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1.2

The slice spectral sequence and the slice filtration

The slice spectral sequence is the main computational device
used to prove the Kervaire invariant theorem.

It is based on a filtration of the category of G-spectra SpG,
where G is a finite group.

The slice filtration is an equivariant analog of the filtration of the
category Sp of ordinary spectra by connectivity.

The purpose of this talk is to give a new definition of it that is
easier to work with than the original one.

It makes use of equivariant constructions such as isotropy
separation and geometric fixed points, which we will describe
in due course.
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1.3

Localizing subcategories

First we need some general machinery.

Let M be a pointed topological model category meaning one
that is enriched over the category T of pointed topological
spaces.

A localizing subcategory τ of M is a full subcategory with three
properties:

(i) Any object weakly equivalent to one in τ is also in τ .
(ii) If W → X → Y is a cofiber sequence with W in τ , then X

is in τ iff Y is in τ . We are not requiring W to be in τ if X
and Y are.

(iii) Any wedge sum (finite or infinite) of objects in τ is in τ .

Example

Let M be either T (pointed spaces) or Sp (spectra) and let
τn ⊂ M be the subcategory of (n − 1)-connected spaces or
spectra.
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1.4

Localizing subcategories (continued)

A localizing subcategory τ of pointed topological model
category M is a full subcategory with three properties:

(i) Any object weakly equivalent to one in τ is also in τ .
(ii) If W → X → Y is a cofiber sequence with W in τ , then X

is in τ iff Y is in τ . We are not requiring W to be in τ if X
and Y are.

(iii) Any wedge sum (finite or infinite) of objects in τ is in τ .

The complement τ⊥ of τ is the subcategory of objects Y such
that the space M(X ,Y ) is contractible for all X in τ .

Example

For τn ⊆ T or τn ⊆ Sp as above, τ⊥n is the subcategory
n-coconnected spaces or spectra, meaning ones with no
homotopy in dimensions n and above.
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Localizing subcategories (continued)

A localizing subcategory τ of pointed topological model
category M is a full subcategory with three properties:

(i) Any object weakly equivalent to one in τ is also in τ .
(ii) If W → X → Y is a cofiber sequence with W in τ , then X

is in τ iff Y is in τ . We are not requiring W to be in τ if X
and Y are.

(iii) Any wedge sum (finite or infinite) of objects in τ is in τ .

The complement τ⊥ of τ is the subcategory of objects Y such
that the space M(X ,Y ) is contractible for all X in τ .

Example

For τn ⊆ T or τn ⊆ Sp as above, τ⊥n is the subcategory
n-coconnected spaces or spectra, meaning ones with no
homotopy in dimensions n and above.
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Localizing subcategories (continued)

A localizing subcategory τ of pointed topological model
category M is a full subcategory with three properties:

(i) Any object weakly equivalent to one in τ is also in τ .
(ii) If W → X → Y is a cofiber sequence with W in τ , then X

is in τ iff Y is in τ . We are not requiring W to be in τ if X
and Y are.

(iii) Any wedge sum (finite or infinite) of objects in τ is in τ .

The complement τ⊥ of τ is the subcategory of objects Y such
that the space M(X ,Y ) is contractible for all X in τ .

Example

For τn ⊆ T or τn ⊆ Sp as above,

τ⊥n is the subcategory
n-coconnected spaces or spectra, meaning ones with no
homotopy in dimensions n and above.
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Localizing subcategories (continued)

A localizing subcategory τ of pointed topological model
category M is a full subcategory with three properties:

(i) Any object weakly equivalent to one in τ is also in τ .
(ii) If W → X → Y is a cofiber sequence with W in τ , then X

is in τ iff Y is in τ . We are not requiring W to be in τ if X
and Y are.

(iii) Any wedge sum (finite or infinite) of objects in τ is in τ .

The complement τ⊥ of τ is the subcategory of objects Y such
that the space M(X ,Y ) is contractible for all X in τ .

Example

For τn ⊆ T or τn ⊆ Sp as above, τ⊥n is the subcategory
n-coconnected spaces or spectra,

meaning ones with no
homotopy in dimensions n and above.
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1.4

Localizing subcategories (continued)

A localizing subcategory τ of pointed topological model
category M is a full subcategory with three properties:

(i) Any object weakly equivalent to one in τ is also in τ .
(ii) If W → X → Y is a cofiber sequence with W in τ , then X

is in τ iff Y is in τ . We are not requiring W to be in τ if X
and Y are.

(iii) Any wedge sum (finite or infinite) of objects in τ is in τ .

The complement τ⊥ of τ is the subcategory of objects Y such
that the space M(X ,Y ) is contractible for all X in τ .

Example

For τn ⊆ T or τn ⊆ Sp as above, τ⊥n is the subcategory
n-coconnected spaces or spectra, meaning ones with no
homotopy in dimensions n and above.
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1.5

Localizing subcategories (continued)

A localizing subcategory τ of pointed topological model
category M is a full subcategory with three properties:

(i) Any object weakly equivalent to one in τ is also in τ .
(ii) If W → X → Y is a cofiber sequence with W in τ , then X

is in τ iff Y is in τ . We are not requiring W to be in τ if X
and Y are.

(iii) Any wedge sum (finite or infinite) of objects in τ is in τ .

Let T = {Tα} be a set of objects in M. The localizing
subcategory generated by T is smallest subcategory of M
containing the objects of T and closed under weak
equivalence, cofibers, extensions and arbitrary wedges.

Example

The localizing subcategory τn above of (n − 1)-connected
spaces or spectra is the one generated by the object Sn. In the
stable case we can define a spectrum Sn for n < 0. For n ≥ 0,
the spectrum Sn is understood to be the suspension spectrum
for the space Sn.
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1.5

Localizing subcategories (continued)

A localizing subcategory τ of pointed topological model
category M is a full subcategory with three properties:

(i) Any object weakly equivalent to one in τ is also in τ .
(ii) If W → X → Y is a cofiber sequence with W in τ , then X

is in τ iff Y is in τ . We are not requiring W to be in τ if X
and Y are.

(iii) Any wedge sum (finite or infinite) of objects in τ is in τ .

Let T = {Tα} be a set of objects in M. The localizing
subcategory generated by T is smallest subcategory of M
containing the objects of T

and closed under weak
equivalence, cofibers, extensions and arbitrary wedges.

Example

The localizing subcategory τn above of (n − 1)-connected
spaces or spectra is the one generated by the object Sn. In the
stable case we can define a spectrum Sn for n < 0. For n ≥ 0,
the spectrum Sn is understood to be the suspension spectrum
for the space Sn.
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1.5

Localizing subcategories (continued)

A localizing subcategory τ of pointed topological model
category M is a full subcategory with three properties:

(i) Any object weakly equivalent to one in τ is also in τ .
(ii) If W → X → Y is a cofiber sequence with W in τ , then X

is in τ iff Y is in τ . We are not requiring W to be in τ if X
and Y are.

(iii) Any wedge sum (finite or infinite) of objects in τ is in τ .

Let T = {Tα} be a set of objects in M. The localizing
subcategory generated by T is smallest subcategory of M
containing the objects of T and closed under weak
equivalence, cofibers, extensions and arbitrary wedges.

Example

The localizing subcategory τn above of (n − 1)-connected
spaces or spectra is the one generated by the object Sn. In the
stable case we can define a spectrum Sn for n < 0. For n ≥ 0,
the spectrum Sn is understood to be the suspension spectrum
for the space Sn.
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1.5

Localizing subcategories (continued)

A localizing subcategory τ of pointed topological model
category M is a full subcategory with three properties:

(i) Any object weakly equivalent to one in τ is also in τ .
(ii) If W → X → Y is a cofiber sequence with W in τ , then X

is in τ iff Y is in τ . We are not requiring W to be in τ if X
and Y are.

(iii) Any wedge sum (finite or infinite) of objects in τ is in τ .

Let T = {Tα} be a set of objects in M. The localizing
subcategory generated by T is smallest subcategory of M
containing the objects of T and closed under weak
equivalence, cofibers, extensions and arbitrary wedges.

Example

The localizing subcategory τn above of (n − 1)-connected
spaces or spectra

is the one generated by the object Sn. In the
stable case we can define a spectrum Sn for n < 0. For n ≥ 0,
the spectrum Sn is understood to be the suspension spectrum
for the space Sn.
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1.5

Localizing subcategories (continued)

A localizing subcategory τ of pointed topological model
category M is a full subcategory with three properties:

(i) Any object weakly equivalent to one in τ is also in τ .
(ii) If W → X → Y is a cofiber sequence with W in τ , then X

is in τ iff Y is in τ . We are not requiring W to be in τ if X
and Y are.

(iii) Any wedge sum (finite or infinite) of objects in τ is in τ .

Let T = {Tα} be a set of objects in M. The localizing
subcategory generated by T is smallest subcategory of M
containing the objects of T and closed under weak
equivalence, cofibers, extensions and arbitrary wedges.

Example

The localizing subcategory τn above of (n − 1)-connected
spaces or spectra is the one generated by the object Sn.

In the
stable case we can define a spectrum Sn for n < 0. For n ≥ 0,
the spectrum Sn is understood to be the suspension spectrum
for the space Sn.
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1.5

Localizing subcategories (continued)

A localizing subcategory τ of pointed topological model
category M is a full subcategory with three properties:

(i) Any object weakly equivalent to one in τ is also in τ .
(ii) If W → X → Y is a cofiber sequence with W in τ , then X

is in τ iff Y is in τ . We are not requiring W to be in τ if X
and Y are.

(iii) Any wedge sum (finite or infinite) of objects in τ is in τ .

Let T = {Tα} be a set of objects in M. The localizing
subcategory generated by T is smallest subcategory of M
containing the objects of T and closed under weak
equivalence, cofibers, extensions and arbitrary wedges.

Example

The localizing subcategory τn above of (n − 1)-connected
spaces or spectra is the one generated by the object Sn. In the
stable case we can define a spectrum Sn for n < 0.

For n ≥ 0,
the spectrum Sn is understood to be the suspension spectrum
for the space Sn.
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1.5

Localizing subcategories (continued)

A localizing subcategory τ of pointed topological model
category M is a full subcategory with three properties:

(i) Any object weakly equivalent to one in τ is also in τ .
(ii) If W → X → Y is a cofiber sequence with W in τ , then X

is in τ iff Y is in τ . We are not requiring W to be in τ if X
and Y are.

(iii) Any wedge sum (finite or infinite) of objects in τ is in τ .

Let T = {Tα} be a set of objects in M. The localizing
subcategory generated by T is smallest subcategory of M
containing the objects of T and closed under weak
equivalence, cofibers, extensions and arbitrary wedges.

Example

The localizing subcategory τn above of (n − 1)-connected
spaces or spectra is the one generated by the object Sn. In the
stable case we can define a spectrum Sn for n < 0. For n ≥ 0,
the spectrum Sn is understood to be the suspension spectrum
for the space Sn.
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1.6

Localizing subcategories (continued)

Theorem

(Bousfield and Dror Farjoun) The functors Pτ and Pτ .

Let τ
be a localizing subcategory of a pointed topological model
category M. Then the inclusion functor τ⊥ → M has a left
adjoint Pτ : M → τ⊥ with fiber Pτ .

Pete Bousfield Emmanuel Dror Farjoun with grandkids

Example

For τn+1 as above (n-connected objects), we denote these two
functors by Pn and Pn+1. PnX is the nth Postnikov section of X ,
the space or spectrum obtained by killing all homotopy groups
above dimension n. Pn+1X is the n-connected cover of X .
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1.6

Localizing subcategories (continued)

Theorem

(Bousfield and Dror Farjoun) The functors Pτ and Pτ . Let τ
be a localizing subcategory of a pointed topological model
category M.

Then the inclusion functor τ⊥ → M has a left
adjoint Pτ : M → τ⊥ with fiber Pτ .

Pete Bousfield Emmanuel Dror Farjoun with grandkids

Example

For τn+1 as above (n-connected objects), we denote these two
functors by Pn and Pn+1. PnX is the nth Postnikov section of X ,
the space or spectrum obtained by killing all homotopy groups
above dimension n. Pn+1X is the n-connected cover of X .
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1.6

Localizing subcategories (continued)

Theorem

(Bousfield and Dror Farjoun) The functors Pτ and Pτ . Let τ
be a localizing subcategory of a pointed topological model
category M. Then the inclusion functor τ⊥ → M has a left
adjoint Pτ : M → τ⊥

with fiber Pτ .

Pete Bousfield Emmanuel Dror Farjoun with grandkids

Example

For τn+1 as above (n-connected objects), we denote these two
functors by Pn and Pn+1. PnX is the nth Postnikov section of X ,
the space or spectrum obtained by killing all homotopy groups
above dimension n. Pn+1X is the n-connected cover of X .
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1.6

Localizing subcategories (continued)

Theorem

(Bousfield and Dror Farjoun) The functors Pτ and Pτ . Let τ
be a localizing subcategory of a pointed topological model
category M. Then the inclusion functor τ⊥ → M has a left
adjoint Pτ : M → τ⊥ with fiber Pτ .

Pete Bousfield Emmanuel Dror Farjoun with grandkids

Example

For τn+1 as above (n-connected objects), we denote these two
functors by Pn and Pn+1. PnX is the nth Postnikov section of X ,
the space or spectrum obtained by killing all homotopy groups
above dimension n. Pn+1X is the n-connected cover of X .
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1.6

Localizing subcategories (continued)

Theorem

(Bousfield and Dror Farjoun) The functors Pτ and Pτ . Let τ
be a localizing subcategory of a pointed topological model
category M. Then the inclusion functor τ⊥ → M has a left
adjoint Pτ : M → τ⊥ with fiber Pτ .

Pete Bousfield Emmanuel Dror Farjoun with grandkids

Example

For τn+1 as above (n-connected objects),

we denote these two
functors by Pn and Pn+1. PnX is the nth Postnikov section of X ,
the space or spectrum obtained by killing all homotopy groups
above dimension n. Pn+1X is the n-connected cover of X .
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1.6

Localizing subcategories (continued)

Theorem

(Bousfield and Dror Farjoun) The functors Pτ and Pτ . Let τ
be a localizing subcategory of a pointed topological model
category M. Then the inclusion functor τ⊥ → M has a left
adjoint Pτ : M → τ⊥ with fiber Pτ .

