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Historical introduction

This is joint work with Mike Hill and Mike Hopkins.

We were thinking about
this problem in 2007-8,
but we got distracted by
the Kervaire invariant.

Mount Everest

For several years after that we could not remember what we
had proved about Cp fixed points.

Fortunately Mark Behrens took
some careful notes for us.
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K (n) localization

A central object of study in chromatic homotopy theory is S0
K (n),

the Bousfield localization of the sphere spectrum S0 with
respect to the nth Morava K-theory K (n).

A theorem of Goerss-Hopkins-Miller identifies it as EhGn
n , the

homotopy fixed point set of the action of the nth extended
Morava stabilizer group Gn on the nth Lubin-Tate spectrum En,
also known as Morava E-theory.

For any closed subgroup H ⊆ Gn, one also has a homotopy
fixed point spectrum EhH

n under S0
K (n). Gn is known to have a

subgroup of order p when p − 1 divides n. Our goal is to study
EhCp

(p−1)f for positive integers f .
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En is a complex oriented 2-periodic E∞ (meaning strictly
commutative) ring spectrum.

Its homotopy groups comprise
the graded ring

π∗En = W Ju1, . . .un−1K[u±1]∧

where
• W denotes the Witt ring W (Fpn) of the field with pn

elements. This is a degree n extension of the ring Zp of
p-adic integers that lifts Fpn as a degree n extension of the
prime field Fp.

• The power series variables ui each have degree 0.
• The invertible variable u has degree −2.
• The symbol ˆ at the end denotes completion with respect

to the maximal ideal In = (p,u1, . . .un−1).
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Properties of En and Gn (continued)

π∗En = W Ju1, . . .un−1K[u±1]∧

Here is an alternate description of this ring as a completed
localization of a graded polynomial ring.

• Let Rn = W [x0, . . . , xn−1] with |xi | = −2.
• Invert Φ := x0 · · · xn−1, define ui := (x0/xi)− 1 for

1 ≤ i ≤ n − 1, and u := xn
0 /(x1 . . . xn−1). Then we have

Rn[Φ
±1] = W [u1, . . . ,un−1][u±1].

• Let m be the kernel of the map Rn[Φ
±1] → Fpn [u±1]

sending each xi to u. Then complete with respect to m.
The result is isomorphic to π∗En.

In short, we start with a graded polynomial local ring, invert
each of its specified generators, and then complete at its
graded maximal ideal. We will come back to this later.
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Properties of En and Gn (continued)

The extended Morava stabilizer group Gn is related to the
automorphism group Sn of the Honda height n formal group law
Fn over Fpn .

It is known that this group does does change if we
enlarge the field over which Fn is defined.

To describe Gn, we describe the endomorphism ring of Fn,
End(Fn). The Frobenius automorphism, the pth power map of
Fpn , lifts to an ring automorphism of W which we denote by
w 7→ wσ.

Theorem

End(Fn) is the algebra obtained from W by adjoining a
noncommuting indeterminate F with F n = p and Fw = wσF for
w ∈ W.
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enlarge the field over which Fn is defined.

To describe Gn, we describe the endomorphism ring of Fn,
End(Fn). The Frobenius automorphism, the pth power map of
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w ∈ W.



Hiking in the Alps:
Cp -fixed points of
Lubin-Tate spectra

Doug Ravenel

Historical introduction

K (n) localization

Properties of En and Gn

Finding a root of unity

Group cohomology

The main theorem

A classical example

TMF at p = 3

Larger primes

Properties of En and Gn (continued)

The extended Morava stabilizer group Gn is related to the
automorphism group Sn of the Honda height n formal group law
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End(Fn). The Frobenius automorphism, the pth power map of
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The extended Morava stabilizer group Gn is related to the
automorphism group Sn of the Honda height n formal group law
Fn over Fpn . It is known that this group does does change if we
enlarge the field over which Fn is defined.

To describe Gn, we describe the endomorphism ring of Fn,
End(Fn). The Frobenius automorphism, the pth power map of
Fpn , lifts to an ring automorphism of W which we denote by
w 7→ wσ.

Theorem
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Properties of En and Gn (continued)

Theorem

End(Fn) is the algebra W ⟨⟨F ⟩⟩ obtained from W by adjoining a
noncommuting indeterminate F with F n = p and Fw = wσF for
w ∈ W.

