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What is the telescope conjecture?

I first made the telescope conjecture in the late ’70s and
published it in 1984.

It has a version for each prime p and each integer n ≥ 0.

Let X be a p-local finite spectrum with
K (n)∗X 6= 0 and K (n−1)∗X = 0. Such
complexes are know to exist for all n
and p by a theorem of Steve Mitchell.
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1.4

What is the telescope conjecture? (continued)

Let X be a p-local finite spectrum with K (n)∗X 6= 0 and
K (n − 1)∗X = 0.

We say that such a complex has type n.

The Hopkins-Smith periodicity
theorem says that any such
complex admits a self-map
ΣdX → X for d > 0 that is a
K (n)-equivalence.

Let X̂ be the telescope obtained by iterating this map. The
telescope conjecture says it is equivalent to LK (n)X .

The n = 1 case was proved
by Mahowald for p = 2 and by
Miller for odd primes in 1981.
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1.5

What is the telescope conjecture? (continued)

In 1989 there was
a homotopy theory
program at MSRI.

Something happened there that led me to think I could
disprove the conjecture for n ≥ 2.

Earthquake of October 17, 1989
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1.6

The failed approach of Mahowald-R-Shick

The disproof fell through a few years later.

In 1999 I wrote a paper about
it with Mark Mahowald and Paul
Shick.

DISCLAIMER: Having bet on
both sides of this question, my
credibility now stands at ZERO.
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1.7

The failed MRS approach (continued)

The central character in our paper is a spectrum we call y(n),

which is defined for each prime p and each integer n > 0. In
this talk p will always be 2.

I will outline the construction of y(n) later in the talk.
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The failed MRS approach (continued)

Our spectrum y(n) has the following properties.

1 H∗(y(n);Z/2) = Z/2[ξ1, ξ2, . . . ξn] where ξi is the Milnor
generator of the dual Steenrod algebra A∗.

2 It is an associative ring spectrum with a vn self-map

vn : Σ2(2n−1)y(n) → y(n)

Iterating it enables us to form a telescope Y (n). The
telescope conjecture implies that the map
Y (n) → LK (n)y(n) is a weak equivalance.

3 There is a localized Adams spectral sequence converging
to π∗Y (n) with an explicitly known E2-term.

4 There is an Adams-Novikov spectral sequence converging
to π∗LK (n)y(n), also with a known E2-term.

5 There is a conjectured pattern of Adams differentials that
shows Y (n) and LK (n)y(n) are very different. If correct, it
would disprove the telescope conjecture.
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The failed MRS approach (continued)

Our spectrum y(n) has the following properties.

1 H∗(y(n);Z/2) = Z/2[ξ1, ξ2, . . . ξn] where ξi is the Milnor
generator of the dual Steenrod algebra A∗.

2 It is an associative ring spectrum with a vn self-map

vn : Σ2(2n−1)y(n) → y(n)

Iterating it enables us to form a telescope Y (n). The
telescope conjecture implies that the map
Y (n) → LK (n)y(n) is a weak equivalance.

3 There is a localized Adams spectral sequence converging
to π∗Y (n) with an explicitly known E2-term.

4 There is an Adams-Novikov spectral sequence converging
to π∗LK (n)y(n), also with a known E2-term.

5 There is a conjectured pattern of Adams differentials that
shows Y (n) and LK (n)y(n) are very different.

If correct, it
would disprove the telescope conjecture.
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The failed MRS approach (continued)

Our spectrum y(n) has the following properties.

1 H∗(y(n);Z/2) = Z/2[ξ1, ξ2, . . . ξn] where ξi is the Milnor
generator of the dual Steenrod algebra A∗.

2 It is an associative ring spectrum with a vn self-map

vn : Σ2(2n−1)y(n) → y(n)

Iterating it enables us to form a telescope Y (n). The
telescope conjecture implies that the map
Y (n) → LK (n)y(n) is a weak equivalance.

3 There is a localized Adams spectral sequence converging
to π∗Y (n) with an explicitly known E2-term.

4 There is an Adams-Novikov spectral sequence converging
to π∗LK (n)y(n), also with a known E2-term.

5 There is a conjectured pattern of Adams differentials that
shows Y (n) and LK (n)y(n) are very different. If correct, it
would disprove the telescope conjecture.
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The failed MRS approach (continued)

Our program failed because

we could not rule out spurious
Adams differentials that could mess up the calculation.

OUR HOPE NOW: By making y(n) either the fixed point set or
the underlying spectrum of a C2-equivariant spectrum, we
would have some additional structure that would give us more
control over the Adams differentials.

Experience has shown that an equivariant perspective can
lead to new insights into nonequivariant problems.

I will describe two different ways we might do this. It is too early
to tell if either approach will work.



Two equivariant
approaches to the

telescope conjecture

Doug Ravenel

Introduction
What is the telescope
conjecture?

The failed approach of MRS

The construction of
y(n)

Going equivariant I

Going equivariant II

1.9

The failed MRS approach (continued)

Our program failed because we could not rule out spurious
Adams differentials that could mess up the calculation.

OUR HOPE NOW: By making y(n) either the fixed point set or
the underlying spectrum of a C2-equivariant spectrum, we
would have some additional structure that would give us more
control over the Adams differentials.

Experience has shown that an equivariant perspective can
lead to new insights into nonequivariant problems.

I will describe two different ways we might do this. It is too early
to tell if either approach will work.
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The failed MRS approach (continued)

Our program failed because we could not rule out spurious
Adams differentials that could mess up the calculation.

OUR HOPE NOW:

By making y(n) either the fixed point set or
the underlying spectrum of a C2-equivariant spectrum, we
would have some additional structure that would give us more
control over the Adams differentials.

Experience has shown that an equivariant perspective can
lead to new insights into nonequivariant problems.

I will describe two different ways we might do this. It is too early
to tell if either approach will work.
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The failed MRS approach (continued)

Our program failed because we could not rule out spurious
Adams differentials that could mess up the calculation.

