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Enriched category theory
Equivariant spectra are defined in terms of
enriched category theory.

In an enriched
category, instead of morphism sets we have
morphism objects that live a symmetric monoidal
category (V,⊗,1). The monoidal structure is
needed to define the enriched analog of
composition of morphisms.

Given objects X , Y and Z in an ordinary category C, one has
composition morphism

cX ,Y ,Z : C(Y ,Z )× C(X ,Y ) → C(X ,Z ),

which is a map of sets with suitable properties. In a category
enriched over V, instead of morphism sets we have morphism
objects in V, and the above is replaced by a composition
morphism in V,

cX ,Y ,Z : C(Y ,Z )⊗ C(X ,Y ) → C(X ,Z ).
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Enriched category theory (continued)
Usually V will be some variant of T = (T0,∧,S0), the category
of pointed topological spaces under smash product.

A closed
symmetric monoidal category such as T is enriched over itself.

There are notions of enriched functors and enriched natural
transformations. If C and D are categories enriched over V, we
denote by [C,D] the category of enriched functors C → D.

Day Convolution Theorem (1970)

Let (J,⊕,0) be a small symmetric monoidal category
enriched over a cocomplete closed symmetric monoidal
category V. Then the enriched functor category [J,V] is
closed symmetric monoidal.
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Enriched category theory (continued)

Day Convolution Theorem (1970)

Let (J,⊕,0) be a small symmetric monoidal category
enriched over a cocomplete closed symmetric monoidal
category (V,⊗,1). Then the enriched functor category [J,V]
is closed symmetric monoidal.

To define this monoidal structure, suppose we have two
functors X ,Y : J → V. Consider the diagram
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Enriched category theory (continued)

Day Convolution Theorem (1970)

Let (J,⊕,0) be a small symmetric monoidal category
enriched over a cocomplete closed symmetric monoidal
category (V,⊗,1). Then the enriched functor category [J,V]
is closed symmetric monoidal.

To define this monoidal structure,

suppose we have two
functors X ,Y : J → V. Consider the diagram
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Enriched category theory (continued)

Day Convolution Theorem (1970)

Let (J,⊕,0) be a small symmetric monoidal category
enriched over a cocomplete closed symmetric monoidal
category (V,⊗,1). Then the enriched functor category [J,V]
is closed symmetric monoidal.

To define this monoidal structure, suppose we have two
functors X ,Y : J → V. Consider the diagram

J × J
X×Y //

⊕
''

V × V ⊗ // V

J
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Enriched category theory (continued)

Day Convolution Theorem (1970)

Let (J,⊕,0) be a small symmetric monoidal category
enriched over a cocomplete closed symmetric monoidal
category (V,⊗,1). Then the enriched functor category [J,V]
is closed symmetric monoidal.

To define this monoidal structure, suppose we have two
functors X ,Y : J → V. Consider the diagram

J × J
X×Y //

⊕
''

V × V ⊗ // V

J

X⊗Y

99



Model category
structures for

equivariant spectra

Mike Hill
Mike Hopkins
Doug Ravenel

Enriched category
theory

Some equivariant
homotopy theory

Three constructions of
new model categories

The main construction

Defining the four small
categories

Summary

1.4

Enriched category theory (continued)

Day Convolution Theorem (1970)

Let (J,⊕,0) be a small symmetric monoidal category
enriched over a cocomplete closed symmetric monoidal
category (V,⊗,1). Then the enriched functor category [J,V]
is closed symmetric monoidal.

To define this monoidal structure, suppose we have two
functors X ,Y : J → V. Consider the diagram

J × J
X×Y //

⊕
''

V × V ⊗ // V

J

X⊗Y

99

The functor X ⊗ Y is the left Kan extension of the composite
⊗(X × Y ) along ⊕.
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Enriched category theory (continued)

Day Convolution Theorem (1970)

Let (J,⊕,0) be a small symmetric monoidal category
enriched over a cocomplete closed symmetric monoidal
category (V,⊗,1). Then the enriched functor category [J,V]
is closed symmetric monoidal.

To define this monoidal structure, suppose we have two
functors X ,Y : J → V. Consider the diagram

J × J
X×Y //

⊕
''

V × V ⊗ // V

J

X⊗Y

99

The functor X ⊗ Y is the left Kan extension of the composite
⊗(X × Y ) along ⊕. It exists because J × J is small and V is
cocomplete.



Model category
structures for

equivariant spectra

Mike Hill
Mike Hopkins
Doug Ravenel

Enriched category
theory

Some equivariant
homotopy theory

Three constructions of
new model categories

The main construction

Defining the four small
categories

Summary

1.5

Some equivariant homotopy theory

For a finite group G, let T G be the category of pointed
G-spaces and equivariant maps.

In the Bredon model structure
a map f : X → Y is a fibration or a weak equivalence if the map
f H : X H → Y H of fixed point sets is one for each subgroup H.
Cofibrations are defined in terms of left lifting properties.

For each subgroup H ⊆ G, there is a pair of adjoint functors

G+ ∧
H
(−) : T H � T G : iGH ,

where iGH is the forgetful functor and G+ ∧
H
(−) is the induction

functor. Both categories have a Bredon model structure. The
above is known to be a Quillen adjunction, which is very
convenient. This means that the left (right) functor preserves
weak equivalences and cofibrations (fibrations).