This algebra is a free module over W of rank n, and hence a
free module over Zp of rank n2. An element of the form

e = e0 + e1F + · · ·+ en−1F n−1 with ei ∈ W

is invertible if e0 is a unit in W . They form a group under
multiplication. This is the automorphism group Aut(Fn) of Fn,
commonly known as the nth Morava stabilizer group Sn. Gn is
its extension by the Galois group

Gal(Fpn ,Fp) ∼= Gal(W ,Zp) ∼= Cn.
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End(Fn) is the algebra W ⟨⟨F ⟩⟩ obtained from W by adjoining a
noncommuting indeterminate F with F n = p and Fw = wσF for
w ∈ W.

This algebra is a free module over W of rank n, and hence a
free module over Zp of rank n2. An element of the form

e = e0 + e1F + · · ·+ en−1F n−1 with ei ∈ W

is invertible if e0 is a unit in W .
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End(Fn) is the algebra W ⟨⟨F ⟩⟩ obtained from W by adjoining a
noncommuting indeterminate F with F n = p and Fw = wσF for
w ∈ W.

This algebra is a free module over W of rank n, and hence a
free module over Zp of rank n2. An element of the form

e = e0 + e1F + · · ·+ en−1F n−1 with ei ∈ W

is invertible if e0 is a unit in W . They form a group under
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commonly known as the nth Morava stabilizer group Sn.
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End(Fn) is the algebra W ⟨⟨F ⟩⟩ obtained from W by adjoining a
noncommuting indeterminate F with F n = p and Fw = wσF for
w ∈ W.

This algebra is a free module over W of rank n, and hence a
free module over Zp of rank n2. An element of the form

e = e0 + e1F + · · ·+ en−1F n−1 with ei ∈ W
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Theorem

End(Fn) is the algebra W ⟨⟨F ⟩⟩ obtained from W by adjoining a
noncommuting indeterminate F with F n = p and Fw = wσF for
w ∈ W.

Let ω ∈ W be a primitive (pn − 1)th root of unity, and let ω ∈ Fpn

be its mod p reduction. Then the elements ω and F in End(Fn)
correspond to the endomorphisms

x 7→ ωx and x 7→ xp

of Fn.

Our algebra End(Fn) is a complete discrete valuation ring in
which the valuation of F is 1/n. This valuation extends the
usual one on W , in which the valuation of p is 1.
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usual one on W , in which the valuation of p is 1.
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Finding a pth root of unity

Theorem

End(Fn) is the algebra W ⟨⟨F ⟩⟩ obtained from W by adjoining a
noncommuting indeterminate F with F n = p and Fw = wσF for
w ∈ W.

Finding an element of order p in Sn, is equivalent to finding a
pth root of unity in End(Fn). For this we will use the following
facts about it.

• End(Fn)⊗Qp is a division algebra Dn with center Qp.
• Dn is known to contain every field K that is a finite

extension of Qp whose degree divides n. The valuation we
have defined on Dn restricts to the usual one on each such
K .

• The field L = Qp[
p
√

1] has degree p − 1, and is thus
contained in Dn iff p − 1 divides n. Its maximal ideal is
generated by an element π with valuation 1/(p − 1).
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Finding a pth root of unity (continued)

Theorem

End(Fn) is the algebra W ⟨⟨F ⟩⟩ obtained from W by adjoining a
noncommuting indeterminate F with F n = p and Fw = wσF for
w ∈ W.

The above discussion implies that for n = (p − 1)f for a positive
integer f , a primitive pth root of unity exists in the sub
W -algebra of End(Fn) generated by F f . It thus has the form

ζ = 1 + z1F f + · · ·+ zp−2F (p−2)f + pzp−1 with zi ∈ W ,

where z1 is a unit. Recall that F (p−1)f = p. There are many
such elements ζ.
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Group cohomology

The main tool for computing the homotopy groups of the
homotopy fixed point spectrum of EhG for a group G acting on
a spectrum E is the homotopy fixed point spectral sequence

Es,t
2 = Hs(G;πtE) =⇒ πt−sEhG

Its use requires knowledge of the action of G on π∗E . In the
case of G acting on π∗En this is far from easy, despite the
identification of the above with the E2-term of the
Adams-Novikov spectral sequence. It is more manageable
when we replace G by a subgroup of order p.
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Group cohomology (continued)

We recall some facts about group cohomology for G = Cp.

For
a generator γ ∈ Cp, the integral group ring ZCp is
Z[γ]/(γp − 1). The following is a minimal free ZCp-resolution of
Z with the trivial Cp-action.

0 1 2
0 Zoo ZCp

∇oo ZCp
1−γoo ZCp

Too . . .oo

where ∇ is the augmentation defined by ∇(γ i) = 1, and
T = 1 + γ + · · ·+ γp−1 is the trace.

