String cobordism at the prime 3

Vitaly Lorman

Swarthmore College

Boston College

University of Rochester

Princeton Topology Seminar
December 9, 2021

What is string cobordism?

String cobordism at the prime 3

Carl McTague
Vitaly Lorman
String cobordism or MString is Haynes Miller's name for the spectrum also known as $M O\langle 8\rangle$,

Introduction
MSU at $p=2$
Wilson spaces and
Hopf rings
$H_{*} B O\langle 8\rangle$ and
$H_{*} M O\langle 8\rangle$
Two change of rings isomorphisms

The Adams spectral sequence for $M O\langle 8\rangle$

What is string cobordism?

String cobordism at the prime 3

Carl McTague
Vitaly Lorman
Doug Ravenel

String cobordism or MString is Haynes Miller's name for the spectrum also known as $M O\langle 8\rangle$, the Thom spectrum associated with the $B O\langle 8\rangle$, the 7 connected cover of the space $B O$.

Introduction
MSU at $p=2$
Wilson spaces and Hopf rings
$H_{*} B O\langle 8\rangle$ and $H_{*} M O\langle 8\rangle$

Two change of rings isomorphisms

The Adams spectral sequence for $M O\langle 8\rangle$

What is string cobordism?

String cobordism or MString is Haynes Miller's
Carl McTague
Vitaly Lorman
Doug Ravenel
name for the spectrum also known as $M O\langle 8\rangle$, the Thom spectrum associated with the $B O\langle 8\rangle$, the 7 connected cover of the space $B O$.

Introduction
MSU at $p=2$
Wilson spaces and
Hopf rings
$H_{*} B O\langle 8\rangle$ and $H_{*} M O\langle 8\rangle$

Its homotopy type at the prime 2 is quite complicated and still not fully understood.

Two change of rings isomorphisms

The Adams spectral sequence for $M O\langle 8\rangle$

What is string cobordism?

String cobordism or MString is Haynes Miller's name for the spectrum also known as $M O\langle 8\rangle$, the Thom spectrum associated with the $B O\langle 8\rangle$, the 7 connected cover of the space $B O$.

Its homotopy type at the prime 2 is quite complicated and still not fully understood. It was first studied by Vince Giambalvo in 1971.

Introduction
MSU at $p=2$
Wilson spaces and
Hopf rings
$H_{*} B O\langle 8\rangle$ and $H_{*} M O\langle 8\rangle$

Two change of rings isomorphisms

The Adams spectral sequence for $M O\langle 8\rangle$

What is string cobordism?

String cobordism or MString is Haynes Miller's name for the spectrum also known as $M O(8)$, the Thom spectrum associated with the $B O\langle 8\rangle$, the 7 connected cover of the space $B O$.

Its homotopy type at the prime 2 is quite complicated and still not fully understood. It was first studied by Vince Giambalvo in 1971. It is known

Introduction
MSU at $p=2$
Wilson spaces and Hopf rings
$H_{*} B O\langle 8\rangle$ and $H_{*} M O\langle 8\rangle$

Two change of rings isomorphisms

The Adams spectral sequence for $M O\langle 8\rangle$ to admit a map to tmf (the spectrum for topological modular forms) that is surjective in mod 2 homology.

What is string cobordism?

String cobordism or MString is Haynes Miller's name for the spectrum also known as $M O\langle 8\rangle$, the Thom spectrum associated with the $B O\langle 8\rangle$, the 7 connected cover of the space $B O$.

Its homotopy type at the prime 2 is quite complicated and still not fully understood. It was first studied by Vince Giambalvo in 1971. It is known

Introduction
MSU at $p=2$
Wilson spaces and Hopf rings
$H_{*} B O\langle 8\rangle$ and $H_{*} M O\langle 8\rangle$

Two change of rings isomorphisms

The Adams spectral sequence for $M O\langle 8\rangle$

At each prime larger than 3, it is known to split as a wedge of suspensions of the Brown-Peterson spectrum $B P$.

What is string cobordism?

Carl McTague
Vitaly Lorman Doug Ravenel name for the spectrum also known as $M O\langle 8\rangle$, the Thom spectrum associated with the $B O\langle 8\rangle$, the 7 connected cover of the space $B O$.

Its homotopy type at the prime 2 is quite complicated and still not fully understood. It was first studied by Vince Giambalvo in 1971. It is known to admit a map to tmf (the spectrum for topological modular forms) that is surjective in mod 2 homology.

At each prime larger than 3, it is known to split as a wedge of suspensions of the Brown-Peterson spectrum BP. There is some subtlety in its multiplicative structure,

What is string cobordism?

String cobordism or MString is Haynes Miller's name for the spectrum also known as $M O\langle 8\rangle$, the Thom spectrum associated with the $B O\langle 8\rangle$, the 7 connected cover of the space $B O$.

Its homotopy type at the prime 2 is quite complicated and still not fully understood. It was first studied by Vince Giambalvo in 1971. It is known

Introduction
MSU at $p=2$
Wilson spaces and Hopf rings
$H_{*} B O\langle 8\rangle$ and $H_{*} M O\langle 8\rangle$

Two change of rings isomorphisms

The Adams spectral sequence for $\mathrm{MO}\langle 8\rangle$

At each prime larger than 3, it is known to split as a wedge of suspensions of the Brown-Peterson spectrum $B P$. There is some subtlety in its multiplicative structure, which is the subject of a 2008 paper by Mark Hovey.

What is string cobordism? (continued)

String cobordism at the prime 3

Carl McTague
Vitaly Lorman
Doug Ravene!

Introduction
MSU at $p=2$
Wilson spaces and
Hopf rings
$H_{*} B O\langle 8\rangle$ and
$H_{*} M O\langle 8\rangle$
Two change of rings isomorphisms

The Adams spectral sequence for $M O\langle 8\rangle$

What is string cobordism? (continued)

String cobordism at the prime 3

Carl McTague
Vitaly Lorman
Doug Ravene!

Introduction
MSU at $p=2$
Wilson spaces and
Hopf rings
$H_{*} B O\langle 8\rangle$ and
$H_{*} M O\langle 8\rangle$
Two change of rings isomorphisms

The Adams spectral sequence for $M O\langle 8\rangle$

What is string cobordism? (continued)

 the prime 3
Carl McTague

Vitaly Lorman
Doug Ravenel

Introduction

```
MSU at p=2
```

Wilson spaces and Hopf rings
$H_{*} B O\langle 8\rangle$ and $H_{*} M O\langle 8\rangle$

TRANSACTIONS OF THE
AMERICAN MATYIEMATICAL SOCIETY
Volume 347. Number 9. Scptember 1995

THE 7-CONNECTED COBORDISM RING AT $p=3$

```
MARK A. HOVEY AND DOUGLAS C. RAVENEL
```

AbSTRACT. In this paper, we study the cobordism spectrum $M O\langle 8\rangle$ at the prime 3. This spectrum is important because it is conjectured to play the role for clliptic cohomology that Spin cobordism plays for real K-theory. We show that the torsion is all killed by 3, and that the Adams-Novikov spectral sequence collapses after only 2 differentials. Many of our methods apply more generally.

Two change of rings isomorphisms

The Adams spectral sequence for $M O\langle 8\rangle$

Some informative history

String cobordism at the prime 3

Carl McTague
Vitaly Lorman
It is useful to compare this problem with the study of MSO (oriented cobordism) and MSU (special unitary cobordism) at the prime 2.

Introduction
MSU at $p=2$
Wilson spaces and Hopf rings
$H_{*} B O\langle 8\rangle$ and $H_{*} M O\langle 8\rangle$

Two change of rings isomorphisms

The Adams spectral sequence for $M O\langle 8\rangle$

Some informative history

String cobordism at the prime 3

Carl McTague
Vitaly Lorman
It is useful to compare this problem with the study of MSO (oriented cobordism) and MSU (special unitary cobordism) at the prime 2. MSO is the subject of 1960 paper by Terry Wall.

Introduction

MSU at $p=2$
Wilson spaces and Hopf rings
$H_{*} B O\langle 8\rangle$ and $H_{*} M O\langle 8\rangle$

Two change of rings isomorphisms

The Adams spectral sequence for $M O\langle 8\rangle$

Some informative history

It is useful to compare this problem with the study of MSO (oriented cobordism) and MSU (special unitary cobordism) at the prime 2. MSO is the subject of 1960 paper by Terry Wall.

As a comodule over the dual Steenrod algebra $\mathcal{A}_{*}, H_{*} M S O$ splits as a direct sum of suspensions of two types:

Introduction
MSU at $p=2$
Wilson spaces and Hopf rings
$H_{*} B O\langle 8\rangle$ and $H_{*} M O\langle 8\rangle$
Two change of rings isomorphisms

The Adams spectral sequence for $M O\langle 8\rangle$

Some informative history

String cobordism at the prime 3

Carl McTague Vitaly Lorman Doug Ravenel
It is useful to compare this problem with the study of MSO (oriented cobordism) and MSU (special unitary cobordism) at the prime 2. MSO is the subject of 1960 paper by Terry Wall.

As a comodule over the dual Steenrod algebra $\mathcal{A}_{*}, H_{*} M S O$ splits as a direct sum of suspensions of two types:

- $\mathcal{A}_{*}=P\left(\zeta_{1}, \zeta_{2}, \ldots\right)$ with $\left|\zeta_{i}\right|=2^{i}-1$.

Introduction
MSU at $p=2$
Wilson spaces and Hopf rings
$H_{*} B O\langle 8\rangle$ and $H_{*} M O\langle 8\rangle$
Two change of rings isomorphisms

The Adams spectral sequence for $M O\langle 8\rangle$

Some informative history

String cobordism at the prime 3

Carl McTague Vitaly Lorman Doug Ravenel
It is useful to compare this problem with the study of MSO (oriented cobordism) and MSU (special unitary cobordism) at the prime 2. MSO is the subject of 1960 paper by Terry Wall.

As a comodule over the dual Steenrod algebra $\mathcal{A}_{*}, H_{*} M S O$ splits as a direct sum of suspensions of two types:

- $\mathcal{A}_{*}=P\left(\zeta_{1}, \zeta_{2}, \ldots\right)$ with $\left|\zeta_{i}\right|=2^{i}-1$. This is the homology of the mod 2 Eilenberg-Mac Lane spectrum $H Z / 2$.

Some informative history

String cobordism at the prime 3

Carl McTague Vitaly Lorman Doug Ravenel
It is useful to compare this problem with the study of MSO (oriented cobordism) and MSU (special unitary cobordism) at the prime 2. MSO is the subject of 1960 paper by Terry Wall.

As a comodule over the dual Steenrod algebra $\mathcal{A}_{*}, H_{*} M S O$ splits as a direct sum of suspensions of two types:

- $\mathcal{A}_{*}=P\left(\zeta_{1}, \zeta_{2}, \ldots\right)$ with $\left|\zeta_{i}\right|=2^{i}-1$. This is the homology of the mod 2 Eilenberg-Mac Lane spectrum $H Z / 2$.
- $(\mathcal{A} / / \mathcal{A}(0))_{*}=P\left(\zeta_{1}^{2}, \zeta_{2}, \zeta_{3}, \ldots\right)$.

Some informative history

String cobordism at the prime 3

Carl McTague Vitaly Lorman Doug Ravenel
It is useful to compare this problem with the study of MSO (oriented cobordism) and MSU (special unitary cobordism) at the prime 2. MSO is the subject of 1960 paper by Terry Wall.

As a comodule over the dual Steenrod algebra $\mathcal{A}_{*}, H_{*} M S O$ splits as a direct sum of suspensions of two types:

- $\mathcal{A}_{*}=P\left(\zeta_{1}, \zeta_{2}, \ldots\right)$ with $\left|\zeta_{i}\right|=2^{i}-1$. This is the homology

Introduction
MSU at $p=2$
Wilson spaces and Hopf rings
$H_{*} B O\langle 8\rangle$ and $H_{*} M O\langle 8\rangle$

Two change of rings isomorphisms

The Adams spectral sequence for $M O\langle 8\rangle$ of the mod 2 Eilenberg-Mac Lane spectrum $H Z / 2$.

- $(\mathcal{A} / / \mathcal{A}(0))_{*}=P\left(\zeta_{1}^{2}, \zeta_{2}, \zeta_{3}, \ldots\right)$. This is the homology of the integer Eilenberg-Mac Lane spectrum HZ.

Some informative history

It is useful to compare this problem with the study of MSO (oriented cobordism) and MSU (special unitary cobordism) at the prime 2. MSO is the subject of 1960 paper by Terry Wall.

As a comodule over the dual Steenrod algebra $\mathcal{A}_{*}, H_{*} M S O$ splits as a direct sum of suspensions of two types:

- $\mathcal{A}_{*}=P\left(\zeta_{1}, \zeta_{2}, \ldots\right)$ with $\left|\zeta_{i}\right|=2^{i}-1$. This is the homology

Carl McTague Vitaly Lorman Doug Ravenel

Introduction
MSU at $p=2$
Wilson spaces and Hopf rings
$H_{*} B O\langle 8\rangle$ and $H_{*} M O\langle 8\rangle$

Two change of rings isomorphisms

The Adams spectral sequence for $M O\langle 8\rangle$ of the mod 2 Eilenberg-Mac Lane spectrum $H Z / 2$.

- $(\mathcal{A} / / \mathcal{A}(0))_{*}=P\left(\zeta_{1}^{2}, \zeta_{2}, \zeta_{3}, \ldots\right)$. This is the homology of the integer Eilenberg-Mac Lane spectrum HZ. There is one such summand for each monomial in the graded ring $P\left(x_{4}, x_{8}, x_{12}, \ldots\right)$.

Some informative history

String cobordism at the prime 3

Carl McTague Vitaly Lorman Doug Ravenel
It is useful to compare this problem with the study of MSO (oriented cobordism) and MSU (special unitary cobordism) at the prime 2. MSO is the subject of 1960 paper by Terry Wall.

As a comodule over the dual Steenrod algebra $\mathcal{A}_{*}, H_{*} M S O$ splits as a direct sum of suspensions of two types:

- $\mathcal{A}_{*}=P\left(\zeta_{1}, \zeta_{2}, \ldots\right)$ with $\left|\zeta_{i}\right|=2^{i}-1$. This is the homology of the mod 2 Eilenberg-Mac Lane spectrum $\mathrm{HZ} / 2$.
- $(\mathcal{A} / / \mathcal{A}(0))_{*}=P\left(\zeta_{1}^{2}, \zeta_{2}, \zeta_{3}, \ldots\right)$. This is the homology of the integer Eilenberg-Mac Lane spectrum HZ. There is one such summand for each monomial in the graded ring $P\left(x_{4}, x_{8}, x_{12}, \ldots\right)$.
There is a corresponding splitting of the spectrum $\mathrm{MSO}_{(2)}$ into a wedge of integer and mod 2 Eilenberg-Mac Lane spectra. The Adams spectral sequence for MSO collapses from E_{2}.

Some informative history: MSU at the prime 2

String cobordism at the prime 3

Carl McTague
Vitaly Lorman
Doug Ravene!
The 2-primary homotopy type of MSU is the subject of David Pengelley's thesis, published in 1982.