We use the term equifibrant to describe this happy state of
affairs. We need an equifibrant model structure on the
category of G-spectra.
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Cofibrations are defined in terms of left lifting properties.

For each subgroup H ⊆ G, there is a pair of adjoint functors

G+ ∧
H
(−) : T H � T G : iGH ,

where iGH is the forgetful functor and G+ ∧
H
(−) is the induction

functor. Both categories have a Bredon model structure. The
above is known to be a Quillen adjunction, which is very
convenient. This means that the left (right) functor preserves
weak equivalences and cofibrations (fibrations).

We use the term equifibrant to describe this happy state of
affairs. We need an equifibrant model structure on the
category of G-spectra.
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Three ways to construct new model categories from old ones

1. Given a model category M and a small category J, we
define the projective model structure on the functor category
MJ as follows. A map (aka natural transformation) f : X → Y
between functors is a weak equivalence or a fibration if
fj : Xj → Yj is one for each object j in J. Cofibrations are
defined in terms of left lifting properties.



Model category
structures for

equivariant spectra

Mike Hill
Mike Hopkins
Doug Ravenel

Enriched category
theory

Some equivariant
homotopy theory

Three constructions of
new model categories

The main construction

Defining the four small
categories

Summary

1.6

Three ways to construct new model categories from old ones

1. Given a model category M and a small category J,

we
define the projective model structure on the functor category
MJ as follows. A map (aka natural transformation) f : X → Y
between functors is a weak equivalence or a fibration if
fj : Xj → Yj is one for each object j in J. Cofibrations are
defined in terms of left lifting properties.



Model category
structures for

equivariant spectra

Mike Hill
Mike Hopkins
Doug Ravenel

Enriched category
theory

Some equivariant
homotopy theory

Three constructions of
new model categories

The main construction

Defining the four small
categories

Summary

1.6

Three ways to construct new model categories from old ones

1. Given a model category M and a small category J, we
define the projective model structure on the functor category
MJ as follows.

A map (aka natural transformation) f : X → Y
between functors is a weak equivalence or a fibration if
fj : Xj → Yj is one for each object j in J. Cofibrations are
defined in terms of left lifting properties.



Model category
structures for

equivariant spectra

Mike Hill
Mike Hopkins
Doug Ravenel

Enriched category
theory

Some equivariant
homotopy theory

Three constructions of
new model categories

The main construction

Defining the four small
categories

Summary

1.6

Three ways to construct new model categories from old ones

1. Given a model category M and a small category J, we
define the projective model structure on the functor category
MJ as follows. A map (aka natural transformation) f : X → Y
between functors

is a weak equivalence or a fibration if
fj : Xj → Yj is one for each object j in J. Cofibrations are
defined in terms of left lifting properties.



Model category
structures for

equivariant spectra

Mike Hill
Mike Hopkins
Doug Ravenel

Enriched category
theory

Some equivariant
homotopy theory

Three constructions of
new model categories

The main construction

Defining the four small
categories

Summary

1.6

Three ways to construct new model categories from old ones

1. Given a model category M and a small category J, we
define the projective model structure on the functor category
MJ as follows. A map (aka natural transformation) f : X → Y
between functors is a weak equivalence or a fibration if
fj : Xj → Yj is one for each object j in J.

Cofibrations are
defined in terms of left lifting properties.



Model category
structures for

equivariant spectra

Mike Hill
Mike Hopkins
Doug Ravenel

Enriched category
theory

Some equivariant
homotopy theory

Three constructions of
new model categories

The main construction

Defining the four small
categories

Summary

1.6

Three ways to construct new model categories from old ones

1. Given a model category M and a small category J, we
define the projective model structure on the functor category
MJ as follows. A map (aka natural transformation) f : X → Y
between functors is a weak equivalence or a fibration if
fj : Xj → Yj is one for each object j in J. Cofibrations are
defined in terms of left lifting properties.



Model category
structures for

equivariant spectra

Mike Hill
Mike Hopkins
Doug Ravenel

Enriched category
theory

Some equivariant
homotopy theory

Three constructions of
new model categories

The main construction

Defining the four small
categories

Summary

1.7

Three ways to construct new model categories from old ones
(continued)

Dan Kan
1928-2013

2. Given a model category M and a pair of adjoint
functors

F : M � N : U,

the Kan transfer theorem says that under certain
conditions there is model structure on N that
makes the above a Quillen adjunction. A
morphism in N is a weak equivalence or a
fibration iff its image under U is one.
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Three ways to construct new model categories from old ones
(continued)

Pete
Bousfield

3. Bousfield localization.

Given a model category
M satisfying certain conditions, we can define a
new model structure M′ with the same underlying
category as follows. M′ has the same cofibrations
as M, but more weak equivalences and hence
more trivial cofibrations. Fibrations are maps
having the right lifting property with respect to all
trivial cofibrations, so there are fewer of them.
This means that fibrant replacement is more
interesting in M′ than in M.
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The main construction
Suppose we have a diagram of small categories enriched over
T G (to be named later),