Pete Bousfield Emmanuel Dror Farjoun with grandkids

Example

For τn+1 as above (n-connected objects), we denote these two
functors by Pn and Pn+1.

PnX is the nth Postnikov section of X ,
the space or spectrum obtained by killing all homotopy groups
above dimension n. Pn+1X is the n-connected cover of X .
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1.6

Localizing subcategories (continued)

Theorem

(Bousfield and Dror Farjoun) The functors Pτ and Pτ . Let τ
be a localizing subcategory of a pointed topological model
category M. Then the inclusion functor τ⊥ → M has a left
adjoint Pτ : M → τ⊥ with fiber Pτ .

Pete Bousfield Emmanuel Dror Farjoun with grandkids

Example

For τn+1 as above (n-connected objects), we denote these two
functors by Pn and Pn+1. PnX is the nth Postnikov section of X ,

the space or spectrum obtained by killing all homotopy groups
above dimension n. Pn+1X is the n-connected cover of X .
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1.6

Localizing subcategories (continued)

Theorem

(Bousfield and Dror Farjoun) The functors Pτ and Pτ . Let τ
be a localizing subcategory of a pointed topological model
category M. Then the inclusion functor τ⊥ → M has a left
adjoint Pτ : M → τ⊥ with fiber Pτ .

Pete Bousfield Emmanuel Dror Farjoun with grandkids

Example

For τn+1 as above (n-connected objects), we denote these two
functors by Pn and Pn+1. PnX is the nth Postnikov section of X ,
the space or spectrum obtained by killing all homotopy groups
above dimension n.

Pn+1X is the n-connected cover of X .
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1.6

Localizing subcategories (continued)

Theorem

(Bousfield and Dror Farjoun) The functors Pτ and Pτ . Let τ
be a localizing subcategory of a pointed topological model
category M. Then the inclusion functor τ⊥ → M has a left
adjoint Pτ : M → τ⊥ with fiber Pτ .

Pete Bousfield Emmanuel Dror Farjoun with grandkids

Example

For τn+1 as above (n-connected objects), we denote these two
functors by Pn and Pn+1. PnX is the nth Postnikov section of X ,
the space or spectrum obtained by killing all homotopy groups
above dimension n. Pn+1X is the n-connected cover of X .
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1.7

Localizing subcategories (continued)

Example

For τn+1 as above (n-connected objects), we denote these two
functors by Pn and Pn+1.
PnX is the nth Postnikov section of X , the space or spectrum
obtained by killing all homotopy groups above dimension n.
Pn+1X is the n-connected cover of X .

The Postnikov tower of X is the diagram

· · · → Pn+1X → PnX → Pn−1X → . . .

Its limit is X and its colimit is contractible.

We denote the fiber of the map PnX → Pn−1X by Pn
n X , the nth

layer of the tower. It is the Eilenberg-Mac Lane space or
spectrum capturing πnX . It lies in the intersection τn ∩ τ⊥n+1, the
nth layer category, which we will abbreviate by τ=n.
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1.7

Localizing subcategories (continued)

Example

For τn+1 as above (n-connected objects), we denote these two
functors by Pn and Pn+1.
PnX is the nth Postnikov section of X , the space or spectrum
obtained by killing all homotopy groups above dimension n.
Pn+1X is the n-connected cover of X .

The Postnikov tower of X is the diagram

· · · → Pn+1X → PnX → Pn−1X → . . .

Its limit is X and its colimit is contractible.

We denote the fiber of the map PnX → Pn−1X by Pn
n X , the nth

layer of the tower. It is the Eilenberg-Mac Lane space or
spectrum capturing πnX . It lies in the intersection τn ∩ τ⊥n+1, the
nth layer category, which we will abbreviate by τ=n.
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1.7

Localizing subcategories (continued)

Example

For τn+1 as above (n-connected objects), we denote these two
functors by Pn and Pn+1.
PnX is the nth Postnikov section of X , the space or spectrum
obtained by killing all homotopy groups above dimension n.
Pn+1X is the n-connected cover of X .

The Postnikov tower of X is the diagram

· · · → Pn+1X → PnX → Pn−1X → . . .

Its limit is X and its colimit is contractible.

We denote the fiber of the map PnX → Pn−1X by Pn
n X , the nth

layer of the tower. It is the Eilenberg-Mac Lane space or
spectrum capturing πnX . It lies in the intersection τn ∩ τ⊥n+1, the
nth layer category, which we will abbreviate by τ=n.
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1.7

Localizing subcategories (continued)

Example

For τn+1 as above (n-connected objects), we denote these two
functors by Pn and Pn+1.
PnX is the nth Postnikov section of X , the space or spectrum
obtained by killing all homotopy groups above dimension n.
Pn+1X is the n-connected cover of X .

The Postnikov tower of X is the diagram

· · · → Pn+1X → PnX → Pn−1X → . . .

Its limit is X and its colimit is contractible.

We denote the fiber of the map PnX → Pn−1X by Pn
n X ,

the nth
layer of the tower. It is the Eilenberg-Mac Lane space or
spectrum capturing πnX . It lies in the intersection τn ∩ τ⊥n+1, the
nth layer category, which we will abbreviate by τ=n.
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1.7

Localizing subcategories (continued)

Example

For τn+1 as above (n-connected objects), we denote these two
functors by Pn and Pn+1.
PnX is the nth Postnikov section of X , the space or spectrum
obtained by killing all homotopy groups above dimension n.
Pn+1X is the n-connected cover of X .

The Postnikov tower of X is the diagram

· · · → Pn+1X → PnX → Pn−1X → . . .

Its limit is X and its colimit is contractible.

We denote the fiber of the map PnX → Pn−1X by Pn
n X , the nth

layer of the tower.

It is the Eilenberg-Mac Lane space or
spectrum capturing πnX . It lies in the intersection τn ∩ τ⊥n+1, the
nth layer category, which we will abbreviate by τ=n.
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1.7

Localizing subcategories (continued)

Example

For τn+1 as above (n-connected objects), we denote these two
functors by Pn and Pn+1.
PnX is the nth Postnikov section of X , the space or spectrum
obtained by killing all homotopy groups above dimension n.
Pn+1X is the n-connected cover of X .

The Postnikov tower of X is the diagram

· · · → Pn+1X → PnX → Pn−1X → . . .

Its limit is X and its colimit is contractible.

We denote the fiber of the map PnX → Pn−1X by Pn
n X , the nth

layer of the tower. It is the Eilenberg-Mac Lane space or
spectrum capturing πnX .

It lies in the intersection τn ∩ τ⊥n+1, the
nth layer category, which we will abbreviate by τ=n.
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1.7

Localizing subcategories (continued)

Example

For τn+1 as above (n-connected objects), we denote these two
functors by Pn and Pn+1.
PnX is the nth Postnikov section of X , the space or spectrum
obtained by killing all homotopy groups above dimension n.
Pn+1X is the n-connected cover of X .

The Postnikov tower of X is the diagram

· · · → Pn+1X → PnX → Pn−1X → . . .

Its limit is X and its colimit is contractible.

We denote the fiber of the map PnX → Pn−1X by Pn
n X , the nth

layer of the tower. It is the Eilenberg-Mac Lane space or
spectrum capturing πnX . It lies in the intersection τn ∩ τ⊥n+1, the
nth layer category,

which we will abbreviate by τ=n.
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1.8

The original slice filtration

We now work in the category of G-spectra SpG with a suitable
model category structure.

For each subgroup H ⊆ G we have
• The regular representation ρH and its one point

compactification SρH .
• For each integer m an H-spectrum SmρH .
• The induced G-spectrum

Ŝ(m,H) := G+ ∧
H

SmρH .

It is underlain by a wedge of spheres of dimension m|H|,
which are permuted by G and left invariant by H.

• We call Ŝ(m,H) a slice sphere. We also use that term for
its single desuspension Σ−1Ŝ(m,H), but not for other
suspensions or desuspensions.
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• We call Ŝ(m,H) a slice sphere. We also use that term for
its single desuspension Σ−1Ŝ(m,H), but not for other
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but not for other
suspensions or desuspensions.



The slice filtration
revisited

−16 −12 −8 −4 0 4 8 12 16
−8

−4

0

4

8

22 2 2 2 22̇ 2̇ 2̇ 2 2 2 2

Mike Hill
Mike Hopkins
Doug Ravenel

Localizing
subcategories

The original slice
filtration

Geometric fixed points

The new definition of
the slice filtration

The subcategories τG
n

and τG
=n

1.8

The original slice filtration

We now work in the category of G-spectra SpG with a suitable
model category structure.

For each subgroup H ⊆ G we have
• The regular representation ρH and its one point

compactification SρH .
• For each integer m an H-spectrum SmρH .
• The induced G-spectrum
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1.9

The original slice filtration (continued)

Ŝ(m,H) := G+ ∧
H

SmρH for m ∈ Z and H ⊆ G.

For each integer n, let

T G
n =

{
Ŝ(m,H) : m|H| ≥ n

}
∪
{
Σ−1Ŝ(m,H) : m|H| − 1 ≥ n

}
.

We originally defined the localizing subcategory SpG
≥n to be the

one generated by T G
n as above. Now I will denote it by Sp

G
≥n to

avoid confusion later. A spectrum in it is slice
(n − 1)-connected. We denoted its complement by Sp

G
<n.

As before it leads to functors Pn and Pn+1, and to a diagram

· · · → Pn+1X → PnX → Pn−1X → . . .

This is the slice tower of the G-spectrum X . Its nth layer Pn
n X is

the n-slice of X . Unlike the classical case, its equivariant
homotopy groups need not be concentrated in dimension n.
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Ŝ(m,H) := G+ ∧
H

SmρH for m ∈ Z and H ⊆ G.

For each integer n, let

T G
n =

{
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Ŝ(m,H) := G+ ∧
H

SmρH for m ∈ Z and H ⊆ G.

For each integer n, let

T G
n =

{
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G
≥n to

avoid confusion later. A spectrum in it is slice
(n − 1)-connected. We denoted its complement by Sp

G
<n.

As before it leads to functors Pn and Pn+1, and to a diagram

· · · → Pn+1X → PnX → Pn−1X → . . .

This is the slice tower of the G-spectrum X .

Its nth layer Pn
n X is

the n-slice of X . Unlike the classical case, its equivariant
homotopy groups need not be concentrated in dimension n.
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Ŝ(m,H) : m|H| ≥ n

}
∪
{
Σ−1Ŝ(m,H) : m|H| − 1 ≥ n

}
.

We originally defined the localizing subcategory SpG
≥n to be the

one generated by T G
n as above. Now I will denote it by Sp

G
≥n to

avoid confusion later. A spectrum in it is slice
(n − 1)-connected. We denoted its complement by Sp

G
<n.

As before it leads to functors Pn and Pn+1, and to a diagram

· · · → Pn+1X → PnX → Pn−1X → . . .

This is the slice tower of the G-spectrum X . Its nth layer Pn
n X is

the n-slice of X . Unlike the classical case, its equivariant
homotopy groups need not be concentrated in dimension n.



The slice filtration
revisited

−16 −12 −8 −4 0 4 8 12 16
−8

−4

0

4

8

22 2 2 2 22̇ 2̇ 2̇ 2 2 2 2

Mike Hill
Mike Hopkins
Doug Ravenel

Localizing
subcategories

The original slice
filtration

Geometric fixed points

The new definition of
the slice filtration

The subcategories τG
n

and τG
=n

1.10

The original slice filtration (continued)

Ŝ(m,H) := G+ ∧
H

SmρH for m ∈ Z and H ⊆ G.

The localizing subcategory Sp
G
≥n is the one generated by

T G
n =

{
Ŝ(m,H) : m|H| ≥ n

}
∪
{
Σ−1Ŝ(m,H) : m|H| − 1 ≥ n

}
.

We later learned that it is more convenient to define SpG
≥n to be

the one generated by

T G
n =

{
Ŝ(m,H) : m|H| ≥ n

}
and redefine the slice tower accordingly.

This leads to better multiplicative properties. For X ∈ SpG
≥m

and Y ∈ SpG
≥n, we have X ∧ Y ∈ SpG

≥m+n, as one would hope.
This was not always true under the original definition.



The slice filtration
revisited

−16 −12 −8 −4 0 4 8 12 16
−8

−4

0

4

8

22 2 2 2 22̇ 2̇ 2̇ 2 2 2 2

Mike Hill
Mike Hopkins
Doug Ravenel

Localizing
subcategories

The original slice
filtration

Geometric fixed points

The new definition of
the slice filtration

The subcategories τG
n

and τG
=n

1.10

The original slice filtration (continued)
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Ŝ(m,H) : m|H| ≥ n

}
∪
{
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Ŝ(m,H) : m|H| ≥ n

}
∪
{
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The original slice filtration (continued)

Ŝ(m,H) := G+ ∧
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1.11

The original slice filtration (continued)

Ŝ(m,H) := G+ ∧
H

SmρH for m ∈ Z and H ⊆ G.

We now define the localizing subcategory SpG
≥n to be the one

generated by

T G
n =

{
Ŝ(m,H) : m|H| ≥ n

}
.

We will give an equivalent definition in terms of ordinary
connectivity that is easier to work with.

It requires the use of geometric fixed points.
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The original slice filtration (continued)

Ŝ(m,H) := G+ ∧
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SmρH for m ∈ Z and H ⊆ G.
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generated by
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n =

{
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The original slice filtration (continued)
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1.12

Isotropy separation and geometric fixed points
For a G-spectrum X and a subgroup H ⊆ G,

one can define an
ordinary (meaning not equivariant) spectrum X H , the H-fixed
point spectrum of X . These are not fun to work with for two
reasons.

• For G-spectra X and Y , it is not the case that
(X ∧ Y )H ' X H ∧ Y H . Fixed points do not commute with
smash products.

• For a G-space K with suspension spectrum Σ∞K , it is not
the case that (Σ∞K )H ' Σ∞(K H). Fixed points do not
commute with infinite suspensions.