Introduction
MSU at $p=2$
Wilson spaces and
Hopf rings
$H_{*} B O\langle 8\rangle$ and $H_{*} M O\langle 8\rangle$

Two change of rings isomorphisms

The Adams spectral sequence for $M O\langle 8\rangle$

Some informative history: MSU at the prime 2

String cobordism at the prime 3

Carl McTague
Vitaly Lorman
Doug Ravenel
The 2-primary homotopy type of MSU is the subject of David Pengelley's thesis, published in 1982.
H_{*} MSU is the "double" of H_{*} MSO.

Introduction
MSU at $p=2$
Wilson spaces and Hopf rings
$H_{*} B O\langle 8\rangle$ and $H_{*} M O\langle 8\rangle$

Two change of rings isomorphisms

The Adams spectral sequence for $M O\langle 8\rangle$

Some informative history: MSU at the prime 2

String cobordism at the prime 3

Carl McTague
Vitaly Lorman
Doug Ravenel
The 2-primary homotopy type of MSU is the subject of David Pengelley's thesis, published in 1982.

$H_{*} M S U$ is the "double" of H_{*} MSO. This means that as a comodule over the dual mod 2 Steenrod algebra \mathcal{A}_{*}, H_{*} MSO splits as a direct sum of suspensions of two types:

Some informative history: MSU at the prime 2

String cobordism at the prime 3

Carl McTague
Vitaly Lorman
Doug Ravenel
The 2-primary homotopy type of MSU is the subject of David Pengelley's thesis, published in 1982.

$H_{*} M S U$ is the "double" of H_{*} MSO. This means that as a comodule over the dual mod 2 Steenrod algebra \mathcal{A}_{*}, H_{*} MSO splits as a direct sum of suspensions of two types:

- The double of $\mathcal{A}_{*}, P\left(\zeta_{1}^{2}, \zeta_{2}^{2}, \ldots\right)$ with $\left|\zeta_{i}\right|=2^{i}-1$.

Some informative history: MSU at the prime 2

String cobordism at the prime 3

Carl McTague
Vitaly Lorman
Doug Ravenel
The 2-primary homotopy type of MSU is the subject of David Pengelley's thesis, published in 1982.

$H_{*} M S U$ is the "double" of H_{*} MSO. This means that as a comodule over the dual mod 2 Steenrod algebra \mathcal{A}_{*}, H_{*} MSO

Introduction
MSU at $p=2$
Wilson spaces and Hopf rings
$H_{*} B O\langle 8\rangle$ and $H_{*} M O\langle 8\rangle$

Two change of rings isomorphisms

The Adams spectral sequence for $M O\langle 8\rangle$ splits as a direct sum of suspensions of two types:

- The double of $\mathcal{A}_{*}, P\left(\zeta_{1}^{2}, \zeta_{2}^{2}, \ldots\right)$ with $\left|\zeta_{i}\right|=2^{i}-1$. This is the homology of the spectrum $B P$.

Some informative history: MSU at the prime 2

The 2-primary homotopy type of MSU is the subject of David Pengelley's thesis, published in 1982.

$H_{*} M S U$ is the "double" of H_{*} MSO. This means that as a comodule over the dual mod 2 Steenrod algebra \mathcal{A}_{*}, H_{*} MSO

Introduction
MSU at $p=2$
Wilson spaces and Hopf rings
$H_{*} B O\langle 8\rangle$ and $H_{*} M O\langle 8\rangle$

Two change of rings isomorphisms

The Adams spectral sequence for $M O\langle 8\rangle$ splits as a direct sum of suspensions of two types:

- The double of $\mathcal{A}_{*}, P\left(\zeta_{1}^{2}, \zeta_{2}^{2}, \ldots\right)$ with $\left|\zeta_{i}\right|=2^{i}-1$. This is the homology of the spectrum $B P$.
- The double of $(\mathcal{A} / / \mathcal{A}(0))_{*}, P\left(\zeta_{1}^{4}, \zeta_{2}^{2}, \zeta_{3}^{2}, \ldots\right)$.

Some informative history: MSU at the prime 2

The 2-primary homotopy type of MSU is the subject of David Pengelley's thesis, published in 1982.

$H_{*} M S U$ is the "double" of H_{*} MSO. This means that as a comodule over the dual mod 2 Steenrod algebra \mathcal{A}_{*}, H_{*} MSO

Introduction
MSU at $p=2$
Wilson spaces and Hopf rings
$H_{*} B O\langle 8\rangle$ and $H_{*} M O\langle 8\rangle$

Two change of rings isomorphisms

The Adams spectral sequence for $M O\langle 8\rangle$ splits as a direct sum of suspensions of two types:

- The double of $\mathcal{A}_{*}, P\left(\zeta_{1}^{2}, \zeta_{2}^{2}, \ldots\right)$ with $\left|\zeta_{i}\right|=2^{i}-1$. This is the homology of the spectrum $B P$.
- The double of $(\mathcal{A} / / \mathcal{A}(0))_{*}, P\left(\zeta_{1}^{4}, \zeta_{2}^{2}, \zeta_{3}^{2}, \ldots\right)$. You might think this is the homology of a new spectrum X.

Some informative history: MSU at the prime 2

The 2-primary homotopy type of MSU is the subject of David Pengelley's thesis, published in 1982.

$H_{*} M S U$ is the "double" of H_{*} MSO. This means that as a comodule over the dual mod 2 Steenrod algebra \mathcal{A}_{*}, H_{*} MSO

Introduction
MSU at $p=2$
Wilson spaces and Hopf rings
$H_{*} B O\langle 8\rangle$ and $H_{*} M O\langle 8\rangle$

Two change of rings isomorphisms

The Adams spectral sequence for $M O\langle 8\rangle$ splits as a direct sum of suspensions of two types:

- The double of $\mathcal{A}_{*}, P\left(\zeta_{1}^{2}, \zeta_{2}^{2}, \ldots\right)$ with $\left|\zeta_{i}\right|=2^{i}-1$. This is the homology of the spectrum $B P$.
- The double of $(\mathcal{A} / / \mathcal{A}(0))_{*}, P\left(\zeta_{1}^{4}, \zeta_{2}^{2}, \zeta_{3}^{2}, \ldots\right)$. You might think this is the homology of a new spectrum X. There is one such summand for each monomial in the graded ring $P\left(y_{8}, y_{16}, y_{24}, \ldots\right)$.

Some informative history: MSU (continued)

String cobordism at the prime 3

Carl McTague
Vitaly Lorman
Doug Ravenel

Introduction
$M S U$ at $p=2$
It is easy to work out the Adams spectral sequence for the hypothetical spectrum X with

$$
H_{*} X=P\left(\zeta_{1}^{4}, \zeta_{2}^{2}, \zeta_{3}^{2}, \ldots\right) .
$$

Hopf rings
$H_{*} B O\langle 8\rangle$ and $H_{*} M O\langle 8\rangle$

Two change of rings isomorphisms

The Adams spectral sequence for $M O\langle 8\rangle$

Some informative history: MSU (continued)

String cobordism at the prime 3

Carl McTague
Vitaly Lorman
Doug Ravenel

Introduction
$M S U$ at $p=2$
It is easy to work out the Adams spectral sequence for the hypothetical spectrum X with

$$
H_{*} X=P\left(\zeta_{1}^{4}, \zeta_{2}^{2}, \zeta_{3}^{2}, \ldots\right) .
$$

We find that

$$
\pi_{*} X \cong \pi_{*} b o \otimes P\left(v_{2}, v_{3}, \ldots\right),
$$

Some informative history: MSU (continued)

String cobordism at the prime 3

Carl McTague
Vitaly Lorman
Doug Ravenel

Introduction
$M S U$ at $p=2$
It is easy to work out the Adams spectral sequence for the hypothetical spectrum X with

$$
H_{*} X=P\left(\zeta_{1}^{4}, \zeta_{2}^{2}, \zeta_{3}^{2}, \ldots\right) .
$$

We find that

$$
\pi_{*} X \cong \pi_{*} b o \otimes P\left(v_{2}, v_{3}, \ldots\right),
$$

where $v_{n} \in \pi_{2\left(2^{n}-1\right)}$ (in Adams filtration 1) is related to the generator of $\pi_{*} B P$ of the same name.

Some informative history: MSU (continued)

String cobordism at the prime 3

Carl McTague
Vitaly Lorman
Doug Ravenel

It is easy to work out the Adams spectral sequence for the hypothetical spectrum X with

$$
H_{*} X=P\left(\zeta_{1}^{4}, \zeta_{2}^{2}, \zeta_{3}^{2}, \ldots\right) .
$$

We find that

$$
\pi_{*} X \cong \pi_{*} b o \otimes P\left(v_{2}, v_{3}, \ldots\right),
$$

where $v_{n} \in \pi_{2\left(2^{n}-1\right)}$ (in Adams filtration 1) is related to the generator of $\pi_{*} B P$ of the same name. Recall that $\pi_{*} b o$ has torsion in dimensions congruent to 1 and 2 modulo 8.

Some informative history: MSU (continued)

String cobordism at the prime 3

Carl McTague
Vitaly Lorman
Doug Ravene!

Introduction
MSU at $p=2$
Wilson spaces and
Hopf rings
$H_{*} B O\langle 8\rangle$ and
$H_{*} M O\langle 8\rangle$
Two change of rings isomorphisms

The Adams spectral sequence for $M O\langle 8\rangle$

Some informative history: MSU (continued)

String cobordism at the prime 3

Carl McTague
Vitaly Lorman
Doug Ravenel

Introduction
$M S U$ at $p=2$

Wilson spaces and Hopf rings
$H_{*} B O\langle 8\rangle$ and $H_{*} M O\langle 8\rangle$
Two change of rings isomorphisms

The Adams spectral sequence for $M O\langle 8\rangle$

Some informative history: MSU (continued)

String cobordism at the prime 3

Carl McTague
Vitaly Lorman Doug Ravenel

Introduction
MSU at $p=2$

Wilson spaces and Hopf rings
$H_{*} B O\langle 8\rangle$ and $H_{*} M O\langle 8\rangle$
Two change of rings isomorphisms

The Adams spectral sequence for $M O\langle 8\rangle$

In 1966 Pierre Conner and Ed Floyd proved that the torsion in $\pi_{*} M S U$ is also confined to dimensions congruent to 1 and 2 modulo 8.

Some informative history: MSU (continued)

String cobordism at the prime 3

Carl McTague
Vitaly Lorman Doug Ravenel

Introduction
MSU at $p=2$

Wilson spaces and Hopf rings
$H_{*} B O\langle 8\rangle$ and $H_{*} M O\langle 8\rangle$

Two change of rings isomorphisms

The Adams spectral sequence for MO $\langle 8\rangle$

In 1966 Pierre Conner and Ed Floyd proved that the torsion in $\pi_{*} M S U$ is also confined to dimensions congruent to 1 and 2 modulo 8. This means ηV_{2} must be killed by an Adams differential.

Some informative history: MSU (continued)

String cobordism at the prime 3

Carl McTague
Vitaly Lorman
Doug Ravenel
We have seen that H_{*} MSU has an A_{*}-comodule summand isomorphic to

$$
P\left(\zeta_{1}^{4}, \zeta_{2}^{2}, \zeta_{3}^{2}, \ldots\right) \otimes P\left(y_{8}, y_{16}, y_{24}, \ldots\right) \subset H_{*} M S U .
$$

Introduction
$M S U$ at $p=2$
Wilson spaces and Hopf rings
$H_{*} B O\langle 8\rangle$ and $H_{*} M O\langle 8\rangle$

Two change of rings isomorphisms

The Adams spectral sequence for $M O\langle 8\rangle$

Some informative history: MSU (continued)

String cobordism at the prime 3

Carl McTague
Vitaly Lorman
Doug Ravenel
We have seen that H_{*} MSU has an A_{*}-comodule summand isomorphic to

$$
P\left(\zeta_{1}^{4}, \zeta_{2}^{2}, \zeta_{3}^{2}, \ldots\right) \otimes P\left(y_{8}, y_{16}, y_{24}, \ldots\right) \subset H_{*} M S U .
$$

The Conner-Floyd theorem leads to Adams differentials

$$
d_{2}\left(y_{2^{n+1}}\right)=\eta v_{n} \quad \text { for } n \geq 2,
$$

Introduction
$M S U$ at $p=2$
Wilson spaces and Hopf rings
$H_{*} B O\langle 8\rangle$ and $H_{*} M O\langle 8\rangle$

Two change of rings isomorphisms

The Adams spectral sequence for $M O\langle 8\rangle$

Some informative history: MSU (continued)

String cobordism at the prime 3

Carl McTague
Vitaly Lorman
Doug Ravenel
We have seen that H_{*} MSU has an A_{*}-comodule summand isomorphic to

$$
P\left(\zeta_{1}^{4}, \zeta_{2}^{2}, \zeta_{3}^{2}, \ldots\right) \otimes P\left(y_{8}, y_{16}, y_{24}, \ldots\right) \subset H_{*} M S U .
$$

The Conner-Floyd theorem leads to Adams differentials

$$
d_{2}\left(y_{2^{n+1}}\right)=\eta v_{n} \quad \text { for } n \geq 2,
$$

which we call Pengelley differentials.

Some informative history: MSU (continued)

String cobordism at the prime 3

Carl McTague
Vitaly Lorman
Doug Ravenel
We have seen that H_{*} MSU has an A_{*}-comodule summand isomorphic to

$$
P\left(\zeta_{1}^{4}, \zeta_{2}^{2}, \zeta_{3}^{2}, \ldots\right) \otimes P\left(y_{8}, y_{16}, y_{24}, \ldots\right) \subset H_{*} M S U .
$$

The Conner-Floyd theorem leads to Adams differentials

$$
d_{2}\left(y_{2^{n+1}}\right)=\eta v_{n} \quad \text { for } n \geq 2,
$$

Introduction
$M S U$ at $p=2$
Wilson spaces and Hopf rings
$H_{*} B O\langle 8\rangle$ and $H_{*} M O\langle 8\rangle$
Two change of rings isomorphisms

The Adams spectral sequence for $M O\langle 8\rangle$
which we call Pengelley differentials.
This means that MSU does not split as expected into a wedge of suspensions of X and $B P$.