J
+
G
� � k+ //
� _

i

��

J̃
+
G� _

ĩ
��

JG
� � k // J̃G

Then we get a diagram of enriched functor categories

[J+
G , T

G]

i!
��

[J̃+
G , T

G]

ĩ!
��

k∗
+oo

SpG [JG, T G] [J̃G, T G]
k∗

oo

where k∗ and k∗
+ are induced by precomposition, and i! and ĩ!

are induced by left Kan extension. The category JG is chosen
so that the functor category [JG, T G] is that of orthogonal
G-spectra and equivariant maps.
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ĩ
��

JG
� � k // J̃G

Then we get a diagram of enriched functor categories

[J+
G , T

G]

i!
��

[J̃+
G , T

G]

ĩ!
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are induced by left Kan extension. The category JG is chosen
so that the functor category [JG, T G] is that of orthogonal
G-spectra and equivariant maps.



Model category
structures for

equivariant spectra

Mike Hill
Mike Hopkins
Doug Ravenel

Enriched category
theory

Some equivariant
homotopy theory

Three constructions of
new model categories

The main construction

Defining the four small
categories

Summary

1.9

The main construction
Suppose we have a diagram of small categories enriched over
T G (to be named later),

J
+
G
� � k+ //
� _

i

��

J̃
+
G� _

ĩ
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The main construction
Suppose we have a diagram of small categories enriched over
T G (to be named later),

J
+
G
� � k+ //
� _

i

��

J̃
+
G� _

ĩ
��

JG
� � k // J̃G

Then we get a diagram of enriched functor categories

[J+
G , T

G]

i!
��

[J̃+
G , T

G]

ĩ!
��

k∗
+oo

SpG [JG, T G] [J̃G, T G]
k∗

oo

where k∗ and k∗
+ are induced by precomposition, and i! and ĩ!

are induced by left Kan extension. The category JG is chosen
so that the functor category [JG, T G] is that of orthogonal
G-spectra and equivariant maps.
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The main construction (continued)

[J+
G , T

G]

i!

��

[J̃+
G , T

G]

ĩ!

��

k∗
+oo

J
+
G

k+ //

i
��

J̃
+
G

ĩ��
JG

k // J̃G

SpG [JG, T G] [J̃G, T G]
k∗

oo

Now we proceed as follows.

(i) Start with the projective model structure on [J̃+
G , T

G]. It is
equifibrant, while the projective model structure on
[JG, T G] is not.

(ii) The composite functor i!k∗
+ = k ∗̃i! is a left adjoint, so we

can use the Kan transfer theorem to get a model structure
on SpG. This transferred model structure is also
equifibrant.

(iii) Expand the transferred class of weak equivalences on
SpG to that of stable equivalences and apply Bousfield
localization.
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The main construction (continued)
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G , T
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G , T
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ĩ!

��

k∗
+oo

J
+
G

k+ //

i
��

J̃
+
G

ĩ��
JG

k // J̃G

SpG [JG, T G] [J̃G, T G]
k∗

oo

Now we proceed as follows.
(i) Start with the projective model structure on [J̃+

G , T
G].

It is
equifibrant, while the projective model structure on
[JG, T G] is not.

(ii) The composite functor i!k∗
+ = k ∗̃i! is a left adjoint, so we

can use the Kan transfer theorem to get a model structure
on SpG. This transferred model structure is also
equifibrant.

(iii) Expand the transferred class of weak equivalences on
SpG to that of stable equivalences and apply Bousfield
localization.
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The main construction (continued)
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G]. It is
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The main construction (continued)
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G]. It is
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equifibrant.
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The main construction (continued)
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Now we proceed as follows.
(i) Start with the projective model structure on [J̃+
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G]. It is
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(ii) The composite functor i!k∗
+ = k ∗̃i! is a left adjoint,

so we
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The main construction (continued)
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G]. It is
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[JG, T G] is not.
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can use the Kan transfer theorem to get a model structure
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The main construction (continued)
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The main construction (continued)
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Now we proceed as follows.
(i) Start with the projective model structure on [J̃+

G , T
G]. It is

equifibrant, while the projective model structure on
[JG, T G] is not.

(ii) The composite functor i!k∗
+ = k ∗̃i! is a left adjoint, so we

can use the Kan transfer theorem to get a model structure
on SpG. This transferred model structure is also
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(iii) Expand the transferred class of weak equivalences on
SpG to that of stable equivalences
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The main construction (continued)
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SpG [JG, T G] [J̃G, T G]
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Now we proceed as follows.
(i) Start with the projective model structure on [J̃+

G , T
G]. It is

equifibrant, while the projective model structure on
[JG, T G] is not.

(ii) The composite functor i!k∗
+ = k ∗̃i! is a left adjoint, so we

can use the Kan transfer theorem to get a model structure
on SpG. This transferred model structure is also
equifibrant.

(iii) Expand the transferred class of weak equivalences on
SpG to that of stable equivalences and apply Bousfield
localization.
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1.11

Defining the four small categories

Mike Mandell Peter May

JG is the Mandell-May category.