The good news is that there is a functor

ΦH : SpG → Sp X 7→ XΦH (aka ΦHX )

(geometric fixed points with respect to any subgroup H ⊆ G)
that suffers from neither of these defects, namely

• for G-spectra X and Y , (X ∧ Y )ΦH ' XΦH ∧ YΦH and
• for a G-space K with suspension spectrum Σ∞K ,

(Σ∞K )ΦH ' Σ∞(K H).
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Isotropy separation and geometric fixed points
For a G-spectrum X and a subgroup H ⊆ G, one can define an
ordinary (meaning not equivariant) spectrum X H , the H-fixed
point spectrum of X . These are not fun to work with for two
reasons.

• For G-spectra X and Y , it is not the case that
(X ∧ Y )H ' X H ∧ Y H . Fixed points do not commute with
smash products.

• For a G-space K with suspension spectrum Σ∞K , it is not
the case that (Σ∞K )H ' Σ∞(K H).

Fixed points do not
commute with infinite suspensions.

The good news is that there is a functor

ΦH : SpG → Sp X 7→ XΦH (aka ΦHX )

(geometric fixed points with respect to any subgroup H ⊆ G)
that suffers from neither of these defects, namely

• for G-spectra X and Y , (X ∧ Y )ΦH ' XΦH ∧ YΦH and
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1.13

Isotropy separation and geometric fixed points (continued)

There is a functor ΦH such that

• for G-spectra X and Y , (X ∧ Y )ΦH ' XΦH ∧ YΦH , and
• for a G-space K with suspension spectrum Σ∞K ,
(Σ∞K )ΦH ' Σ∞(K H).

It also enjoys the following properties.

• For the trivial group e, XΦe ' iG0 X , where iG0 denotes the
forgetful functor SpG → Sp.

• For G-spectra X and Y , a map f : X → Y is an equivariant
equivalence iff (f )ΦH is an ordinary equivalence for each
H ⊆ G.

• In particular, X is equivariantly contractible iff XΦH is
contractible for each H ⊆ G.

• For an orthogonal representation V of G,

(SV )ΦG = S(V G) and (S−V )ΦG = S(−V G).

That was the sales pitch. Now for the price.
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Isotropy separation and geometric fixed points (continued)

There is a functor ΦH such that
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(Σ∞K )ΦH ' Σ∞(K H).

It also enjoys the following properties.

• For the trivial group e, XΦe ' iG0 X , where iG0 denotes the
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• For G-spectra X and Y , a map f : X → Y is an equivariant
equivalence iff (f )ΦH is an ordinary equivalence for each
H ⊆ G.

• In particular, X is equivariantly contractible iff XΦH is
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1.14

Isotropy separation and geometric fixed points (continued)

How do we construct ΦG?

For any nonempty family F of subgroups of G closed under
inclusion and conjugation, there is a G-space EF with

(EF)H '
{

∗ for H ∈ F
∅ otherwise.

These properties characterize it up to equivariant homotopy
equivalence. It can be constructed as an infinite join of G-sets
of the form G/H for all H ∈ F .

Example

When F contains just the trivial subgroup, then EF is the usual
contractible free G-space EG, the infinite join of G.

When F contains all subgroups of G, then EF is a point.
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Isotropy separation and geometric fixed points (continued)

How do we construct ΦG?

For any nonempty family F of subgroups of G closed under
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Example

When F contains just the trivial subgroup, then EF is the usual
contractible free G-space EG, the infinite join of G.

When F contains all subgroups of G, then EF is a point.
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Isotropy separation and geometric fixed points (continued)

How do we construct ΦG?

For any nonempty family F of subgroups of G closed under
inclusion and conjugation, there is a G-space EF with

(EF)H '
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∗ for H ∈ F
∅ otherwise.

These properties characterize it up to equivariant homotopy
equivalence. It can be constructed as an infinite join of G-sets
of the form G/H for all H ∈ F .

Example

When F contains just the trivial subgroup, then EF is the usual
contractible free G-space EG, the infinite join of G.

When F contains all subgroups of G, then EF is a point.
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Isotropy separation and geometric fixed points (continued)

How do we construct ΦG?

For any nonempty family F of subgroups of G closed under
inclusion and conjugation, there is a G-space EF with

(EF)H '
{

∗ for H ∈ F
∅ otherwise.

These properties characterize it up to equivariant homotopy
equivalence. It can be constructed as an infinite join of G-sets
of the form G/H for all H ∈ F .

Example

When F contains just the trivial subgroup, then EF is the usual
contractible free G-space EG, the infinite join of G.

When F contains all subgroups of G, then EF is a point.
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Isotropy separation and geometric fixed points (continued)

How do we construct ΦG?

For any nonempty family F of subgroups of G closed under
inclusion and conjugation, there is a G-space EF with

(EF)H '
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∗ for H ∈ F
∅ otherwise.

These properties characterize it up to equivariant homotopy
equivalence.

It can be constructed as an infinite join of G-sets
of the form G/H for all H ∈ F .

Example

When F contains just the trivial subgroup, then EF is the usual
contractible free G-space EG, the infinite join of G.

When F contains all subgroups of G, then EF is a point.
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Isotropy separation and geometric fixed points (continued)

How do we construct ΦG?

For any nonempty family F of subgroups of G closed under
inclusion and conjugation, there is a G-space EF with

(EF)H '
{

∗ for H ∈ F
∅ otherwise.

These properties characterize it up to equivariant homotopy
equivalence. It can be constructed as an infinite join of G-sets
of the form G/H for all H ∈ F .

Example

When F contains just the trivial subgroup, then EF is the usual
contractible free G-space EG, the infinite join of G.

When F contains all subgroups of G, then EF is a point.
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Isotropy separation and geometric fixed points (continued)

How do we construct ΦG?

For any nonempty family F of subgroups of G closed under
inclusion and conjugation, there is a G-space EF with

(EF)H '
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∗ for H ∈ F
∅ otherwise.

These properties characterize it up to equivariant homotopy
equivalence. It can be constructed as an infinite join of G-sets
of the form G/H for all H ∈ F .

Example

When F contains just the trivial subgroup,

then EF is the usual
contractible free G-space EG, the infinite join of G.

When F contains all subgroups of G, then EF is a point.
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Isotropy separation and geometric fixed points (continued)

How do we construct ΦG?

For any nonempty family F of subgroups of G closed under
inclusion and conjugation, there is a G-space EF with
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∗ for H ∈ F
∅ otherwise.
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equivalence. It can be constructed as an infinite join of G-sets
of the form G/H for all H ∈ F .

Example

When F contains just the trivial subgroup, then EF is the usual
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When F contains all subgroups of G, then EF is a point.
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How do we construct ΦG?

For any nonempty family F of subgroups of G closed under
inclusion and conjugation, there is a G-space EF with

(EF)H '
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∗ for H ∈ F
∅ otherwise.

These properties characterize it up to equivariant homotopy
equivalence. It can be constructed as an infinite join of G-sets
of the form G/H for all H ∈ F .

Example

When F contains just the trivial subgroup, then EF is the usual
contractible free G-space EG, the infinite join of G.

When F contains all subgroups of G, then EF is a point.
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Isotropy separation and geometric fixed points (continued)

How do we construct ΦG?

For any nonempty family F of subgroups of G closed under
inclusion and conjugation, there is a G-space EF with

(EF)H '
{

∗ for H ∈ F
∅ otherwise.

These properties characterize it up to equivariant homotopy
equivalence. It can be constructed as an infinite join of G-sets
of the form G/H for all H ∈ F .

Example

When F contains just the trivial subgroup, then EF is the usual
contractible free G-space EG, the infinite join of G.

When F contains all subgroups of G,

then EF is a point.
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Isotropy separation and geometric fixed points (continued)

How do we construct ΦG?

For any nonempty family F of subgroups of G closed under
inclusion and conjugation, there is a G-space EF with

(EF)H '
{

∗ for H ∈ F
∅ otherwise.

These properties characterize it up to equivariant homotopy
equivalence. It can be constructed as an infinite join of G-sets
of the form G/H for all H ∈ F .

Example

When F contains just the trivial subgroup, then EF is the usual
contractible free G-space EG, the infinite join of G.

When F contains all subgroups of G, then EF is a point.
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Isotropy separation and geometric fixed points (continued)

How do we construct ΦG?

For any nonempty family F of subgroups of G closed under
inclusion and conjugation, there is a G-space EF with

(EF)H '
{

∗ for H ∈ F
∅ otherwise.

We are interested in the case F = P, the family of all proper
subgroups of G. Let ẼP be the mapping cone of EP → ∗, or
equivalently that of EP+ → S0, with the cone point taken as
base point. Then we have

(
EP+

)H '

{
S0 H 6= G
∗ H = G

and
(
ẼP

)H '

{
∗ H 6= G
S0 H = G.
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subgroups of G. Let ẼP be the mapping cone of EP → ∗, or
equivalently that of EP+ → S0, with the cone point taken as
base point. Then we have

(
EP+

)H '

{
S0 H 6= G
∗ H = G

and
(
ẼP
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∅ otherwise.
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subgroups of G.
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Isotropy separation and geometric fixed points (continued)

How do we construct ΦG?

For any nonempty family F of subgroups of G closed under
inclusion and conjugation, there is a G-space EF with

(EF)H '
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∗ for H ∈ F
∅ otherwise.

We are interested in the case F = P, the family of all proper
subgroups of G. Let ẼP be the mapping cone of EP → ∗, or
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Isotropy separation and geometric fixed points (continued)

How do we construct ΦG?

For any nonempty family F of subgroups of G closed under
inclusion and conjugation, there is a G-space EF with

(EF)H '
{

∗ for H ∈ F
∅ otherwise.

We are interested in the case F = P, the family of all proper
subgroups of G. Let ẼP be the mapping cone of EP → ∗, or
equivalently that of EP+ → S0, with the cone point taken as
base point. Then we have

(
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)H '

{
S0 H 6= G
∗ H = G

and
(
ẼP
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{
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Isotropy separation and geometric fixed points (continued)

How do we construct ΦG?

There are G-spaces EP and ẼP with

(
EP+

)H '

{
S0 H 6= G
∗ H = G

and
(
ẼP

)H '

{
∗ H 6= G
S0 H = G.

For any G-spectrum X there is a cofiber sequence

EP+ ∧ X → X → ẼP ∧ X .

called the isotropy separation sequence. Then we define the
geometric fixed point spectrum of a G-spectrum X by

XΦG = ((ẼP ∧ X )f )
G,

where (−)f indicates fibrant replacement, meaning conversion
of the spectrum into its corresponding Ω-spectrum.
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Isotropy separation and geometric fixed points (continued)

How do we construct ΦG?

There are G-spaces EP and ẼP with

(
EP+

)H '
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S0 H 6= G
∗ H = G

and
(
ẼP

)H '

{
∗ H 6= G
S0 H = G.

For any G-spectrum X there is a cofiber sequence

EP+ ∧ X → X → ẼP ∧ X .

called the isotropy separation sequence. Then we define the
geometric fixed point spectrum of a G-spectrum X by

XΦG = ((ẼP ∧ X )f )
G,

where (−)f indicates fibrant replacement, meaning conversion
of the spectrum into its corresponding Ω-spectrum.
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Isotropy separation and geometric fixed points (continued)

How do we construct ΦG?

There are G-spaces EP and ẼP with

(
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)H '
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∗ H = G

and
(
ẼP

)H '

{
∗ H 6= G
S0 H = G.

For any G-spectrum X there is a cofiber sequence

EP+ ∧ X → X → ẼP ∧ X .

called the isotropy separation sequence.

Then we define the
geometric fixed point spectrum of a G-spectrum X by

XΦG = ((ẼP ∧ X )f )
G,

where (−)f indicates fibrant replacement, meaning conversion
of the spectrum into its corresponding Ω-spectrum.
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Isotropy separation and geometric fixed points (continued)

How do we construct ΦG?

There are G-spaces EP and ẼP with

(
EP+

)H '

{
S0 H 6= G
∗ H = G

and
(
ẼP

)H '

{
∗ H 6= G
S0 H = G.

For any G-spectrum X there is a cofiber sequence

EP+ ∧ X → X → ẼP ∧ X .

called the isotropy separation sequence. Then we define the
geometric fixed point spectrum of a G-spectrum X by

XΦG = ((ẼP ∧ X )f )
G,

where (−)f indicates fibrant replacement, meaning conversion
of the spectrum into its corresponding Ω-spectrum.
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Isotropy separation and geometric fixed points (continued)

How do we construct ΦG?

There are G-spaces EP and ẼP with

(
EP+

)H '

{
S0 H 6= G
∗ H = G

and
(
ẼP

)H '

{
∗ H 6= G
S0 H = G.

For any G-spectrum X there is a cofiber sequence

EP+ ∧ X → X → ẼP ∧ X .

called the isotropy separation sequence. Then we define the
geometric fixed point spectrum of a G-spectrum X by

XΦG = ((ẼP ∧ X )f )
G,

where (−)f indicates fibrant replacement,

meaning conversion
of the spectrum into its corresponding Ω-spectrum.
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Isotropy separation and geometric fixed points (continued)

How do we construct ΦG?

There are G-spaces EP and ẼP with

(
EP+

)H '

{
S0 H 6= G
∗ H = G

and
(
ẼP

)H '

{
∗ H 6= G
S0 H = G.

For any G-spectrum X there is a cofiber sequence

EP+ ∧ X → X → ẼP ∧ X .

called the isotropy separation sequence. Then we define the
geometric fixed point spectrum of a G-spectrum X by

XΦG = ((ẼP ∧ X )f )
G,

where (−)f indicates fibrant replacement, meaning conversion
of the spectrum into its corresponding Ω-spectrum.
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1.17

Isotropy separation and geometric fixed points (continued)

How do we construct ΦG?

We define the geometric fixed point spectrum of a G-spectrum
X by

XΦG = ((EP ∧ X )f )
G,

where (−)f indicates fibrant replacement, meaning conversion
of the spectrum into its corresponding Ω-spectrum.

For H ⊆ G, we define XΦH = (iGH X )ΦH , where iGH : SpG → SpH

is the restriction or forgetful functor.

We will call the connectivities of the ordinary spectra XΦH for
various H the geometric connectivity of X .
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Isotropy separation and geometric fixed points (continued)

How do we construct ΦG?

We define the geometric fixed point spectrum of a G-spectrum
X by

XΦG = ((EP ∧ X )f )
G,

where (−)f indicates fibrant replacement, meaning conversion
of the spectrum into its corresponding Ω-spectrum.