OUR HOPE NOW: By making y(n) either the fixed point set

or
the underlying spectrum of a C2-equivariant spectrum, we
would have some additional structure that would give us more
control over the Adams differentials.

Experience has shown that an equivariant perspective can
lead to new insights into nonequivariant problems.

I will describe two different ways we might do this. It is too early
to tell if either approach will work.



Two equivariant
approaches to the

telescope conjecture

Doug Ravenel

Introduction
What is the telescope
conjecture?

The failed approach of MRS

The construction of
y(n)

Going equivariant I

Going equivariant II

1.9

The failed MRS approach (continued)

Our program failed because we could not rule out spurious
Adams differentials that could mess up the calculation.

OUR HOPE NOW: By making y(n) either the fixed point set or
the underlying spectrum of a C2-equivariant spectrum,

we
would have some additional structure that would give us more
control over the Adams differentials.

Experience has shown that an equivariant perspective can
lead to new insights into nonequivariant problems.

I will describe two different ways we might do this. It is too early
to tell if either approach will work.
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The failed MRS approach (continued)

Our program failed because we could not rule out spurious
Adams differentials that could mess up the calculation.

OUR HOPE NOW: By making y(n) either the fixed point set or
the underlying spectrum of a C2-equivariant spectrum, we
would have some additional structure that would give us more
control over the Adams differentials.

Experience has shown that an equivariant perspective can
lead to new insights into nonequivariant problems.

I will describe two different ways we might do this. It is too early
to tell if either approach will work.
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The failed MRS approach (continued)

Our program failed because we could not rule out spurious
Adams differentials that could mess up the calculation.

OUR HOPE NOW: By making y(n) either the fixed point set or
the underlying spectrum of a C2-equivariant spectrum, we
would have some additional structure that would give us more
control over the Adams differentials.

Experience has shown that an equivariant perspective

can
lead to new insights into nonequivariant problems.

I will describe two different ways we might do this. It is too early
to tell if either approach will work.
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The failed MRS approach (continued)

Our program failed because we could not rule out spurious
Adams differentials that could mess up the calculation.

OUR HOPE NOW: By making y(n) either the fixed point set or
the underlying spectrum of a C2-equivariant spectrum, we
would have some additional structure that would give us more
control over the Adams differentials.

Experience has shown that an equivariant perspective can
lead to new insights into nonequivariant problems.

I will describe two different ways we might do this. It is too early
to tell if either approach will work.
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The failed MRS approach (continued)

Our program failed because we could not rule out spurious
Adams differentials that could mess up the calculation.

OUR HOPE NOW: By making y(n) either the fixed point set or
the underlying spectrum of a C2-equivariant spectrum, we
would have some additional structure that would give us more
control over the Adams differentials.

Experience has shown that an equivariant perspective can
lead to new insights into nonequivariant problems.

I will describe two different ways we might do this.

It is too early
to tell if either approach will work.
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The failed MRS approach (continued)

Our program failed because we could not rule out spurious
Adams differentials that could mess up the calculation.

OUR HOPE NOW: By making y(n) either the fixed point set or
the underlying spectrum of a C2-equivariant spectrum, we
would have some additional structure that would give us more
control over the Adams differentials.

Experience has shown that an equivariant perspective can
lead to new insights into nonequivariant problems.

I will describe two different ways we might do this. It is too early
to tell if either approach will work.



Two equivariant
approaches to the

telescope conjecture

Doug Ravenel

Introduction
What is the telescope
conjecture?

The failed approach of MRS

The construction of
y(n)

Going equivariant I

Going equivariant II

1.10

The construction of y(n)

Consider the diagram

S1 f //

i ##

BO

Ω2S3
g

;;

where

• f represents the nontrivial element of π1BO = Z/2,
• i is the adjoint of the identity map on Σ2S1 = S3 and
• g is the extension of f given by the infinite loop space

structure on BO.

We know that

H∗Ω
2S3 = Z/2[u1,u2, . . . ] with |un| = 2n − 1 = |ξn|.
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The construction of y(n)

Consider the diagram

S1 f //

i ##

BO

Ω2S3
g

;;

where

• f represents the nontrivial element of π1BO = Z/2,
• i is the adjoint of the identity map on Σ2S1 = S3 and

• g is the extension of f given by the infinite loop space
structure on BO.

We know that

H∗Ω
2S3 = Z/2[u1,u2, . . . ] with |un| = 2n − 1 = |ξn|.
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i ##
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;;

where

• f represents the nontrivial element of π1BO = Z/2,
• i is the adjoint of the identity map on Σ2S1 = S3 and
• g is the extension of f given by the infinite loop space

structure on BO.

We know that

H∗Ω
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The construction of y(n)

Consider the diagram

S1 f //

i ##

BO

Ω2S3
g

;;

where

• f represents the nontrivial element of π1BO = Z/2,
• i is the adjoint of the identity map on Σ2S1 = S3 and
• g is the extension of f given by the infinite loop space

structure on BO.

We know that

H∗Ω
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The construction of y(n) (continued)

S1 f //

i ##

BO

Ω2S3
g

;;

H∗Ω
2S3 = Z/2[u1,u2, . . . ] with |un| = 2n − 1 = |ξn|.

Let y(∞) denote the Thom spectrum induced by g. Long ago
Mahowald showed that it is the mod 2 Eilenberg-Mac Lane
spectrum HZ/2.

We will construct subspaces Yn of Ω2S3 with

H∗Yn = Z/2[u1,u2, . . . , un],

and y(n) will be the corresponding Thom spectrum.
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The construction of y(n) (continued)

S1 f //

i ##

BO

Ω2S3
g

;;

H∗Ω
2S3 = Z/2[u1,u2, . . . ] with |un| = 2n − 1 = |ξn|.

Let y(∞) denote the Thom spectrum induced by g.

Long ago
Mahowald showed that it is the mod 2 Eilenberg-Mac Lane
spectrum HZ/2.

We will construct subspaces Yn of Ω2S3 with

H∗Yn = Z/2[u1,u2, . . . , un],

and y(n) will be the corresponding Thom spectrum.
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The construction of y(n) (continued)

S1 f //

i ##

BO

Ω2S3
g

;;

H∗Ω
2S3 = Z/2[u1,u2, . . . ] with |un| = 2n − 1 = |ξn|.