Some informative history: MSU (continued)

We have seen that H_{*} MSU has an A_{*}-comodule summand isomorphic to

$$
P\left(\zeta_{1}^{4}, \zeta_{2}^{2}, \zeta_{3}^{2}, \ldots\right) \otimes P\left(y_{8}, y_{16}, y_{24}, \ldots\right) \subset H_{*} M S U .
$$

The Conner-Floyd theorem leads to Adams differentials

$$
d_{2}\left(y_{2^{n+1}}\right)=\eta v_{n} \quad \text { for } n \geq 2,
$$

Introduction
MSU at $p=2$
Wilson spaces and Hopf rings
$H_{*} B O\langle 8\rangle$ and $H_{*} M O\langle 8\rangle$
Two change of rings isomorphisms

The Adams spectral sequence for $M O\langle 8\rangle$
which we call Pengelley differentials.
This means that MSU does not split as expected into a wedge of suspensions of X and BP. Instead of X, Pengelley gets a spectrum BoP with an additive A_{*}-comodule isomorphism

$$
H_{*} B o P \cong P\left(\zeta_{1}^{4}, \zeta_{2}^{2}, \zeta_{3}^{2}, \ldots\right) \otimes E\left(y_{8}, y_{16}, y_{32}, \ldots\right) .
$$

Some informative history: MSU (continued)

String cobordism at the prime 3

Carl McTague
Vitaly Lorman
Doug Ravenel
Instead of X, Pengelley gets a spectrum BoP with an additive isomorphism

$$
H_{*} B o P \cong P\left(\zeta_{1}^{4}, \zeta_{2}^{2}, \zeta_{3}^{2}, \ldots\right) \otimes E\left(y_{8}, y_{16}, y_{32}, \ldots\right) .
$$

Introduction
MSU at $p=2$
Wilson spaces and
Hopf rings
$H_{*} B O\langle 8\rangle$ and
$H_{*} M O\langle 8\rangle$
Two change of rings isomorphisms

The Adams spectral sequence for MO $\langle 8\rangle$

Some informative history: MSU (continued)

String cobordism at the prime 3

Carl McTague
Vitaly Lorman
Doug Ravenel
Instead of X, Pengelley gets a spectrum BoP with an additive isomorphism

$$
H_{*} B o P \cong P\left(\zeta_{1}^{4}, \zeta_{2}^{2}, \zeta_{3}^{2}, \ldots\right) \otimes E\left(y_{8}, y_{16}, y_{32}, \ldots\right) .
$$

BoP is not known to be a ring spectrum,

Introduction
$M S U$ at $p=2$
Wilson spaces and
Hopf rings
$H_{*} B O\langle 8\rangle$ and
$H_{*} M O\langle 8\rangle$
Two change of rings isomorphisms

The Adams spectral sequence for $M O\langle 8\rangle$

Some informative history: MSU (continued)

String cobordism at the prime 3

Carl McTague
Vitaly Lorman
Doug Ravenel
Instead of X, Pengelley gets a spectrum BoP with an additive isomorphism

$$
H_{*} B o P \cong P\left(\zeta_{1}^{4}, \zeta_{2}^{2}, \zeta_{3}^{2}, \ldots\right) \otimes E\left(y_{8}, y_{16}, y_{32}, \ldots\right) .
$$

$B o P$ is not known to be a ring spectrum, but it is known to support a map to bo inducing an isomorphism of torsion in π_{*}.

Introduction
$M S U$ at $p=2$
Wilson spaces and Hopf rings
$H_{*} B O\langle 8\rangle$ and $H_{*} M O\langle 8\rangle$
Two change of rings isomorphisms

The Adams spectral sequence for $M O\langle 8\rangle$

Some informative history: MSU (continued)

String cobordism at the prime 3

Carl McTague
Vitaly Lorman
Doug Ravenel
Instead of X, Pengelley gets a spectrum BoP with an additive isomorphism

$$
H_{*} B o P \cong P\left(\zeta_{1}^{4}, \zeta_{2}^{2}, \zeta_{3}^{2}, \ldots\right) \otimes E\left(y_{8}, y_{16}, y_{32}, \ldots\right) .
$$

BoP is not known to be a ring spectrum, but it is known to support a map to bo inducing an isomorphism of torsion in π_{*}.

Introduction
MSU at $p=2$
Wilson spaces and
Hopf rings
$H_{*} B O\langle 8\rangle$ and
$H_{*} M O\langle 8\rangle$
Two change of rings isomorphisms

The Adams spectral sequence for $M O\langle 8\rangle$

Pengelley shows that $M S U_{(2)}$ is equivalent to a wedge of suspensions of $B o P$ and $B P$.

Some informative history: MSU (continued)

String cobordism at the prime 3

Carl McTague
Vitaly Lorman
Doug Ravenel
Instead of X, Pengelley gets a spectrum BoP with an additive isomorphism

$$
H_{*} B o P \cong P\left(\zeta_{1}^{4}, \zeta_{2}^{2}, \zeta_{3}^{2}, \ldots\right) \otimes E\left(y_{8}, y_{16}, y_{32}, \ldots\right) .
$$

$B o P$ is not known to be a ring spectrum, but it is known to support a map to bo inducing an isomorphism of torsion in π_{*}.

Pengelley shows that $M S U_{(2)}$ is equivalent to a wedge of suspensions of $B o P$ and $B P$.

Spoiler: Our goal is to prove a similar statement about $\mathrm{MO}\langle 8\rangle_{(3)}$.

Some informative history: MSU (continued)

Instead of X, Pengelley gets a spectrum BoP with an additive isomorphism

$$
H_{*} B o P \cong P\left(\zeta_{1}^{4}, \zeta_{2}^{2}, \zeta_{3}^{2}, \ldots\right) \otimes E\left(y_{8}, y_{16}, y_{32}, \ldots\right) .
$$

$B o P$ is not known to be a ring spectrum, but it is known to support a map to bo inducing an isomorphism of torsion in π_{*}.

Introduction
$M S U$ at $p=2$
Wilson spaces and Hopf rings
$H_{*} B O\langle 8\rangle$ and $H_{*} M O\langle 8\rangle$

Two change of rings isomorphisms

The Adams spectral sequence for $M O\langle 8\rangle$

Pengelley shows that $M S U_{(2)}$ is equivalent to a wedge of suspensions of $B o P$ and $B P$.

Spoiler: Our goal is to prove a similar statement about $\mathrm{MO}\langle 8\rangle_{(3)}$. Our analog of BoP supports a map to tmf (instead of $b o$) inducing an isomorphism of torsion in π_{*}.

Some informative history: MSU (continued)

String cobordism at the prime 3

Carl McTague
Vitaly Lorman
Doug Ravenel
Instead of X, Pengelley gets a spectrum BoP with an additive isomorphism

$$
H_{*} B o P \cong P\left(\zeta_{1}^{4}, \zeta_{2}^{2}, \zeta_{3}^{2}, \ldots\right) \otimes E\left(y_{8}, y_{16}, y_{32}, \ldots\right) .
$$

$B o P$ is not known to be a ring spectrum, but it is known to support a map to bo inducing an isomorphism of torsion in π_{*}.

Introduction
MSU at $p=2$
Wilson spaces and Hopf rings
$H_{*} B O\langle 8\rangle$ and $H_{*} M O\langle 8\rangle$

Two change of rings isomorphisms

The Adams spectral sequence for $M O\langle 8\rangle$

> Pengelley shows that $M S U_{(2)}$ is equivalent to a wedge of suspensions of $B o P$ and $B P$.

Spoiler: Our goal is to prove a similar statement about $\mathrm{MO}\langle 8\rangle_{(3)}$. Our analog of BoP supports a map to tmf (instead of bo) inducing an isomorphism of torsion in π_{*}. Hence we call it $B m P$.

More history: Wilson spaces and Hopf rings

String cobordism at the prime 3

Carl McTague
Vitaly Lorman
Doug Ravene!

Introduction
MSU at $p=2$
Wilson spaces and Hopf rings
$H_{*} B O\langle 8\rangle$ and
$H_{*} M O\langle 8\rangle$
Two change of rings isomorphisms

The Adams spectral sequence for $\mathrm{MO}\langle 8\rangle$

More history: Wilson spaces and Hopf rings

String cobordism at the prime 3

Carl McTague
Vitaly Lorman
Doug Ravenel
The space $B O\langle 8\rangle_{(3)}$ is a Wilson space, meaning that is has both torsion free homology and torsion free homotopy.

Introduction
MSU at $p=2$
Wilson spaces and Hopf rings
$H_{*} B O\langle 8\rangle$ and $H_{*} M O\langle 8\rangle$

Two change of rings isomorphisms

The Adams spectral sequence for $M O\langle 8\rangle$

More history: Wilson spaces and Hopf rings

String cobordism at the prime 3

Carl McTague
Vitaly Lorman
Doug Ravenel ing that is has both torsion free homology and torsion free homotopy. Such spaces are classified by Steve Wilson in a 1973 paper.

Introduction
MSU at $p=2$
Wilson spaces and Hopf rings
$H_{*} B O\langle 8\rangle$ and $H_{*} M O\langle 8\rangle$

Two change of rings isomorphisms

The Adams spectral sequence for $M O\langle 8\rangle$

More history: Wilson spaces and Hopf rings

String cobordism at the prime 3

Carl McTague
Vitaly Lorman
Doug Ravenel

Introduction
MSU at $p=2$
Wilson spaces and Hopf rings
$H_{*} B O\langle 8\rangle$ and $H_{*} M O\langle 8\rangle$
Two change of rings isomorphisms

The Adams spectral sequence for $M O\langle 8\rangle$

More history: Wilson spaces and Hopf rings

String cobordism at the prime 3

Carl McTague
Vitaly Lorman
Doug Ravenel

Introduction
MSU at $p=2$
Wilson spaces and Hopf rings
$H_{*} B O\langle 8\rangle$ and $H_{*} M O\langle 8\rangle$
Given a spectrum E,

Two change of rings isomorphisms

The Adams spectral sequence for $M O\langle 8\rangle$

More history: Wilson spaces and Hopf rings

String cobordism at the prime 3

Carl McTague Ω-spectrum.

Vitaly Lorman
Doug Ravenel

Introduction
MSU at $p=2$
Wilson spaces and Hopf rings
$H_{*} B O\langle 8\rangle$ and $H_{*} M O\langle 8\rangle$
Given a spectrum E, let E_{k} denote the k th space in its
The space $B O\langle 8\rangle_{(3)}$ is a Wilson space, meaning that is has both torsion free homology and torsion free homotopy. Such spaces are classified by Steve Wilson in a 1973 paper. Their homology groups are described in the 1977 "Hopf ring" paper of Wilson and the third author.

Two change of rings isomorphisms

The Adams spectral sequence for $M O\langle 8\rangle$

More history: Wilson spaces and Hopf rings

String cobordism at the prime 3

Carl McTague
Vitaly Lorman
Doug Ravenel

Introduction
MSU at $p=2$
Wilson spaces and Hopf rings
$H_{*} B O\langle 8\rangle$ and $H_{*} M O\langle 8\rangle$
Given a spectrum E, let E_{k} denote the k th space in its Ω-spectrum. We are interested in the spectra $B P$ and $B P\langle n\rangle$.

Two change of rings isomorphisms

The Adams spectral sequence for $M O\langle 8\rangle$

More history: Wilson spaces and Hopf rings

String cobordism at the prime 3

Carl McTague Let $e_{n}=\left(p^{n+1}-1\right) /(p-1)=1+p+\cdots+p^{n}$.

Vitaly Lorman Doug Ravenel

Introduction
MSU at $p=2$
Wilson spaces and Hopf rings
$H_{*} B O\langle 8\rangle$ and H_{*} MO $\langle 8\rangle$
Given a spectrum E, let E_{k} denote the k th space in its Ω-spectrum. We are interested in the spectra $B P$ and $B P\langle n\rangle$.

The space $B O\langle 8\rangle_{(3)}$ is a Wilson space, meaning that is has both torsion free homology and torsion free homotopy. Such spaces are classified by Steve Wilson in a 1973 paper. Their homology groups are described in the 1977 "Hopf ring" paper of Wilson and the third author.

The Adams spectral sequence for $M O\langle 8\rangle$

More history: Wilson spaces and Hopf rings

String cobordism at

 the prime 3
Carl McTague

 Let $e_{n}=\left(p^{n+1}-1\right) /(p-1)=1+p+\cdots+p^{n}$.Vitaly Lorman Doug Ravene!

Introduction
MSU at $p=2$
Wilson spaces and Hopf rings
$H_{*} B O\langle 8\rangle$ and H_{*} MO $\langle 8\rangle$
Given a spectrum E, let E_{k} denote the k th space in its Ω-spectrum. We are interested in the spectra $B P$ and $B P\langle n\rangle$.

The space $B O\langle 8\rangle_{(3)}$ is a Wilson space, meaning that is has both torsion free homology and torsion free homotopy. Such spaces are classified by Steve Wilson in a 1973 paper. Their homology groups are described in the 1977 "Hopf ring" paper of Wilson and the third author.

The Adams spectral sequence for $M O\langle 8\rangle$

Then Wilson shows the following:

More history: Wilson spaces and Hopf rings

String cobordism at the prime 3

Carl McTague Vitaly Lorman Doug Ravenel

Introduction
MSU at $p=2$
Wilson spaces and Hopf rings
$H_{*} B O\langle 8\rangle$ and H_{*} MO $\langle 8\rangle$
Given a spectrum E, let E_{k} denote the k th space in its Ω-spectrum. We are interested in the spectra $B P$ and $B P\langle n\rangle$. Let $e_{n}=\left(p^{n+1}-1\right) /(p-1)=1+p+\cdots+p^{n}$.

The space $B O\langle 8\rangle_{(3)}$ is a Wilson space, meaning that is has both torsion free homology and torsion free homotopy. Such spaces are classified by Steve Wilson in a 1973 paper. Their homology groups are described in the 1977 "Hopf ring" paper of Wilson and the third author.

Two change of rings isomorphisms

The Adams spectral sequence for $M O\langle 8\rangle$

Then Wilson shows the following:

- $B P_{k}$ is a Wilson space for each k.

More history: Wilson spaces and Hopf rings

String cobordism at the prime 3

Carl McTague Vitaly Lorman Doug Ravenel

Introduction
MSU at $p=2$
Wilson spaces and Hopf rings
$H_{*} B O\langle 8\rangle$ and $H_{*} M O\langle 8\rangle$
Given a spectrum E, let E_{k} denote the k th space in its Ω-spectrum. We are interested in the spectra $B P$ and $B P\langle n\rangle$. Let $e_{n}=\left(p^{n+1}-1\right) /(p-1)=1+p+\cdots+p^{n}$.

The space $B O\langle 8\rangle_{(3)}$ is a Wilson space, meaning that is has both torsion free homology and torsion free homotopy. Such spaces are classified by Steve Wilson in a 1973 paper. Their homology groups are described in the 1977 "Hopf ring" paper of Wilson and the third author.

Two change of rings isomorphisms

The Adams spectral sequence for $M O\langle 8\rangle$

Then Wilson shows the following:

- $B P_{k}$ is a Wilson space for each k.
- $B P\langle n\rangle_{k}$ is one for $k \leq 2 e_{n}$.

More history: Wilson spaces and Hopf rings

The space $B O\langle 8\rangle_{(3)}$ is a Wilson space, meaning that is has both torsion free homology and torsion free homotopy. Such spaces are classified by Steve Wilson in a 1973 paper. Their homology groups are described in the 1977 "Hopf ring" paper of Wilson and the third author.
Given a spectrum E, let E_{k} denote the k th space in its
Ω-spectrum. We are interested in the spectra $B P$ and $B P\langle n\rangle$.
Carl McTague Vitaly Lorman Doug Ravenel

Introduction
MSU at $p=2$
Wilson spaces and Hopf rings
$H_{*} B O\langle 8\rangle$ and $H_{*} M O\langle 8\rangle$

Two change of rings isomorphisms

The Adams spectral sequence for $M O\langle 8\rangle$

Then Wilson shows the following:

- $B P_{k}$ is a Wilson space for each k.
- $B P\langle n\rangle_{k}$ is one for $k \leq 2 e_{n}$.
- Every Wilson space is equivalent to a product of these $B P\langle n\rangle_{k} s$.