Applying the functor HomZCp(−,Zp) to this chain complex gives
the cochain complex

Zp
0 // Zp

p // Zp
0 // · · ·

leading to the expected

H i(Cp;Zp) =

 Zp for i = 0
Z/p for i > 0 even
0 otherwise.
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Z with the trivial Cp-action.

0 1 2
0 Zoo ZCp

∇oo ZCp
1−γoo ZCp

Too . . .oo

where ∇ is the augmentation defined by ∇(γ i) = 1, and
T = 1 + γ + · · ·+ γp−1 is the trace.

Applying the functor HomZCp(−,Zp) to this chain complex gives
the cochain complex

Zp
0 // Zp

p // Zp
0 // · · ·

leading to the expected

H i(Cp;Zp) =

 Zp for i = 0
Z/p for i > 0 even
0 otherwise.
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0 1 2
0 Zoo ZCp

∇oo ZCp
1−γoo ZCp

Too . . .oo

The cokernel of T , also the kernel of ∇, is the reduced regular
representation ρ.

Similar computations give

H i(Cp; ρ) =

 0 for i = 0
Z/p for i odd
0 otherwise.

and

H i(Cp;ZCp) =

{
Z for i = 0
0 otherwise.
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The main theorem

We will now describe π∗En for n = (p − 1)f as a module over
the group ring WCp, where W = W (Fpn).

We will do this more
generally, replacing Cp by any finite subgroup H of the
(nonextended) Morava stabilizer group Aut(Fn) whose p-Sylow
subgroup is cyclic.

We saw earlier that π∗En is a completed localization of the
graded ring

Rn = W [x0, . . . , xn−1] with |xi | = −2.

Its component in degree −2 is a free W -module of rank n, as is
our endomorphism ring End(Fn). This isomorphism defines an
action of H on the degree -2 component of Rn, which extends
to an action on all of Rn and its completed localization by
continuous ring homomorphisms.
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The main theorem (continued)

For the case H = Cp, Rn is isomorphic as a WCp-algebra to

R̃n = W [xi,j : 1 ≤ i ≤ f , j ∈ Z/p]

/∑
j

xi,j : 1 ≤ i ≤ f


with |xi,j | = −2.

For a generator γ ∈ Cp we have γxi,j = xi,j+1, and the trace
Txi,j vanishes. It follows that the degree -2 component of R̃n is
the direct sum of f copies of ρ⊗ W . Thus R̃n is the symmetric
W -algebra

SymmW

(
ρ⊕f

)
.
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R̃n = W [xi,j : 1 ≤ i ≤ f , j ∈ Z/p]/

 ∑
j∈Z/p

xi,j : 1 ≤ i ≤ f


with |xi,j | = −2

∼= SymmW

(
ρ⊕f

)
.

Even though the xi,js are not linearly independent, we define

Φ′ =
∏

1≤i≤f

∏
0≤j<p

xi,j

and complete R̃n[Φ
′±1] with respect to the kernel m̃ of the map

R̃n[Φ
′±1] → Fpn [u±1] with xi,j 7→ u and γu = u.

to obtain
R̂n := R̃n[Φ

′±1]∧m̃.
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The main theorem (continued)

R̂n := R̃n[Φ
′±1]∧m̃n

and R̃n ∼= SymmW

(
ρ⊕f

)
.

Theorem

For n = (p − 1)f , the Lubin-Tate ring En is isomorphic to R̂n as
an algebra over W [Cp].

This means that H∗(Cp;En) is closely related to
H∗(Cp;SymmW

(
ρ⊕f )). That symmetric algebra is easy to

describe modulo free summands over W [Cp], which contribute
nothing to cohomology in positive degrees.

We know that

Symmℓ(ρ) ≡

 Z for ℓ ≡ 0 mod p
ρ for ℓ ≡ 1 mod p
0 otherwise

and that ρ⊗ ρ ≡ Z.
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ρ⊕f

)
.
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For n = (p − 1)f , the Lubin-Tate ring En is isomorphic to R̂n as
an algebra over W [Cp].

This means that H∗(Cp;En) is closely related to
H∗(Cp;SymmW

(
ρ⊕f )). That symmetric algebra is easy to

describe modulo free summands over W [Cp],

which contribute
nothing to cohomology in positive degrees.

We know that

Symmℓ(ρ) ≡

 Z for ℓ ≡ 0 mod p
ρ for ℓ ≡ 1 mod p
0 otherwise

and that ρ⊗ ρ ≡ Z.
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A classical example: p = 2 and n = 1

For p = 2,

• E1 is the 2-adic completion of complex K-theory spectrum
K .

• The group G1 is the group of 2-adic units, which is
isomorphic to {±1} × Z2.

• For a generator γ ∈ C2 (namely −1 ∈ Z×
2 ), we have

γ(ui) = (−1)iui .