Its objects are finite
dimensional orthogonal representations V of G. The morphism
space JG(V ,W ) is the Thom space of the following vector
bundle.

Let O(V ,W ) be the (possibly empty) Stiefel manifold of
isometric embeddings (which need not be equivariant) of V
into W . For each such embedding f : V ↪→ W one has the
orthogonal compliment V⊥ of f (V ) in W , which is the fiber of
our vector bundle over O(V ,W ).
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JG is the Mandell-May category. Its objects are finite
dimensional orthogonal representations V of G.

The morphism
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bundle.
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isometric embeddings (which need not be equivariant) of V
into W . For each such embedding f : V ↪→ W one has the
orthogonal compliment V⊥ of f (V ) in W , which is the fiber of
our vector bundle over O(V ,W ).
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Defining the four small categories

Mike Mandell Peter May

JG is the Mandell-May category. Its objects are finite
dimensional orthogonal representations V of G. The morphism
space JG(V ,W ) is the Thom space of the following vector
bundle.

Let O(V ,W ) be the (possibly empty) Stiefel manifold of
isometric embeddings (which need not be equivariant) of V
into W . For each such embedding f : V ↪→ W one has the
orthogonal compliment V⊥ of f (V ) in W ,

which is the fiber of
our vector bundle over O(V ,W ).
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Defining the four small categories

Mike Mandell Peter May

JG is the Mandell-May category. Its objects are finite
dimensional orthogonal representations V of G. The morphism
space JG(V ,W ) is the Thom space of the following vector
bundle.

Let O(V ,W ) be the (possibly empty) Stiefel manifold of
isometric embeddings (which need not be equivariant) of V
into W . For each such embedding f : V ↪→ W one has the
orthogonal compliment V⊥ of f (V ) in W , which is the fiber of
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1.12

Defining the four small categories (continued)

The morphism space JG(V ,W ) is the Thom space of a
certain vector bundle over the embedding space O(V ,W ).

The Mandell-May category is symmetric monoidal under direct
sum. This means that the functor category SpG = [JG, T G],
our category of equivariant spectra, is closed symmetric
monoidal by the Day Convolution Theorem.

The projective model structure on SpG is not equifibrant.

The positive Mandell-May category J
+
G is the full subcategory

of representations V for which the invariant subspace V G is
nontrivial.
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Defining the four small categories (continued)

The morphism space JG(V ,W ) is the Thom space of a
certain vector bundle over the embedding space O(V ,W ).

The Mandell-May category is symmetric monoidal under direct
sum.

This means that the functor category SpG = [JG, T G],
our category of equivariant spectra, is closed symmetric
monoidal by the Day Convolution Theorem.

The projective model structure on SpG is not equifibrant.

The positive Mandell-May category J
+
G is the full subcategory

of representations V for which the invariant subspace V G is
nontrivial.
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Defining the four small categories (continued)

The morphism space JG(V ,W ) is the Thom space of a
certain vector bundle over the embedding space O(V ,W ).

The Mandell-May category is symmetric monoidal under direct
sum. This means that the functor category SpG = [JG, T G],

our category of equivariant spectra, is closed symmetric
monoidal by the Day Convolution Theorem.

The projective model structure on SpG is not equifibrant.

The positive Mandell-May category J
+
G is the full subcategory

of representations V for which the invariant subspace V G is
nontrivial.
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Defining the four small categories (continued)

The morphism space JG(V ,W ) is the Thom space of a
certain vector bundle over the embedding space O(V ,W ).

The Mandell-May category is symmetric monoidal under direct
sum. This means that the functor category SpG = [JG, T G],
our category of equivariant spectra,

is closed symmetric
monoidal by the Day Convolution Theorem.

The projective model structure on SpG is not equifibrant.

The positive Mandell-May category J
+
G is the full subcategory

of representations V for which the invariant subspace V G is
nontrivial.
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Defining the four small categories (continued)

The morphism space JG(V ,W ) is the Thom space of a
certain vector bundle over the embedding space O(V ,W ).

The Mandell-May category is symmetric monoidal under direct
sum. This means that the functor category SpG = [JG, T G],
our category of equivariant spectra, is closed symmetric
monoidal by the Day Convolution Theorem.

The projective model structure on SpG is not equifibrant.

The positive Mandell-May category J
+
G is the full subcategory

of representations V for which the invariant subspace V G is
nontrivial.
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Defining the four small categories (continued)

The morphism space JG(V ,W ) is the Thom space of a
certain vector bundle over the embedding space O(V ,W ).

The Mandell-May category is symmetric monoidal under direct
sum. This means that the functor category SpG = [JG, T G],
our category of equivariant spectra, is closed symmetric
monoidal by the Day Convolution Theorem.

The projective model structure on SpG is not equifibrant.

The positive Mandell-May category J
+
G is the full subcategory

of representations V for which the invariant subspace V G is
nontrivial.
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Defining the four small categories (continued)

The morphism space JG(V ,W ) is the Thom space of a
certain vector bundle over the embedding space O(V ,W ).

The Mandell-May category is symmetric monoidal under direct
sum. This means that the functor category SpG = [JG, T G],
our category of equivariant spectra, is closed symmetric
monoidal by the Day Convolution Theorem.