More history: Wilson spaces and Hopf rings

The space $B O\langle 8\rangle_{(3)}$ is a Wilson space, meaning that is has both torsion free homology and torsion free homotopy. Such spaces are classified by Steve Wilson in a 1973 paper. Their homology groups are described in the 1977 "Hopf ring" paper of Wilson and the third author.
Given a spectrum E, let E_{k} denote the k th space in its
Ω-spectrum. We are interested in the spectra $B P$ and $B P\langle n\rangle$. Let $e_{n}=\left(p^{n+1}-1\right) /(p-1)=1+p+\cdots+p^{n}$.

Then Wilson shows the following:

- $B P_{k}$ is a Wilson space for each k.
- $B P\langle n\rangle_{k}$ is one for $k \leq 2 e_{n}$.
- Every Wilson space is equivalent to a product of these $B P\langle n\rangle_{k} s$.
- In particular, for such $k, B P\langle n\rangle_{k}$ is a factor of $B P_{k}$ and of $B P\left\langle n^{\prime}\right\rangle_{k}$ for each $n^{\prime}>n$.

More history: Wilson spaces and Hopf rings (continued)

String cobordism at the prime 3

Carl McTague
Vitaly Lorman
Doug Ravenel
Given a homotopy commutative ring spectrum E (such as $B P$ or $B P\langle n\rangle)$,

Introduction
MSU at $p=2$
Wilson spaces and Hopf rings
$H_{*} B O\langle 8\rangle$ and $H_{*} M O\langle 8\rangle$

Two change of rings isomorphisms

The Adams spectral sequence for $M O\langle 8\rangle$

More history: Wilson spaces and Hopf rings (continued)

Given a homotopy commutative ring spectrum E (such as $B P$ or $B P\langle n\rangle)$, let E_{k} denote the k th space in its Ω-spectrum.

Introduction
MSU at $p=2$
Wilson spaces and Hopf rings
$H_{*} B O\langle 8\rangle$ and $H_{*} M O\langle 8\rangle$

Two change of rings isomorphisms

The Adams spectral sequence for $M O\langle 8\rangle$

More history: Wilson spaces and Hopf rings (continued)

String cobordism at the prime 3

Carl McTague
Vitaly Lorman
Doug Ravenel
Given a homotopy commutative ring spectrum E (such as $B P$ or $B P\langle n\rangle$), let E_{k} denote the k th space in its Ω-spectrum. Then

Introduction
MSU at $p=2$
Wilson spaces and Hopf rings
$H_{*} B O\langle 8\rangle$ and $H_{*} M O\langle 8\rangle$

Two change of rings isomorphisms

The Adams spectral sequence for $M O\langle 8\rangle$

More history: Wilson spaces and Hopf rings (continued)

String cobordism at the prime 3

Carl McTague
Vitaly Lorman
Doug Ravenel
Given a homotopy commutative ring spectrum E (such as $B P$ or $B P\langle n\rangle$), let E_{k} denote the k th space in its Ω-spectrum. Then

- E_{k} is an infinite loop space,

Introduction
MSU at $p=2$
Wilson spaces and Hopf rings
$H_{*} B O\langle 8\rangle$ and $H_{*} M O\langle 8\rangle$

Two change of rings isomorphisms

The Adams spectral sequence for $M O\langle 8\rangle$

More history: Wilson spaces and Hopf rings (continued)

Given a homotopy commutative ring spectrum E (such as $B P$ or $B P\langle n\rangle$), let E_{k} denote the k th space in its Ω-spectrum. Then

- E_{k} is an infinite loop space, so $H_{*} E_{k}$ (with field coefficients) is a Hopf algebra.

Introduction
MSU at $p=2$
Wilson spaces and Hopf rings
$H_{*} B O\langle 8\rangle$ and $H_{*} M O\langle 8\rangle$

Two change of rings isomorphisms

The Adams spectral sequence for $M O\langle 8\rangle$

More history: Wilson spaces and Hopf rings (continued)

Given a homotopy commutative ring spectrum E (such as $B P$ or $B P\langle n\rangle$), let E_{k} denote the k th space in its Ω-spectrum. Then

- E_{k} is an infinite loop space, so $H_{*} E_{k}$ (with field coefficients) is a Hopf algebra. Given $x, y \in H_{*} E_{k}$, we denote their product by $x * y$, the star product.

Introduction
MSU at $p=2$
Wilson spaces and Hopf rings
$H_{*} B O\langle 8\rangle$ and $H_{*} M O\langle 8\rangle$

Two change of rings isomorphisms

The Adams spectral sequence for $M O\langle 8\rangle$

More history: Wilson spaces and Hopf rings (continued)

Given a homotopy commutative ring spectrum E (such as $B P$ or $B P\langle n\rangle$), let E_{k} denote the k th space in its Ω-spectrum. Then

- E_{k} is an infinite loop space, so $H_{*} E_{k}$ (with field coefficients) is a Hopf algebra. Given $x, y \in H_{*} E_{k}$, we denote their product by $x * y$, the star product.
- The multiplication in E induces maps $E_{k} \times E_{\ell} \rightarrow E_{k+\ell}$.

Introduction
MSU at $p=2$
Wilson spaces and Hopf rings
$H_{*} B O\langle 8\rangle$ and $H_{*} M O\langle 8\rangle$

Two change of rings isomorphisms

The Adams spectral sequence for $M O\langle 8\rangle$

More history: Wilson spaces and Hopf rings (continued)

Given a homotopy commutative ring spectrum E (such as $B P$ or $B P\langle n\rangle$), let E_{k} denote the k th space in its Ω-spectrum. Then

- E_{k} is an infinite loop space, so $H_{*} E_{k}$ (with field coefficients) is a Hopf algebra. Given $x, y \in H_{*} E_{k}$, we denote their product by $x * y$, the star product.
- The multiplication in E induces maps $E_{k} \times E_{\ell} \rightarrow E_{k+\ell}$. Given $x \in H_{*} E_{k}$ and $y \in H_{*} E_{\ell}$,

Introduction
MSU at $p=2$
Wilson spaces and Hopf rings
$H_{*} B O\langle 8\rangle$ and $H_{*} M O\langle 8\rangle$

Two change of rings isomorphisms

The Adams spectral sequence for $M O\langle 8\rangle$

More history: Wilson spaces and Hopf rings (continued)

Given a homotopy commutative ring spectrum E (such as $B P$ or $B P\langle n\rangle$), let E_{k} denote the k th space in its Ω-spectrum. Then

- E_{k} is an infinite loop space, so $H_{*} E_{k}$ (with field coefficients) is a Hopf algebra. Given $x, y \in H_{*} E_{k}$, we denote their product by $x * y$, the star product.
- The multiplication in E induces maps $E_{k} \times E_{\ell} \rightarrow E_{k+\ell}$.

Introduction
MSU at $p=2$
Wilson spaces and Hopf rings
$H_{*} B O\langle 8\rangle$ and $H_{*} M O\langle 8\rangle$
Two change of rings isomorphisms

The Adams spectral Given $x \in H_{*} E_{k}$ and $y \in H_{*} E_{\ell}$, the image of $x \otimes y$ in $H_{*} E_{k+\ell}$ is denoted by $x \circ y$, the circle product.

More history: Wilson spaces and Hopf rings (continued)

Given a homotopy commutative ring spectrum E (such as $B P$ or $B P\langle n\rangle$), let E_{k} denote the k th space in its Ω-spectrum. Then

- E_{k} is an infinite loop space, so $H_{*} E_{k}$ (with field coefficients) is a Hopf algebra. Given $x, y \in H_{*} E_{k}$, we denote their product by $x * y$, the star product.
- The multiplication in E induces maps $E_{k} \times E_{\ell} \rightarrow E_{k+\ell}$.

Given $x \in H_{*} E_{k}$ and $y \in H_{*} E_{\ell}$, the image of $x \otimes y$ in $H_{*} E_{k+\ell}$ is denoted by $x \circ y$, the circle product. It plays nicely with the Hopf algebra coproduct.

More history: Wilson spaces and Hopf rings (continued)

Given a homotopy commutative ring spectrum E (such as $B P$ or $B P\langle n\rangle$), let E_{k} denote the k th space in its Ω-spectrum. Then

- E_{k} is an infinite loop space, so $H_{*} E_{k}$ (with field coefficients) is a Hopf algebra. Given $x, y \in H_{*} E_{k}$, we denote their product by $x * y$, the star product.
- The multiplication in E induces maps $E_{k} \times E_{\ell} \rightarrow E_{k+\ell}$. Given $x \in H_{*} E_{k}$ and $y \in H_{*} E_{\ell}$, the image of $x \otimes y$ in

Introduction
MSU at $p=2$
Wilson spaces and Hopf rings
$H_{*} B O\langle 8\rangle$ and $H_{*} M O\langle 8\rangle$

Two change of rings isomorphisms

The Adams spectral sequence for MO $\langle 8\rangle$ $H_{*} E_{k+\ell}$ is denoted by $x \circ y$, the circle product. It plays nicely with the Hopf algebra coproduct.

- These two products make the graded space $E_{\text {。 }}$ into a graded ring object in the category of coalgebras,

More history: Wilson spaces and Hopf rings (continued)

Given a homotopy commutative ring spectrum E (such as $B P$ or $B P\langle n\rangle$), let E_{k} denote the k th space in its Ω-spectrum. Then

- E_{k} is an infinite loop space, so $H_{*} E_{k}$ (with field coefficients) is a Hopf algebra. Given $x, y \in H_{*} E_{k}$, we denote their product by $x * y$, the star product.
- The multiplication in E induces maps $E_{k} \times E_{\ell} \rightarrow E_{k+\ell}$. Given $x \in H_{*} E_{k}$ and $y \in H_{*} E_{\ell}$, the image of $x \otimes y$ in

Introduction
MSU at $p=2$
Wilson spaces and Hopf rings
$H_{*} B O\langle 8\rangle$ and $H_{*} M O\langle 8\rangle$

Two change of rings isomorphisms

The Adams spectral sequence for $M O\langle 8\rangle$ $H_{*} E_{k+\ell}$ is denoted by $x \circ y$, the circle product. It plays nicely with the Hopf algebra coproduct.

- These two products make the graded space E_{0} into a graded ring object in the category of coalgebras, a Hopf ring.

More history: Wilson spaces and Hopf rings (continued)

Given a homotopy commutative ring spectrum E (such as $B P$ or $B P\langle n\rangle$), let E_{k} denote the k th space in its Ω-spectrum. Then

- E_{k} is an infinite loop space, so $H_{*} E_{k}$ (with field coefficients) is a Hopf algebra. Given $x, y \in H_{*} E_{k}$, we denote their product by $x * y$, the star product.
- The multiplication in E induces maps $E_{k} \times E_{\ell} \rightarrow E_{k+\ell}$. Given $x \in H_{*} E_{k}$ and $y \in H_{*} E_{\ell}$, the image of $x \otimes y$ in

Introduction
MSU at $p=2$
Wilson spaces and Hopf rings
$H_{*} B O\langle 8\rangle$ and $H_{*} M O\langle 8\rangle$

Two change of rings isomorphisms

The Adams spectral sequence for $M O\langle 8\rangle$ $H_{*} E_{k+\ell}$ is denoted by $x \circ y$, the circle product. It plays nicely with the Hopf algebra coproduct.

- These two products make the graded space $E_{\text {。 }}$ into a graded ring object in the category of coalgebras, a Hopf ring. The star and circle products are related by the Hopf ring distributive law,

More history: Wilson spaces and Hopf rings (continued)

Given a homotopy commutative ring spectrum E (such as $B P$ or $B P\langle n\rangle$), let E_{k} denote the k th space in its Ω-spectrum. Then

- E_{k} is an infinite loop space, so $H_{*} E_{k}$ (with field coefficients) is a Hopf algebra. Given $x, y \in H_{*} E_{k}$, we denote their product by $x * y$, the star product.
- The multiplication in E induces maps $E_{k} \times E_{\ell} \rightarrow E_{k+\ell}$. Given $x \in H_{*} E_{k}$ and $y \in H_{*} E_{\ell}$, the image of $x \otimes y$ in $H_{*} E_{k+\ell}$ is denoted by $x \circ y$, the circle product. It plays nicely with the Hopf algebra coproduct.
- These two products make the graded space $E_{\text {。 }}$ into a graded ring object in the category of coalgebras, a Hopf ring. The star and circle products are related by the Hopf ring distributive law, in which they correspond respectively to addition and multiplication.

More history: Wilson spaces and Hopf rings (continued)

String cobordism at the prime 3

Carl McTague
Vitaly Lorman
Doug Ravenel

Introduction
MSU at $p=2$
Wilson spaces and Hopf rings
$H_{*} B O\langle 8\rangle$ and $H_{*} M O\langle 8\rangle$
the Hurewicz image of $x \in \pi_{0} E_{-m}$.

Two change of rings isomorphisms

The Adams spectral sequence for $M O\langle 8\rangle$

More history: Wilson spaces and Hopf rings (continued)

String cobordism at the prime 3

Carl McTague
Vitaly Lorman
Doug Ravenel

Introduction
MSU at $p=2$
Wilson spaces and Hopf rings
$H_{*} B O\langle 8\rangle$ and $H_{*} M O\langle 8\rangle$
the Hurewicz image of $x \in \pi_{0} E_{-m}$.
When E is complex oriented, we get a map $\mathbf{C} P^{\infty} \rightarrow E_{2}$,

Two change of rings isomorphisms

The Adams spectral sequence for $M O\langle 8\rangle$

More history: Wilson spaces and Hopf rings (continued)

For $x \in \pi_{m} E$, we get an element

$$
[x] \in H_{0} E_{-m},
$$

the Hurewicz image of $x \in \pi_{0} E_{-m}$.
When E is complex oriented, we get a map $\mathbf{C} P^{\infty} \rightarrow E_{2}$, under

Introduction
MSU at $p=2$
Wilson spaces and Hopf rings
$H_{*} B O\langle 8\rangle$ and $H_{*} M O\langle 8\rangle$
Two change of rings isomorphisms

The Adams spectral sequence for $M O\langle 8\rangle$ which we have

$$
H_{2 k} \mathbf{C} P^{\infty} \ni \beta_{k} \longmapsto b_{k} \in H_{2 k} E_{2} .
$$

where β_{k} is the usual generator of $H_{2 k} \mathbf{C} P^{\infty}$.

More history: Wilson spaces and Hopf rings (continued)

 the prime 3Carl McTague
Vitaly Lorman
Doug Ravenel
For $x \in \pi_{m} E$, we get an element

$$
[x] \in H_{0} E_{-m},
$$

the Hurewicz image of $x \in \pi_{0} E_{-m}$.
When E is complex oriented, we get a map $\mathbf{C} P^{\infty} \rightarrow E_{2}$, under

Introduction
MSU at $p=2$
Wilson spaces and Hopf rings
$H_{*} B O\langle 8\rangle$ and $H_{*} M O\langle 8\rangle$
Two change of rings isomorphisms

The Adams spectral sequence for $M O\langle 8\rangle$ which we have

$$
H_{2 k} \mathbf{C} P^{\infty} \ni \beta_{k} \longmapsto b_{k} \in H_{2 k} E_{2} .
$$

where β_{k} is the usual generator of $H_{2 k} \mathbf{C} P^{\infty}$. b_{k} is known to be decomposable under the star product when k is not a power of p.