• The homotopy fixed point spectrum EhC2
1 is the 2-adic

completion of the the real K-theory spectrum KO.

It follows that as ZC2-modules,

π2iE1 =

{
Z2 for i even
Z2 ⊗ ρ for i odd

where ρ is isomorphic to the integers with the sign action.
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(continued)

As ZC2-modules,

π2iE1 =

{
Z2 for i even
Z2 ⊗ ρ for i odd

It follows that the E2-term of the homotopy fixed point spectral
sequence is

Es,t
2 = Hs(C2;πtE2) =


Z2 for s = 0 and t divisible by 4
0 for s = 0 and t ≡ 2 mod 4
Z/2 for s > 0, t even,

and s ≡ t mod 2
0 otherwise.
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•
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□

Squares and bullets denote copies of Z2 and Z/2. The white
diagonal lines indicate multiplication by η ∈ E1,2

2 .

The indicated d3s can be established by equivariant methods,
or by the requirement that the spectral sequence must
converge to the known value of π∗KO.
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Here is the homotopy fixed point spectral sequence for EhC3
2

with copies of WC3 in π∗E2 omitted.
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Squares and bullets denote copies of W (F9) and F9. Green
and blue lines indicate multiplication by α1 ∈ E1,4

2 and the
Massey product operation ⟨α1, α1, −⟩. The composite is
multiplication by β1 ∈ E2,12

2 .
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and blue lines indicate multiplication by α1 ∈ E1,4

2 and the
Massey product operation ⟨α1, α1, −⟩.

The composite is
multiplication by β1 ∈ E2,12

2 .
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This pattern of differentials is 18-periodic. A comparable
homotopy fixed point spectral sequence for TMF is 72-periodic.
The picture above can be “spread out” by enlarging the group
C3 by adjoining the fourth roots of unity in W . Extending by the
Galois group converts each copy of W and F9 to Z3 and F3.
Thus we are extending C3 by D8, the group dihedral group of
order 8 to get a group G24.
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Some group theory

In terms of the algebra End(F2) at p = 3,

let ω ∈ W be a
primitive 8th root of unity, and i = ω2. Then we have a cube
root of unity

ζ =
−1 − ωF

2
with iζ i−1 = ζ−1 =

−1 + ωF
2

.

Let ϕ ∈ Gal(F9 : F3) be the Frobenius element. Then ωϕ
commutes with ζ and has order 4. The group ⟨i , ωϕ⟩ is
isomorphic to Q8, and the group C3 ⋊ Q8 is the group G24 of
Goerss-Henn-Mahowald-Rezk.
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TMF at p = 3 (continued)

This is the homotopy fixed point spectral sequence for EhG24
2 ,

which is TMFK (2), also known as EO3.
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It is known that the following elements in the Adams-Novikov
E2-term have nontrivial images here.

x β1 β3/3 β4 β6/3 β9,9, β7 β9/3,2 β10

|x | 10 34 58 82 106 130 154
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Larger primes

For p ≥ 3 one has an extension H of Cp by C(p−1)2 ,

where a
generator of the quotient acts on Cp by an automorphism of
order p − 1. This subgroup of Sp−1 can be extended by the
Galois group Cp−1 to give a maximal finite subgroup G ⊆ Gp−1
of order p(p − 1)3. We define EOp := EhG

p−1.

In the E2-term of the resulting homotopy fixed point spectral
sequence we have

α1 ∈ E1,2p−2
2 , β1 ∈ E2,2p2−2p

2 , and ∆ ∈ E0,2p(p−1)2

2 ,

with
E2 = E(α1)⊗ P(β1)⊗ P(∆±1).

Here are the dimensions of these elements for small primes.

p |α1| |β1| |∆|
3 3 10 24
5 7 38 160
7 11 82 504
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Larger primes (continued)

In the homotopy fixed point spectral sequence for EOp we have

E2 = E(α1)⊗ P(β1)⊗ P(∆±1).

with

α1 ∈ E1,2p−2
2 , β1 ∈ E2,2p2−2p

2 , and ∆ ∈ E0,2p(p−1)2

2 .

Then there are differentials

d2p−1∆ = α1β
p−1
1 and d2(p−1)2+1(α1∆

p−1) = β
(p−1)2+1
1 .

From the Adams-Novikov E2-term for the sphere spectrum we
have

θj := βpj−1/pj−1 7→ β1∆
(pj−1−1)/(p−1) for all j ≥ 1,

and for p = 5 only, we have

γ3 7→ α1β1∆
4 in dimension 685.
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THANK YOU

and have a wonderful retirement, Paul!
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