The $C_{2}$-equivariant analog of the subalgebra of $\mathscr{A}$ generated by $S q^{1}$ and $S q^{2}$

## Joint work with

Homotopy theory: tools and applications The Crypto Goerss Fest University of Illinois at Urbana-Champaign July 20, 2017


Mike Hill, UCLA

Dan Isaksen, Wayne State University


## 1 Equivariant homotopy theory

### 1.1 Some spheres with group action

Equivariant homotopy theory
This talk is about equivariant homotopy theory. The group $G$ in question will always by $C_{2}$, the group of order 2.

Every finite dimensional orthogonal representation $V$ of $G$ is isomorphic to $m+n \sigma$, where $m, n \geq$ 0 are integers, and $\sigma$ denotes the sign representation.

Given such a representation $V$,

- $S(V)$ denotes its unit sphere, which is underlain by $S^{m+n-1}$, and
- $S^{V}$ denotes its one point compactification, which is underlain by $S^{m+n}$.

Here is a picture of $S^{\sigma}$, the twisted circle, whose fixed point set is $S^{0}$ :


### 1.2 The Hopf map

The surprising property of the equivariant Hopf map

## Recall the Hopf map

$$
\mathbb{C}^{2} \supset S^{3} \xrightarrow{\eta} \mathbb{C} P^{1}=S^{2} .
$$

The composite map


$$
S^{7} \xrightarrow{\Sigma^{4} \eta} S^{6} \xrightarrow{\Sigma^{3} \eta} S^{5} \xrightarrow{\Sigma^{2} \eta} S^{4} \xrightarrow{\Sigma \eta \ldots} S^{3}
$$

is known to be null homotopic.
Both source and target of $\eta$ have a $C_{2}$-action induced by complex conjugation. The Hopf map $\eta$ preserves it, so we get an equivariant map

$$
S(2+2 \sigma) \approx S^{1+2 \sigma} \xrightarrow{\bar{\eta}} S^{1+\sigma}
$$

and the induced map of fixed point sets is the degree 2 map

$$
S(2) \approx S^{1} \xrightarrow{[2]} \mathbb{R} P^{1}=S^{1}
$$

The surprising property of the equivariant Hopf map (continued)
Iterating the equivariant Hopf map $\bar{\eta}: S^{1+2 \sigma} \rightarrow S^{1+\sigma}$ gives a diagram of equivariant maps and fixed point sets

$$
\begin{gathered}
S^{1+5 \sigma} \xrightarrow{\Sigma^{3 \sigma} \bar{\eta}} S^{1+4 \sigma} \xrightarrow{\Sigma^{2 \sigma} \bar{\eta}} S^{1+3 \sigma} \xrightarrow{\Sigma^{\sigma} \bar{\eta}} S^{1+2 \sigma} \xrightarrow{\bar{\eta}} S^{1+\sigma} \\
S^{1} \xrightarrow{[2]} S^{1} \xrightarrow{[2]} S^{1} \xrightarrow{[2]} S^{1} \xrightarrow{[2]} S^{1}
\end{gathered}
$$

where $\Sigma^{\sigma}$ denotes the twisted suspension $S^{\sigma} \wedge-$. The composite map of fixed point sets is essential since it is the degree 16 map. In fact, any iterate of $\bar{\eta}$ induces a nontrivial map on fixed points. This means that the stable equivariant Hopf map is not equivariantly nilpotent, unlike the classical stable Hopf map.

## 2 The mod 2 homology of a point

The equivariant mod 2 homology of a point
In equivariant stable homotopy theory we can speak of homology and homotopy groups graded over $R O(G)$, the real orthogonal representation ring of $G$. We will now describe $H_{\star}^{C_{2}}\left(S^{-0} ; \mathbb{Z} / 2\right)$, the equivariant $\bmod 2$ homology of the sphere spectrum $S^{-0}$. The cohomology group $H_{C_{2}}^{\star}\left(S^{-0} ; \mathbb{Z} / 2\right)$ is isomorphic to it, but oppositely graded.

There are two elements of interest.