More history: Wilson spaces and Hopf rings (continued)

We are interested in elements of the form

$$
\left[v^{\prime}\right] b^{J}=\left[v_{1}^{i_{1}} \ldots v_{n}^{i_{n}}\right] b_{1}^{j_{0}} b_{p}^{i_{1}} \cdots \in H_{2 m} B P\langle n\rangle_{2 k}
$$

String cobordism at the prime 3

Carl McTague Vitaly Lorman

Introduction
MSU at $p=2$
Wilson spaces and Hopf rings
$H_{*} B O\langle 8\rangle$ and
$H_{*} M O\langle 8\rangle$
Two change of rings isomorphisms

The Adams spectral sequence for $M O\langle 8\rangle$

More history: Wilson spaces and Hopf rings (continued)

We are interested in elements of the form

$$
\left[v^{l}\right] b^{J}=\left[v_{1}^{i_{1}} \ldots v_{n}^{i_{n}}\right] b_{1}^{j_{0}} b_{p}^{i_{1}} \cdots \in H_{2 m} B P\langle n\rangle_{2 k}
$$

where the multiplication is the circle product, the prime 3

Carl McTague
Vitaly Lorman
Doug Ravenel

Introduction
MSU at $p=2$
Wilson spaces and Hopf rings
$H_{*} B O\langle 8\rangle$ and $H_{*} M O\langle 8\rangle$

Two change of rings isomorphisms

The Adams spectral sequence for $M O\langle 8\rangle$

More history: Wilson spaces and Hopf rings (continued)

String cobordism at the prime 3

We are interested in elements of the form

$$
\left[v^{l}\right] b^{J}=\left[v_{1}^{i_{1}} \ldots v_{n}^{i_{n}}\right] b_{1}^{j_{0}} b_{p}^{i_{1}} \cdots \in H_{2 m} B P\langle n\rangle_{2 k}
$$

where the multiplication is the circle product,

$$
m=\|J\|:=j_{0}+j_{1} p+j_{2} p^{2}+\ldots
$$

and

Carl McTague
Vitaly Lorman
Doug Ravenel

Introduction
MSU at $p=2$
Wilson spaces and Hopf rings
$H_{*} B O\langle 8\rangle$ and
$H_{*} M O\langle 8\rangle$
Two change of rings isomorphisms

The Adams spectral sequence for $M O\langle 8\rangle$

More history: Wilson spaces and Hopf rings (continued)
We are interested in elements of the form

$$
\left[v^{\prime}\right] b^{J}=\left[v_{1}^{i_{1}} \ldots v_{n}^{i_{n}}\right] b_{1}^{j_{0}} b_{p}^{j_{1}} \cdots \in H_{2 m} B P\langle n\rangle_{2 k}
$$

where the multiplication is the circle product,

$$
m=\|J\|:=j_{0}+j_{1} p+j_{2} p^{2}+\ldots
$$

and

$$
\begin{aligned}
k & =|I|-\|I\||+|J| \\
& =i_{1}+\cdots+i_{n}-\left(i_{1} p+\cdots+i_{n} p^{n}\right)+j_{0}+j_{1}+j_{2}+\ldots
\end{aligned}
$$

More history: Wilson spaces and Hopf rings (continued)

String cobordism at the prime 3

Carl McTague
Vitaly Lorman
Doug Ravenel

$$
\left[v^{\prime}\right] b^{J}=\left[v_{1}^{i_{1}} \ldots v_{n}^{i_{n}}\right] b_{1}^{j_{0}} b_{p}^{i_{1}} \cdots \in H_{2 m} B P\langle n\rangle_{2 k}
$$

where the multiplication is the circle product,

$$
m=\|J\|:=j_{0}+j_{1} p+j_{2} p^{2}+\ldots
$$

and

$$
\begin{aligned}
k & =|I|-|I I||+|J| \\
& =i_{1}+\cdots+i_{n}-\left(i_{1} p+\cdots+i_{n} p^{n}\right)+j_{0}+j_{1}+j_{2}+\cdots
\end{aligned}
$$

It is known that $H_{*} B P\langle n\rangle_{2 k}$ for $k \leq e_{n}$ is generated by such elements as a ring under the star product,

More history: Wilson spaces and Hopf rings (continued)

 the prime 3Carl McTague
Vitaly Lorman
Doug Ravenel

$$
\left[v^{\prime}\right] b^{J}=\left[v_{1}^{i_{1}} \ldots v_{n}^{i_{n}}\right] b_{1}^{j_{0}} b_{p}^{i_{1}} \cdots \in H_{2 m} B P\langle n\rangle_{2 k}
$$

where the multiplication is the circle product,

$$
m=\|\mathcal{J}\|:=j_{0}+j_{1} p+j_{2} p^{2}+\ldots
$$

and

$$
\begin{aligned}
k & =|I|-|I|| |+|J| \\
& =i_{1}+\cdots+i_{n}-\left(i_{1} p+\cdots+i_{n} p^{n}\right)+j_{0}+j_{1}+j_{2}+\ldots
\end{aligned}
$$

It is known that $H_{*} B P\langle n\rangle_{2 k}$ for $k \leq e_{n}$ is generated by such elements as a ring under the star product, subject to the Hopf ring relation,

More history: Wilson spaces and Hopf rings (continued)

 the prime 3Carl McTague
Vitaly Lorman
Doug Ravenel

$$
\left[v^{\prime}\right] b^{J}=\left[v_{1}^{i_{1}} \ldots v_{n}^{i_{n}}\right] b_{1}^{j_{0}} b_{p}^{i_{1}} \cdots \in H_{2 m} B P\langle n\rangle_{2 k}
$$

where the multiplication is the circle product,

$$
m=\|J\|:=j_{0}+j_{1} p+j_{2} p^{2}+\ldots
$$

and

$$
\begin{aligned}
k & =|I|-|I I||+|J| \\
& =i_{1}+\cdots+i_{n}-\left(i_{1} p+\cdots+i_{n} p^{n}\right)+j_{0}+j_{1}+j_{2}+\ldots
\end{aligned}
$$

It is known that $H_{*} B P\langle n\rangle_{2 k}$ for $k \leq e_{n}$ is generated by such elements as a ring under the star product, subject to the Hopf ring relation, which is related to the formal group law.

More history: Wilson spaces and Hopf rings (continued)

Carl McTague

Vitaly Lorman
Doug Ravene!

$$
\left[v^{\prime}\right] b^{J}=\left[v_{1}^{i_{1}} \ldots v_{n}^{i_{n}}\right] b_{1}^{j_{0}} b_{p}^{i_{1}} \cdots \in H_{2 m} B P\langle n\rangle_{2 k}
$$

where the multiplication is the circle product,

$$
m=\|\mathcal{J}\|:=j_{0}+j_{1} p+j_{2} p^{2}+\ldots
$$

and

$$
\begin{aligned}
k & =|I|-|I I||+|J| \\
& =i_{1}+\cdots+i_{n}-\left(i_{1} p+\cdots+i_{n} p^{n}\right)+j_{0}+j_{1}+j_{2}+\ldots
\end{aligned}
$$

It is known that $H_{*} B P\langle n\rangle_{2 k}$ for $k \leq e_{n}$ is generated by such elements as a ring under the star product, subject to the Hopf ring relation, which is related to the formal group law. For example, it implies that for each $t \geq 0$,

$$
\left[v_{1}\right] b_{p^{t}}^{p}=-b_{p^{t}}^{* p} \in H_{2 p^{t+1}} B P\langle n\rangle_{2} .
$$

More history: Wilson spaces and Hopf rings (continued)

String cobordism at the prime 3

Carl McTague
Vitaly Lorman
Doug Ravenel

Introduction
MSU at $p=2$
Wilson spaces and Hopf rings
$H_{*} B O\langle 8\rangle$ and
$H_{*} M O\langle 8\rangle$
Two change of rings isomorphisms

The Adams spectral sequence for $\mathrm{MO}\langle 8\rangle$

More history: Wilson spaces and Hopf rings (continued)

We will refer to computations with the elements $\left[v^{\prime}\right] b^{J}$,

String cobordism at the prime 3

Carl McTague
Vitaly Lorman
Doug Ravenel

Introduction
MSU at $p=2$
Wilson spaces and Hopf rings
$H_{*} B O\langle 8\rangle$ and
$H_{*} M O\langle 8\rangle$
Two change of rings isomorphisms

The Adams spectral sequence for $M O\langle 8\rangle$

More history: Wilson spaces and Hopf rings (continued)

We will refer to computations with the elements $\left[v^{\prime}\right] b^{J}$, using the Hopf ring distributive law and the Hopf ring relation, the prime 3

Carl McTague
Vitaly Lorman
Doug Ravenel

Introduction
MSU at $p=2$
Wilson spaces and
Hopf rings
$H_{*} B O\langle 8\rangle$ and
$H_{*} M O\langle 8\rangle$
Two change of rings isomorphisms

The Adams spectral sequence for $M O\langle 8\rangle$

More history: Wilson spaces and Hopf rings (continued)

 the prime 3Carl McTague Vitaly Lorman Doug Ravenel

Introduction
MSU at $p=2$
Wilson spaces and Hopf rings
$H_{*} B O\langle 8\rangle$ and $H_{*} M O\langle 8\rangle$

Two change of rings isomorphisms

The Adams spectral sequence for $M O\langle 8\rangle$

$H_{*} B O\langle 8\rangle$ and $H_{*} M O\langle 8\rangle$

String cobordism at the prime 3

Carl McTague
Vitaly Lorman
Doug Ravenel
It is known that $H_{*} B P\langle n\rangle_{2 k}$ is a polynomial algebra under the star product when $k<e_{n}$,

MSU at $p=2$
Wilson spaces and Hopf rings
$H_{*} B O\langle 8\rangle$ and $H_{*} M O\langle 8\rangle$

Two change of rings isomorphisms

The Adams spectral sequence for $M O\langle 8\rangle$

$H_{*} B O\langle 8\rangle$ and $H_{*} M O\langle 8\rangle$

String cobordism at the prime 3

Carl McTague
Vitaly Lorman
Doug Ravene!

Introduction
MSU at $p=2$
Wilson spaces and
Hopf rings
$H_{*} B O\langle 8\rangle$ and $H_{*} M O\langle 8\rangle$

Two change of rings isomorphisms

The Adams spectral sequence for $M O\langle 8\rangle$

$H_{*} B O\langle 8\rangle$ and $H_{*} M O\langle 8\rangle$

String cobordism at the prime 3

Carl McTague
Vitaly Lorman
Doug Ravenel

Introduction
MSU at $p=2$
Wilson spaces and Hopf rings
$H_{*} B O\langle 8\rangle$ and $H_{*} M O\langle 8\rangle$

Two change of rings isomorphisms

The Adams spectral sequence for $M O\langle 8\rangle$

$H_{*} B O\langle 8\rangle$ and $H_{*} M O\langle 8\rangle$

String cobordism at the prime 3

Carl McTague
Vitaly Lorman
Doug Ravenel

Introduction
MSU at $p=2$
Wilson spaces and
Hopf rings
$H_{*} B O\langle 8\rangle$ and $H_{*} M O\langle 8\rangle$

Two change of rings isomorphisms

The Adams spectral sequence for $M O\langle 8\rangle$

$H_{*} B O\langle 8\rangle$ and $H_{*} M O\langle 8\rangle$

String cobordism at

 the prime 3Carl McTague
Vitaly Lorman
Doug Ravenel star product when $k<e_{n}$, but not for the borderline case $k=e_{n}$. Recall that $e_{1}=1+p$.

At $p=3, B O\langle 8\rangle$ is the borderline Wilson space $B P\langle 1\rangle_{8}$. Its homology has a polynomial factor and a truncated polynomial factor of height 3.
$H_{*} B O\langle 8\rangle$ and $H_{*} M O\langle 8\rangle$

It is known that $H_{*} B P\langle n\rangle_{2 k}$ is a polynomial algebra under the star product when $k<e_{n}$, but not for the borderline case $k=e_{n}$. Recall that $\epsilon_{1}=1+p$.

At $p=3, B O\langle 8\rangle$ is the borderline Wilson space $B P\langle 1\rangle_{8}$. Its homology has a polynomial factor and a truncated polynomial factor of height 3. Its first few generators are

\[

\]

$H_{*} B O\langle 8\rangle$ and $H_{*} M O\langle 8\rangle$ (continued)

String cobordism at the prime 3

Carl McTague
Vitaly Lorman
Doug Ravenel

We find that

$$
\begin{gathered}
H_{*} B O\langle 8\rangle \cong P\left(x_{4 m}: m \geq 3,2 m \neq 1+3^{n}\right) \\
\otimes \Gamma\left(y_{2\left(1+3^{n}\right)}: n \geq 0\right),
\end{gathered}
$$

Introduction
MSU at $p=2$
Wilson spaces and
Hopf rings
$H_{*} B O\langle 8\rangle$ and $H_{*} M O\langle 8\rangle$

Two change of rings isomorphisms

The Adams spectral sequence for $M O\langle 8\rangle$

$H_{*} B O\langle 8\rangle$ and $H_{*} M O\langle 8\rangle$ (continued)

String cobordism at the prime 3

Carl McTague
Vitaly Lorman
Doug Ravenel
We find that

$$
\begin{aligned}
& H_{*} B O\langle 8\rangle \cong P\left(x_{4 m}: m \geq 3,2 m \neq 1+3^{n}\right) \\
& \otimes \Gamma\left(y_{2\left(1+3^{n}\right)}: n \geq 0\right),
\end{aligned}
$$

where $\Gamma(y)$ denotes the divided power algebra on y,

MSU at $p=2$
Wilson spaces and
Hopf rings
$H_{*} B O\langle 8\rangle$ and $H_{*} M O\langle 8\rangle$

Two change of rings isomorphisms

The Adams spectral sequence for MO $\langle 8\rangle$

$H_{*} B O\langle 8\rangle$ and $H_{*} M O\langle 8\rangle$ (continued)

String cobordism at

 the prime 3
Carl McTague

Vitaly Lorman
Doug Ravenel
We find that

$$
\begin{aligned}
H_{*} B O\langle 8\rangle \cong & P\left(x_{4 m}: m \geq 3,2 m \neq 1+3^{n}\right) \\
& \otimes \Gamma\left(y_{2\left(1+3^{n}\right)}: n \geq 0\right),
\end{aligned}
$$

where $\Gamma(y)$ denotes the divided power algebra on y, which is dual to the polynomial algebra on the dual of y.