The projective model structure on SpG is not equifibrant.

The positive Mandell-May category J
+
G is the full subcategory

of representations V for which the invariant subspace V G is
nontrivial.
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1.13

Defining the four small categories (continued)

J̃G is the equifibrant Mandell-May
category. Its objects are finite
dimensional orthogonal
representations of finite G-sets. For a
G-set T there is a category BT G
whose objects are the elements of T ,
and for each (t , γ) ∈ T × G there is a
morphism that sends t to γt . This
category is a split groupoid.

A representation V of T is a functor from BT G to the category
of finite dimensional real orthogonal vector spaces.

If T = G/H, such a functor is equivalent to an orthogonal
representation of H. In general for each orbit of T we get a
representation of its isotropy group.
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Defining the four small categories (continued)

J̃G is the equifibrant Mandell-May
category.

Its objects are finite
dimensional orthogonal
representations of finite G-sets. For a
G-set T there is a category BT G
whose objects are the elements of T ,
and for each (t , γ) ∈ T × G there is a
morphism that sends t to γt . This
category is a split groupoid.

A representation V of T is a functor from BT G to the category
of finite dimensional real orthogonal vector spaces.

If T = G/H, such a functor is equivalent to an orthogonal
representation of H. In general for each orbit of T we get a
representation of its isotropy group.
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Defining the four small categories (continued)

J̃G is the equifibrant Mandell-May
category. Its objects are finite
dimensional orthogonal
representations of finite G-sets.

For a
G-set T there is a category BT G
whose objects are the elements of T ,
and for each (t , γ) ∈ T × G there is a
morphism that sends t to γt . This
category is a split groupoid.

A representation V of T is a functor from BT G to the category
of finite dimensional real orthogonal vector spaces.

If T = G/H, such a functor is equivalent to an orthogonal
representation of H. In general for each orbit of T we get a
representation of its isotropy group.
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Defining the four small categories (continued)

J̃G is the equifibrant Mandell-May
category. Its objects are finite
dimensional orthogonal
representations of finite G-sets. For a
G-set T there is a category BT G
whose objects are the elements of T ,

and for each (t , γ) ∈ T × G there is a
morphism that sends t to γt . This
category is a split groupoid.

A representation V of T is a functor from BT G to the category
of finite dimensional real orthogonal vector spaces.

If T = G/H, such a functor is equivalent to an orthogonal
representation of H. In general for each orbit of T we get a
representation of its isotropy group.
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Defining the four small categories (continued)

J̃G is the equifibrant Mandell-May
category. Its objects are finite
dimensional orthogonal
representations of finite G-sets. For a
G-set T there is a category BT G
whose objects are the elements of T ,
and for each (t , γ) ∈ T × G there is a
morphism that sends t to γt .

This
category is a split groupoid.

A representation V of T is a functor from BT G to the category
of finite dimensional real orthogonal vector spaces.

If T = G/H, such a functor is equivalent to an orthogonal
representation of H. In general for each orbit of T we get a
representation of its isotropy group.
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Defining the four small categories (continued)

J̃G is the equifibrant Mandell-May
category. Its objects are finite
dimensional orthogonal
representations of finite G-sets. For a
G-set T there is a category BT G
whose objects are the elements of T ,
and for each (t , γ) ∈ T × G there is a
morphism that sends t to γt . This
category is a split groupoid.

A representation V of T is a functor from BT G to the category
of finite dimensional real orthogonal vector spaces.

If T = G/H, such a functor is equivalent to an orthogonal
representation of H. In general for each orbit of T we get a
representation of its isotropy group.
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Defining the four small categories (continued)

J̃G is the equifibrant Mandell-May
category. Its objects are finite
dimensional orthogonal
representations of finite G-sets. For a
G-set T there is a category BT G
whose objects are the elements of T ,
and for each (t , γ) ∈ T × G there is a
morphism that sends t to γt . This
category is a split groupoid.

A representation V of T is a functor from BT G to the category
of finite dimensional real orthogonal vector spaces.

If T = G/H, such a functor is equivalent to an orthogonal
representation of H. In general for each orbit of T we get a
representation of its isotropy group.
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1.13

Defining the four small categories (continued)

J̃G is the equifibrant Mandell-May
category. Its objects are finite
dimensional orthogonal
representations of finite G-sets. For a
G-set T there is a category BT G
whose objects are the elements of T ,
and for each (t , γ) ∈ T × G there is a
morphism that sends t to γt . This
category is a split groupoid.

A representation V of T is a functor from BT G to the category
of finite dimensional real orthogonal vector spaces.

If T = G/H, such a functor is equivalent to an orthogonal
representation of H.

In general for each orbit of T we get a
representation of its isotropy group.
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1.13

Defining the four small categories (continued)

J̃G is the equifibrant Mandell-May
category. Its objects are finite
dimensional orthogonal
representations of finite G-sets. For a
G-set T there is a category BT G
whose objects are the elements of T ,
and for each (t , γ) ∈ T × G there is a
morphism that sends t to γt . This
category is a split groupoid.

A representation V of T is a functor from BT G to the category
of finite dimensional real orthogonal vector spaces.