- The inclusion map of the fixed point set (the north and south poles) $a: S^{0} \rightarrow S^{\sigma}$ defines an element $a \in \pi_{-\sigma}^{C_{2}} S^{-0}$, and we use the same symbol for its mod 2 Hurewicz image. We call $a$ the polar generator. It is also called an Euler class.
- One can show that

$$
H_{1}^{C_{2}}\left(S^{\sigma} ; \mathbb{Z} / 2\right)=H_{1-\sigma}^{C_{2}}\left(S^{-0} ; \mathbb{Z} / 2\right)=\mathbb{Z} / 2
$$

and we denote its generator by $u$.

The equivariant mod 2 homology of a point (continued)
Dually we have

$$
a \in H_{C_{2}}^{\sigma} \quad \text { and } \quad u \in H_{C_{2}}^{\sigma-1}
$$

In real motivic homotopy theory one has analogous elements

$$
\rho \in H_{\mathbb{R}}^{(1,1)} \quad \text { and } \quad \tau \in H_{\mathbb{R}}^{(0,1)}
$$

where the motivic bidegree $(s, w)$ (for stem and weight) corresponds to the $R O\left(C_{2}\right)$ degree $s-$ $w+w \sigma$. The element $\rho$ is trivial image in complex motivic homotopy theory.

It is known that, for appropriate versions of the sphere spectrum $S^{-0}$,

$$
\begin{aligned}
& \mathbf{M}_{\mathbb{C}}^{*}:=H_{\mathbb{C}}^{*}\left(S^{-0} ; \mathbb{Z} / 2\right)=\mathbb{Z} / 2[\tau], \\
& \mathbf{M}_{\mathbb{R}}^{*}:=H_{\mathbb{R}}^{*}\left(S^{-0} ; \mathbb{Z} / 2\right)=\mathbb{Z} / 2[\rho, \tau]
\end{aligned}
$$

and

$$
\mathbf{M}^{*}:=H_{C_{2}}^{*}\left(S^{-0} ; \mathbb{Z} / 2\right) \supset \mathbb{Z} / 2[a, u]
$$

The equivariant mod 2 homology of a point (continued)
We have

$$
\mathbf{M}^{*} H_{C_{2}}^{*}\left(S^{-0} ; \mathbb{Z} / 2\right) \supset \mathbb{Z} / 2[a, u] \text { with } a \in H_{C_{2}}^{\sigma} \text { and } u \in H_{C_{2}}^{\sigma-1}
$$

but there is an additional summand called the negative cone $N C$, namely

$$
N C=\Sigma \mathbb{Z} / 2[a, u] /\left(a^{\infty}, u^{\infty}\right)=\bigoplus_{i, j>0} \mathbf{Z} / 2\left\{\frac{w}{a^{i} u^{j}}\right\}
$$

Here $w$ has cohomogical degree 1 , so

$$
:=\left|\frac{w}{a^{i} u^{j}}\right|=1-i \sigma-j(\sigma-1)=(1+j)-(i+j) \sigma .
$$

We abbreviate this element by $w_{i, j}$. The fractional notation is meant to indicate that

$$
a w_{i+1, j}=w_{i, j}=u w_{i, j+1} \quad \text { and } \quad a^{i} w_{i, j}=u^{j} w_{i, j}=0
$$

Each $w_{i, j}$ is both $a$-divisible and $u$-divisible.

### 2.1 The equivariant mod 2 cohomology of a point

The equivariant mod 2 cohomology of a point


The point $(x, y)$ above represents degree $x-y+y \sigma$.
Red and blue lines indicate multiplication by $u$ and $a$. $\qquad$

## 3 The Steenrod algebra

## The Steenrod algebra



The analog of the mod 2 Steenrod algebra $\mathscr{A}$ was described by Voevodsky in the motivic case and by Hu-Kriz in the equivariant case. The two answers are essentially the same.