Introduction
MSU at $p=2$
Wilson spaces and Hopf rings
$H_{*} B O\langle 8\rangle$ and $H_{*} M O\langle 8\rangle$

Two change of rings isomorphisms

The Adams spectral sequence for $\mathrm{MO}\langle 8\rangle$

$H_{*} B O\langle 8\rangle$ and $H_{*} M O\langle 8\rangle$ (continued)

String cobordism at

 the prime 3
Carl McTague

Vitaly Lorman
Doug Ravenel
We find that

$$
\begin{aligned}
H_{*} B O\langle 8\rangle \cong & P\left(x_{4 m}: m \geq 3,2 m \neq 1+3^{n}\right) \\
& \otimes \Gamma\left(y_{2\left(1+3^{n}\right)}: n \geq 0\right),
\end{aligned}
$$

where $\Gamma(y)$ denotes the divided power algebra on y, which is dual to the polynomial algebra on the dual of y. For example,

$$
\Gamma\left(y_{8}\right) \cong P\left(y_{8}, y_{24}, y_{72}, \ldots\right) /\left(y_{8 \cdot 3^{i}}^{3}\right),
$$

Introduction

MSU at $p=2$
Wilson spaces and Hopf rings
$H_{*} B O\langle 8\rangle$ and $H_{*} M O\langle 8\rangle$

Two change of rings isomorphisms

The Adams spectral sequence for $\mathrm{MO}\langle 8\rangle$

We find that

$$
\begin{aligned}
& H_{*} B O\langle 8\rangle \cong P\left(x_{4 m}: m \geq 3,2 m \neq 1+3^{n}\right) \\
& \otimes \Gamma\left(y_{2\left(1+3^{n}\right)}: n \geq 0\right),
\end{aligned}
$$

where $\Gamma(y)$ denotes the divided power algebra on y, which is dual to the polynomial algebra on the dual of y. For example,

$$
\Gamma\left(y_{8}\right) \cong P\left(y_{8}, y_{24}, y_{72}, \ldots\right) /\left(y_{8 \cdot 3^{i}}^{3}\right),
$$

and the Verschiebung map V, the dual of the pth power map, divides each subscript by 3 .

Introduction

MSU at $p=2$
Wilson spaces and
Hopf rings
$H_{*} B O\langle 8\rangle$ and $H_{*} M O\langle 8\rangle$

Two change of rings isomorphisms

The Adams spectral sequence for $M O\langle 8\rangle$

We find that

$$
\begin{aligned}
& H_{*} B O\langle 8\rangle \cong P\left(x_{4 m}: m \geq 3,2 m \neq 1+3^{n}\right) \\
& \otimes \Gamma\left(y_{2\left(1+3^{n}\right)}: n \geq 0\right),
\end{aligned}
$$

where $\Gamma(y)$ denotes the divided power algebra on y, which is dual to the polynomial algebra on the dual of y. For example,

Introduction
MSU at $p=2$
Wilson spaces and Hopf rings
$H_{*} B O\langle 8\rangle$ and $H_{*} M O\langle 8\rangle$

Two change of rings isomorphisms

The Adams spectral sequence for MO $\langle 8\rangle$

$$
\Gamma\left(y_{8}\right) \cong P\left(y_{8}, y_{24}, y_{72}, \ldots\right) /\left(y_{8 \cdot 3}^{3}\right),
$$

and the Verschiebung map V, the dual of the pth power map, divides each subscript by 3 .

It is not hard to work out the right action of the mod 3 Steenrod algebra \mathcal{A} on $H_{*} B O\langle 8\rangle$,

We find that

$$
\begin{aligned}
& H_{*} B O\langle 8\rangle \cong P\left(x_{4 m}: m \geq 3,2 m \neq 1+3^{n}\right) \\
& \otimes \Gamma\left(y_{2\left(1+3^{n}\right)}: n \geq 0\right),
\end{aligned}
$$

where $\Gamma(y)$ denotes the divided power algebra on y, which is dual to the polynomial algebra on the dual of y. For example,

$$
\Gamma\left(y_{8}\right) \cong P\left(y_{8}, y_{24}, y_{72}, \ldots\right) /\left(y_{8 \cdot 3^{i}}^{3}\right),
$$

and the Verschiebung map V, the dual of the pth power map, divides each subscript by 3 .

It is not hard to work out the right action of the mod 3 Steenrod algebra \mathcal{A} on $H_{*} B O\langle 8\rangle$, and on the Thom isomorphic ring $H_{*} M O\langle 8\rangle$.

Two change of rings isomorphisms

String cobordism at the prime 3

Carl McTague
Vitaly Lorman
Doug Ravene!
We want to study the 3-primary Adams spectral sequence for MO $\langle 8\rangle$.

Two change of rings isomorphisms

String cobordism at the prime 3

Carl McTague
Vitaly Lorman
Doug Ravenel
We want to study the 3-primary Adams spectral sequence for $M O\langle 8\rangle$. Recall that

$$
\mathcal{A}_{*} \cong E\left(\tau_{0}, \tau_{1}, \ldots\right) \otimes P\left(\zeta_{1}, \zeta_{2}, \ldots\right),
$$

Introduction
MSU at $p=2$
Wilson spaces and Hopf rings
$H_{*} B O\langle 8\rangle$ and $H_{*} M O\langle 8\rangle$

Two change of rings isomorphisms

The Adams spectral sequence for $M O\langle 8\rangle$

Two change of rings isomorphisms

String cobordism at the prime 3

Carl McTague
Vitaly Lorman
Doug Ravenel
We want to study the 3-primary Adams spectral sequence for $M O\langle 8\rangle$. Recall that

$$
\begin{gathered}
\mathcal{A}_{*} \cong E\left(\tau_{0}, \tau_{1}, \ldots\right) \otimes P\left(\zeta_{1}, \zeta_{2}, \ldots\right), \\
\text { with }\left|\tau_{n}\right|=2 \cdot 3^{n}-1 \text { and }\left|\zeta_{n}\right|=2 \cdot 3^{n}-2 .
\end{gathered}
$$

$M S U$ at $p=2$
Wilson spaces and Hopf rings
$H_{*} B O\langle 8\rangle$ and $H_{*} M O\langle 8\rangle$

Two change of rings isomorphisms

The Adams spectral sequence for $M O\langle 8\rangle$

Two change of rings isomorphisms

We want to study the 3-primary Adams spectral sequence for $M O\langle 8\rangle$. Recall that

$$
\mathcal{A}_{*} \cong E\left(\tau_{0}, \tau_{1}, \ldots\right) \otimes P\left(\zeta_{1}, \zeta_{2}, \ldots\right)
$$

with $\left|\tau_{n}\right|=2 \cdot 3^{n}-1$ and $\left|\zeta_{n}\right|=2 \cdot 3^{n}-2$. The dual of the subalgebra $\mathcal{P} \subseteq \mathcal{A}$ generated by the Steenrod reduced power operations is

$$
\mathcal{P}_{*} \cong P\left(\zeta_{1}, \zeta_{2}, \ldots\right)
$$

Two change of rings isomorphisms

We want to study the 3-primary Adams spectral sequence for $M O\langle 8\rangle$. Recall that

$$
\mathcal{A}_{*} \cong E\left(\tau_{0}, \tau_{1}, \ldots\right) \otimes P\left(\zeta_{1}, \zeta_{2}, \ldots\right)
$$

with $\left|\tau_{n}\right|=2 \cdot 3^{n}-1$ and $\left|\zeta_{n}\right|=2 \cdot 3^{n}-2$. The dual of the subalgebra $\mathcal{P} \subseteq \mathcal{A}$ generated by the Steenrod reduced power operations is

$$
\mathcal{P}_{*} \cong P\left(\zeta_{1}, \zeta_{2}, \ldots\right)
$$

\mathcal{A} has a subalgebra \mathcal{E} with

$$
\mathcal{E}_{*} \cong E\left(\tau_{0}, \tau_{1}, \ldots\right) .
$$

Two change of rings isomorphisms

We want to study the 3-primary Adams spectral sequence for MO〈8〉. Recall that

$$
\mathcal{A}_{*} \cong E\left(\tau_{0}, \tau_{1}, \ldots\right) \otimes P\left(\zeta_{1}, \zeta_{2}, \ldots\right),
$$

with $\left|\tau_{n}\right|=2 \cdot 3^{n}-1$ and $\left|\zeta_{n}\right|=2 \cdot 3^{n}-2$. The dual of the subalgebra $\mathcal{P} \subseteq \mathcal{A}$ generated by the Steenrod reduced power operations is

$$
\mathcal{P}_{*} \cong P\left(\zeta_{1}, \zeta_{2}, \ldots\right) .
$$

\mathcal{A} has a subalgebra \mathcal{E} with

$$
\mathcal{E}_{*} \cong E\left(\tau_{0}, \tau_{1}, \ldots\right) .
$$

and

$$
\operatorname{Ext}_{\mathcal{E}_{*}}(\mathbf{Z} / 3, \mathbf{Z} / 3) \cong P\left(a_{0}, a_{1}, \ldots\right)=: V .
$$

Two change of rings isomorphisms

We want to study the 3-primary Adams spectral sequence for MO〈8〉. Recall that

$$
\mathcal{A}_{*} \cong E\left(\tau_{0}, \tau_{1}, \ldots\right) \otimes P\left(\zeta_{1}, \zeta_{2}, \ldots\right),
$$

with $\left|\tau_{n}\right|=2 \cdot 3^{n}-1$ and $\left|\zeta_{n}\right|=2 \cdot 3^{n}-2$. The dual of the subalgebra $\mathcal{P} \subseteq \mathcal{A}$ generated by the Steenrod reduced power operations is

$$
\mathcal{P}_{*} \cong P\left(\zeta_{1}, \zeta_{2}, \ldots\right) .
$$

\mathcal{A} has a subalgebra \mathcal{E} with

$$
\mathcal{E}_{*} \cong E\left(\tau_{0}, \tau_{1}, \ldots\right) .
$$

and

$$
\operatorname{Ext}_{\mathcal{E}_{*}}(\mathbf{Z} / 3, \mathbf{Z} / 3) \cong P\left(a_{0}, a_{1}, \ldots\right)=: V .
$$

Here a_{n} corresponds to $v_{n} \in \pi_{*} B P$,

Two change of rings isomorphisms

We want to study the 3-primary Adams spectral sequence for MO〈8〉. Recall that

$$
\mathcal{A}_{*} \cong E\left(\tau_{0}, \tau_{1}, \ldots\right) \otimes P\left(\zeta_{1}, \zeta_{2}, \ldots\right),
$$

with $\left|\tau_{n}\right|=2 \cdot 3^{n}-1$ and $\left|\zeta_{n}\right|=2 \cdot 3^{n}-2$. The dual of the subalgebra $\mathcal{P} \subseteq \mathcal{A}$ generated by the Steenrod reduced power operations is

$$
\mathcal{P}_{*} \cong P\left(\zeta_{1}, \zeta_{2}, \ldots\right) .
$$

\mathcal{A} has a subalgebra \mathcal{E} with

$$
\mathcal{E}_{*} \cong E\left(\tau_{0}, \tau_{1}, \ldots\right) .
$$

and

$$
\operatorname{Ext}_{\mathcal{E}_{*}}(\mathbf{Z} / 3, \mathbf{Z} / 3) \cong P\left(a_{0}, a_{1}, \ldots\right)=: V .
$$

Here a_{n} corresponds to $v_{n} \in \pi_{*} B P$, where $v_{0}=3$.

Two change of rings isomorphisms

We want to study the 3-primary Adams spectral sequence for MO〈8〉. Recall that

$$
\mathcal{A}_{*} \cong E\left(\tau_{0}, \tau_{1}, \ldots\right) \otimes P\left(\zeta_{1}, \zeta_{2}, \ldots\right),
$$

with $\left|\tau_{n}\right|=2 \cdot 3^{n}-1$ and $\left|\zeta_{n}\right|=2 \cdot 3^{n}-2$. The dual of the subalgebra $\mathcal{P} \subseteq \mathcal{A}$ generated by the Steenrod reduced power operations is

$$
\mathcal{P}_{*} \cong P\left(\zeta_{1}, \zeta_{2}, \ldots\right) .
$$

\mathcal{A} has a subalgebra \mathcal{E} with

$$
\mathcal{E}_{*} \cong E\left(\tau_{0}, \tau_{1}, \ldots\right) .
$$

and

$$
\operatorname{Ext}_{\mathcal{E}_{*}}(\mathbf{Z} / 3, \mathbf{Z} / 3) \cong P\left(a_{0}, a_{1}, \ldots\right)=: V .
$$

Here a_{n} corresponds to $v_{n} \in \pi_{*} B P$, where $v_{0}=3$. It has Adams filtration 1 and topological dimension 2($3^{n}-1$).

Two change of rings isomorphisms (continued)

String cobordism at the prime 3

Carl McTague
Vitaly Lorman
Doug Ravene!

Introduction
MSU at $p=2$
There is a Cartan-Eilenberg spectral sequence converging to our Adams E_{2}-page with

$$
\begin{align*}
E_{1}^{*, *, *} & \cong \operatorname{Ext}_{\mathcal{P}_{*}}\left(\mathbf{Z} / 3, \operatorname{Ext}_{\mathcal{E}_{*}}\left(\mathbf{Z} / 3, H_{*} M O\langle 8\rangle\right)\right) \tag{1}\\
& \cong \operatorname{Ext}_{\mathcal{P}_{*}}\left(\mathbf{Z} / 3, H_{*} M O\langle 8\rangle \otimes V\right) .
\end{align*}
$$

Two change of rings isomorphisms (continued)

 the prime 3Carl McTague
Vitaly Lorman
Doug Ravenel

Introduction

MSU at $p=2$
There is a Cartan-Eilenberg spectral sequence converging to our Adams E_{2}-page with

$$
\begin{align*}
E_{1}^{*, *, *} & \cong \operatorname{Ext}_{\mathcal{P}_{*}}\left(\mathbf{Z} / 3, \operatorname{Ext}_{\mathcal{E}_{*}}\left(\mathbf{Z} / 3, H_{*} M O\langle 8\rangle\right)\right) \tag{1}\\
& \cong \operatorname{Ext}_{\mathcal{P}_{*}}\left(\mathbf{Z} / 3, H_{*} M O\langle 8\rangle \otimes V\right) .
\end{align*}
$$

The coaction of \mathcal{E}_{*} on $H_{*} M O\langle 8\rangle$ is trivial since the latter is concentrated in even dimensions.

Two change of rings isomorphisms (continued)

Introduction
MSU at $p=2$
Wilson spaces and Hopf rings
$H_{*} B O\langle 8\rangle$ and $H_{*} M O\langle 8\rangle$

$$
\begin{align*}
E_{1}^{*, *, *} & \cong \operatorname{Ext}_{\mathcal{P}_{*}}\left(\mathbf{Z} / 3, \operatorname{Ext}_{\mathcal{E}_{*}}\left(\mathbf{Z} / 3, H_{*} M O\langle 8\rangle\right)\right) \tag{1}\\
& \cong \operatorname{Ext}_{\mathcal{P}_{*}}\left(\mathbf{Z} / 3, H_{*} M O\langle 8\rangle \otimes V\right) .
\end{align*}
$$

The coaction of \mathcal{E}_{*} on $H_{*} M O\langle 8\rangle$ is trivial since the latter is concentrated in even dimensions. This leads to the second isomorphism of (1).