If T = G/H, such a functor is equivalent to an orthogonal
representation of H. In general for each orbit of T we get a
representation of its isotropy group.
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1.14

Defining the four small categories (continued)

Recall that Mandell-May morphism objects involved orthogonal
embeddings V ↪→ W .

An orthogonal embedding
f : (S,V ) → (T ,W ) consists of the following data.

• For each t ∈ T an element f (t) ∈ S such that
dimVf (t) ≤ dimWt .

• For each t ∈ T an orthogonal embedding ft : Vf (t) ↪→ Wt .

We call the map f : T → S a choice. It need not be equivariant.
We say the embedding f is chosen by f . For a given (S,V ) and
(T ,W ), there may be no choices.

Such orthogonal embeddings can be composed in an obvious
way.

We denote the space of all such embeddings chosen by f by

O((S,V ), (T ,W ))f .

It is a product of ordinary Stiefel manifolds.
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1.14

Defining the four small categories (continued)

Recall that Mandell-May morphism objects involved orthogonal
embeddings V ↪→ W . An orthogonal embedding
f : (S,V ) → (T ,W ) consists of the following data.

• For each t ∈ T an element f (t) ∈ S such that
dimVf (t) ≤ dimWt .

• For each t ∈ T an orthogonal embedding ft : Vf (t) ↪→ Wt .

We call the map f : T → S a choice. It need not be equivariant.
We say the embedding f is chosen by f . For a given (S,V ) and
(T ,W ), there may be no choices.

Such orthogonal embeddings can be composed in an obvious
way.

We denote the space of all such embeddings chosen by f by

O((S,V ), (T ,W ))f .

It is a product of ordinary Stiefel manifolds.
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1.14

Defining the four small categories (continued)

Recall that Mandell-May morphism objects involved orthogonal
embeddings V ↪→ W . An orthogonal embedding
f : (S,V ) → (T ,W ) consists of the following data.

• For each t ∈ T an element f (t) ∈ S

such that
dimVf (t) ≤ dimWt .

• For each t ∈ T an orthogonal embedding ft : Vf (t) ↪→ Wt .

We call the map f : T → S a choice. It need not be equivariant.
We say the embedding f is chosen by f . For a given (S,V ) and
(T ,W ), there may be no choices.

Such orthogonal embeddings can be composed in an obvious
way.

We denote the space of all such embeddings chosen by f by

O((S,V ), (T ,W ))f .

It is a product of ordinary Stiefel manifolds.
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1.14

Defining the four small categories (continued)

Recall that Mandell-May morphism objects involved orthogonal
embeddings V ↪→ W . An orthogonal embedding
f : (S,V ) → (T ,W ) consists of the following data.

• For each t ∈ T an element f (t) ∈ S such that
dimVf (t) ≤ dimWt .

• For each t ∈ T an orthogonal embedding ft : Vf (t) ↪→ Wt .

We call the map f : T → S a choice. It need not be equivariant.
We say the embedding f is chosen by f . For a given (S,V ) and
(T ,W ), there may be no choices.

Such orthogonal embeddings can be composed in an obvious
way.

We denote the space of all such embeddings chosen by f by

O((S,V ), (T ,W ))f .

It is a product of ordinary Stiefel manifolds.
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1.14

Defining the four small categories (continued)

Recall that Mandell-May morphism objects involved orthogonal
embeddings V ↪→ W . An orthogonal embedding
f : (S,V ) → (T ,W ) consists of the following data.

• For each t ∈ T an element f (t) ∈ S such that
dimVf (t) ≤ dimWt .

• For each t ∈ T an orthogonal embedding ft : Vf (t) ↪→ Wt .

We call the map f : T → S a choice. It need not be equivariant.
We say the embedding f is chosen by f . For a given (S,V ) and
(T ,W ), there may be no choices.

Such orthogonal embeddings can be composed in an obvious
way.

We denote the space of all such embeddings chosen by f by

O((S,V ), (T ,W ))f .

It is a product of ordinary Stiefel manifolds.
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1.14

Defining the four small categories (continued)

Recall that Mandell-May morphism objects involved orthogonal
embeddings V ↪→ W . An orthogonal embedding
f : (S,V ) → (T ,W ) consists of the following data.

• For each t ∈ T an element f (t) ∈ S such that
dimVf (t) ≤ dimWt .

• For each t ∈ T an orthogonal embedding ft : Vf (t) ↪→ Wt .

We call the map f : T → S a choice.

It need not be equivariant.
We say the embedding f is chosen by f . For a given (S,V ) and
(T ,W ), there may be no choices.

Such orthogonal embeddings can be composed in an obvious
way.

We denote the space of all such embeddings chosen by f by

O((S,V ), (T ,W ))f .

It is a product of ordinary Stiefel manifolds.
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1.14

Defining the four small categories (continued)

Recall that Mandell-May morphism objects involved orthogonal
embeddings V ↪→ W . An orthogonal embedding
f : (S,V ) → (T ,W ) consists of the following data.

• For each t ∈ T an element f (t) ∈ S such that
dimVf (t) ≤ dimWt .

• For each t ∈ T an orthogonal embedding ft : Vf (t) ↪→ Wt .