Let y(∞) denote the Thom spectrum induced by g. Long ago
Mahowald showed that it is the mod 2 Eilenberg-Mac Lane
spectrum HZ/2.

We will construct subspaces Yn of Ω2S3 with

H∗Yn = Z/2[u1,u2, . . . , un],

and y(n) will be the corresponding Thom spectrum.
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The construction of y(n) (continued)

S1 f //

i ##

BO

Ω2S3
g

;;

H∗Ω
2S3 = Z/2[u1,u2, . . . ] with |un| = 2n − 1 = |ξn|.

Let y(∞) denote the Thom spectrum induced by g. Long ago
Mahowald showed that it is the mod 2 Eilenberg-Mac Lane
spectrum HZ/2.

We will construct subspaces Yn of Ω2S3 with

H∗Yn = Z/2[u1,u2, . . . , un],

and y(n) will be the corresponding Thom spectrum.
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The construction of y(n) (continued)

S1 f //

i ##

BO

Ω2S3
g

;;

H∗Ω
2S3 = Z/2[u1,u2, . . . ] with |un| = 2n − 1 = |ξn|.

Let y(∞) denote the Thom spectrum induced by g. Long ago
Mahowald showed that it is the mod 2 Eilenberg-Mac Lane
spectrum HZ/2.

We will construct subspaces Yn of Ω2S3 with

H∗Yn = Z/2[u1,u2, . . . , un],

and y(n) will be the corresponding Thom spectrum.
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The construction of y(n) (continued)

In the early 50s Ioan James defined the reduced
product Jk X (for any space X ) as a certain quo-
tient of X×k

and showed that J∞X is equivalent
to ΩΣX .

He showed there is a 2-local fiber sequence

Ω2S2n+1+1 → J2n−1S2 → ΩS3 → ΩS2n+1+1.

Note that ΩS3 is equivalent to a CW complex with a single cell
in each even dimension. J2n−1S2 is its (2n+1 − 1)-skeleton.

Our space Yn is ΩJ2n−1S2, so it maps to Ω2S3 as desired. The
MRS spectrum y(n) is the Thomification of

ΩJ2n−1S2 // Ω2S3 g // BO.
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The construction of y(n) (continued)

In the early 50s Ioan James defined the reduced
product Jk X (for any space X ) as a certain quo-
tient of X×k and showed that J∞X is equivalent
to ΩΣX .

He showed there is a 2-local fiber sequence

Ω2S2n+1+1 → J2n−1S2 → ΩS3 → ΩS2n+1+1.

Note that ΩS3 is equivalent to a CW complex with a single cell
in each even dimension. J2n−1S2 is its (2n+1 − 1)-skeleton.

Our space Yn is ΩJ2n−1S2, so it maps to Ω2S3 as desired. The
MRS spectrum y(n) is the Thomification of

ΩJ2n−1S2 // Ω2S3 g // BO.
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The construction of y(n) (continued)

In the early 50s Ioan James defined the reduced
product Jk X (for any space X ) as a certain quo-
tient of X×k and showed that J∞X is equivalent
to ΩΣX .

He showed there is a 2-local fiber sequence

Ω2S2n+1+1 → J2n−1S2 → ΩS3 → ΩS2n+1+1.

Note that ΩS3 is equivalent to a CW complex with a single cell
in each even dimension. J2n−1S2 is its (2n+1 − 1)-skeleton.

Our space Yn is ΩJ2n−1S2, so it maps to Ω2S3 as desired. The
MRS spectrum y(n) is the Thomification of

ΩJ2n−1S2 // Ω2S3 g // BO.
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The construction of y(n) (continued)

In the early 50s Ioan James defined the reduced
product Jk X (for any space X ) as a certain quo-
tient of X×k and showed that J∞X is equivalent
to ΩΣX .

He showed there is a 2-local fiber sequence

Ω2S2n+1+1 → J2n−1S2 → ΩS3 → ΩS2n+1+1.

Note that ΩS3 is equivalent to a CW complex

with a single cell
in each even dimension. J2n−1S2 is its (2n+1 − 1)-skeleton.

Our space Yn is ΩJ2n−1S2, so it maps to Ω2S3 as desired. The
MRS spectrum y(n) is the Thomification of

ΩJ2n−1S2 // Ω2S3 g // BO.
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The construction of y(n) (continued)

In the early 50s Ioan James defined the reduced
product Jk X (for any space X ) as a certain quo-
tient of X×k and showed that J∞X is equivalent
to ΩΣX .

He showed there is a 2-local fiber sequence

Ω2S2n+1+1 → J2n−1S2 → ΩS3 → ΩS2n+1+1.

Note that ΩS3 is equivalent to a CW complex with a single cell
in each even dimension.

J2n−1S2 is its (2n+1 − 1)-skeleton.

Our space Yn is ΩJ2n−1S2, so it maps to Ω2S3 as desired. The
MRS spectrum y(n) is the Thomification of

ΩJ2n−1S2 // Ω2S3 g // BO.
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The construction of y(n) (continued)

In the early 50s Ioan James defined the reduced
product Jk X (for any space X ) as a certain quo-
tient of X×k and showed that J∞X is equivalent
to ΩΣX .

He showed there is a 2-local fiber sequence

Ω2S2n+1+1 → J2n−1S2 → ΩS3 → ΩS2n+1+1.

Note that ΩS3 is equivalent to a CW complex with a single cell
in each even dimension. J2n−1S2 is its (2n+1 − 1)-skeleton.

Our space Yn is ΩJ2n−1S2, so it maps to Ω2S3 as desired. The
MRS spectrum y(n) is the Thomification of

ΩJ2n−1S2 // Ω2S3 g // BO.
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The construction of y(n) (continued)

In the early 50s Ioan James defined the reduced
product Jk X (for any space X ) as a certain quo-
tient of X×k and showed that J∞X is equivalent
to ΩΣX .