Two change of rings isomorphisms (continued)

String cobordism at the prime 3

Carl McTague
Vitaly Lorman
Doug Ravenel
Let

$$
J=\left(x_{12}^{3}, x_{16}^{3}, x_{52}, x_{160}, \ldots\right) \subseteq H_{*} M O\langle 8\rangle,
$$

MSU at $p=2$
Wilson spaces and
Hopf rings
$H_{*} B O\langle 8\rangle$ and
$H_{*} M O\langle 8\rangle$
Two change of rings isomorphisms

The Adams spectral sequence for $M O\langle 8\rangle$

Two change of rings isomorphisms (continued)

String cobordism at the prime 3

Carl McTague
Vitaly Lorman
Doug Ravenel
Let

$$
J=\left(x_{12}^{3}, x_{16}^{3}, x_{52}, x_{160}, \ldots\right) \subseteq H_{*} M O\langle 8\rangle,
$$

the change of rings ideal.
Introduction
MSU at $p=2$
Wilson spaces and
Hopf rings
$H_{*} B O\langle 8\rangle$ and $H_{*} M O\langle 8\rangle$
Two change of rings isomorphisms

The Adams spectral sequence for $M O\langle 8\rangle$

Two change of rings isomorphisms (continued)

String cobordism at the prime 3

Carl McTague
Vitaly Lorman
Doug Ravenel
Let

$$
J=\left(x_{12}^{3}, x_{16}^{3}, x_{52}, x_{160}, \ldots\right) \subseteq H_{*} M O\langle 8\rangle,
$$

the change of rings ideal. One can show that

$$
\operatorname{Ext}_{\mathcal{P}_{*}}\left(\mathbf{Z} / 3, H_{*} M O\langle 8\rangle\right) \cong \operatorname{Ext}_{\mathcal{P}(1))_{*}}\left(\mathbf{Z} / 3, H_{*} M O\langle 8\rangle / J\right),
$$

the first change of rings isomorphism,

Introduction
MSU at $p=2$
Wilson spaces and Hopf rings
$H_{*} B O\langle 8\rangle$ and $H_{*} M O\langle 8\rangle$

Two change of rings isomorphisms

The Adams spectral sequence for $\mathrm{MO}\langle 8\rangle$

Two change of rings isomorphisms (continued)

 the prime 3Carl McTague
Vitaly Lorman
Doug Ravenel
Let

$$
J=\left(x_{12}^{3}, x_{16}^{3}, x_{52}, x_{160}, \ldots\right) \subseteq H_{*} M O\langle 8\rangle,
$$

the change of rings ideal. One can show that

$$
\operatorname{Ext}_{\mathcal{P}_{*}}\left(\mathbf{Z} / 3, H_{*} M O\langle 8\rangle\right) \cong \operatorname{Ext}_{\mathcal{P}(1))_{*}}\left(\mathbf{Z} / 3, H_{*} M O\langle 8\rangle / J\right),
$$

the first change of rings isomorphism, where

Introduction
MSU at $p=2$
Wilson spaces and Hopf rings
$H_{*} B O\langle 8\rangle$ and $H_{*} M O\langle 8\rangle$

Two change of rings isomorphisms

The Adams spectral sequence for $\mathrm{MO}\langle 8\rangle$

$$
\begin{aligned}
& 364852160 \\
\mathcal{P}(1)_{*} & =\mathcal{P}_{*} /\left(\zeta_{1}^{9}, \zeta_{2}^{3}, \zeta_{3}, \zeta_{4}, \ldots\right) \\
& =P\left(\zeta_{1}, \zeta_{2}\right) /\left(\zeta_{1}^{9}, \zeta_{2}^{3}\right)
\end{aligned}
$$

Two change of rings isomorphisms (continued)

 the prime 3Carl McTague
Vitaly Lorman
Doug Ravenel
Let

$$
J=\left(x_{12}^{3}, x_{16}^{3}, x_{52}, x_{160}, \ldots\right) \subseteq H_{*} M O\langle 8\rangle,
$$

the change of rings ideal. One can show that

$$
\operatorname{Ext}_{\mathcal{P}_{*}}\left(\mathbf{Z} / 3, H_{*} M O\langle 8\rangle\right) \cong \operatorname{Ext}_{\mathcal{P}(1) *}\left(\mathbf{Z} / 3, H_{*} M O\langle 8\rangle / J\right),
$$

the first change of rings isomorphism, where

Introduction
MSU at $p=2$
Wilson spaces and Hopf rings
$H_{*} B O\langle 8\rangle$ and $H_{*} M O\langle 8\rangle$
Two change of rings isomorphisms

The Adams spectral sequence for $M O\langle 8\rangle$

$$
\begin{aligned}
& 364852160 \\
\mathcal{P}(1)_{*} & =\mathcal{P}_{*} /\left(\zeta_{1}^{9}, \zeta_{2}^{3}, \zeta_{3}, \zeta_{4}, \ldots\right) \\
& =P\left(\zeta_{1}, \zeta_{2}\right) /\left(\zeta_{1}^{9}, \zeta_{2}^{3}\right)
\end{aligned}
$$

is dual to the subalgebra $\mathcal{P}(1) \subseteq \mathcal{P}$ generated by the Steenrod operations P^{1} and P^{3}.

Two change of rings isomorphisms (continued)

String cobordism at

 the prime 3Carl McTague
Vitaly Lorman
Doug Ravenel
Let

$$
J=\left(x_{12}^{3}, x_{16}^{3}, x_{52}, x_{160}, \ldots\right) \subseteq H_{*} M O\langle 8\rangle,
$$

the change of rings ideal. One can show that

$$
\operatorname{Ext}_{\mathcal{P}_{*}}\left(\mathbf{Z} / 3, H_{*} M O\langle 8\rangle\right) \cong \operatorname{Ext}_{\mathcal{P}(1))_{*}}\left(\mathbf{Z} / 3, H_{*} M O\langle 8\rangle / J\right),
$$

the first change of rings isomorphism, where

Introduction
MSU at $p=2$
Wilson spaces and Hopf rings
$H_{*} B O\langle 8\rangle$ and $H_{*} M O\langle 8\rangle$
Two change of rings isomorphisms

The Adams spectral sequence for $M O\langle 8\rangle$

$$
\begin{aligned}
& 364852160 \\
\mathcal{P}(1)_{*} & =\mathcal{P}_{*} /\left(\zeta_{1}^{9}, \zeta_{2}^{3}, \zeta_{3}, \zeta_{4}, \ldots\right) \\
& =P\left(\zeta_{1}, \zeta_{2}\right) /\left(\zeta_{1}^{9}, \zeta_{2}^{3}\right)
\end{aligned}
$$

is dual to the subalgebra $\mathcal{P}(1) \subseteq \mathcal{P}$ generated by the Steenrod operations P^{1} and P^{3}. This is a major simplification.

Two change of rings isomorphisms (continued)

String cobordism at the prime 3

Carl McTague
Vitaly Lorman
Doug Ravenel

Recall

$\operatorname{Ext}_{\mathcal{P}_{*}}\left(\mathbf{Z} / 3, H_{*} M O\langle 8\rangle\right) \cong \operatorname{Ext}_{\mathcal{P}(1)_{*}}(\mathbf{Z} / 3, L)$,
where $L=H_{*} M O\langle 8\rangle / J$ and $\mathcal{P}(1)_{*}=P\left(\zeta_{1}, \zeta_{2}\right) /\left(\zeta_{1}^{9}, \zeta_{2}^{3}\right)$.
Introduction
MSU at $p=2$
Wilson spaces and Hopf rings
$H_{*} B O\langle 8\rangle$ and $H_{*} M O\langle 8\rangle$

Two change of rings isomorphisms

The Adams spectral sequence for $M O\langle 8\rangle$

Two change of rings isomorphisms (continued)

Recall

$$
\operatorname{Ext}_{\mathcal{P}_{*}}\left(\mathbf{Z} / 3, H_{*} M O\langle 8\rangle\right) \cong \operatorname{Ext}_{\mathcal{P}(1)_{*}}(\mathbf{Z} / 3, L),
$$

where $L=H_{*} M O\langle 8\rangle / J$ and $\mathcal{P}(1)_{*}=P\left(\zeta_{1}, \zeta_{2}\right) /\left(\zeta_{1}^{9}, \zeta_{2}^{3}\right)$.
The algebra $\mathcal{P}(1)$ is noncommutative, has rank 27 (as a vector space), and has a complicated Ext group. the prime 3

Carl McTague
Vitaly Lorman
Doug Ravenel
Introduction
MSU at $p=2$
Wilson spaces and Hopf rings
$H_{*} B O\langle 8\rangle$ and $H_{*} M O\langle 8\rangle$

Two change of rings isomorphisms

The Adams spectral sequence for $M O\langle 8\rangle$

Two change of rings isomorphisms (continued)

 the prime 3Carl McTague
Vitaly Lorman
Doug Ravenel

$$
\operatorname{Ext}_{\mathcal{P}_{*}}\left(\mathbf{Z} / 3, H_{*} M O\langle 8\rangle\right) \cong \operatorname{Ext}_{\mathcal{P}(1)_{*}}(\mathbf{Z} / 3, L),
$$

where $L=H_{*} M O\langle 8\rangle / J$ and $\mathcal{P}(1)_{*}=P\left(\zeta_{1}, \zeta_{2}\right) /\left(\zeta_{1}^{9}, \zeta_{2}^{3}\right)$.
The algebra $\mathcal{P}(1)$ is noncommutative, has rank 27 (as a vector space), and has a complicated Ext group. The dual of ζ_{2} is

$$
Q:=\left[P^{3}, P^{1}\right]=P^{3} P^{1}-P^{4} \quad \text { with } Q^{3}=0 .
$$

Introduction
MSU at $p=2$
Wilson spaces and Hopf rings
$H_{*} B O\langle 8\rangle$ and $H_{*} M O\langle 8\rangle$

Two change of rings isomorphisms

The Adams spectral sequence for $\mathrm{MO}\langle 8\rangle$

Two change of rings isomorphisms (continued)

Recall

$$
\operatorname{Ext}_{\mathcal{P}_{*}}\left(\mathbf{Z} / 3, H_{*} M O\langle 8\rangle\right) \cong \operatorname{Ext}_{\mathcal{P}(1)_{*}}(\mathbf{Z} / 3, L),
$$

where $L=H_{*} M O\langle 8\rangle / J$ and $\mathcal{P}(1)_{*}=P\left(\zeta_{1}, \zeta_{2}\right) /\left(\zeta_{1}^{9}, \zeta_{2}^{3}\right)$.
The algebra $\mathcal{P}(1)$ is noncommutative, has rank 27 (as a vector space), and has a complicated Ext group. The dual of ζ_{2} is

$$
Q:=\left[P^{3}, P^{1}\right]=P^{3} P^{1}-P^{4} \quad \text { with } Q^{3}=0 .
$$

Carl McTague
Vitaly Lorman
Doug Ravenel

Introduction
MSU at $p=2$
Wilson spaces and Hopf rings
$H_{*} B O\langle 8\rangle$ and $H_{*} M O\langle 8\rangle$

Two change of rings isomorphisms

The Adams spectral sequence for $M O\langle 8\rangle$

The $\mathcal{P}(1)$-module L is free over the subalgebra T generated by Q.

Two change of rings isomorphisms (continued)

 the prime 3Carl McTague
Vitaly Lorman
Doug Ravenel

$$
\operatorname{Ext}_{\mathcal{P}_{*}}\left(\mathbf{Z} / 3, H_{*} M O\langle 8\rangle\right) \cong \operatorname{Ext}_{\mathcal{P}(1)_{*}}(\mathbf{Z} / 3, L),
$$

where $L=H_{*} M O\langle 8\rangle / J$ and $\mathcal{P}(1)_{*}=P\left(\zeta_{1}, \zeta_{2}\right) /\left(\zeta_{1}^{9}, \zeta_{2}^{3}\right)$.
The algebra $\mathcal{P}(1)$ is noncommutative, has rank 27 (as a vector space), and has a complicated Ext group. The dual of ζ_{2} is

$$
Q:=\left[P^{3}, P^{1}\right]=P^{3} P^{1}-P^{4} \quad \text { with } Q^{3}=0 .
$$

Introduction
MSU at $p=2$
Wilson spaces and Hopf rings
$H_{*} B O\langle 8\rangle$ and $H_{*} M O\langle 8\rangle$

Two change of rings isomorphisms

The Adams spectral sequence for $M O\langle 8\rangle$

The $\mathcal{P}(1)$-module L is free over the subalgebra T generated by Q. This gives the second change of rings isomorphism

$$
\operatorname{Ext}_{\mathcal{P}(1)_{*}}(\mathbf{Z} / 3, L) \cong \operatorname{Ext}_{\mathcal{P}(1)_{*}^{\prime}}\left(\mathbf{Z} / 3, L^{\prime}\right),
$$

Two change of rings isomorphisms (continued)

Carl McTague

Vitaly Lorman
Doug Ravenel

$$
\operatorname{Ext}_{\mathcal{P}_{*}}\left(\mathbf{Z} / 3, H_{*} M O\langle 8\rangle\right) \cong \operatorname{Ext}_{\mathcal{P}(1)_{*}}(\mathbf{Z} / 3, L),
$$

where $L=H_{*} M O\langle 8\rangle / J$ and $\mathcal{P}(1)_{*}=P\left(\zeta_{1}, \zeta_{2}\right) /\left(\zeta_{1}^{9}, \zeta_{2}^{3}\right)$.
The algebra $\mathcal{P}(1)$ is noncommutative, has rank 27 (as a vector space), and has a complicated Ext group. The dual of ζ_{2} is

$$
Q:=\left[P^{3}, P^{1}\right]=P^{3} P^{1}-P^{4} \quad \text { with } Q^{3}=0 .
$$

Introduction
MSU at $p=2$
Wilson spaces and Hopf rings
$H_{*} B O\langle 8\rangle$ and $H_{*} M O\langle 8\rangle$
Two change of rings isomorphisms

The Adams spectral sequence for MO $\langle 8\rangle$

The $\mathcal{P}(1)$-module L is free over the subalgebra T generated by Q. This gives the second change of rings isomorphism

$$
\operatorname{Ext}_{\mathcal{P}(1)_{*}}(\mathbf{Z} / 3, L) \cong \operatorname{Ext}_{\mathcal{P}(1)_{*}^{\prime}}\left(\mathbf{Z} / 3, L^{\prime}\right),
$$

where $\mathcal{P}(1)^{\prime}=\mathcal{P}(1) / T$ is commutative with dual

$$
\mathcal{P}(1)_{*}^{\prime}=P\left(\zeta_{1}\right) /\left(\zeta_{1}^{9}\right),
$$

Two change of rings isomorphisms (continued)

$$
\operatorname{Ext}_{\mathcal{P}_{*}}\left(\mathbf{Z} / 3, H_{*} M O\langle 8\rangle\right) \cong \operatorname{Ext}_{\mathcal{P}(1)_{*}}(\mathbf{Z} / 3, L),
$$

where $L=H_{*} M O\langle 8\rangle / J$ and $\mathcal{P}(1)_{*}=P\left(\zeta_{1}, \zeta_{2}\right) /\left(\zeta_{1}^{9}, \zeta_{2}^{3}\right)$.
The algebra $\mathcal{P}(1)$ is noncommutative, has rank 27 (as a vector space), and has a complicated Ext group. The dual of ζ_{2} is

$$
Q:=\left[P^{3}, P^{1}\right]=P^{3} P^{1}-P^{4} \quad \text { with } Q^{3}=0 .
$$

Introduction
MSU at $p=2$
Wilson spaces and Hopf rings
$H_{*} B O\langle 8\rangle$ and $H_{*} M O\langle 8\rangle$
Two change of rings isomorphisms

The Adams spectral sequence for MO $\langle 8\rangle$

The $\mathcal{P}(1)$-module L is free over the subalgebra T generated by Q. This gives the second change of rings isomorphism

$$
\operatorname{Ext}_{\mathcal{P}(1)_{*}}(\mathbf{Z} / 3, L) \cong \operatorname{Ext}_{\mathcal{P}(1)_{*}^{\prime}}\left(\mathbf{Z} / 3, L^{\prime}\right),
$$

where $\mathcal{P}(1)^{\prime}=\mathcal{P}(1) / T$ is commutative with dual

$$
\mathcal{P}(1)_{*}^{\prime}=P\left(\zeta_{1}\right) /\left(\zeta_{1}^{9}\right),
$$

and $L^{\prime} \subseteq L$ is the subring on which Q acts trivially.