For H ⊆ G, we define XΦH = (iGH X )ΦH ,

where iGH : SpG → SpH

is the restriction or forgetful functor.

We will call the connectivities of the ordinary spectra XΦH for
various H the geometric connectivity of X .
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Isotropy separation and geometric fixed points (continued)

How do we construct ΦG?

We define the geometric fixed point spectrum of a G-spectrum
X by

XΦG = ((EP ∧ X )f )
G,

where (−)f indicates fibrant replacement, meaning conversion
of the spectrum into its corresponding Ω-spectrum.

For H ⊆ G, we define XΦH = (iGH X )ΦH , where iGH : SpG → SpH

is the restriction or forgetful functor.

We will call the connectivities of the ordinary spectra XΦH for
various H the geometric connectivity of X .
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Isotropy separation and geometric fixed points (continued)

How do we construct ΦG?

We define the geometric fixed point spectrum of a G-spectrum
X by

XΦG = ((EP ∧ X )f )
G,

where (−)f indicates fibrant replacement, meaning conversion
of the spectrum into its corresponding Ω-spectrum.

For H ⊆ G, we define XΦH = (iGH X )ΦH , where iGH : SpG → SpH

is the restriction or forgetful functor.

We will call the connectivities of the ordinary spectra XΦH for
various H

the geometric connectivity of X .
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Isotropy separation and geometric fixed points (continued)

How do we construct ΦG?

We define the geometric fixed point spectrum of a G-spectrum
X by

XΦG = ((EP ∧ X )f )
G,

where (−)f indicates fibrant replacement, meaning conversion
of the spectrum into its corresponding Ω-spectrum.

For H ⊆ G, we define XΦH = (iGH X )ΦH , where iGH : SpG → SpH

is the restriction or forgetful functor.

We will call the connectivities of the ordinary spectra XΦH for
various H the geometric connectivity of X .
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1.18

The new definition of the slice filtration

We are now ready for the some new localizing subcategories of
SpG defined in terms of geometric connectivity.

Main Definition

For each integer n, let τG
n be the full subcategory of SpG whose

objects are G-spectra X satisfying πk XΦH = 0 for k < n/|H|,
for all H ⊆ G.

Proposition

Properties of τG
n .

1 The subcategory τG
n is a localizing subcategory of SpG.

2 The spectrum SmρG is in τG
m|G| for each integer m.

3 If X is in τG
m and Y is in τG

n , then X ∧ Y is in τG
m+n.

4 For each integer n there is an equivalence of categories
τG

n → τG
n+|G| given by X 7→ X ∧ SρG with inverse given by

X 7→ X ∧ S−ρG .



The slice filtration
revisited

−16 −12 −8 −4 0 4 8 12 16
−8

−4

0

4

8

22 2 2 2 22̇ 2̇ 2̇ 2 2 2 2

Mike Hill
Mike Hopkins
Doug Ravenel

Localizing
subcategories

The original slice
filtration

Geometric fixed points

The new definition of
the slice filtration

The subcategories τG
n

and τG
=n

1.18
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We are now ready for the some new localizing subcategories of
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The new definition of the slice filtration

We are now ready for the some new localizing subcategories of
SpG defined in terms of geometric connectivity.

Main Definition

For each integer n, let τG
n be the full subcategory of SpG whose

objects are G-spectra X satisfying πk XΦH = 0 for k < n/|H|,

for all H ⊆ G.
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3 If X is in τG
m and Y is in τG

n , then X ∧ Y is in τG
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4 For each integer n there is an equivalence of categories
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1.19

The new definition of the slice filtration (continued)

Main Definition

For each integer n, let τG
n be the full subcategory of SpG whose

objects are G-spectra X satisfying πk XΦH = 0 for k < n/|H|,
for all H ⊆ G.

Main Theorem

The localizing subcategories SpG
≥n (defined in terms of slice

spheres) and τG
n are equal, so they lead to the same slice

towers.

It is easy to show that the slice sphere Ŝ(m,H) is in τG
m|H|,

which implies that SpG
≥n ⊆ τG

n . The converse is more delicate,
and requires an argument by induction on the order of G that
uses the isotropy separation sequence

EP+ ∧ X → X → ẼP ∧ X .
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The new definition of the slice filtration (continued)
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The new definition of the slice filtration (continued)
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The new definition of the slice filtration (continued)

Main Definition

For each integer n, let τG
n be the full subcategory of SpG whose

objects are G-spectra X satisfying πk XΦH = 0 for k < n/|H|,
for all H ⊆ G.

Main Theorem

The localizing subcategories SpG
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spheres) and τG
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It is easy to show that the slice sphere Ŝ(m,H) is in τG
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The new definition of the slice filtration (continued)

Main Definition

For each integer n, let τG
n be the full subcategory of SpG whose

objects are G-spectra X satisfying πk XΦH = 0 for k < n/|H|,
for all H ⊆ G.

Main Theorem

The localizing subcategories SpG
≥n (defined in terms of slice

spheres) and τG
n are equal, so they lead to the same slice

towers.

It is easy to show that the slice sphere Ŝ(m,H) is in τG
m|H|,

which implies that SpG
≥n ⊆ τG

n .

The converse is more delicate,
and requires an argument by induction on the order of G that
uses the isotropy separation sequence

EP+ ∧ X → X → ẼP ∧ X .



The slice filtration
revisited

−16 −12 −8 −4 0 4 8 12 16
−8

−4

0

4

8

22 2 2 2 22̇ 2̇ 2̇ 2 2 2 2

Mike Hill
Mike Hopkins
Doug Ravenel

Localizing
subcategories

The original slice
filtration

Geometric fixed points

The new definition of
the slice filtration

The subcategories τG
n

and τG
=n

1.19

The new definition of the slice filtration (continued)

Main Definition

For each integer n, let τG
n be the full subcategory of SpG whose

objects are G-spectra X satisfying πk XΦH = 0 for k < n/|H|,
for all H ⊆ G.

Main Theorem

The localizing subcategories SpG
≥n (defined in terms of slice

spheres) and τG
n are equal, so they lead to the same slice

towers.

It is easy to show that the slice sphere Ŝ(m,H) is in τG
m|H|,

which implies that SpG
≥n ⊆ τG

n . The converse is more delicate,

and requires an argument by induction on the order of G that
uses the isotropy separation sequence

EP+ ∧ X → X → ẼP ∧ X .
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The new definition of the slice filtration (continued)

Main Definition

For each integer n, let τG
n be the full subcategory of SpG whose

objects are G-spectra X satisfying πk XΦH = 0 for k < n/|H|,
for all H ⊆ G.

Main Theorem

The localizing subcategories SpG
≥n (defined in terms of slice

spheres) and τG
n are equal, so they lead to the same slice

towers.

It is easy to show that the slice sphere Ŝ(m,H) is in τG
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that
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The new definition of the slice filtration (continued)

Main Definition

For each integer n, let τG
n be the full subcategory of SpG whose

objects are G-spectra X satisfying πk XΦH = 0 for k < n/|H|,
for all H ⊆ G.

Main Theorem

The localizing subcategories SpG
≥n (defined in terms of slice

spheres) and τG
n are equal, so they lead to the same slice

towers.

It is easy to show that the slice sphere Ŝ(m,H) is in τG
m|H|,

which implies that SpG
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1.20

What do the subcategories τG
n and τG

=n look like?

Main Definition

For each integer n, let τG
n be the full subcategory of SpG whose

objects are G-spectra X satisfying πk XΦH = 0 for k < n/|H|,
for all H ⊆ G.

Classically the subcategories τn ⊆ Sp are all equivalent to
each other up to suspension. The same goes for the nth layer
categories τ=n = τn ∩ τ⊥n+1. Neither of these statements holds
in the equivariant case. Our new definition makes it easier to
study these subcategories.

Recall the floor function bxc, the greatest integer ≤ x .

Proposition

The slice filtration of representation spheres and their
duals. Let V be a representation of G of degree d.

1 dim V H ≥ bd/|H|c for all subgroups H ⊆ G iff SV is in τG
d .

2 dim V H ≤ bd/|H|c for all subgroups H ⊆ G iff S−V is in
τG
−d .
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The same goes for the nth layer
categories τ=n = τn ∩ τ⊥n+1. Neither of these statements holds
in the equivariant case. Our new definition makes it easier to
study these subcategories.

Recall the floor function bxc, the greatest integer ≤ x .
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The slice filtration of representation spheres and their
duals. Let V be a representation of G of degree d.

1 dim V H ≥ bd/|H|c for all subgroups H ⊆ G iff SV is in τG
d .

2 dim V H ≤ bd/|H|c for all subgroups H ⊆ G iff S−V is in
τG
−d .



The slice filtration
revisited

−16 −12 −8 −4 0 4 8 12 16
−8

−4

0

4

8

22 2 2 2 22̇ 2̇ 2̇ 2 2 2 2

Mike Hill
Mike Hopkins
Doug Ravenel

Localizing
subcategories

The original slice
filtration

Geometric fixed points

The new definition of
the slice filtration

The subcategories τG
n

and τG
=n

1.20

What do the subcategories τG
n and τG

=n look like?

Main Definition

For each integer n, let τG
n be the full subcategory of SpG whose

objects are G-spectra X satisfying πk XΦH = 0 for k < n/|H|,
for all H ⊆ G.

Classically the subcategories τn ⊆ Sp are all equivalent to
each other up to suspension. The same goes for the nth layer
categories τ=n = τn ∩ τ⊥n+1.

Neither of these statements holds
in the equivariant case. Our new definition makes it easier to
study these subcategories.

Recall the floor function bxc, the greatest integer ≤ x .

Proposition

The slice filtration of representation spheres and their
duals. Let V be a representation of G of degree d.

1 dim V H ≥ bd/|H|c for all subgroups H ⊆ G iff SV is in τG
d .

2 dim V H ≤ bd/|H|c for all subgroups H ⊆ G iff S−V is in
τG
−d .



The slice filtration
revisited

−16 −12 −8 −4 0 4 8 12 16
−8

−4

0

4

8

22 2 2 2 22̇ 2̇ 2̇ 2 2 2 2

Mike Hill
Mike Hopkins
Doug Ravenel

Localizing
subcategories

The original slice
filtration

Geometric fixed points

The new definition of
the slice filtration

The subcategories τG
n

and τG
=n

1.20

What do the subcategories τG
n and τG

=n look like?

Main Definition

For each integer n, let τG
n be the full subcategory of SpG whose

objects are G-spectra X satisfying πk XΦH = 0 for k < n/|H|,
for all H ⊆ G.

Classically the subcategories τn ⊆ Sp are all equivalent to
each other up to suspension. The same goes for the nth layer
categories τ=n = τn ∩ τ⊥n+1. Neither of these statements holds
in the equivariant case.

Our new definition makes it easier to
study these subcategories.

Recall the floor function bxc, the greatest integer ≤ x .

Proposition

The slice filtration of representation spheres and their
duals. Let V be a representation of G of degree d.

1 dim V H ≥ bd/|H|c for all subgroups H ⊆ G iff SV is in τG
d .

2 dim V H ≤ bd/|H|c for all subgroups H ⊆ G iff S−V is in
τG
−d .



The slice filtration
revisited

−16 −12 −8 −4 0 4 8 12 16
−8

−4

0

4

8

22 2 2 2 22̇ 2̇ 2̇ 2 2 2 2

Mike Hill
Mike Hopkins
Doug Ravenel

Localizing
subcategories

The original slice
filtration

Geometric fixed points

The new definition of
the slice filtration

The subcategories τG
n

and τG
=n

1.20

What do the subcategories τG
n and τG

=n look like?

Main Definition

For each integer n, let τG
n be the full subcategory of SpG whose

objects are G-spectra X satisfying πk XΦH = 0 for k < n/|H|,
for all H ⊆ G.

Classically the subcategories τn ⊆ Sp are all equivalent to
each other up to suspension. The same goes for the nth layer
categories τ=n = τn ∩ τ⊥n+1. Neither of these statements holds
in the equivariant case. Our new definition makes it easier to
study these subcategories.

Recall the floor function bxc, the greatest integer ≤ x .

Proposition

The slice filtration of representation spheres and their
duals. Let V be a representation of G of degree d.

1 dim V H ≥ bd/|H|c for all subgroups H ⊆ G iff SV is in τG
d .

2 dim V H ≤ bd/|H|c for all subgroups H ⊆ G iff S−V is in
τG
−d .



The slice filtration
revisited

−16 −12 −8 −4 0 4 8 12 16
−8

−4

0

4

8

22 2 2 2 22̇ 2̇ 2̇ 2 2 2 2

Mike Hill
Mike Hopkins
Doug Ravenel

Localizing
subcategories

The original slice
filtration

Geometric fixed points

The new definition of
the slice filtration

The subcategories τG
n

and τG
=n

1.20

What do the subcategories τG
n and τG

=n look like?

Main Definition

For each integer n, let τG
n be the full subcategory of SpG whose

objects are G-spectra X satisfying πk XΦH = 0 for k < n/|H|,
for all H ⊆ G.

Classically the subcategories τn ⊆ Sp are all equivalent to
each other up to suspension. The same goes for the nth layer
categories τ=n = τn ∩ τ⊥n+1. Neither of these statements holds
in the equivariant case. Our new definition makes it easier to
study these subcategories.

Recall the floor function bxc,

the greatest integer ≤ x .

Proposition

The slice filtration of representation spheres and their
duals. Let V be a representation of G of degree d.

1 dim V H ≥ bd/|H|c for all subgroups H ⊆ G iff SV is in τG
d .

2 dim V H ≤ bd/|H|c for all subgroups H ⊆ G iff S−V is in
τG
−d .



The slice filtration
revisited

−16 −12 −8 −4 0 4 8 12 16
−8

−4

0

4

8

22 2 2 2 22̇ 2̇ 2̇ 2 2 2 2

Mike Hill
Mike Hopkins
Doug Ravenel

Localizing
subcategories

The original slice
filtration

Geometric fixed points

The new definition of
the slice filtration

The subcategories τG
n

and τG
=n

1.20

What do the subcategories τG
n and τG

=n look like?

Main Definition

For each integer n, let τG
n be the full subcategory of SpG whose

objects are G-spectra X satisfying πk XΦH = 0 for k < n/|H|,
for all H ⊆ G.