He showed there is a 2-local fiber sequence

Ω2S2n+1+1 → J2n−1S2 → ΩS3 → ΩS2n+1+1.

Note that ΩS3 is equivalent to a CW complex with a single cell
in each even dimension. J2n−1S2 is its (2n+1 − 1)-skeleton.

Our space Yn is ΩJ2n−1S2,

so it maps to Ω2S3 as desired. The
MRS spectrum y(n) is the Thomification of

ΩJ2n−1S2 // Ω2S3 g // BO.
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The construction of y(n) (continued)

In the early 50s Ioan James defined the reduced
product Jk X (for any space X ) as a certain quo-
tient of X×k and showed that J∞X is equivalent
to ΩΣX .

He showed there is a 2-local fiber sequence

Ω2S2n+1+1 → J2n−1S2 → ΩS3 → ΩS2n+1+1.

Note that ΩS3 is equivalent to a CW complex with a single cell
in each even dimension. J2n−1S2 is its (2n+1 − 1)-skeleton.

Our space Yn is ΩJ2n−1S2, so it maps to Ω2S3 as desired.

The
MRS spectrum y(n) is the Thomification of

ΩJ2n−1S2 // Ω2S3 g // BO.
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The construction of y(n) (continued)

In the early 50s Ioan James defined the reduced
product Jk X (for any space X ) as a certain quo-
tient of X×k and showed that J∞X is equivalent
to ΩΣX .

He showed there is a 2-local fiber sequence

Ω2S2n+1+1 → J2n−1S2 → ΩS3 → ΩS2n+1+1.

Note that ΩS3 is equivalent to a CW complex with a single cell
in each even dimension. J2n−1S2 is its (2n+1 − 1)-skeleton.

Our space Yn is ΩJ2n−1S2, so it maps to Ω2S3 as desired. The
MRS spectrum y(n) is the Thomification of

ΩJ2n−1S2 // Ω2S3 g // BO.
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The construction of y(n) (continued)

The MRS spectrum y(n) is the Thomification of

ΩJ2n−1S2 // Ω2S3 g // BO.

From James’ 2-local fiber sequence

Ω3S2n+1+1 → ΩJ2n−1S2 → Ω2S3

we get maps of spectra

Σ∞S|vn| → Σ∞Ω3S2n+1+1 → y(n) → HZ/2.

where the map S|vn| → Ω3S2n+1+1 is the inclusion of the bottom
cell. Since y(n) is the Thom spectrum for a loop map, it is an
associative ring spectrum. The composite map above leads to
the desired vn-self map of y(n).
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The construction of y(n) (continued)

The MRS spectrum y(n) is the Thomification of

ΩJ2n−1S2 // Ω2S3 g // BO.

From James’ 2-local fiber sequence

Ω3S2n+1+1 → ΩJ2n−1S2 → Ω2S3

we get maps of spectra

Σ∞S|vn| → Σ∞Ω3S2n+1+1 → y(n) → HZ/2.

where the map S|vn| → Ω3S2n+1+1 is the inclusion of the bottom
cell. Since y(n) is the Thom spectrum for a loop map, it is an
associative ring spectrum. The composite map above leads to
the desired vn-self map of y(n).



Two equivariant
approaches to the

telescope conjecture

Doug Ravenel

Introduction
What is the telescope
conjecture?

The failed approach of MRS

The construction of
y(n)

Going equivariant I

Going equivariant II

1.13

The construction of y(n) (continued)

The MRS spectrum y(n) is the Thomification of

ΩJ2n−1S2 // Ω2S3 g // BO.

From James’ 2-local fiber sequence

Ω3S2n+1+1 → ΩJ2n−1S2 → Ω2S3

we get maps of spectra

Σ∞S|vn| → Σ∞Ω3S2n+1+1 → y(n) → HZ/2.

where the map S|vn| → Ω3S2n+1+1 is the inclusion of the bottom
cell. Since y(n) is the Thom spectrum for a loop map, it is an
associative ring spectrum. The composite map above leads to
the desired vn-self map of y(n).
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The construction of y(n) (continued)

The MRS spectrum y(n) is the Thomification of

ΩJ2n−1S2 // Ω2S3 g // BO.

From James’ 2-local fiber sequence

Ω3S2n+1+1 → ΩJ2n−1S2 → Ω2S3

we get maps of spectra

Σ∞S|vn| → Σ∞Ω3S2n+1+1 → y(n) → HZ/2.

where the map S|vn| → Ω3S2n+1+1 is the inclusion of the bottom
cell.

Since y(n) is the Thom spectrum for a loop map, it is an
associative ring spectrum. The composite map above leads to
the desired vn-self map of y(n).
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The construction of y(n) (continued)

The MRS spectrum y(n) is the Thomification of

ΩJ2n−1S2 // Ω2S3 g // BO.

From James’ 2-local fiber sequence

Ω3S2n+1+1 → ΩJ2n−1S2 → Ω2S3

we get maps of spectra

Σ∞S|vn| → Σ∞Ω3S2n+1+1 → y(n) → HZ/2.

where the map S|vn| → Ω3S2n+1+1 is the inclusion of the bottom
cell. Since y(n) is the Thom spectrum for a loop map, it is an
associative ring spectrum.

The composite map above leads to
the desired vn-self map of y(n).
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The construction of y(n) (continued)

The MRS spectrum y(n) is the Thomification of

ΩJ2n−1S2 // Ω2S3 g // BO.

From James’ 2-local fiber sequence

Ω3S2n+1+1 → ΩJ2n−1S2 → Ω2S3

we get maps of spectra

Σ∞S|vn| → Σ∞Ω3S2n+1+1 → y(n) → HZ/2.

where the map S|vn| → Ω3S2n+1+1 is the inclusion of the bottom
cell. Since y(n) is the Thom spectrum for a loop map, it is an
associative ring spectrum. The composite map above leads to
the desired vn-self map of y(n).
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Going equivariant I

If the MRS approach is to succeed, we need some more
structure in the localized Adams spectral sequence for Y (n).