The Steenrod algebra (continued)
One has squaring operations $S q^{k}$ for $k \geq 0$ whose degrees are

$$
\left|S q^{k}\right|= \begin{cases}i(1+\sigma) & \text { for } k=2 i \\ i(1+\sigma)+1 & \text { for } k=2 i+1\end{cases}
$$

As in the classical case, $S q^{0}=1$. The algebra acts on the coefficient ring $\mathbf{M}$, acting trivially on $a$ and $w$ with

$$
S q^{k} u= \begin{cases}u & \text { for } k=0 \\ a & \text { for } k=1 \\ 0 & \text { otherwise }\end{cases}
$$

Its action on other elements is determined by the Cartan formula to be given below.

## The Steenrod algebra (continued)

Half of the Cartan formula is

$$
\begin{aligned}
S q^{2 i}(x y)= & \sum_{0 \leq r \leq i} S q^{2 r}(x) S q^{2 i-2 r}(y) \\
& +u \sum_{0 \leq s<i} S q^{2 s+1}(x) S q^{2 i-2 s-1}(y)
\end{aligned}
$$

The factor of $u$ in the second sum is needed for degree reasons.
The operation $S q^{1}$ is a derivation with $S q^{1} S q^{1}=0$ as usual with $S q^{1} S q^{2 i}=S q^{2 i+1}$ and $S q^{1} u=a$. Applying it to both sides of the above gives the other half of the Cartan formula,

$$
\begin{aligned}
S q^{2 i+1}(x y)= & \sum_{0 \leq j \leq 2 i+1} S q^{j}(x) S q^{2 i+1-j}(y) \\
& +a \sum_{0 \leq s<i} S q^{2 s+1}(x) S q^{2 i-2 s-1}(y)
\end{aligned}
$$

Note that setting $u=1$ and $a=0$ reduces this to the classical Cartan formula.

## The Steenrod algebra (continued)

For the Adem relations, let $0<m<2 n$. The formula for $S q^{m} S q^{n}$ depends on the parity of $m+n$. When it is even we nearly have the classical relation,

$$
S q^{m} S q^{n}=\sum_{j=0}^{[m / 2]}\binom{n-1-j}{m-2 j}\left\{\begin{array}{ll}
u & \text { for } j \text { odd } \\
& \text { and } \\
m, n \text { even } \\
1 & \text { otherwise }
\end{array}\right\} S q^{m+n-j} S q^{j}
$$

When $m+n$ is odd we have a more complicated formula,

$$
\begin{aligned}
& S q^{m} S q^{n}=\sum_{j=0}^{[m / 2]}\binom{n-1-j}{m-2 j} S q^{m+n-j} S q^{j} \\
& +a \sum_{j \text { odd }}\left\{\begin{array}{ll}
\binom{n-1-j}{m-2 j} & \text { for } m \text { odd } \\
\binom{n-1-j}{m-2 j-1} & \text { for } n \text { odd }
\end{array}\right\} S q^{m+n-j-1} S q^{j} .
\end{aligned}
$$

As before, setting $u=1$ and $a=0$ reduces this to the classical Adem relation. The above are due to Jöel Riou, 2012. Voevodsky got it wrong.

## The Steenrod algebra (continued)

For example we have the usual

$$
\begin{aligned}
& S q^{1} S q^{n}= \begin{cases}S q^{n+1} & \text { for } n \text { even } \\
0 & \text { for } n \text { odd },\end{cases} \\
& S q^{2} S q^{n}=\left\{\begin{array}{rr}
S q^{n+2}+u S q^{n+1} S q^{1} & \text { for } n \equiv 0 \bmod 4 \\
S q^{n+1} S q^{1} & \text { for } n \equiv 1 \bmod 4 \\
u S q^{n+1} S q^{1} & \text { for } n \equiv 2 \bmod 4 \\
S q^{n+2}+S q^{n+1} S q^{1} & \text { for } n \equiv 3 \bmod 4
\end{array}\right.
\end{aligned}
$$

and

$$
S q^{3} S q^{n}=\left\{\begin{array}{rr}
S q^{n+3}+a S q^{n+1} S q^{1} & \text { for } n \equiv 0 \bmod 4 \\
S q^{n+2} S q^{1} & \text { for } n \equiv 1 \bmod 4 \\
a S q^{n+1} S q^{1} & \text { for } n \equiv 2 \bmod 4 \\
S q^{n+2} S q^{1} & \text { for } n \equiv 3 \bmod 4
\end{array}\right.
$$

### 3.1 The subalgebra $\mathscr{A}^{C_{2}}(1)$

sec-
The subalgebra $\mathscr{A}^{C_{2}}(1)$
It follows that the subalgebra $\mathscr{A}^{C_{2}}(1)$ generated by $S q^{1}$ and $S q^{2}$ is a free $\mathbf{M}$-module with the expected basis as shown here.