Classically the subcategories τn ⊆ Sp are all equivalent to
each other up to suspension. The same goes for the nth layer
categories τ=n = τn ∩ τ⊥n+1. Neither of these statements holds
in the equivariant case. Our new definition makes it easier to
study these subcategories.

Recall the floor function bxc, the greatest integer ≤ x .

Proposition

The slice filtration of representation spheres and their
duals. Let V be a representation of G of degree d.

1 dim V H ≥ bd/|H|c for all subgroups H ⊆ G iff SV is in τG
d .

2 dim V H ≤ bd/|H|c for all subgroups H ⊆ G iff S−V is in
τG
−d .



The slice filtration
revisited

−16 −12 −8 −4 0 4 8 12 16
−8

−4

0

4

8

22 2 2 2 22̇ 2̇ 2̇ 2 2 2 2

Mike Hill
Mike Hopkins
Doug Ravenel

Localizing
subcategories

The original slice
filtration

Geometric fixed points

The new definition of
the slice filtration

The subcategories τG
n

and τG
=n

1.20

What do the subcategories τG
n and τG

=n look like?

Main Definition

For each integer n, let τG
n be the full subcategory of SpG whose

objects are G-spectra X satisfying πk XΦH = 0 for k < n/|H|,
for all H ⊆ G.

Classically the subcategories τn ⊆ Sp are all equivalent to
each other up to suspension. The same goes for the nth layer
categories τ=n = τn ∩ τ⊥n+1. Neither of these statements holds
in the equivariant case. Our new definition makes it easier to
study these subcategories.

Recall the floor function bxc, the greatest integer ≤ x .

Proposition

The slice filtration of representation spheres and their
duals. Let V be a representation of G of degree d.

1 dim V H ≥ bd/|H|c for all subgroups H ⊆ G iff SV is in τG
d .

2 dim V H ≤ bd/|H|c for all subgroups H ⊆ G iff S−V is in
τG
−d .



The slice filtration
revisited

−16 −12 −8 −4 0 4 8 12 16
−8

−4

0

4

8

22 2 2 2 22̇ 2̇ 2̇ 2 2 2 2

Mike Hill
Mike Hopkins
Doug Ravenel

Localizing
subcategories

The original slice
filtration

Geometric fixed points

The new definition of
the slice filtration

The subcategories τG
n

and τG
=n

1.20

What do the subcategories τG
n and τG

=n look like?

Main Definition

For each integer n, let τG
n be the full subcategory of SpG whose

objects are G-spectra X satisfying πk XΦH = 0 for k < n/|H|,
for all H ⊆ G.

Classically the subcategories τn ⊆ Sp are all equivalent to
each other up to suspension. The same goes for the nth layer
categories τ=n = τn ∩ τ⊥n+1. Neither of these statements holds
in the equivariant case. Our new definition makes it easier to
study these subcategories.

Recall the floor function bxc, the greatest integer ≤ x .

Proposition

The slice filtration of representation spheres and their
duals. Let V be a representation of G of degree d.

1 dim V H ≥ bd/|H|c for all subgroups H ⊆ G iff SV is in τG
d .

2 dim V H ≤ bd/|H|c for all subgroups H ⊆ G iff S−V is in
τG
−d .
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What do the subcategories τG
n and τG

=n look like?

Main Definition

For each integer n, let τG
n be the full subcategory of SpG whose

objects are G-spectra X satisfying πk XΦH = 0 for k < n/|H|,
for all H ⊆ G.

Classically the subcategories τn ⊆ Sp are all equivalent to
each other up to suspension. The same goes for the nth layer
categories τ=n = τn ∩ τ⊥n+1. Neither of these statements holds
in the equivariant case. Our new definition makes it easier to
study these subcategories.

Recall the floor function bxc, the greatest integer ≤ x .

Proposition

The slice filtration of representation spheres and their
duals. Let V be a representation of G of degree d.

1 dim V H ≥ bd/|H|c for all subgroups H ⊆ G iff SV is in τG
d .

2 dim V H ≤ bd/|H|c for all subgroups H ⊆ G iff S−V is in
τG
−d .
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What do the subcategories τG
n and τG

=n look like? (continued)

Proposition

Let V be a representation of G of degree d.

1 dim V H ≥ bd/|H|c for all subgroups H ⊆ G iff SV is in τG
d .

2 dim V H ≤ bd/|H|c for all subgroups H ⊆ G iff S−V is in
τG
−d .

Note that SV is never in τG
1+d and S−V is never in τG

1−d . If the
first condition above is not met by V , then SV is not in τG

d but
lies instead in a larger subcategory τG

d ′ for some d ′ < d . The
same goes for the second condition and the smallest
subcategory containing S−V .

Under the old definition, it was harder to determine the slice
connectivity of SV and S−V .

Similar statements hold for G+ ∧
K

SV and G+ ∧
K

S−V for a

representation V of a subgroup K ⊆ G.
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What do the subcategories τG
n and τG

=n look like? (continued)

Proposition

Let V be a representation of G of degree d.

1 dim V H ≥ bd/|H|c for all subgroups H ⊆ G iff SV is in τG
d .

2 dim V H ≤ bd/|H|c for all subgroups H ⊆ G iff S−V is in
τG
−d .

Note that SV is never in τG
1+d and S−V is never in τG

1−d .

If the
first condition above is not met by V , then SV is not in τG

d but
lies instead in a larger subcategory τG

d ′ for some d ′ < d . The
same goes for the second condition and the smallest
subcategory containing S−V .

Under the old definition, it was harder to determine the slice
connectivity of SV and S−V .

Similar statements hold for G+ ∧
K

SV and G+ ∧
K

S−V for a

representation V of a subgroup K ⊆ G.
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What do the subcategories τG
n and τG

=n look like? (continued)

Proposition

Let V be a representation of G of degree d.

1 dim V H ≥ bd/|H|c for all subgroups H ⊆ G iff SV is in τG
d .

2 dim V H ≤ bd/|H|c for all subgroups H ⊆ G iff S−V is in
τG
−d .

Note that SV is never in τG
1+d and S−V is never in τG

1−d . If the
first condition above is not met by V ,

then SV is not in τG
d but

lies instead in a larger subcategory τG
d ′ for some d ′ < d . The

same goes for the second condition and the smallest
subcategory containing S−V .

Under the old definition, it was harder to determine the slice
connectivity of SV and S−V .

Similar statements hold for G+ ∧
K

SV and G+ ∧
K

S−V for a

representation V of a subgroup K ⊆ G.
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What do the subcategories τG
n and τG

=n look like? (continued)

Proposition

Let V be a representation of G of degree d.

1 dim V H ≥ bd/|H|c for all subgroups H ⊆ G iff SV is in τG
d .

2 dim V H ≤ bd/|H|c for all subgroups H ⊆ G iff S−V is in
τG
−d .

Note that SV is never in τG
1+d and S−V is never in τG

1−d . If the
first condition above is not met by V , then SV is not in τG

d

but
lies instead in a larger subcategory τG

d ′ for some d ′ < d . The
same goes for the second condition and the smallest
subcategory containing S−V .

Under the old definition, it was harder to determine the slice
connectivity of SV and S−V .

Similar statements hold for G+ ∧
K

SV and G+ ∧
K

S−V for a

representation V of a subgroup K ⊆ G.
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What do the subcategories τG
n and τG

=n look like? (continued)

Proposition

Let V be a representation of G of degree d.

1 dim V H ≥ bd/|H|c for all subgroups H ⊆ G iff SV is in τG
d .

2 dim V H ≤ bd/|H|c for all subgroups H ⊆ G iff S−V is in
τG
−d .

Note that SV is never in τG
1+d and S−V is never in τG

1−d . If the
first condition above is not met by V , then SV is not in τG

d but
lies instead in a larger subcategory τG

d ′ for some d ′ < d .

The
same goes for the second condition and the smallest
subcategory containing S−V .

Under the old definition, it was harder to determine the slice
connectivity of SV and S−V .

Similar statements hold for G+ ∧
K

SV and G+ ∧
K

S−V for a

representation V of a subgroup K ⊆ G.
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What do the subcategories τG
n and τG

=n look like? (continued)

Proposition

Let V be a representation of G of degree d.

1 dim V H ≥ bd/|H|c for all subgroups H ⊆ G iff SV is in τG
d .

2 dim V H ≤ bd/|H|c for all subgroups H ⊆ G iff S−V is in
τG
−d .

Note that SV is never in τG
1+d and S−V is never in τG

1−d . If the
first condition above is not met by V , then SV is not in τG

d but
lies instead in a larger subcategory τG

d ′ for some d ′ < d . The
same goes for the second condition and the smallest
subcategory containing S−V .

Under the old definition, it was harder to determine the slice
connectivity of SV and S−V .

Similar statements hold for G+ ∧
K

SV and G+ ∧
K

S−V for a

representation V of a subgroup K ⊆ G.
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What do the subcategories τG
n and τG

=n look like? (continued)

Proposition

Let V be a representation of G of degree d.

1 dim V H ≥ bd/|H|c for all subgroups H ⊆ G iff SV is in τG
d .

2 dim V H ≤ bd/|H|c for all subgroups H ⊆ G iff S−V is in
τG
−d .

Note that SV is never in τG
1+d and S−V is never in τG

1−d . If the
first condition above is not met by V , then SV is not in τG

d but
lies instead in a larger subcategory τG

d ′ for some d ′ < d . The
same goes for the second condition and the smallest
subcategory containing S−V .

Under the old definition, it was harder to determine the slice
connectivity of SV and S−V .

Similar statements hold for G+ ∧
K

SV and G+ ∧
K

S−V for a

representation V of a subgroup K ⊆ G.



The slice filtration
revisited

−16 −12 −8 −4 0 4 8 12 16
−8

−4

0

4

8

22 2 2 2 22̇ 2̇ 2̇ 2 2 2 2

Mike Hill
Mike Hopkins
Doug Ravenel

Localizing
subcategories

The original slice
filtration

Geometric fixed points

The new definition of
the slice filtration

The subcategories τG
n

and τG
=n

1.21

What do the subcategories τG
n and τG

=n look like? (continued)

Proposition

Let V be a representation of G of degree d.

1 dim V H ≥ bd/|H|c for all subgroups H ⊆ G iff SV is in τG
d .

2 dim V H ≤ bd/|H|c for all subgroups H ⊆ G iff S−V is in
τG
−d .

Note that SV is never in τG
1+d and S−V is never in τG

1−d . If the
first condition above is not met by V , then SV is not in τG

d but
lies instead in a larger subcategory τG

d ′ for some d ′ < d . The
same goes for the second condition and the smallest
subcategory containing S−V .

Under the old definition, it was harder to determine the slice
connectivity of SV and S−V .

Similar statements hold for G+ ∧
K

SV and G+ ∧
K

S−V for a

representation V of a subgroup K ⊆ G.
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What do the subcategories τG
n and τG

=n look like? (continued)

Proposition

Let V be a representation of G of degree d.

1 dim V H ≥ bd/|H|c for all subgroups H ⊆ G iff SV is in τG
d .

2 dim V H ≤ bd/|H|c for all subgroups H ⊆ G iff S−V is in
τG
−d .

Recall the ceiling functiondxe, the smallest integer ≥ x .

Corollary 1

Smashing with representation spheres. Suppose there is a
degree d representation V of G and an integer n such that⌈

n
|H|

⌉
+ dim V H =

⌈
n + d
|H|

⌉
for all H ⊆ G.

Then SV ∧ (−) : τG
n → τG

n+d is an equivalence of categories
whose inverse is S−V ∧ (−), and conversely.
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What do the subcategories τG
n and τG

=n look like? (continued)

Proposition

Let V be a representation of G of degree d.

1 dim V H ≥ bd/|H|c for all subgroups H ⊆ G iff SV is in τG
d .

2 dim V H ≤ bd/|H|c for all subgroups H ⊆ G iff S−V is in
τG
−d .

Recall the ceiling functiondxe,

the smallest integer ≥ x .

Corollary 1

Smashing with representation spheres. Suppose there is a
degree d representation V of G and an integer n such that⌈

n
|H|

⌉
+ dim V H =

⌈
n + d
|H|

⌉
for all H ⊆ G.

Then SV ∧ (−) : τG
n → τG

n+d is an equivalence of categories
whose inverse is S−V ∧ (−), and conversely.
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What do the subcategories τG
n and τG

=n look like? (continued)

Proposition

Let V be a representation of G of degree d.

1 dim V H ≥ bd/|H|c for all subgroups H ⊆ G iff SV is in τG
d .

2 dim V H ≤ bd/|H|c for all subgroups H ⊆ G iff S−V is in
τG
−d .

Recall the ceiling functiondxe, the smallest integer ≥ x .

Corollary 1

Smashing with representation spheres. Suppose there is a
degree d representation V of G and an integer n such that⌈

n
|H|

⌉
+ dim V H =

⌈
n + d
|H|

⌉
for all H ⊆ G.

Then SV ∧ (−) : τG
n → τG

n+d is an equivalence of categories
whose inverse is S−V ∧ (−), and conversely.
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What do the subcategories τG
n and τG

=n look like? (continued)

Proposition

Let V be a representation of G of degree d.

1 dim V H ≥ bd/|H|c for all subgroups H ⊆ G iff SV is in τG
d .

2 dim V H ≤ bd/|H|c for all subgroups H ⊆ G iff S−V is in
τG
−d .

Recall the ceiling functiondxe, the smallest integer ≥ x .

Corollary 1

Smashing with representation spheres. Suppose there is a
degree d representation V of G and an integer n

such that⌈
n
|H|

⌉
+ dim V H =

⌈
n + d
|H|

⌉
for all H ⊆ G.

Then SV ∧ (−) : τG
n → τG

n+d is an equivalence of categories
whose inverse is S−V ∧ (−), and conversely.
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What do the subcategories τG
n and τG

=n look like? (continued)

Proposition

Let V be a representation of G of degree d.

1 dim V H ≥ bd/|H|c for all subgroups H ⊆ G iff SV is in τG
d .

2 dim V H ≤ bd/|H|c for all subgroups H ⊆ G iff S−V is in
τG
−d .

Recall the ceiling functiondxe, the smallest integer ≥ x .

Corollary 1

Smashing with representation spheres. Suppose there is a
degree d representation V of G and an integer n such that⌈

n
|H|

⌉
+ dim V H =

⌈
n + d
|H|

⌉
for all H ⊆ G.