Here I will outline the first of two ways to get y(n) and Y (n) into
a C2-equivariant setting. Each of them will be a retract of the
fixed point set of a C2-spectrum.

Recall that the construction of y(n) involved the diagram

S1 i // Ω2S3 g // BO

ΩJ2n−1S2

OO

We can add another space and get

S1 i // Ω2S3 g // BO

ΩJ2n−1S2

OO

// Ω(SU(k + 1)/SO(k + 1))

OO

for k � 0.
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structure in the localized Adams spectral sequence for Y (n).
Here I will outline the first of two ways to get y(n) and Y (n) into
a C2-equivariant setting. Each of them will be a retract of the
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Recall that the construction of y(n) involved the diagram
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Going equivariant (continued)

S1 i // Ω2S3 g // BO

ΩJ2n−1S2

OO

gn // Ω(SU(k + 1)/SO(k + 1)).
ak

OO

The map ak for k � 0 is related to Bott’s proof of his Periodicity
Theorem. In mod 2 homology we have

H∗BO = Z/2[b1,b2, . . . ] where |bi | = i ,
H∗Ω(SU(k + 1)/SO(k + 1)) = Z/2[b1, . . . bk ]

and the loop map gn exists for k ≥ 2n − 1. Thomifying the
square on the right gives

HZ/2 // MO

y(n) //

OO

w(k),

OO

where w(k) is the Thom spectrum induced by the map ak . We
can show that w(k) splits as a wedge of suspensions of y(n).
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Going equivariant (continued)

One can show that

S1 i // Ω2S3 g // BO

ΩJ2n−1S2

OO

gn // Ω(SU(k + 1)/SO(k + 1)).

ak

OO

is the fixed point set of the following diagram of C2-spaces:

Sρ i // Ω1+ρS1+2ρ g // BUR

ΩρJ2n−1S2ρ gn //

OO

ΩσSU(k + 1)R

ak

OO

where
• BUR and SUR denote the spaces BU and SU equipped

with a C2-action related to complex conjugation,
• σ denotes the sign representation of C2 and
• ρ = 1 + σ denotes its regular representation.
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• ρ = 1 + σ denotes its regular representation.
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• BUR and SUR denote the spaces BU and SU equipped

with a C2-action related to complex conjugation,
• σ denotes the sign representation of C2 and

• ρ = 1 + σ denotes its regular representation.



Two equivariant
approaches to the

telescope conjecture

Doug Ravenel

Introduction
What is the telescope
conjecture?

The failed approach of MRS

The construction of
y(n)

Going equivariant I

Going equivariant II

1.16

Going equivariant (continued)

One can show that
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Going equivariant (continued)

Here is our C2-diagram again.

Sρ i // Ω1+ρS1+2ρ g // BUR MUR

ΩρJ2n−1S2ρ gn //

OO

ΩσSU(k + 1)R

ik
OO

X (k)R

OO

with Thom spectra indicated on the right. Taking 2-local fibers
of the vertical maps in the square gives

Ω1+ρS1+2ρ g // BUR

ΩρJ2n−1S2ρ gn //

OO

ΩσSU(k + 1)R

ak

OO

Ω2+ρS1+2n+1ρ //

OO

Ωρ(SU/SU(k + 1))R

OO

The two fibers have the same connectivity when
k = 2n+1 − 2 = |vn|.
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Here is our C2-diagram again.
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Going equivariant (continued)

Ω1+ρS1+2ρ g // BUR

ΩρJ2n−1S2ρ gn //

OO

ΩσSU(1 + |vn|)R

a|vn|
OO

Ω2+ρS1+2n+1ρ //

OO

Ωρ(SU/SU(1 + |vn|))R

OO

It follows that we have a map y(n) → w(|vn|) inducing a
monomorphism in mod 2 homology, and therefore maps

S|vn| → Ω3S2n+1+1 → y(n) → w(|vn|),

where w(k) is the geometric fixed point set of the Thom
spectrum X (k)R. The above composite leads to a telescope
W (|vn|) which is the geometric fixed point spectrum of the
telescope for a map

Σ(1+|vn|)ρ−1X (|vn|)R → X (|vn|)R.

The underlying spectrum of this telescope is contractible
because the underlying map is known to be nilpotent.
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W (|vn|) which is the geometric fixed point spectrum of the
telescope for a map

Σ(1+|vn|)ρ−1X (|vn|)R → X (|vn|)R.

The underlying spectrum of this telescope is contractible
because the underlying map is known to be nilpotent.
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Going equivariant II
In this approach,

y(n) and Y (n) will be given nontrivial
C2-actions. They will be the underlying spectra of a pair of
C2-spectra.

Recall that the starting point of the construction of y(n) was the
diagram

S1 f //

i ''
BO

Ω2S3.
g

77

We now replace this with a diagram of C2-spaces and
equivariant maps

S1 f //

i
((

BO

ΩρS1+ρ.
g

66

Here ρ denotes the (2-dimensional) regular representation of
the group C2, SV denote the one point compactification ofV ,
and the twisted loop space ΩρX is space of pointed continuous
(but not necessarily equivariant) maps Sρ → X for a pointed
C2-space X .



Two equivariant
approaches to the

telescope conjecture

Doug Ravenel

Introduction
What is the telescope
conjecture?

The failed approach of MRS

The construction of
y(n)

Going equivariant I

Going equivariant II

1.19

Going equivariant II
In this approach, y(n) and Y (n) will be given nontrivial
C2-actions.

They will be the underlying spectra of a pair of
C2-spectra.

Recall that the starting point of the construction of y(n) was the
diagram

S1 f //

i ''
BO

Ω2S3.
g

77

We now replace this with a diagram of C2-spaces and
equivariant maps

S1 f //

i
((

BO

ΩρS1+ρ.
g

66

Here ρ denotes the (2-dimensional) regular representation of
the group C2, SV denote the one point compactification ofV ,
and the twisted loop space ΩρX is space of pointed continuous
(but not necessarily equivariant) maps Sρ → X for a pointed
C2-space X .



