= (x1y1 )2 (*5(X14 + Y14) + 19(X1Y1)2 +20x1 4 ()(12 - Y12))
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The C, case

We start with the C4-spectrum Nj MUg. Its underlying
homotopy is

WngMUR =m.MUANMU= Z[X,’,y,' > O] where Xi, Yi € moj
The action of a generator vy € G= Cy is

vxi)=y; and () = (=1)x;.

Then we invert
D = (x1y1 )2 (*5(X14 + Y14) + 19(X1Y1)2 +20x1 4 ()(12 - Y12))

and kill suitably chosen x; and y; for i > 1.
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The C, case

We start with the C4-spectrum Nj MUg. Its underlying
homotopy is

WngMUR =m.MUANMU= Z[X,’,y,' > O] where Xi, Yi € moj
The action of a generator vy € G= Cy is

vxi)=y; and () = (=1)x;.

Then we invert
D = (x1y1 )2 (*5(X14 + Y14) + 19(X1Y1)2 +20x1 4 ()(12 - Y12))

and kill suitably chosen x; and y; for i > 1. We denote the
resulting C4-spectrum by Ky.
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The C, case

We start with the C4-spectrum Nj MUg. Its underlying
homotopy is

WngMUR =m.MUANMU= Z[X,’,y,' > O] where Xi, Yi € moj
The action of a generator vy € G= Cy is

vxi)=y; and () = (=1)x;.

Then we invert
D = (x1y1 )2 (*5(X14 + Y14) + 19(X1Y1)2 +20x1 4 ()(12 - Y12))

and kill suitably chosen x; and y; for i > 1. We denote the
resulting C4-spectrum by Ky. It is 32-periodic.
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The C, case

We start with the C4-spectrum Nj MUg. Its underlying
homotopy is

WngMUR =m.MUANMU= Z[X,’,y,' > O] where Xi, Yi € moj
The action of a generator vy € G= Cy is

vxi)=y; and () = (=1)x;.

Then we invert
D = (x1y1 )2 (*5(X14 + Y14) + 19(X1Y1)2 +20x1 4 ()(12 - Y12))

and kill suitably chosen x; and y; for i > 1. We denote the
resulting Cs-spectrum by Ky. It is 32-periodic. It has a
connective version ky that we get without inverting D.
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Relation to TMF

The Cs-spectrum Ky is known to be equivalent to TMF;(5),
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Relation to TMF

The Cs-spectrum Ky is known to be equivalent to TMF;(5),
which has been studied by Behrens and Ormsby.
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Relation to TMF

The Cs-spectrum Ky is known to be equivalent to TMF;(5),
which has been studied by Behrens and Ormsby.

It is defined as follows.
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Relation to TMF

The Cs-spectrum Ky is known to be equivalent to TMF;(5),
which has been studied by Behrens and Ormsby.

_ i L
£ da
It is defined as follows. The spectrum TMF is derived from the
moduli stack of elliptic curves M.
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Relation to TMF

The Cs-spectrum Ky is known to be equivalent to TMF;(5),
which has been studied by Behrens and Ormsby.

It is defined as follows. The spectrum TMF is derived from the
moduli stack of elliptic curves M. Roughly speaking a point on
M corresponds to an elliptic curve C.
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Relation to TMF

The Cs-spectrum Ky is known to be equivalent to TMF;(5),
which has been studied by Behrens and Ormsby.

It is defined as follows. The spectrum TMF is derived from the
moduli stack of elliptic curves M. Roughly speaking a point on
M corresponds to an elliptic curve C.

One can consider the moduli stack of M4(5) for which each
point is an elliptic curve C equipped with a point P of order 5.
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Relation to TMF

The Cs-spectrum Ky is known to be equivalent to TMF;(5),
which has been studied by Behrens and Ormsby.

It is defined as follows. The spectrum TMF is derived from the
moduli stack of elliptic curves M. Roughly speaking a point on
M corresponds to an elliptic curve C.

One can consider the moduli stack of M4(5) for which each
point is an elliptic curve C equipped with a point P of order 5.
The group C4 = (Z/5)* acts on it by sending each P to
appropriate powers.
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Relation to TMF

The Cs-spectrum Ky is known to be equivalent to TMF;(5),
which has been studied by Behrens and Ormsby.

It is defined as follows. The spectrum TMF is derived from the
moduli stack of elliptic curves M. Roughly speaking a point on
M corresponds to an elliptic curve C.

One can consider the moduli stack of M4(5) for which each
point is an elliptic curve C equipped with a point P of order 5.
The group C4 = (Z/5)* acts on it by sending each P to
appropriate powers. The orbit stack My (5) classifies elliptic
curves equipped with subgroups of order 5.
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Relation to TMF (continued)

There are corresponding spectra TMF1(5) and TMF(5).
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Relation to TMF (continued)

There are corresponding spectra TMF;(5) and TMFy(5). The
forgetful maps of stacks

Mi(5) — = Mo(5) ——= M
I
M1(5)/Cs
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Relation to TMF (continued)

There are corresponding spectra TMF;(5) and TMFy(5). The
forgetful maps of stacks

Mi(5) — = Mo(5) ——= M
I
M1(5)/Cs

lead to maps of spectra
TMF;(5) <—— TMFo(5) <—— TMF

Il
TMF; (5)C
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Relation to TMF (continued)

There are corresponding spectra TMF;(5) and TMFy(5). The
forgetful maps of stacks