As before an element at $(x, y)$ has degree $x-y+y \sigma$. Black lines of slopes 0 and $1 / 2$ indicate left multiplication by $S q^{1}$ and $S q^{2}$ respectively, with the Adem relation

$$
S q^{2} S q^{2}=u S q^{3} S q^{1}=u S q^{1} S q^{2} S q^{1}
$$

indicated by the red line.
The subalgebra $\mathscr{A}^{C_{2}}(1)$ (continued)


The subalgebra $\mathscr{A}^{C_{2}}(1)$ (continued)
This chart shows the action of $\mathscr{A}^{C_{2}}(1)$ on $H_{C_{2}}^{\star}\left(S^{-0}\right)$.


The subalgebra $\mathscr{A}^{C_{2}}(1)$ (continued)
This chart shows the action of $\mathscr{A}^{C_{2}}(1)$ on the oppositely graded $H_{\star}^{C_{2}}\left(S^{-0}\right)$.


In this case Steenrod operations lower the stem degree.

## 4 The dual equivariant Steenrod algebra

The dual equivariant Steenrod algebra
Recall that the classical dual Steenrod algebra $\mathscr{A}_{*}$ is a Hopf algebra over $\mathbb{Z} / 2$, namely

$$
\mathscr{A}_{*}=\mathbb{Z} / 2\left[\xi_{1}, \xi_{2}, \ldots\right], \quad \text { where }\left|\xi_{i}\right|=2^{i}-1,
$$

with coproduct

$$
\Delta\left(\xi_{n}\right)=\sum_{0 \leq i \leq n} \xi_{n-i}^{2^{i}} \otimes \xi_{i}, \quad \text { where } \xi_{0}=1
$$

We will rewrite this as

$$
\mathscr{A}_{*}=\mathbb{Z} / 2\left[\tau_{0}, \tau_{1}, \ldots ; \xi_{1}, \xi_{2}, \ldots\right] /\left(\xi_{i}+\tau_{i-1}^{2}: i>0\right)
$$

where $\left|\xi_{i}\right|=2\left(2^{i}-1\right)$ and $\left|\tau_{i}\right|=1+\left|\xi_{i}\right|$, with a similar coproduct. Thus we are renaming the original $\xi_{i}$ as $\tau_{i-1}$, and using the symbol $\xi_{i}$ to denote the square of the original $\xi_{i}$.

The dual Steenrod algebra at an odd prime has a similar description with $\tau_{i}^{2}=0$.

The dual equivariant Steenrod algebra (continued)

$$
\mathscr{A}_{*}=\mathbb{Z} / 2\left[\tau_{0}, \tau_{1}, \ldots ; \xi_{1}, \xi_{2}, \ldots\right] /\left(\tau_{i}^{2}+\xi_{i+1}: i \geq 0\right) .
$$

The equivariant dual Steenrod algebra $\mathscr{A}_{\star}^{C_{2}}$ has a similar description.
Instead of being a Hopf algebra over $\mathbb{Z} / 2$, it is a Hopf algebroid over $\mathbf{M}_{\star}$, the oppositely graded dual of the ring $\mathbf{M}^{\star}$ described earlier. There is a right unit map $\eta_{R}$ with

$$
\eta_{R}(a)=a \quad \text { and } \quad \eta_{R}(u)=u+a \tau_{0}=: \bar{u}
$$

The degrees of the generators are

$$
\left|\xi_{i}\right|=(1+\sigma)\left(2^{i}-1\right) \quad \text { and } \quad\left|\tau_{i}\right|=1+\left|\xi_{i}\right| .
$$

The multiplicative relations are

$$
\tau_{i}^{2}=a \tau_{i+1}+\bar{u} \xi_{i+1} \quad \text { for } \quad i \geq 0
$$