Two equivariant
approaches to the

telescope conjecture

Doug Ravenel

Introduction
What is the telescope
conjecture?

The failed approach of MRS

The construction of
y(n)

Going equivariant I

Going equivariant II

1.19

Going equivariant II
In this approach, y(n) and Y (n) will be given nontrivial
C2-actions. They will be the underlying spectra of a pair of
C2-spectra.

Recall that the starting point of the construction of y(n) was the
diagram

S1 f //

i ''
BO

Ω2S3.
g

77

We now replace this with a diagram of C2-spaces and
equivariant maps

S1 f //

i
((

BO

ΩρS1+ρ.
g

66

Here ρ denotes the (2-dimensional) regular representation of
the group C2, SV denote the one point compactification ofV ,
and the twisted loop space ΩρX is space of pointed continuous
(but not necessarily equivariant) maps Sρ → X for a pointed
C2-space X .



Two equivariant
approaches to the

telescope conjecture

Doug Ravenel

Introduction
What is the telescope
conjecture?

The failed approach of MRS

The construction of
y(n)

Going equivariant I

Going equivariant II

1.19

Going equivariant II
In this approach, y(n) and Y (n) will be given nontrivial
C2-actions. They will be the underlying spectra of a pair of
C2-spectra.

Recall that the starting point of the construction of y(n) was the
diagram

S1 f //

i ''
BO

Ω2S3.
g

77

We now replace this with a diagram of C2-spaces and
equivariant maps

S1 f //

i
((

BO

ΩρS1+ρ.
g

66

Here ρ denotes the (2-dimensional) regular representation of
the group C2, SV denote the one point compactification ofV ,
and the twisted loop space ΩρX is space of pointed continuous
(but not necessarily equivariant) maps Sρ → X for a pointed
C2-space X .



Two equivariant
approaches to the

telescope conjecture

Doug Ravenel

Introduction
What is the telescope
conjecture?

The failed approach of MRS

The construction of
y(n)

Going equivariant I

Going equivariant II

1.19

Going equivariant II
In this approach, y(n) and Y (n) will be given nontrivial
C2-actions. They will be the underlying spectra of a pair of
C2-spectra.

Recall that the starting point of the construction of y(n) was the
diagram

S1 f //

i ''
BO

Ω2S3.
g

77

We now replace this with a diagram of C2-spaces and
equivariant maps

S1 f //

i
((

BO

ΩρS1+ρ.
g

66

Here ρ denotes the (2-dimensional) regular representation of
the group C2, SV denote the one point compactification ofV ,
and the twisted loop space ΩρX is space of pointed continuous
(but not necessarily equivariant) maps Sρ → X for a pointed
C2-space X .



Two equivariant
approaches to the

telescope conjecture

Doug Ravenel

Introduction
What is the telescope
conjecture?

The failed approach of MRS

The construction of
y(n)

Going equivariant I

Going equivariant II

1.19

Going equivariant II
In this approach, y(n) and Y (n) will be given nontrivial
C2-actions. They will be the underlying spectra of a pair of
C2-spectra.

Recall that the starting point of the construction of y(n) was the
diagram

S1 f //

i ''
BO

Ω2S3.
g

77

We now replace this with a diagram of C2-spaces and
equivariant maps

S1 f //

i
((

BO

ΩρS1+ρ.
g

66

Here ρ denotes the (2-dimensional) regular representation of
the group C2,

SV denote the one point compactification ofV ,
and the twisted loop space ΩρX is space of pointed continuous
(but not necessarily equivariant) maps Sρ → X for a pointed
C2-space X .



Two equivariant
approaches to the

telescope conjecture

Doug Ravenel

Introduction
What is the telescope
conjecture?

The failed approach of MRS

The construction of
y(n)

Going equivariant I

Going equivariant II

1.19

Going equivariant II
In this approach, y(n) and Y (n) will be given nontrivial
C2-actions. They will be the underlying spectra of a pair of
C2-spectra.

Recall that the starting point of the construction of y(n) was the
diagram

S1 f //

i ''
BO

Ω2S3.
g

77

We now replace this with a diagram of C2-spaces and
equivariant maps

S1 f //

i
((

BO

ΩρS1+ρ.
g

66

Here ρ denotes the (2-dimensional) regular representation of
the group C2, SV denote the one point compactification ofV ,

and the twisted loop space ΩρX is space of pointed continuous
(but not necessarily equivariant) maps Sρ → X for a pointed
C2-space X .



Two equivariant
approaches to the

telescope conjecture

Doug Ravenel

Introduction
What is the telescope
conjecture?

The failed approach of MRS

The construction of
y(n)

Going equivariant I

Going equivariant II

1.19

Going equivariant II
In this approach, y(n) and Y (n) will be given nontrivial
C2-actions. They will be the underlying spectra of a pair of
C2-spectra.

Recall that the starting point of the construction of y(n) was the
diagram

S1 f //

i ''
BO

Ω2S3.
g

77

We now replace this with a diagram of C2-spaces and
equivariant maps

S1 f //

i
((

BO

ΩρS1+ρ.
g

66

Here ρ denotes the (2-dimensional) regular representation of
the group C2, SV denote the one point compactification ofV ,
and the twisted loop space ΩρX is space of pointed continuous
(but not necessarily equivariant) maps Sρ → X for a pointed
C2-space X .



Two equivariant
approaches to the

telescope conjecture

Doug Ravenel

Introduction
What is the telescope
conjecture?

The failed approach of MRS

The construction of
y(n)

Going equivariant I

Going equivariant II

1.20

Going equivariant II (continued)

S1 f //

i
((

BO

ΩρS1+ρ.
g

66

It is known that BO is the 0th space in a C2 Ω-spectrum, so we
can deloop it ρ times. This means f deloops to a map
S1+ρ → BρBO, which leads to the map g above.

The resulting equivariant
Thom spectrum is the
subject of a recent pa-
per by Mark Behrens and
Dylan Wilson.