We call the map f : T → S a choice. It need not be equivariant.

We say the embedding f is chosen by f . For a given (S,V ) and
(T ,W ), there may be no choices.

Such orthogonal embeddings can be composed in an obvious
way.

We denote the space of all such embeddings chosen by f by

O((S,V ), (T ,W ))f .

It is a product of ordinary Stiefel manifolds.
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1.14

Defining the four small categories (continued)

Recall that Mandell-May morphism objects involved orthogonal
embeddings V ↪→ W . An orthogonal embedding
f : (S,V ) → (T ,W ) consists of the following data.

• For each t ∈ T an element f (t) ∈ S such that
dimVf (t) ≤ dimWt .

• For each t ∈ T an orthogonal embedding ft : Vf (t) ↪→ Wt .

We call the map f : T → S a choice. It need not be equivariant.
We say the embedding f is chosen by f .

For a given (S,V ) and
(T ,W ), there may be no choices.

Such orthogonal embeddings can be composed in an obvious
way.

We denote the space of all such embeddings chosen by f by

O((S,V ), (T ,W ))f .

It is a product of ordinary Stiefel manifolds.
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1.14

Defining the four small categories (continued)

Recall that Mandell-May morphism objects involved orthogonal
embeddings V ↪→ W . An orthogonal embedding
f : (S,V ) → (T ,W ) consists of the following data.

• For each t ∈ T an element f (t) ∈ S such that
dimVf (t) ≤ dimWt .

• For each t ∈ T an orthogonal embedding ft : Vf (t) ↪→ Wt .

We call the map f : T → S a choice. It need not be equivariant.
We say the embedding f is chosen by f . For a given (S,V ) and
(T ,W ), there may be no choices.

Such orthogonal embeddings can be composed in an obvious
way.

We denote the space of all such embeddings chosen by f by

O((S,V ), (T ,W ))f .

It is a product of ordinary Stiefel manifolds.
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1.14

Defining the four small categories (continued)

Recall that Mandell-May morphism objects involved orthogonal
embeddings V ↪→ W . An orthogonal embedding
f : (S,V ) → (T ,W ) consists of the following data.

• For each t ∈ T an element f (t) ∈ S such that
dimVf (t) ≤ dimWt .

• For each t ∈ T an orthogonal embedding ft : Vf (t) ↪→ Wt .

We call the map f : T → S a choice. It need not be equivariant.
We say the embedding f is chosen by f . For a given (S,V ) and
(T ,W ), there may be no choices.

Such orthogonal embeddings can be composed in an obvious
way.

We denote the space of all such embeddings chosen by f by

O((S,V ), (T ,W ))f .

It is a product of ordinary Stiefel manifolds.
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1.14

Defining the four small categories (continued)

Recall that Mandell-May morphism objects involved orthogonal
embeddings V ↪→ W . An orthogonal embedding
f : (S,V ) → (T ,W ) consists of the following data.

• For each t ∈ T an element f (t) ∈ S such that
dimVf (t) ≤ dimWt .

• For each t ∈ T an orthogonal embedding ft : Vf (t) ↪→ Wt .

We call the map f : T → S a choice. It need not be equivariant.
We say the embedding f is chosen by f . For a given (S,V ) and
(T ,W ), there may be no choices.

Such orthogonal embeddings can be composed in an obvious
way.

We denote the space of all such embeddings chosen by f by

O((S,V ), (T ,W ))f .

It is a product of ordinary Stiefel manifolds.



Model category
structures for

equivariant spectra

Mike Hill
Mike Hopkins
Doug Ravenel

Enriched category
theory

Some equivariant
homotopy theory

Three constructions of
new model categories

The main construction

Defining the four small
categories

Summary

1.14

Defining the four small categories (continued)

Recall that Mandell-May morphism objects involved orthogonal
embeddings V ↪→ W . An orthogonal embedding
f : (S,V ) → (T ,W ) consists of the following data.

• For each t ∈ T an element f (t) ∈ S such that
dimVf (t) ≤ dimWt .

• For each t ∈ T an orthogonal embedding ft : Vf (t) ↪→ Wt .

We call the map f : T → S a choice. It need not be equivariant.
We say the embedding f is chosen by f . For a given (S,V ) and
(T ,W ), there may be no choices.

Such orthogonal embeddings can be composed in an obvious
way.

We denote the space of all such embeddings chosen by f by

O((S,V ), (T ,W ))f .

It is a product of ordinary Stiefel manifolds.
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1.14

Defining the four small categories (continued)

Recall that Mandell-May morphism objects involved orthogonal
embeddings V ↪→ W . An orthogonal embedding
f : (S,V ) → (T ,W ) consists of the following data.

• For each t ∈ T an element f (t) ∈ S such that
dimVf (t) ≤ dimWt .

• For each t ∈ T an orthogonal embedding ft : Vf (t) ↪→ Wt .

We call the map f : T → S a choice. It need not be equivariant.
We say the embedding f is chosen by f . For a given (S,V ) and
(T ,W ), there may be no choices.

Such orthogonal embeddings can be composed in an obvious
way.

We denote the space of all such embeddings chosen by f by

O((S,V ), (T ,W ))f .