Setting $a=0$ and $u=1$ gives us the description of $\mathscr{A}_{*}$ above.
$5 \mathscr{A}^{C_{2}}(1)_{\star}$
The quotient $\mathscr{A}^{C_{2}}(1)_{\star}$

$$
\mathscr{A}_{\star}^{C_{2}}=\mathbf{M}_{\star}\left[\tau_{0}, \tau_{1}, \ldots ; \xi_{1}, \xi_{2}, \ldots\right] /\left(\tau_{i}^{2}+\bar{u} \xi_{i+1}+a \tau_{i+1}: i \geq 0\right) .
$$

One could try to compute the group

$$
\operatorname{Ext}_{\substack{*, \star \\ c_{\star}^{2}}}^{\left(\mathbf{M}_{\star}, \mathbf{M}_{\star}\right),}
$$

but this is very complicated. One can start by replacing $\mathscr{A}^{C_{2}}$ by the subalgebra $\mathscr{A}^{C_{2}}(1)$ generated by $S q^{1}$ and $S q^{2}$.

Classically we have

$$
\begin{aligned}
\mathscr{A}(1)_{*} & =\mathscr{A}_{*} /\left(\tau_{0}^{4}, \tau_{1}^{2}, \tau_{2}, \ldots ; \xi_{1}^{2}, \xi_{2}, \ldots\right) \\
& =\mathbb{Z} / 2\left[\tau_{0}, \tau_{1}, \xi_{1}\right] /\left(\tau_{0}^{2}+\xi_{1}, \tau_{1}^{2}, \xi_{1}^{2}\right) .
\end{aligned}
$$

Equivariantly we have

$$
\mathscr{A}^{C_{2}}(1)_{\star}=\mathbf{M}_{\star}\left[\tau_{0}, \tau_{1}, \xi_{1}\right] /\left(\tau_{0}^{2}+\bar{u} \xi_{1}+a \tau_{1}, \tau_{1}^{2}, \xi_{1}^{2}\right) .
$$

### 5.1 Inverting $a$

Inverting the element $a$

$$
\mathscr{A}^{C_{2}}(1)_{\star}=\mathbf{M}_{\star}\left[\tau_{0}, \tau_{1}, \xi_{1}\right] /\left(\tau_{0}^{2}+\bar{u} \xi_{1}+a \tau_{1}, \tau_{1}^{2}, \xi_{1}^{2}\right) .
$$

Recall that $\mathbf{M}_{\star}=\mathbf{M}_{\star}^{\mathbb{R}} \oplus N C$ and $\mathbf{M}_{\star}^{\mathbb{R}}=\mathbb{Z} / 2[a, u]$. Thus $\mathbf{M}_{\star}^{\mathbb{R}}$ is $\mathbf{M}_{\star}$ without the negative cone.

Suppose we formally invert $a$, which is the algebraic counterpart to passing to geometric fixed points. This will kill $N C$ because each element in it is $a$-torsion. Thus we get a 4 -term exact sequence

$$
0 \rightarrow N C \rightarrow \mathbf{M} \rightarrow a^{-1} \mathbf{M}=a^{-1} \mathbf{M}^{\mathbb{R}} \rightarrow \mathbf{M}^{\mathbb{R}} /\left(a^{\infty}\right) \rightarrow 0
$$

The multiplicative relation $\tau_{0}^{2}+\bar{u} \xi_{1}+a \tau_{1}=0$ can be rewritten as

$$
\tau_{1}=a^{-1}\left(\tau_{0}^{2}+\bar{u} \xi_{1}\right)
$$

It follows that

$$
\begin{aligned}
a^{-1} \mathscr{A}^{C_{2}}(1)_{\star} & =a^{-1} \mathbf{M}_{\star}\left[\tau_{0}, \tau_{1}, \xi_{1}\right] /\left(\tau_{0}^{2}+\bar{u} \xi_{1}+a \tau_{1}, \tau_{1}^{2}, \xi_{1}^{2}\right) . \\
& =a^{-1} \mathbf{M}_{\star}^{\mathbb{R}}\left[\tau_{0}, \xi_{1}\right] /\left(\tau_{0}^{4}, \xi_{1}^{2}\right) .
\end{aligned}
$$