They show that it is the C2-spectrum HZ/2, where Z/2 denotes
the constant Z/2-valued Mackey functor, as expected.
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Going equivariant II (continued)

S1 f //

i ++
BO

ΩρS1+ρ = Ω1+σS2+σ.
g

33

Behrens-Wilson show that the Thom spectrum of g is the
C2-equivariant mod 2 Eilenberg-Mac Lane spectrum HZ/2.

In the construction of y(n) we used the James construction to
produce subspaces J2n−1S2 of ΩS3, leading to maps

ΩJ2n−1S2 → Ω2S3.

There are two ways we might do this equivariantly.
1

Use a twisted version of the James construc-
tion, due to Slawomir Rybicki, to filter the
twisted loop spaceΩσS1+ρ = ΩσΣσS2.

2 Use the usual James construction to filter ΩS1+ρ, and then
look at twisted loop spaces of certain of its skeleta.
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Going equivariant II (continued)

S1 f //

i ++
BO

ΩρS1+ρ = Ω1+σS2+σ.
g

33

Behrens-Wilson show that the Thom spectrum of g is the
C2-equivariant mod 2 Eilenberg-Mac Lane spectrum HZ/2.

In the construction of y(n) we used the James construction to
produce subspaces J2n−1S2 of ΩS3, leading to maps

ΩJ2n−1S2 → Ω2S3.

There are two ways we might do this equivariantly.
1

Use a twisted version of the James construc-
tion, due to Slawomir Rybicki, to filter the
twisted loop spaceΩσS1+ρ = ΩσΣσS2.

2 Use the usual James construction to filter ΩS1+ρ, and then
look at twisted loop spaces of certain of its skeleta.
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Going equivariant II (continued)

S1 f //

i ++
BO

ΩρS1+ρ = Ω1+σS2+σ.
g

33

Behrens-Wilson show that the Thom spectrum of g is the
C2-equivariant mod 2 Eilenberg-Mac Lane spectrum HZ/2.

In the construction of y(n) we used the James construction to
produce subspaces J2n−1S2 of ΩS3, leading to maps

ΩJ2n−1S2 → Ω2S3.

There are two ways we might do this equivariantly.
1

Use a twisted version of the James construc-
tion, due to Slawomir Rybicki, to filter the
twisted loop spaceΩσS1+ρ = ΩσΣσS2.

2 Use the usual James construction to filter ΩS1+ρ,

and then
look at twisted loop spaces of certain of its skeleta.
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Going equivariant II (continued)

S1 f //

i ++
BO

ΩρS1+ρ = Ω1+σS2+σ.
g

33

Behrens-Wilson show that the Thom spectrum of g is the
C2-equivariant mod 2 Eilenberg-Mac Lane spectrum HZ/2.

In the construction of y(n) we used the James construction to
produce subspaces J2n−1S2 of ΩS3, leading to maps

ΩJ2n−1S2 → Ω2S3.

There are two ways we might do this equivariantly.
1

Use a twisted version of the James construc-
tion, due to Slawomir Rybicki, to filter the
twisted loop spaceΩσS1+ρ = ΩσΣσS2.

2 Use the usual James construction to filter ΩS1+ρ, and then
look at twisted loop spaces of certain of its skeleta.
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Going equivariant II (continued)

There are two ways we might study ΩρS1+ρ = Ω1+σS2+σ.

1 Use a twisted version of the James construction, due to
Rybicki, to filter the twisted loop spaceΩσΣσS2, and then
look at the loop spaces of certain of its skeleta.

2 Use the James construction to filter ΩΣS1+σ, and then
look at the twisted loop spaces of certain of its skeleta.

The first approach does not appear to give us the right Thom
spectra.

The second approach may give the right Thom spectra, but it
suffers from a technical problem. The twisted loop space ΩσX
of a C2-space X is NOT a C2-H-space, even though it is
underlain by an ordinary H-space.
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Going equivariant II (continued)

There are two ways we might study ΩρS1+ρ = Ω1+σS2+σ.

1 Use a twisted version of the James construction, due to
Rybicki, to filter the twisted loop spaceΩσΣσS2, and then
look at the loop spaces of certain of its skeleta.

2 Use the James construction to filter ΩΣS1+σ, and then
look at the twisted loop spaces of certain of its skeleta.

The first approach does not appear to give us the right Thom
spectra.

The second approach may give the right Thom spectra, but it
suffers from a technical problem. The twisted loop space ΩσX
of a C2-space X is NOT a C2-H-space, even though it is
underlain by an ordinary H-space.
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Going equivariant II (continued)

There are two ways we might study ΩρS1+ρ = Ω1+σS2+σ.

1 Use a twisted version of the James construction, due to
Rybicki, to filter the twisted loop spaceΩσΣσS2, and then
look at the loop spaces of certain of its skeleta.

2 Use the James construction to filter ΩΣS1+σ, and then
look at the twisted loop spaces of certain of its skeleta.

The first approach does not appear to give us the right Thom
spectra.

The second approach may give the right Thom spectra,

but it
suffers from a technical problem. The twisted loop space ΩσX
of a C2-space X is NOT a C2-H-space, even though it is
underlain by an ordinary H-space.
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Going equivariant II (continued)

There are two ways we might study ΩρS1+ρ = Ω1+σS2+σ.

1 Use a twisted version of the James construction, due to
Rybicki, to filter the twisted loop spaceΩσΣσS2, and then
look at the loop spaces of certain of its skeleta.

2 Use the James construction to filter ΩΣS1+σ, and then
look at the twisted loop spaces of certain of its skeleta.

The first approach does not appear to give us the right Thom
spectra.

The second approach may give the right Thom spectra, but it
suffers from a technical problem.

The twisted loop space ΩσX
of a C2-space X is NOT a C2-H-space, even though it is
underlain by an ordinary H-space.
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Going equivariant II (continued)

There are two ways we might study ΩρS1+ρ = Ω1+σS2+σ.

1 Use a twisted version of the James construction, due to
Rybicki, to filter the twisted loop spaceΩσΣσS2, and then
look at the loop spaces of certain of its skeleta.

2 Use the James construction to filter ΩΣS1+σ, and then
look at the twisted loop spaces of certain of its skeleta.

The first approach does not appear to give us the right Thom
spectra.