Then SV ∧ (−) : τG
n → τG

n+d is an equivalence of categories
whose inverse is S−V ∧ (−), and conversely.
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What do the subcategories τG
n and τG

=n look like? (continued)

Proposition

Let V be a representation of G of degree d.

1 dim V H ≥ bd/|H|c for all subgroups H ⊆ G iff SV is in τG
d .

2 dim V H ≤ bd/|H|c for all subgroups H ⊆ G iff S−V is in
τG
−d .

Recall the ceiling functiondxe, the smallest integer ≥ x .

Corollary 1

Smashing with representation spheres. Suppose there is a
degree d representation V of G and an integer n such that⌈

n
|H|

⌉
+ dim V H =

⌈
n + d
|H|

⌉
for all H ⊆ G.

Then SV ∧ (−) : τG
n → τG

n+d is an equivalence of categories
whose inverse is S−V ∧ (−),

and conversely.
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What do the subcategories τG
n and τG

=n look like? (continued)

Proposition

Let V be a representation of G of degree d.

1 dim V H ≥ bd/|H|c for all subgroups H ⊆ G iff SV is in τG
d .

2 dim V H ≤ bd/|H|c for all subgroups H ⊆ G iff S−V is in
τG
−d .

Recall the ceiling functiondxe, the smallest integer ≥ x .

Corollary 1

Smashing with representation spheres. Suppose there is a
degree d representation V of G and an integer n such that⌈

n
|H|

⌉
+ dim V H =

⌈
n + d
|H|

⌉
for all H ⊆ G.

Then SV ∧ (−) : τG
n → τG

n+d is an equivalence of categories
whose inverse is S−V ∧ (−), and conversely.
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What do the subcategories τG
n and τG

=n look like? (continued)

Corollary 1

Suppose there is a degree d representation V of G and an
integer n such that⌈

n
|H|

⌉
+ dim V H =

⌈
n + d
|H|

⌉
for all H ⊆ G.

Then SV ∧ (−) : τG
n → τG

n+d is an equivalence of categories
whose inverse is S−V ∧ (−), and conversely.

Example

Let G be any finite group, and let V be the trivial representation
of degree 1. Then the conditions above are met only when n is
divisible by |G|. It follows that ordinary suspension
Σ : τG

m|G|+i → τG
m|G|+i+1 is an equivalence of categories for

i = 0, but not necessarily for 0 < i < |G|.
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What do the subcategories τG
n and τG

=n look like? (continued)

Corollary 1

Suppose there is a degree d representation V of G and an
integer n such that⌈

n
|H|

⌉
+ dim V H =

⌈
n + d
|H|

⌉
for all H ⊆ G.

Then SV ∧ (−) : τG
n → τG

n+d is an equivalence of categories
whose inverse is S−V ∧ (−), and conversely.

Example

Let G be any finite group,

and let V be the trivial representation
of degree 1. Then the conditions above are met only when n is
divisible by |G|. It follows that ordinary suspension
Σ : τG

m|G|+i → τG
m|G|+i+1 is an equivalence of categories for

i = 0, but not necessarily for 0 < i < |G|.
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What do the subcategories τG
n and τG

=n look like? (continued)

Corollary 1

Suppose there is a degree d representation V of G and an
integer n such that⌈

n
|H|

⌉
+ dim V H =

⌈
n + d
|H|

⌉
for all H ⊆ G.

Then SV ∧ (−) : τG
n → τG

n+d is an equivalence of categories
whose inverse is S−V ∧ (−), and conversely.

Example

Let G be any finite group, and let V be the trivial representation
of degree 1.

Then the conditions above are met only when n is
divisible by |G|. It follows that ordinary suspension
Σ : τG

m|G|+i → τG
m|G|+i+1 is an equivalence of categories for

i = 0, but not necessarily for 0 < i < |G|.
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What do the subcategories τG
n and τG

=n look like? (continued)

Corollary 1

Suppose there is a degree d representation V of G and an
integer n such that⌈

n
|H|

⌉
+ dim V H =

⌈
n + d
|H|

⌉
for all H ⊆ G.

Then SV ∧ (−) : τG
n → τG

n+d is an equivalence of categories
whose inverse is S−V ∧ (−), and conversely.

Example

Let G be any finite group, and let V be the trivial representation
of degree 1. Then the conditions above are met only when n is
divisible by |G|.

It follows that ordinary suspension
Σ : τG

m|G|+i → τG
m|G|+i+1 is an equivalence of categories for

i = 0, but not necessarily for 0 < i < |G|.
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What do the subcategories τG
n and τG

=n look like? (continued)

Corollary 1

Suppose there is a degree d representation V of G and an
integer n such that⌈

n
|H|

⌉
+ dim V H =

⌈
n + d
|H|

⌉
for all H ⊆ G.

Then SV ∧ (−) : τG
n → τG

n+d is an equivalence of categories
whose inverse is S−V ∧ (−), and conversely.

Example

Let G be any finite group, and let V be the trivial representation
of degree 1. Then the conditions above are met only when n is
divisible by |G|. It follows that ordinary suspension
Σ : τG

m|G|+i → τG
m|G|+i+1 is an equivalence of categories for

i = 0,

but not necessarily for 0 < i < |G|.
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What do the subcategories τG
n and τG

=n look like? (continued)

Corollary 1

Suppose there is a degree d representation V of G and an
integer n such that⌈

n
|H|

⌉
+ dim V H =

⌈
n + d
|H|

⌉
for all H ⊆ G.

Then SV ∧ (−) : τG
n → τG

n+d is an equivalence of categories
whose inverse is S−V ∧ (−), and conversely.

Example

Let G be any finite group, and let V be the trivial representation
of degree 1. Then the conditions above are met only when n is
divisible by |G|. It follows that ordinary suspension
Σ : τG

m|G|+i → τG
m|G|+i+1 is an equivalence of categories for

i = 0, but not necessarily for 0 < i < |G|.
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What do the subcategories τG
n and τG

=n look like? (continued)

Corollary 1

Suppose there is a degree d representation V of G and an
integer n such that⌈

n
|H|

⌉
+ dim V H =

⌈
n + d
|H|

⌉
for all H ⊆ G.

Then SV ∧ (−) : τG
n → τG

n+d is an equivalence of categories
whose inverse is S−V ∧ (−), and conversely.

Corollary 2

Smashing layers with representation spheres. Suppose
that for a given V , the conditions of Corollary 1 are met for both
n = m and n = m + 1. Then

SV ∧ (−) : τG
=m → τG

=m+d

is an equivalence of layer categories whose inverse is
S−V ∧ (−).
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What do the subcategories τG
n and τG

=n look like? (continued)

Corollary 1

Suppose there is a degree d representation V of G and an
integer n such that⌈

n
|H|

⌉
+ dim V H =

⌈
n + d
|H|

⌉
for all H ⊆ G.

Then SV ∧ (−) : τG
n → τG

n+d is an equivalence of categories
whose inverse is S−V ∧ (−), and conversely.

Corollary 2

Smashing layers with representation spheres. Suppose
that for a given V ,

the conditions of Corollary 1 are met for both
n = m and n = m + 1. Then

SV ∧ (−) : τG
=m → τG

=m+d

is an equivalence of layer categories whose inverse is
S−V ∧ (−).
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What do the subcategories τG
n and τG

=n look like? (continued)

Corollary 1

Suppose there is a degree d representation V of G and an
integer n such that⌈

n
|H|

⌉
+ dim V H =

⌈
n + d
|H|

⌉
for all H ⊆ G.

Then SV ∧ (−) : τG
n → τG

n+d is an equivalence of categories
whose inverse is S−V ∧ (−), and conversely.

Corollary 2

Smashing layers with representation spheres. Suppose
that for a given V , the conditions of Corollary 1 are met for both
n = m and n = m + 1.

Then

SV ∧ (−) : τG
=m → τG

=m+d

is an equivalence of layer categories whose inverse is
S−V ∧ (−).
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What do the subcategories τG
n and τG

=n look like? (continued)

Corollary 1

Suppose there is a degree d representation V of G and an
integer n such that⌈

n
|H|

⌉
+ dim V H =

⌈
n + d
|H|

⌉
for all H ⊆ G.

Then SV ∧ (−) : τG
n → τG

n+d is an equivalence of categories
whose inverse is S−V ∧ (−), and conversely.

Corollary 2

Smashing layers with representation spheres. Suppose
that for a given V , the conditions of Corollary 1 are met for both
n = m and n = m + 1. Then

SV ∧ (−) : τG
=m → τG

=m+d

is an equivalence of layer categories whose inverse is
S−V ∧ (−).
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What do the subcategories τG
n and τG

=n look like? (continued)

Corollary 1

Suppose there is a representation V of degree d and an
integer n such that⌈

n
|H|

⌉
+ dim V H =

⌈
n + d
|H|

⌉
for all H ⊆ G.

Then SV ∧ (−) : τG
n → τG

n+d is an equivalence of categories
whose inverse is S−V ∧ (−), and conversely.

Example

An equivalence among the subcategories τG
n and τG

=n. Let
G be any finite group and V = ρG. Then the conditions of both
corollaries hold for any n. Hence SρG ∧ (−) induces an
equivalence between τG

n and τG
n+|G|, and between the layer

categories τG
=n and τG

=n+|G|, for all n.
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What do the subcategories τG
n and τG

=n look like? (continued)

Corollary 1

Suppose there is a representation V of degree d and an
integer n such that⌈

n
|H|

⌉
+ dim V H =

⌈
n + d
|H|

⌉
for all H ⊆ G.

Then SV ∧ (−) : τG
n → τG

n+d is an equivalence of categories
whose inverse is S−V ∧ (−), and conversely.

Example

An equivalence among the subcategories τG
n and τG

=n.

Let
G be any finite group and V = ρG. Then the conditions of both
corollaries hold for any n. Hence SρG ∧ (−) induces an
equivalence between τG

n and τG
n+|G|, and between the layer

categories τG
=n and τG

=n+|G|, for all n.
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What do the subcategories τG
n and τG

=n look like? (continued)

Corollary 1

Suppose there is a representation V of degree d and an
integer n such that⌈

n
|H|

⌉
+ dim V H =

⌈
n + d
|H|

⌉
for all H ⊆ G.

Then SV ∧ (−) : τG
n → τG

n+d is an equivalence of categories
whose inverse is S−V ∧ (−), and conversely.

Example

An equivalence among the subcategories τG
n and τG

=n. Let
G be any finite group

and V = ρG. Then the conditions of both
corollaries hold for any n. Hence SρG ∧ (−) induces an
equivalence between τG

n and τG
n+|G|, and between the layer

categories τG
=n and τG

=n+|G|, for all n.
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What do the subcategories τG
n and τG

=n look like? (continued)

Corollary 1

Suppose there is a representation V of degree d and an
integer n such that⌈

n
|H|

⌉
+ dim V H =

⌈
n + d
|H|

⌉
for all H ⊆ G.

Then SV ∧ (−) : τG
n → τG

n+d is an equivalence of categories
whose inverse is S−V ∧ (−), and conversely.

Example

An equivalence among the subcategories τG
n and τG

=n. Let
G be any finite group and V = ρG.

Then the conditions of both
corollaries hold for any n. Hence SρG ∧ (−) induces an
equivalence between τG

n and τG
n+|G|, and between the layer

categories τG
=n and τG

=n+|G|, for all n.
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What do the subcategories τG
n and τG

=n look like? (continued)

Corollary 1

Suppose there is a representation V of degree d and an
integer n such that⌈

n
|H|

⌉
+ dim V H =

⌈
n + d
|H|

⌉
for all H ⊆ G.

Then SV ∧ (−) : τG
n → τG

n+d is an equivalence of categories
whose inverse is S−V ∧ (−), and conversely.

Example

An equivalence among the subcategories τG
n and τG

=n. Let
G be any finite group and V = ρG. Then the conditions of both
corollaries hold for any n.

Hence SρG ∧ (−) induces an
equivalence between τG

n and τG
n+|G|, and between the layer

categories τG
=n and τG

=n+|G|, for all n.
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What do the subcategories τG
n and τG

=n look like? (continued)

Corollary 1

Suppose there is a representation V of degree d and an
integer n such that⌈

n
|H|

⌉
+ dim V H =

⌈
n + d
|H|

⌉
for all H ⊆ G.

Then SV ∧ (−) : τG
n → τG

n+d is an equivalence of categories
whose inverse is S−V ∧ (−), and conversely.

Example

An equivalence among the subcategories τG
n and τG

=n. Let
G be any finite group and V = ρG. Then the conditions of both
corollaries hold for any n. Hence SρG ∧ (−) induces an
equivalence between τG

n and τG
n+|G|,

and between the layer
categories τG

=n and τG
=n+|G|, for all n.
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What do the subcategories τG
n and τG

=n look like? (continued)

Corollary 1

Suppose there is a representation V of degree d and an
integer n such that⌈

n
|H|

⌉
+ dim V H =

⌈
n + d
|H|

⌉
for all H ⊆ G.

Then SV ∧ (−) : τG
n → τG

n+d is an equivalence of categories
whose inverse is S−V ∧ (−), and conversely.

Example

An equivalence among the subcategories τG
n and τG

=n. Let
G be any finite group and V = ρG. Then the conditions of both
corollaries hold for any n. Hence SρG ∧ (−) induces an
equivalence between τG

n and τG
n+|G|, and between the layer

categories τG
=n and τG

=n+|G|, for all n.
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What do the subcategories τG
n and τG

=n look like? (continued)

Corollary 1

Suppose there is a representation V of degree d and an
integer n such that⌈

n
|H|

⌉
+ dim V H =

⌈
n + d
|H|

⌉
for all H ⊆ G.

Then SV ∧ (−) : τG
n → τG

n+d is an equivalence of categories
whose inverse is S−V ∧ (−), and conversely.

Example

Another equivalence among the subcategories τG
n . Let G

be any finite group and V = ρG, the reduced regular
representation. Then the conditions above hold for any n
congruent to 1 mod |G|. Hence SρG ∧ (−) induces an
equivalence between τG

1 and τG
|G|, but the corresponding layer

categories may differ.
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What do the subcategories τG
n and τG

=n look like? (continued)

Corollary 1

Suppose there is a representation V of degree d and an
integer n such that⌈

n
|H|

⌉
+ dim V H =

⌈
n + d
|H|

⌉
for all H ⊆ G.