## Inverting the element $a$ (continued)

We have

$$
\begin{aligned}
\mathscr{A}^{C_{2}}(1)_{\star} & =\mathbf{M}_{\star}\left[\tau_{0}, \tau_{1}, \xi_{1}\right] /\left(\tau_{0}^{2}+\bar{u} \xi_{1}+a \tau_{1}, \tau_{1}^{2}, \xi_{1}^{2}\right) \\
a^{-1} \mathscr{A}^{C_{2}}(1)_{\star} & =a^{-1} \mathbf{M}_{\star}^{\mathbb{R}}\left[\tau_{0}, \xi_{1}\right] /\left(\tau_{0}^{4}, \xi_{1}^{2}\right) \\
& =\mathbb{Z} / 2\left[a^{ \pm 1}, u\right]\left[\tau_{0}, \xi_{1}\right] /\left(\tau_{0}^{4}, \xi_{1}^{2}\right),
\end{aligned}
$$

and the right unit is

$$
u \mapsto u+a \tau_{0} \quad \text { and } \quad u^{2} \mapsto u^{2}+a^{2} \tau_{0}^{2}=u^{2}+a^{2}\left(\bar{u} \xi_{1}+a \tau_{1}\right)
$$

The resulting Ext group is easily seen to be

$$
a^{-1} \operatorname{Ext}_{\mathscr{A}_{\star}^{*} C_{2}(1)}^{C_{2}}\left(\mathbf{M}_{\star}, \mathbf{M}_{\star}\right)=\mathbb{Z} / 2\left[a^{ \pm 1}, u^{4}\right]\left[h_{1}\right],
$$

where $h_{1}=\left[\xi_{1}\right] \in \operatorname{Ext}^{1,1+\sigma}$. This element is related to the equivariant Hopf map $\eta$ mentioned at the start of the talk. The nonnilpotence of $h_{1}$ in this Ext group is related to that of $\eta$ in the equivariant stable homotopy category.

### 5.2 Killing $a$

## Killing the element $a$

Again we have

$$
\mathscr{A}^{C_{2}}(1)_{\star}=\mathbf{M}_{\star}\left[\tau_{0}, \tau_{1}, \xi_{1}\right] /\left(\tau_{0}^{2}+\bar{u} \xi_{1}+a \tau_{1}, \tau_{1}^{2}, \xi_{1}^{2}\right)
$$

Now we consider the effect of formally killing $a \in \mathbf{M}_{\star}$. Like inverting $a$, this will kill the negative cone since each element in it is divisible by $a$. Thus we have

$$
\mathbf{M}_{\star} /(a)=\mathbf{M}_{\star}^{\mathbb{R}} /(a)=\mathbf{M}_{\star}^{\mathbb{C}}=\mathbb{Z} / 2[u] .
$$

Recall that if we also set $u \mapsto 1$, we get the classical quotient $\mathscr{A}(1)_{*}$. Its Ext group is well known and is shown below.


## Killing the element $a$ (continued)



As a ring with generators and relations, we have

$$
\operatorname{Ext}_{\mathscr{A}(1)_{*}}=\mathbb{Z} / 2\left[h_{0}, h_{1}, \alpha, \beta\right] /\left(h_{0} h_{1}, h_{1}^{3}, h_{1} \alpha, \alpha^{2}+h_{0}^{2} \beta\right)
$$

where

$$
\begin{aligned}
h_{0}=\left[\tau_{0}\right] \in \mathrm{Ext}^{1,1}, & h_{1}=\left[\xi_{1}\right] \in \operatorname{Ext}^{1,2}, \\
\alpha=\left\langle h_{1}^{2}, h_{1}, h_{0}\right\rangle \in \operatorname{Ext}^{3,7}, & \text { and } \beta=\left\langle h_{1}^{2}, h_{1}, h_{1}^{2}, h_{1}\right\rangle \in \operatorname{Ext}^{4,12} .
\end{aligned}
$$