The Adams spectral sequence for $\mathrm{MO}\langle 8\rangle$

String cobordism at the prime 3

Carl McTague
Vitaly Lorman
Doug Ravenel

Introduction
MSU at $p=2$
Similarly in the Adams spectral sequence for $\mathrm{MO}\langle 8\rangle$,

$$
\begin{aligned}
E_{2} & =\operatorname{Ext}_{\mathcal{P}_{*}}\left(\mathbf{Z} / 3, H_{*} M O\langle 8\rangle \otimes V\right) \\
& \cong \operatorname{Ext}_{\left.\mathcal{P}(1)_{*}\right)}(\mathbf{Z} / 3, L \otimes V) \\
& \cong \operatorname{Ext}_{\mathcal{P}(1)^{\prime} *}\left(\mathbf{Z} / 3,(L \otimes V)^{\prime}\right)
\end{aligned}
$$

Hopf rings
$H_{*} B O\langle 8\rangle$ and $H_{*} M O\langle 8\rangle$

Two change of rings isomorphisms

The Adams spectral sequence for $\mathrm{MO}\langle 8\rangle$

The Adams spectral sequence for $\mathrm{MO}\langle 8\rangle$

String cobordism at the prime 3

Carl McTague
Vitaly Lorman
Doug Ravenel

Introduction
MSU at $p=2$
Similarly in the Adams spectral sequence for $\mathrm{MO}\langle 8\rangle$,

$$
\begin{aligned}
E_{2} & =\operatorname{Ext}_{\mathcal{P}_{*}}\left(\mathbf{Z} / 3, H_{*} M O\langle 8\rangle \otimes V\right) \\
& \cong \operatorname{Ext}_{\mathcal{P}(1)_{*}}(\mathbf{Z} / 3, L \otimes V) \\
& \cong \operatorname{Ext}_{\mathcal{P}(1)^{\prime} *}\left(\mathbf{Z} / 3,(L \otimes V)^{\prime}\right)
\end{aligned}
$$

where $\mathcal{P}(1)_{*}^{\prime}=P\left(\zeta_{1}\right) / \zeta_{1}^{9}$ and

$$
(L \otimes V)^{\prime}:=\operatorname{ker} Q \subseteq L \otimes V .
$$

The Adams spectral sequence for $M O\langle 8\rangle$ (continued)

Here is the first $P(1)^{\prime}$-summand of L^{\prime}.

$$
\begin{array}{ll}
8 & 20
\end{array}
$$

String cobordism at the prime 3

Carl McTague
Vitaly Lorman
Doug Ravenel

Introduction
MSU at $p=2$
Wilson spaces and Hopf rings
$H_{*} B O\langle 8\rangle$ and $H_{*} M O\langle 8\rangle$

Two change of rings isomorphisms

The Adams spectral sequence for $M O\langle 8\rangle$

$$
\begin{aligned}
& \begin{array}{lll}
0 & 12 & 24
\end{array} \\
& 1<\frac{-1}{p^{3}} x_{12}<\frac{p^{3}}{} x_{12}^{2}+\bar{y}_{24} \\
& \underset{p^{3}}{\gamma_{8}} \bar{y}_{20}-y_{8} x_{12} \underset{p^{3}}{\stackrel{-1}{p^{3}}} x_{12} \bar{y}_{20}+y_{8}\left(x_{12}^{2}-\bar{y}_{24}\right) \text {, }
\end{aligned}
$$

The Adams spectral sequence for $M O\langle 8\rangle$ (continued)

Here is the first $P(1)^{\prime}$-summand of L^{\prime}.

$$
\begin{aligned}
& 1 \underset{p^{3}}{0} x_{12}^{-1} \underset{p^{3}}{<} x_{12}^{2}+\bar{y}_{24} \\
& \underset{p^{3}}{\gamma_{8}^{1}} \bar{y}_{20}-y_{8} x_{12} \underset{p^{3}}{{ }_{P^{3}}^{-1}} x_{12} \bar{y}_{20}+y_{8}\left(x_{12}^{2}-\bar{y}_{24}\right) \text {, } \\
& 8 \quad 20
\end{aligned}
$$

where $\bar{y}_{20}=y_{20}+y_{8} x_{12}$, and $\bar{y}_{24}=y_{24}-y_{8} x_{16}$.

String cobordism at the prime 3

Carl McTague
Vitaly Lorman
Doug Ravenel

Introduction
MSU at $p=2$
Wilson spaces and Hopf rings
$H_{*} B O\langle 8\rangle$ and $H_{*} M O\langle 8\rangle$

Two change of rings isomorphisms

The Adams spectral sequence for $\mathrm{MO}\langle 8\rangle$

The Adams spectral sequence for $M O\langle 8\rangle$ (continued)

String cobordism at

 the prime 3Carl McTague
Vitaly Lorman
Doug Ravenel
Introduction
MSU at $p=2$
Wilson spaces and Hopf rings
$H_{*} B O\langle 8\rangle$ and $H_{*} M O\langle 8\rangle$

Two change of rings isomorphisms

The Adams spectral sequence for $\mathrm{MO}\langle 8\rangle$
where $\bar{y}_{20}=y_{20}+y_{8} x_{12}$, and $\bar{y}_{24}=y_{24}-y_{8} x_{16}$. Here is the next one, which is free.

The Adams spectral sequence for $M O\langle 8\rangle$ (continued)

Here is a third one.

The Adams spectral sequence for $M O\langle 8\rangle$ (continued)

Here is a third one.

This one is isomorphic to the first one tensored with a rank 2 module in the first column.

String cobordism at the prime 3

Carl McTague
Vitaly Lorman
Doug Ravenel
Introduction
MSU at $p=2$
Wilson spaces and
Hopf rings
$H_{*} B O\langle 8\rangle$ and $H_{*} M O\langle 8\rangle$

Two change of rings isomorphisms

The Adams spectral sequence for $M O\langle 8\rangle$

The Adams spectral sequence for $M O\langle 8\rangle$ (continued)

Here is a third one.

This one is isomorphic to the first one tensored with a rank 2 module in the first column.

In each case the Ext group is easy to compute. the prime 3

Carl McTague
Vitaly Lorman
Doug Ravenel
Introduction
MSU at $p=2$
Wilson spaces and
Hopf rings
$H_{*} B O\langle 8\rangle$ and $H_{*} M O\langle 8\rangle$

Two change of rings isomorphisms

The Adams spectral sequence for $M O\langle 8\rangle$

The Adams spectral sequence for $M O\langle 8\rangle$ (continued)

Here is a third one.

This one is isomorphic to the first one tensored with a rank 2 module in the first column.

In each case the Ext group is easy to compute. It turns out that both L^{\prime} and $(L \otimes V)^{\prime}$ decompose as a direct sum of $\mathcal{P}(1)^{\prime}$-modules of these three types.

The Adams spectral sequence for $M O\langle 8\rangle$ (continued)

Here is a third one.

Introduction
MSU at $p=2$
Wilson spaces and Hopf rings
$H_{*} B O\langle 8\rangle$ and $H_{*} M O\langle 8\rangle$

Two change of rings isomorphisms

The Adams spectral sequence for $\mathrm{MO}\langle 8\rangle$

This one is isomorphic to the first one tensored with a rank 2 module in the first column.

In each case the Ext group is easy to compute. It turns out that both L^{\prime} and $(L \otimes V)^{\prime}$ decompose as a direct sum of $\mathcal{P}(1)^{\prime}$-modules of these three types. Each free summand of L^{\prime} corresponds to summand of the spectrum $\mathrm{MO}\langle 8\rangle$ equivalent to a suspension of $B P$.

The Adams spectral sequence for $M O\langle 8\rangle$ (continued)

String cobordism at

 the prime 3
Carl McTague Vitaly Lorman Doug Ravenel

Introduction

MSU at $p=2$
Wilson spaces and Hopf rings
$H_{*} B O\langle 8\rangle$ and $H_{*} M O\langle 8\rangle$
Two change of rings isomorphisms

The Adams spectral sequence for $\mathrm{MO}\langle 8\rangle$

The Adams spectral sequence for $M O\langle 8\rangle$ (continued)

String cobordism at

 the prime 3Carl McTague Vitaly Lorman Doug Ravenel

Introduction

MSU at $p=2$
Wilson spaces and Hopf rings
$H_{*} B O\langle 8\rangle$ and H_{*} MO $\langle 8\rangle$

Two change of rings isomorphisms

The Adams spectral sequence for $\mathrm{MO}\langle 8\rangle$

This chart shows Adams $d_{1} s$ and $d_{2} s$ in for the subalgebra of L^{\prime} generated by $y_{8}, x_{12}, \bar{y}_{20}$ and \bar{y}_{24}.

The Adams spectral sequence for $M O\langle 8\rangle$ (continued)

String cobordism at the prime 3

Carl McTague Vitaly Lorman Doug Ravenel

Introduction

MSU at $p=2$
Wilson spaces and Hopf rings
$H_{*} B O\langle 8\rangle$ and $H_{*} M O\langle 8\rangle$

Two change of rings isomorphisms

The Adams spectral sequence for $\mathrm{MO}\langle 8\rangle$

This chart shows Adams $d_{1} s$ and $d_{2} s$ in for the subalgebra of L^{\prime} generated by $y_{8}, x_{12}, \bar{y}_{20}$ and \bar{y}_{24}. The 48 -dimensional class \bar{a}_{2}^{3} is excluded to avoid clutter.

The Adams spectral sequence for $M O\langle 8\rangle$ (continued)

String cobordism at the prime 3

Carl McTague
 Vitaly Lorman
 Doug Ravenel

E_{3} page

MSU at $p=2$
Wilson spaces and Hopf rings
$H_{*} B O\langle 8\rangle$ and $H_{*} M O\langle 8\rangle$
Two change of rings isomorphisms

The Adams spectral sequence for $\mathrm{MO}\langle 8\rangle$

The Adams spectral sequence for $M O\langle 8\rangle$ (continued)

String cobordism at the prime 3

Carl McTague Vitaly Lorman Doug Ravenel

Introduction

MSU at $p=2$
Wilson spaces and Hopf rings
$H_{*} B O\langle 8\rangle$ and $H_{*} M O\langle 8\rangle$

Two change of rings isomorphisms

The Adams spectral sequence for $M O\langle 8\rangle$

This chart shows the resulting E_{3} page with torsion elements shown in blue.

The Adams spectral sequence for $M O\langle 8\rangle$ (continued)

String cobordism at

 the prime 3
Carl McTague
 Vitaly Lorman
 Doug Ravenel

E_{3} page

$\begin{array}{lllllllll}0 & 16 & 32 & 48 & 64 & 80 & 96 & 112 & 128\end{array}$

Introduction
MSU at $p=2$
Wilson spaces and Hopf rings
$H_{*} B O\langle 8\rangle$ and $H_{*} M O\langle 8\rangle$

Two change of rings isomorphisms

The Adams spectral sequence for $\mathrm{MO}\langle 8\rangle$

The Adams spectral sequence for $M O\langle 8\rangle$ (continued)

String cobordism at the prime 3

Carl McTague
Vitaly Lorman
Doug Ravenel

E_{3} page

$$
\begin{array}{lllllllll}
0 & 16 & 32 & 48 & 64 & 80 & 96 & 112 & 128
\end{array}
$$

This is the previous chart with \bar{a}_{2}^{3} tensored in.

The Adams spectral sequence for $M O\langle 8\rangle$ (continued)

E_{3} page

$$
\begin{array}{lllllllll}
0 & 16 & 32 & 48 & 64 & 80 & 96 & 112 & 128
\end{array}
$$

This is the previous chart with \bar{a}_{2}^{3} tensored in. It shows a larger range of dimensions with higher Toda type differentials, with more elements removed to avoid clutter.

Carl McTague
Vitaly Lorman
Doug Ravenel

Introduction
MSU at $p=2$
Wilson spaces and Hopf rings
$H_{*} B O\langle 8\rangle$ and $H_{*} M O\langle 8\rangle$

Two change of rings isomorphisms

The Adams spectral sequence for $\mathrm{MO}\langle 8\rangle$

The Adams spectral sequence for $M O\langle 8\rangle$ (continued)

String cobordism at the prime 3

Carl McTague
Vitaly Lorman
Doug Ravenel

E7 page

Introduction

MSU at $p=2$
Wilson spaces and Hopf rings
$H_{*} B O\langle 8\rangle$ and $H_{*} M O\langle 8\rangle$
Two change of rings isomorphisms

The Adams spectral sequence for $M O\langle 8\rangle$

The Adams spectral sequence for $M O\langle 8\rangle$ (continued)

String cobordism at the prime 3

Carl McTague
Vitaly Lorman
Doug Ravenel

Introduction
MSU at $p=2$
Wilson spaces and Hopf rings
$H_{*} B O\langle 8\rangle$ and $H_{*} M O\langle 8\rangle$

Two change of rings isomorphisms

The Adams spectral sequence for $\mathrm{MO}\langle 8\rangle$

Thus shows the resulting E_{∞} page with torsion elements in blue.

The Adams spectral sequence for $M O\langle 8\rangle$ (continued)

String cobordism at the prime 3

Carl McTague Vitaly Lorman Doug Ravenel

E_{7} page

	18	\vdots	\vdots	\vdots	\vdots
16	\vdots	\vdots	\vdots	\vdots	\vdots
12	\vdots	\vdots	\vdots	\vdots	\vdots
10	\vdots	\vdots	\vdots	\vdots	\vdots
8	\vdots	\vdots	\vdots	\vdots	
6	\vdots		$w_{48,4}$	$w_{72,4}$	
2	\vdots	$w_{24,2}$			
0	1				

$$
\begin{array}{lllllllll}
0 & 16 & 32 & 48 & 64 & 80 & 96 & 112 & 128
\end{array}
$$

Thus shows the resulting E_{∞} page with torsion elements in blue. They coincide with Dominic Culver's 2019 description of the 3-primary torsion in π_{*} tmf, which is 144-dimensional periodic.

String cobordism at

 the prime 3
Carl McTague
 Vitaly Lorman Doug Ravenel

Introduction

MSU at $p=2$
Wilson spaces and Hopf rings
$H_{*} B O\langle 8\rangle$ and $H_{*} M O\langle 8\rangle$

Two change of rings isomorphisms

The Adams spectral sequence for MO $\langle 8\rangle$