Then SV ∧ (−) : τG
n → τG

n+d is an equivalence of categories
whose inverse is S−V ∧ (−), and conversely.

Example

Another equivalence among the subcategories τG
n .

Let G
be any finite group and V = ρG, the reduced regular
representation. Then the conditions above hold for any n
congruent to 1 mod |G|. Hence SρG ∧ (−) induces an
equivalence between τG

1 and τG
|G|, but the corresponding layer

categories may differ.
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What do the subcategories τG
n and τG

=n look like? (continued)

Corollary 1

Suppose there is a representation V of degree d and an
integer n such that⌈

n
|H|

⌉
+ dim V H =

⌈
n + d
|H|

⌉
for all H ⊆ G.

Then SV ∧ (−) : τG
n → τG

n+d is an equivalence of categories
whose inverse is S−V ∧ (−), and conversely.

Example

Another equivalence among the subcategories τG
n . Let G

be any finite group and

V = ρG, the reduced regular
representation. Then the conditions above hold for any n
congruent to 1 mod |G|. Hence SρG ∧ (−) induces an
equivalence between τG

1 and τG
|G|, but the corresponding layer

categories may differ.
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What do the subcategories τG
n and τG

=n look like? (continued)

Corollary 1

Suppose there is a representation V of degree d and an
integer n such that⌈

n
|H|

⌉
+ dim V H =

⌈
n + d
|H|

⌉
for all H ⊆ G.

Then SV ∧ (−) : τG
n → τG

n+d is an equivalence of categories
whose inverse is S−V ∧ (−), and conversely.

Example

Another equivalence among the subcategories τG
n . Let G

be any finite group and V = ρG, the reduced regular
representation.

Then the conditions above hold for any n
congruent to 1 mod |G|. Hence SρG ∧ (−) induces an
equivalence between τG

1 and τG
|G|, but the corresponding layer

categories may differ.
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What do the subcategories τG
n and τG

=n look like? (continued)

Corollary 1

Suppose there is a representation V of degree d and an
integer n such that⌈

n
|H|

⌉
+ dim V H =

⌈
n + d
|H|

⌉
for all H ⊆ G.

Then SV ∧ (−) : τG
n → τG

n+d is an equivalence of categories
whose inverse is S−V ∧ (−), and conversely.

Example

Another equivalence among the subcategories τG
n . Let G

be any finite group and V = ρG, the reduced regular
representation. Then the conditions above hold for any n
congruent to 1 mod |G|.

Hence SρG ∧ (−) induces an
equivalence between τG

1 and τG
|G|, but the corresponding layer

categories may differ.



The slice filtration
revisited

−16 −12 −8 −4 0 4 8 12 16
−8

−4

0

4

8

22 2 2 2 22̇ 2̇ 2̇ 2 2 2 2

Mike Hill
Mike Hopkins
Doug Ravenel

Localizing
subcategories

The original slice
filtration

Geometric fixed points

The new definition of
the slice filtration

The subcategories τG
n

and τG
=n

1.26

What do the subcategories τG
n and τG

=n look like? (continued)

Corollary 1

Suppose there is a representation V of degree d and an
integer n such that⌈

n
|H|

⌉
+ dim V H =

⌈
n + d
|H|

⌉
for all H ⊆ G.

Then SV ∧ (−) : τG
n → τG

n+d is an equivalence of categories
whose inverse is S−V ∧ (−), and conversely.

Example

Another equivalence among the subcategories τG
n . Let G

be any finite group and V = ρG, the reduced regular
representation. Then the conditions above hold for any n
congruent to 1 mod |G|. Hence SρG ∧ (−) induces an
equivalence between τG

1 and τG
|G|,

but the corresponding layer
categories may differ.
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What do the subcategories τG
n and τG

=n look like? (continued)

Corollary 1

Suppose there is a representation V of degree d and an
integer n such that⌈

n
|H|

⌉
+ dim V H =

⌈
n + d
|H|

⌉
for all H ⊆ G.

Then SV ∧ (−) : τG
n → τG

n+d is an equivalence of categories
whose inverse is S−V ∧ (−), and conversely.

Example

Another equivalence among the subcategories τG
n . Let G

be any finite group and V = ρG, the reduced regular
representation. Then the conditions above hold for any n
congruent to 1 mod |G|. Hence SρG ∧ (−) induces an
equivalence between τG

1 and τG
|G|, but the corresponding layer

categories may differ.
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What do the subcategories τG
n and τG

=n look like? (continued)

Example

More equivalences among the subcategories τG
n .

• Let G = C2. Then the two previous examples show that
each τG

n is equivalent to τG
0 , but the layers τG

=0 and τG
=1 are

distinct.
• Let G = C4. Then V = σ, the sign representation leads to

an equivalence between τG
2 and τG

3 , while V = ρG (the
reduced regular representation) leads to one between τG

1
and τG

4 . Hence each τG
n is equivalent to either τG

0 or τG
2 .

• Let G = C8. Let σ be the sign representation and let λ and
λ′ be rotations of order 8 and 4 respectively. Then the
representations σ, σ + λ, σ + λ+ λ′ and ρ = σ + 2λ+ λ′

lead respectively to equivalences τG
4 → τG

5 , τG
3 → τG

6 ,
τG

2 → τG
7 and τG

1 → τG
8 . Thus there are four equivalence

classes corresponding the the four even values of n mod 8.
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What do the subcategories τG
n and τG

=n look like? (continued)

Example

More equivalences among the subcategories τG
n .

• Let G = C2.

Then the two previous examples show that
each τG

n is equivalent to τG
0 , but the layers τG

=0 and τG
=1 are

distinct.
• Let G = C4. Then V = σ, the sign representation leads to

an equivalence between τG
2 and τG

3 , while V = ρG (the
reduced regular representation) leads to one between τG

1
and τG

4 . Hence each τG
n is equivalent to either τG

0 or τG
2 .

• Let G = C8. Let σ be the sign representation and let λ and
λ′ be rotations of order 8 and 4 respectively. Then the
representations σ, σ + λ, σ + λ+ λ′ and ρ = σ + 2λ+ λ′

lead respectively to equivalences τG
4 → τG

5 , τG
3 → τG

6 ,
τG

2 → τG
7 and τG

1 → τG
8 . Thus there are four equivalence

classes corresponding the the four even values of n mod 8.
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Example

More equivalences among the subcategories τG
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• Let G = C2. Then the two previous examples show that
each τG

n is equivalent to τG
0 ,

but the layers τG
=0 and τG

=1 are
distinct.

• Let G = C4. Then V = σ, the sign representation leads to
an equivalence between τG

2 and τG
3 , while V = ρG (the

reduced regular representation) leads to one between τG
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and τG
4 . Hence each τG

n is equivalent to either τG
0 or τG

2 .
• Let G = C8. Let σ be the sign representation and let λ and
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6 ,
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7 and τG
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8 . Thus there are four equivalence

classes corresponding the the four even values of n mod 8.
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Example
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n .

• Let G = C2. Then the two previous examples show that
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=1 are

distinct.

• Let G = C4. Then V = σ, the sign representation leads to
an equivalence between τG
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3 , while V = ρG (the

reduced regular representation) leads to one between τG
1

and τG
4 . Hence each τG

n is equivalent to either τG
0 or τG

2 .
• Let G = C8. Let σ be the sign representation and let λ and

λ′ be rotations of order 8 and 4 respectively. Then the
representations σ, σ + λ, σ + λ+ λ′ and ρ = σ + 2λ+ λ′

lead respectively to equivalences τG
4 → τG

5 , τG
3 → τG

6 ,
τG

2 → τG
7 and τG

1 → τG
8 . Thus there are four equivalence

classes corresponding the the four even values of n mod 8.
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Example
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=1 are
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3 , while V = ρG (the
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0 or τG

2 .
• Let G = C8. Let σ be the sign representation and let λ and

λ′ be rotations of order 8 and 4 respectively. Then the
representations σ, σ + λ, σ + λ+ λ′ and ρ = σ + 2λ+ λ′

lead respectively to equivalences τG
4 → τG

5 , τG
3 → τG

6 ,
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2 → τG
7 and τG

1 → τG
8 . Thus there are four equivalence

classes corresponding the the four even values of n mod 8.
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Example

More equivalences among the subcategories τG
n .

• Let G = C2. Then the two previous examples show that
each τG

n is equivalent to τG
0 , but the layers τG

=0 and τG
=1 are

distinct.
• Let G = C4. Then V = σ, the sign representation leads to

an equivalence between τG
2 and τG

3 ,

while V = ρG (the
reduced regular representation) leads to one between τG

1
and τG

4 . Hence each τG
n is equivalent to either τG

0 or τG
2 .

• Let G = C8. Let σ be the sign representation and let λ and
λ′ be rotations of order 8 and 4 respectively. Then the
representations σ, σ + λ, σ + λ+ λ′ and ρ = σ + 2λ+ λ′

lead respectively to equivalences τG
4 → τG

5 , τG
3 → τG

6 ,
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2 → τG
7 and τG

1 → τG
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Example

More equivalences among the subcategories τG
n .

• Let G = C2. Then the two previous examples show that
each τG

n is equivalent to τG
0 , but the layers τG

=0 and τG
=1 are

distinct.
• Let G = C4. Then V = σ, the sign representation leads to

an equivalence between τG
2 and τG

3 , while V = ρG (the
reduced regular representation) leads to one between τG

1
and τG

4 .

Hence each τG
n is equivalent to either τG

0 or τG
2 .

• Let G = C8. Let σ be the sign representation and let λ and
λ′ be rotations of order 8 and 4 respectively. Then the
representations σ, σ + λ, σ + λ+ λ′ and ρ = σ + 2λ+ λ′

lead respectively to equivalences τG
4 → τG

5 , τG
3 → τG

6 ,
τG

2 → τG
7 and τG

1 → τG
8 . Thus there are four equivalence

classes corresponding the the four even values of n mod 8.
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Example

More equivalences among the subcategories τG
n .

• Let G = C2. Then the two previous examples show that
each τG

n is equivalent to τG
0 , but the layers τG

=0 and τG
=1 are

distinct.
• Let G = C4. Then V = σ, the sign representation leads to

an equivalence between τG
2 and τG

3 , while V = ρG (the
reduced regular representation) leads to one between τG

1
and τG

4 . Hence each τG
n is equivalent to either τG

0 or τG
2 .

• Let G = C8. Let σ be the sign representation and let λ and
λ′ be rotations of order 8 and 4 respectively. Then the
representations σ, σ + λ, σ + λ+ λ′ and ρ = σ + 2λ+ λ′

lead respectively to equivalences τG
4 → τG

5 , τG
3 → τG

6 ,
τG

2 → τG
7 and τG

1 → τG
8 . Thus there are four equivalence

classes corresponding the the four even values of n mod 8.
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Example

More equivalences among the subcategories τG
n .

• Let G = C2. Then the two previous examples show that
each τG

n is equivalent to τG
0 , but the layers τG

=0 and τG
=1 are

distinct.
• Let G = C4. Then V = σ, the sign representation leads to

an equivalence between τG
2 and τG

3 , while V = ρG (the
reduced regular representation) leads to one between τG

1
and τG

4 . Hence each τG
n is equivalent to either τG

0 or τG
2 .

• Let G = C8.

Let σ be the sign representation and let λ and
λ′ be rotations of order 8 and 4 respectively. Then the
representations σ, σ + λ, σ + λ+ λ′ and ρ = σ + 2λ+ λ′

lead respectively to equivalences τG
4 → τG

5 , τG
3 → τG

6 ,
τG

2 → τG
7 and τG

1 → τG
8 . Thus there are four equivalence

classes corresponding the the four even values of n mod 8.
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Example

More equivalences among the subcategories τG
n .

• Let G = C2. Then the two previous examples show that
each τG

n is equivalent to τG
0 , but the layers τG

=0 and τG
=1 are

distinct.
• Let G = C4. Then V = σ, the sign representation leads to

an equivalence between τG
2 and τG

3 , while V = ρG (the
reduced regular representation) leads to one between τG

1
and τG

4 . Hence each τG
n is equivalent to either τG

0 or τG
2 .

• Let G = C8. Let σ be the sign representation

and let λ and
λ′ be rotations of order 8 and 4 respectively. Then the
representations σ, σ + λ, σ + λ+ λ′ and ρ = σ + 2λ+ λ′

lead respectively to equivalences τG
4 → τG

5 , τG
3 → τG

6 ,
τG

2 → τG
7 and τG

1 → τG
8 . Thus there are four equivalence

classes corresponding the the four even values of n mod 8.
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Example

More equivalences among the subcategories τG
n .

• Let G = C2. Then the two previous examples show that
each τG

n is equivalent to τG
0 , but the layers τG

=0 and τG
=1 are

distinct.
• Let G = C4. Then V = σ, the sign representation leads to

an equivalence between τG
2 and τG

3 , while V = ρG (the
reduced regular representation) leads to one between τG

1
and τG

4 . Hence each τG
n is equivalent to either τG

0 or τG
2 .

• Let G = C8. Let σ be the sign representation and let λ and
λ′ be rotations of order 8 and 4 respectively.

Then the
representations σ, σ + λ, σ + λ+ λ′ and ρ = σ + 2λ+ λ′

lead respectively to equivalences τG
4 → τG

5 , τG
3 → τG

6 ,
τG

2 → τG
7 and τG

1 → τG
8 . Thus there are four equivalence

classes corresponding the the four even values of n mod 8.
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n and τG
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Example

More equivalences among the subcategories τG
n .

• Let G = C2. Then the two previous examples show that
each τG

n is equivalent to τG
0 , but the layers τG

=0 and τG
=1 are

distinct.
• Let G = C4. Then V = σ, the sign representation leads to

an equivalence between τG
2 and τG

3 , while V = ρG (the
reduced regular representation) leads to one between τG

1
and τG

4 . Hence each τG
n is equivalent to either τG

0 or τG
2 .

• Let G = C8. Let σ be the sign representation and let λ and
λ′ be rotations of order 8 and 4 respectively. Then the
representations σ, σ + λ, σ + λ+ λ′ and ρ = σ + 2λ+ λ′

lead respectively to equivalences
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4 → τG

5 , τG
3 → τG

6 ,
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2 → τG
7 and τG

1 → τG
8 . Thus there are four equivalence

classes corresponding the the four even values of n mod 8.
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n and τG
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Example

More equivalences among the subcategories τG
n .