Killing the element $a$ (continued)
As a ring with generators and relations, we have
where

$$
\operatorname{Ext}_{\mathscr{A}(1)_{*}}=\mathbb{Z} / 2\left[h_{0}, h_{1}, \alpha, \beta\right] /\left(h_{0} h_{1}, h_{1}^{3}, h_{1} \alpha, \alpha^{2}+h_{0}^{2} \beta\right)
$$

$$
h_{0}=\left[\tau_{0}\right] \in \operatorname{Ext}^{1,1}, \quad h_{1}=\left[\xi_{1}\right] \in \operatorname{Ext}^{1,2}
$$

$$
\alpha=\left\langle h_{1}^{2}, h_{1}, h_{0}\right\rangle \in \mathrm{Ext}^{3,7}
$$

$$
\text { and } \quad \beta=\left\langle h_{1}^{2}, h_{1}, h_{1}^{2}, h_{1}\right\rangle \in \mathrm{Ext}^{4,12}
$$

The complex motivic answer is only slightly different.
where $\quad h_{0}=\left[\tau_{0}\right] \in \operatorname{Ext}^{1,1}, \quad h_{1}=\left[\xi_{1}\right] \in \operatorname{Ext}^{1,1+\sigma}$,

$$
\begin{aligned}
& \alpha=\left\langle u h_{1}^{2}, h_{1}, h_{0}\right\rangle \in \mathrm{Ext}^{3,5+2 \sigma}, \\
& \quad \text { and } \quad \beta=\left\langle u h_{1}^{2}, h_{1}, u h_{1}^{2}, h_{1}\right\rangle \in \mathrm{Ext}^{4,8+4 \sigma} .
\end{aligned}
$$

Note that while $u h_{1}^{3}=0$, all powers of $h_{1}$ itself are nontrivial, as was the case when we inverted a.

Killing the element $a$ (continued)

$$
\operatorname{Ext}_{\mathscr{A} \mathbb{C}(1)_{\star}}=\mathbf{M}^{\mathbb{C}}\left[h_{0}, h_{1}, \alpha, \beta\right] /\left(h_{0} h_{1}, u h_{1}^{3}, h_{1} \alpha, \alpha^{2}+h_{0}^{2} \beta\right),
$$

Here is an illustrative chart.


Each red arrow is shorthand for a diagonal tower of elements related by $h_{1}$ and killed by $u$. The elements in black are $u$-torsion free. As before, an element in Ext ${ }^{f, x+y \sigma}$ is shown at $(x+y-f, f)$. For example, the elements

$$
h_{1}^{4} \in \mathrm{Ext}^{4,4+4 \sigma} \quad \text { and } \quad h_{0} \alpha \in \mathrm{Ext}^{4,6+2 \sigma}
$$

would both appear at $(4,4)$. $\qquad$

### 5.3 The polar spectral sequence

The polar spectral sequence

$$
\operatorname{Ext}_{\mathscr{A} \mathbb{C}(1)_{\star}}=\mathbf{M}^{\mathbb{C}}\left[h_{0}, h_{1}, \alpha, \boldsymbol{\beta}\right] /\left(h_{0} h_{1}, u h_{1}^{3}, h_{1} \alpha, \alpha^{2}+h_{0}^{2} \beta\right)
$$

Filtering $\mathbf{M}_{\star}^{\mathbb{R}}$ (which is $\mathbf{M}_{\star}$ without the negative cone) by powers of $a$, the polar filtration, yields the polar spectral sequence

$$
\mathbb{Z} / 2[a] \otimes \operatorname{Ext}_{\mathscr{A}\left(\mathbb{C}(1)_{\star}\right.} \Longrightarrow \operatorname{Ext}_{\mathscr{A} \mathbb{R}(1)_{\star}}
$$

It has three differentials:

$$
d_{1}(u)=a h_{0}, \quad d_{2}\left(u^{2}\right)=a^{2} u h_{1} \quad \text { and } \quad d_{3}\left(u^{3} h_{1}^{2}\right)=a^{3} \alpha
$$

This leads to a ring with 9 generators and 22 relations.
The answer for the negative cone is even more complicated.


## PAUL!