The second approach may give the right Thom spectra, but it
suffers from a technical problem. The twisted loop space ΩσX
of a C2-space X is NOT a C2-H-space,

even though it is
underlain by an ordinary H-space.
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Going equivariant II (continued)

There are two ways we might study ΩρS1+ρ = Ω1+σS2+σ.

1 Use a twisted version of the James construction, due to
Rybicki, to filter the twisted loop spaceΩσΣσS2, and then
look at the loop spaces of certain of its skeleta.

2 Use the James construction to filter ΩΣS1+σ, and then
look at the twisted loop spaces of certain of its skeleta.

The first approach does not appear to give us the right Thom
spectra.

The second approach may give the right Thom spectra, but it
suffers from a technical problem. The twisted loop space ΩσX
of a C2-space X is NOT a C2-H-space, even though it is
underlain by an ordinary H-space.
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Going equivariant II (continued)

2 Use the James construction to filter ΩS1+ρ, and then look
at the twisted loop spaces of certain of its skeleta.

The twisted loop space ΩσX of a C2-space X is NOT an
H-space.

The reason for this is that there is no equivariant
pinch map Sσ → Sσ ∨ Sσ. We would need one to get the
multiplication map

ΩσX Map∗(Sσ,X ) Map∗(Sσ ∨ Sσ,X )oo ΩσX × ΩσX .

Instead there is cofiber sequence

S0 → Sσ → C2+ ∧ S1.

This leads to a twisted multiplication

ΩσX Map∗(C2+ ∧ S1,X )oo NC2ΩX ,

where the space on the right is the C2-norm of X .
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Going equivariant II (continued)

2 Use the James construction to filter ΩS1+ρ, and then look
at the twisted loop spaces of certain of its skeleta.

The twisted loop space ΩσX of a C2-space X is NOT an
H-space. The reason for this is that there is no equivariant
pinch map

Sσ → Sσ ∨ Sσ. We would need one to get the
multiplication map

ΩσX Map∗(Sσ,X ) Map∗(Sσ ∨ Sσ,X )oo ΩσX × ΩσX .

Instead there is cofiber sequence

S0 → Sσ → C2+ ∧ S1.

This leads to a twisted multiplication

ΩσX Map∗(C2+ ∧ S1,X )oo NC2ΩX ,

where the space on the right is the C2-norm of X .
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Going equivariant II (continued)

2 Use the James construction to filter ΩS1+ρ, and then look
at the twisted loop spaces of certain of its skeleta.

The twisted loop space ΩσX of a C2-space X is NOT an
H-space. The reason for this is that there is no equivariant
pinch map Sσ → Sσ ∨ Sσ.

We would need one to get the
multiplication map

ΩσX Map∗(Sσ,X ) Map∗(Sσ ∨ Sσ,X )oo ΩσX × ΩσX .

Instead there is cofiber sequence

S0 → Sσ → C2+ ∧ S1.

This leads to a twisted multiplication

ΩσX Map∗(C2+ ∧ S1,X )oo NC2ΩX ,

where the space on the right is the C2-norm of X .
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Going equivariant II (continued)

2 Use the James construction to filter ΩS1+ρ, and then look
at the twisted loop spaces of certain of its skeleta.

The twisted loop space ΩσX of a C2-space X is NOT an
H-space. The reason for this is that there is no equivariant
pinch map Sσ → Sσ ∨ Sσ. We would need one to get the
multiplication map

ΩσX Map∗(Sσ,X ) Map∗(Sσ ∨ Sσ,X )oo ΩσX × ΩσX .

Instead there is cofiber sequence

S0 → Sσ → C2+ ∧ S1.

This leads to a twisted multiplication

ΩσX Map∗(C2+ ∧ S1,X )oo NC2ΩX ,

where the space on the right is the C2-norm of X .
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Going equivariant II (continued)

2 Use the James construction to filter ΩS1+ρ, and then look
at the twisted loop spaces of certain of its skeleta.

The twisted loop space ΩσX of a C2-space X is NOT an
H-space. The reason for this is that there is no equivariant
pinch map Sσ → Sσ ∨ Sσ. We would need one to get the
multiplication map

ΩσX Map∗(Sσ,X ) Map∗(Sσ ∨ Sσ,X )oo ΩσX × ΩσX .

Instead there is cofiber sequence

S0 → Sσ → C2+ ∧ S1.

This leads to a twisted multiplication

ΩσX Map∗(C2+ ∧ S1,X )oo NC2ΩX ,

where the space on the right is the C2-norm of X .
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Going equivariant II (continued)

2 Use the James construction to filter ΩS1+ρ, and then look
at the twisted loop spaces of certain of its skeleta.

The twisted loop space ΩσX of a C2-space X is NOT an
H-space. The reason for this is that there is no equivariant
pinch map Sσ → Sσ ∨ Sσ. We would need one to get the
multiplication map

ΩσX Map∗(Sσ,X ) Map∗(Sσ ∨ Sσ,X )oo ΩσX × ΩσX .

Instead there is cofiber sequence

S0 → Sσ → C2+ ∧ S1.

This leads to a twisted multiplication

ΩσX Map∗(C2+ ∧ S1,X )oo NC2ΩX ,

where the space on the right is the C2-norm of X .
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Going equivariant II (continued)

2 Use the James construction to filter ΩS1+ρ, and then look
at the twisted loop spaces of certain of its skeleta.

The twisted loop space ΩσX of a C2-space X is NOT an
H-space. The reason for this is that there is no equivariant
pinch map Sσ → Sσ ∨ Sσ. We would need one to get the
multiplication map

ΩσX Map∗(Sσ,X ) Map∗(Sσ ∨ Sσ,X )oo ΩσX × ΩσX .

Instead there is cofiber sequence

S0 → Sσ → C2+ ∧ S1.

This leads to a twisted multiplication

ΩσX Map∗(C2+ ∧ S1,X )oo NC2ΩX ,

where the space on the right is the C2-norm of X .
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THANK YOU!
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