• Let G = C2. Then the two previous examples show that
each τG

n is equivalent to τG
0 , but the layers τG

=0 and τG
=1 are

distinct.
• Let G = C4. Then V = σ, the sign representation leads to

an equivalence between τG
2 and τG

3 , while V = ρG (the
reduced regular representation) leads to one between τG

1
and τG

4 . Hence each τG
n is equivalent to either τG

0 or τG
2 .

• Let G = C8. Let σ be the sign representation and let λ and
λ′ be rotations of order 8 and 4 respectively. Then the
representations σ, σ + λ, σ + λ+ λ′ and ρ = σ + 2λ+ λ′

lead respectively to equivalences τG
4 → τG

5 ,

τG
3 → τG

6 ,
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7 and τG

1 → τG
8 . Thus there are four equivalence

classes corresponding the the four even values of n mod 8.



The slice filtration
revisited

−16 −12 −8 −4 0 4 8 12 16
−8

−4

0

4

8

22 2 2 2 22̇ 2̇ 2̇ 2 2 2 2

Mike Hill
Mike Hopkins
Doug Ravenel

Localizing
subcategories

The original slice
filtration

Geometric fixed points

The new definition of
the slice filtration

The subcategories τG
n

and τG
=n

1.27
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n and τG
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Example

More equivalences among the subcategories τG
n .

• Let G = C2. Then the two previous examples show that
each τG

n is equivalent to τG
0 , but the layers τG

=0 and τG
=1 are

distinct.
• Let G = C4. Then V = σ, the sign representation leads to

an equivalence between τG
2 and τG

3 , while V = ρG (the
reduced regular representation) leads to one between τG

1
and τG

4 . Hence each τG
n is equivalent to either τG

0 or τG
2 .

• Let G = C8. Let σ be the sign representation and let λ and
λ′ be rotations of order 8 and 4 respectively. Then the
representations σ, σ + λ, σ + λ+ λ′ and ρ = σ + 2λ+ λ′

lead respectively to equivalences τG
4 → τG

5 , τG
3 → τG

6 ,

τG
2 → τG

7 and τG
1 → τG

8 . Thus there are four equivalence
classes corresponding the the four even values of n mod 8.
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n and τG
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Example

More equivalences among the subcategories τG
n .

• Let G = C2. Then the two previous examples show that
each τG

n is equivalent to τG
0 , but the layers τG

=0 and τG
=1 are

distinct.
• Let G = C4. Then V = σ, the sign representation leads to

an equivalence between τG
2 and τG

3 , while V = ρG (the
reduced regular representation) leads to one between τG

1
and τG

4 . Hence each τG
n is equivalent to either τG

0 or τG
2 .

• Let G = C8. Let σ be the sign representation and let λ and
λ′ be rotations of order 8 and 4 respectively. Then the
representations σ, σ + λ, σ + λ+ λ′ and ρ = σ + 2λ+ λ′

lead respectively to equivalences τG
4 → τG

5 , τG
3 → τG

6 ,
τG

2 → τG
7

and τG
1 → τG

8 . Thus there are four equivalence
classes corresponding the the four even values of n mod 8.
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What do the subcategories τG
n and τG

=n look like? (continued)

Example

More equivalences among the subcategories τG
n .

• Let G = C2. Then the two previous examples show that
each τG

n is equivalent to τG
0 , but the layers τG

=0 and τG
=1 are

distinct.
• Let G = C4. Then V = σ, the sign representation leads to

an equivalence between τG
2 and τG

3 , while V = ρG (the
reduced regular representation) leads to one between τG

1
and τG

4 . Hence each τG
n is equivalent to either τG

0 or τG
2 .

• Let G = C8. Let σ be the sign representation and let λ and
λ′ be rotations of order 8 and 4 respectively. Then the
representations σ, σ + λ, σ + λ+ λ′ and ρ = σ + 2λ+ λ′

lead respectively to equivalences τG
4 → τG

5 , τG
3 → τG

6 ,
τG

2 → τG
7 and τG

1 → τG
8 .

Thus there are four equivalence
classes corresponding the the four even values of n mod 8.
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What do the subcategories τG
n and τG

=n look like? (continued)

Example

More equivalences among the subcategories τG
n .

• Let G = C2. Then the two previous examples show that
each τG

n is equivalent to τG
0 , but the layers τG

=0 and τG
=1 are

distinct.
• Let G = C4. Then V = σ, the sign representation leads to

an equivalence between τG
2 and τG

3 , while V = ρG (the
reduced regular representation) leads to one between τG

1
and τG

4 . Hence each τG
n is equivalent to either τG

0 or τG
2 .

• Let G = C8. Let σ be the sign representation and let λ and
λ′ be rotations of order 8 and 4 respectively. Then the
representations σ, σ + λ, σ + λ+ λ′ and ρ = σ + 2λ+ λ′

lead respectively to equivalences τG
4 → τG

5 , τG
3 → τG

6 ,
τG

2 → τG
7 and τG

1 → τG
8 . Thus there are four equivalence

classes corresponding the the four even values of n mod 8.
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What do the subcategories τG
n and τG

=n look like? (continued)

Example

Let G = Cp for p an odd prime,

and let V = λ, a 2-dimensional
rotation of order p. Then

• The conditions of the Corollary 1 hold provided n is not
congruent to 0 or -1 mod p. Hence we get equivalences

τG
1 → τG

3 → · · · → τG
p and τG

2 → τG
4 → · · · → τG

p−1.

Hence each τG
n is equivalent to τG

1 or τG
2 .

• For n not congruent to 0, −1 or −2 mod p, X is an n-slice
iff Sλ ∧ X is an (n + 2)-slice. Each n-slice for 0 < n < p
can be obtained from a from a 1-slice or a 2-slice by
smashing with a power of Sλ. Hence there are three
distinct categories of slices, those of 0-, 1- and 2-slices.
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n and τG
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Example

Let G = Cp for p an odd prime, and let V = λ, a 2-dimensional
rotation of order p. Then

• The conditions of the Corollary 1 hold provided n is not
congruent to 0 or -1 mod p. Hence we get equivalences

τG
1 → τG

3 → · · · → τG
p and τG

2 → τG
4 → · · · → τG

p−1.

Hence each τG
n is equivalent to τG

1 or τG
2 .

• For n not congruent to 0, −1 or −2 mod p, X is an n-slice
iff Sλ ∧ X is an (n + 2)-slice. Each n-slice for 0 < n < p
can be obtained from a from a 1-slice or a 2-slice by
smashing with a power of Sλ. Hence there are three
distinct categories of slices, those of 0-, 1- and 2-slices.
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What do the subcategories τG
n and τG

=n look like? (continued)

Example

Let G = Cp for p an odd prime, and let V = λ, a 2-dimensional
rotation of order p. Then

• The conditions of the Corollary 1 hold provided n is not
congruent to 0 or -1 mod p.

Hence we get equivalences

τG
1 → τG

3 → · · · → τG
p and τG

2 → τG
4 → · · · → τG

p−1.

Hence each τG
n is equivalent to τG

1 or τG
2 .

• For n not congruent to 0, −1 or −2 mod p, X is an n-slice
iff Sλ ∧ X is an (n + 2)-slice. Each n-slice for 0 < n < p
can be obtained from a from a 1-slice or a 2-slice by
smashing with a power of Sλ. Hence there are three
distinct categories of slices, those of 0-, 1- and 2-slices.
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What do the subcategories τG
n and τG

=n look like? (continued)

Example

Let G = Cp for p an odd prime, and let V = λ, a 2-dimensional
rotation of order p. Then

• The conditions of the Corollary 1 hold provided n is not
congruent to 0 or -1 mod p. Hence we get equivalences

τG
1 → τG

3 → · · · → τG
p and τG

2 → τG
4 → · · · → τG

p−1.

Hence each τG
n is equivalent to τG

1 or τG
2 .

• For n not congruent to 0, −1 or −2 mod p, X is an n-slice
iff Sλ ∧ X is an (n + 2)-slice. Each n-slice for 0 < n < p
can be obtained from a from a 1-slice or a 2-slice by
smashing with a power of Sλ. Hence there are three
distinct categories of slices, those of 0-, 1- and 2-slices.



The slice filtration
revisited

−16 −12 −8 −4 0 4 8 12 16
−8

−4

0

4

8

22 2 2 2 22̇ 2̇ 2̇ 2 2 2 2

Mike Hill
Mike Hopkins
Doug Ravenel

Localizing
subcategories

The original slice
filtration

Geometric fixed points

The new definition of
the slice filtration

The subcategories τG
n

and τG
=n

1.28

What do the subcategories τG
n and τG

=n look like? (continued)

Example

Let G = Cp for p an odd prime, and let V = λ, a 2-dimensional
rotation of order p. Then

• The conditions of the Corollary 1 hold provided n is not
congruent to 0 or -1 mod p. Hence we get equivalences

τG
1 → τG

3 → · · · → τG
p and τG

2 → τG
4 → · · · → τG

p−1.

Hence each τG
n is equivalent to τG

1 or τG
2 .

• For n not congruent to 0, −1 or −2 mod p, X is an n-slice
iff Sλ ∧ X is an (n + 2)-slice. Each n-slice for 0 < n < p
can be obtained from a from a 1-slice or a 2-slice by
smashing with a power of Sλ. Hence there are three
distinct categories of slices, those of 0-, 1- and 2-slices.
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What do the subcategories τG
n and τG

=n look like? (continued)

Example

Let G = Cp for p an odd prime, and let V = λ, a 2-dimensional
rotation of order p. Then

• The conditions of the Corollary 1 hold provided n is not
congruent to 0 or -1 mod p. Hence we get equivalences

τG
1 → τG

3 → · · · → τG
p and τG

2 → τG
4 → · · · → τG

p−1.

Hence each τG
n is equivalent to τG

1 or τG
2 .

• For n not congruent to 0, −1 or −2 mod p,

X is an n-slice
iff Sλ ∧ X is an (n + 2)-slice. Each n-slice for 0 < n < p
can be obtained from a from a 1-slice or a 2-slice by
smashing with a power of Sλ. Hence there are three
distinct categories of slices, those of 0-, 1- and 2-slices.
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What do the subcategories τG
n and τG

=n look like? (continued)

Example

Let G = Cp for p an odd prime, and let V = λ, a 2-dimensional
rotation of order p. Then

• The conditions of the Corollary 1 hold provided n is not
congruent to 0 or -1 mod p. Hence we get equivalences

τG
1 → τG

3 → · · · → τG
p and τG

2 → τG
4 → · · · → τG

p−1.

Hence each τG
n is equivalent to τG

1 or τG
2 .

• For n not congruent to 0, −1 or −2 mod p, X is an n-slice
iff Sλ ∧ X is an (n + 2)-slice.

Each n-slice for 0 < n < p
can be obtained from a from a 1-slice or a 2-slice by
smashing with a power of Sλ. Hence there are three
distinct categories of slices, those of 0-, 1- and 2-slices.
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What do the subcategories τG
n and τG

=n look like? (continued)

Example

Let G = Cp for p an odd prime, and let V = λ, a 2-dimensional
rotation of order p. Then

• The conditions of the Corollary 1 hold provided n is not
congruent to 0 or -1 mod p. Hence we get equivalences

τG
1 → τG

3 → · · · → τG
p and τG

2 → τG
4 → · · · → τG

p−1.

Hence each τG
n is equivalent to τG

1 or τG
2 .

• For n not congruent to 0, −1 or −2 mod p, X is an n-slice
iff Sλ ∧ X is an (n + 2)-slice. Each n-slice for 0 < n < p
can be obtained from a from a 1-slice or a 2-slice

by
smashing with a power of Sλ. Hence there are three
distinct categories of slices, those of 0-, 1- and 2-slices.
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What do the subcategories τG
n and τG

=n look like? (continued)

Example

Let G = Cp for p an odd prime, and let V = λ, a 2-dimensional
rotation of order p. Then

• The conditions of the Corollary 1 hold provided n is not
congruent to 0 or -1 mod p. Hence we get equivalences

τG
1 → τG

3 → · · · → τG
p and τG

2 → τG
4 → · · · → τG

p−1.

Hence each τG
n is equivalent to τG

1 or τG
2 .

• For n not congruent to 0, −1 or −2 mod p, X is an n-slice
iff Sλ ∧ X is an (n + 2)-slice. Each n-slice for 0 < n < p
can be obtained from a from a 1-slice or a 2-slice by
smashing with a power of Sλ.

Hence there are three
distinct categories of slices, those of 0-, 1- and 2-slices.
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What do the subcategories τG
n and τG

=n look like? (continued)

Example

Let G = Cp for p an odd prime, and let V = λ, a 2-dimensional
rotation of order p. Then

• The conditions of the Corollary 1 hold provided n is not
congruent to 0 or -1 mod p. Hence we get equivalences

τG
1 → τG

3 → · · · → τG
p and τG

2 → τG
4 → · · · → τG

p−1.

Hence each τG
n is equivalent to τG

1 or τG
2 .

• For n not congruent to 0, −1 or −2 mod p, X is an n-slice
iff Sλ ∧ X is an (n + 2)-slice. Each n-slice for 0 < n < p
can be obtained from a from a 1-slice or a 2-slice by
smashing with a power of Sλ. Hence there are three
distinct categories of slices,

those of 0-, 1- and 2-slices.
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What do the subcategories τG
n and τG

=n look like? (continued)

Example

Let G = Cp for p an odd prime, and let V = λ, a 2-dimensional
rotation of order p. Then

• The conditions of the Corollary 1 hold provided n is not
congruent to 0 or -1 mod p. Hence we get equivalences

τG
1 → τG

3 → · · · → τG
p and τG

2 → τG
4 → · · · → τG

p−1.

Hence each τG
n is equivalent to τG

1 or τG
2 .

• For n not congruent to 0, −1 or −2 mod p, X is an n-slice
iff Sλ ∧ X is an (n + 2)-slice. Each n-slice for 0 < n < p
can be obtained from a from a 1-slice or a 2-slice by
smashing with a power of Sλ. Hence there are three
distinct categories of slices, those of 0-, 1- and 2-slices.
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