Mi(5) — = Mo(5) ——= M
I
M1(5)/Cs

lead to maps of spectra
TMF;(5) <—— TMFo(5) <—— TMF
Il

TMF; (5)C

The C4-spectrum TMF;(5) is equivariantly equivalent to our
Ku.
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Relation to TMF (continued)

There are corresponding spectra TMF;(5) and TMFy(5). The
forgetful maps of stacks

Mi(5) — = Mo(5) ——= M
I
M1(5)/Cs

lead to maps of spectra
TMF;(5) <—— TMFo(5) <—— TMF
Il

TMF; (5)C

The C4-spectrum TMF;(5) is equivariantly equivalent to our
Ku. This makes the fixed point spectrum KHC“ a TMF-module.
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Relation to TMF (continued)

There are corresponding spectra TMF;(5) and TMFy(5). The
forgetful maps of stacks

Mi(5) — = Mo(5) ——= M
I
M1(5)/Cs

lead to maps of spectra

TMF; (5) < TMFy(5) ~—— TMF
[l
TMF; (5)C

The C4-spectrum TMF;(5) is equivariantly equivalent to our
Ku. This makes the fixed point spectrum KHC“ a TMF-module.
This is helpful for understanding its homotopy.
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Back to Ky and ky
LetG=Csand GD G = Co.
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Back to Ky and ky

Let G = C4 and G D G’ = C,. Denote their regular
representations by ps and p».
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Back to Ky and ky

Let G = C4 and G D G’ = C,. Denote their regular
representations by ps and p».

To describe the slices of ky and Ky, let

Smpa form=n
Winn=19 G. A SMMe2 for m < n.
GI
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Back to Ky and ky

Let G = C4 and G D G’ = C,. Denote their regular
representations by ps and p».

To describe the slices of ky and Ky, let

Smpa form=n
Winn=19 G. A SMMe2 for m < n.
GI

Then we have

Pl = (Vogmgn/4 Wm,,,/z,m> ANHZ forn eYen andn>0
* otherwise
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Back to Ky and ky

Let G = C4 and G D G’ = C,. Denote their regular
representations by ps and p».

To describe the slices of ky and Ky, let

Smpa form=n
Wmn.n = G, é\, S(m+mez - for m < n.
Then we have
Pt — (Vogmgn/4 Wm,n/27m> AHZ fornevenandn>0
" * otherwise
and
Py (\/mgn/4 Wm7n/2—m) A HZ for neven
n % otherwise.
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Back to Ky and ky

Let G = C4 and G D G’ = C,. Denote their regular
representations by ps and p».

To describe the slices of ky and Ky, let

Smpa form=n
Wmn.n = G, é\, S(m+mez - for m < n.
Then we have
Pt — (Vogmgn/4 Wm,n/27m> AHZ fornevenandn>0
" * otherwise
and
Py (\/mgn/4 Wm7n/2—m) A HZ for neven
n % otherwise.

The latter slices have infinitely many summands.
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The C,4 case (continued)

These slices are uncomfortably large.
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The C, case (continued) Plastic explosives
Doug Ravenel

These slices are uncomfortably large.
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The C,4 case (continued)

These slices are uncomfortably large.

Fortunately there
is a remedy. Con-
sider ky as a
Co-spectrum  via
the forgetful func-
tor.
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The C,4 case (continued)

These slices are uncomfortably large.

Fortunately there
is a remedy. Con-
sider ky as a
Co-spectrum  via
the forgetful func-
tor. Here is its slice
spectral sequence.
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The C,4 case (continued)

These slices are uncomfortably large.

Fortunately there
is a remedy. Con-
sider ky as a
Co-spectrum  via
the forgetful func-
tor. Here is its slice
spectral sequence.

The differentials and exotic transfers above have maximal rank.

12
10
8
6 Te
Ge
4 Se
4o
3o 3e T Je
2 1o oo | do
= — ) T —
0| O 20 30 40 50 60 70 80 90
0 1 8 2 16
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The C,4 case (continued)

These slices are uncomfortably large.

12 1;@- 15e
12¢ \ 14e
Fortunately —there W
is a remedy. Con- e I ie
sider ky as a 8 97 | ‘\‘\ e} 136
Co-spectrum  via ( - “‘
the forgetful func- o
tor. Here is its slice 1 5
spectral sequence. - kit 1 \
2 do f‘i- i Se
ofo| 28] [so] [@| [so] lea| [m| [s8] |oo
0 4 8 12 16

The differentials and exotic transfers above have maximal rank.

This pattern is easy to understand.
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The C,4 case (continued)

These slices are uncomfortably large.

12 1;}- 15e
12¢ \ 14e
Fortunately —there W
is a remedy. Con- e I ie
sider kH as a 8 97 AR \11.\‘ 130
Co-spectrum  via I : wl%.
the forgetful func- o T Jite
tor. Here is its slice 1 5 ) Ll
spectral sequence. , - it BRI \ ihe
2 do f‘i- i Se
olo| |28 |3a| || |so| |eéb] || |s3]| oo
0 4 8 12 16

The differentials and exotic transfers above have maximal rank.
This pattern is easy to understand. There is a way to remove
most of these elements and their transfers from the picture.
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The reduced E,-term
Here is the resulting reduced E,-term for ky.
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Plastic explosives

The reduced E,-term o
Here is the resulting reduced E,-term for ky. ity Hiopking

Doug Ravenel
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The reduced E,-term (continued)
And here it is for Ky.
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