It is a product of ordinary Stiefel manifolds.
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1.14

Defining the four small categories (continued)

Recall that Mandell-May morphism objects involved orthogonal
embeddings V ↪→ W . An orthogonal embedding
f : (S,V ) → (T ,W ) consists of the following data.

• For each t ∈ T an element f (t) ∈ S such that
dimVf (t) ≤ dimWt .

• For each t ∈ T an orthogonal embedding ft : Vf (t) ↪→ Wt .

We call the map f : T → S a choice. It need not be equivariant.
We say the embedding f is chosen by f . For a given (S,V ) and
(T ,W ), there may be no choices.

Such orthogonal embeddings can be composed in an obvious
way.

We denote the space of all such embeddings chosen by f by

O((S,V ), (T ,W ))f .

It is a product of ordinary Stiefel manifolds.
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1.15

Defining the four small categories (continued)

Given an orthogonal embedding

(S,V )
f // (T ,W ),

the orthogonal complement f⊥ of f is the direct sum of the
orthogonal complements of ft(Vf (t)) in Wt . Using these direct
sums as fibers, we get a vector bundle over the space
O((S,V ), (T ,W ))f of embeddings chosen by f . We denote its
Thom space by

J̃G((S,V ), (T ,W ))f .

It is a smash product of ordinary Mandell-May morphism
spaces.

The morphism object in J̃G is

J̃G((S,V ), (T ,W )) :=
∨

f :T→S

J̃G((S,V ), (T ,W ))f ,

the one point union over all possible choices f .
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1.15

Defining the four small categories (continued)

Given an orthogonal embedding

(S,V )
f // (T ,W ),

the orthogonal complement f⊥ of f is the direct sum

of the
orthogonal complements of ft(Vf (t)) in Wt . Using these direct
sums as fibers, we get a vector bundle over the space
O((S,V ), (T ,W ))f of embeddings chosen by f . We denote its
Thom space by

J̃G((S,V ), (T ,W ))f .

It is a smash product of ordinary Mandell-May morphism
spaces.

The morphism object in J̃G is

J̃G((S,V ), (T ,W )) :=
∨

f :T→S

J̃G((S,V ), (T ,W ))f ,

the one point union over all possible choices f .
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1.15

Defining the four small categories (continued)

Given an orthogonal embedding

(S,V )
f // (T ,W ),

the orthogonal complement f⊥ of f is the direct sum of the
orthogonal complements of ft(Vf (t)) in Wt .

Using these direct
sums as fibers, we get a vector bundle over the space
O((S,V ), (T ,W ))f of embeddings chosen by f . We denote its
Thom space by

J̃G((S,V ), (T ,W ))f .

It is a smash product of ordinary Mandell-May morphism
spaces.

The morphism object in J̃G is

J̃G((S,V ), (T ,W )) :=
∨

f :T→S

J̃G((S,V ), (T ,W ))f ,

the one point union over all possible choices f .
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1.15

Defining the four small categories (continued)

Given an orthogonal embedding

(S,V )
f // (T ,W ),

the orthogonal complement f⊥ of f is the direct sum of the
orthogonal complements of ft(Vf (t)) in Wt . Using these direct
sums as fibers,

we get a vector bundle over the space
O((S,V ), (T ,W ))f of embeddings chosen by f . We denote its
Thom space by

J̃G((S,V ), (T ,W ))f .

It is a smash product of ordinary Mandell-May morphism
spaces.

The morphism object in J̃G is

J̃G((S,V ), (T ,W )) :=
∨

f :T→S

J̃G((S,V ), (T ,W ))f ,

the one point union over all possible choices f .
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1.15

Defining the four small categories (continued)

Given an orthogonal embedding

(S,V )
f // (T ,W ),

the orthogonal complement f⊥ of f is the direct sum of the
orthogonal complements of ft(Vf (t)) in Wt . Using these direct
sums as fibers, we get a vector bundle over the space
O((S,V ), (T ,W ))f

of embeddings chosen by f . We denote its
Thom space by

J̃G((S,V ), (T ,W ))f .

It is a smash product of ordinary Mandell-May morphism
spaces.

The morphism object in J̃G is

J̃G((S,V ), (T ,W )) :=
∨

f :T→S

J̃G((S,V ), (T ,W ))f ,

the one point union over all possible choices f .
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1.15

Defining the four small categories (continued)

Given an orthogonal embedding

(S,V )
f // (T ,W ),

the orthogonal complement f⊥ of f is the direct sum of the
orthogonal complements of ft(Vf (t)) in Wt . Using these direct
sums as fibers, we get a vector bundle over the space
O((S,V ), (T ,W ))f of embeddings chosen by f .

We denote its
Thom space by

J̃G((S,V ), (T ,W ))f .

It is a smash product of ordinary Mandell-May morphism
spaces.

The morphism object in J̃G is

J̃G((S,V ), (T ,W )) :=
∨

f :T→S

J̃G((S,V ), (T ,W ))f ,

the one point union over all possible choices f .
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1.15

Defining the four small categories (continued)

Given an orthogonal embedding

(S,V )
f // (T ,W ),

the orthogonal complement f⊥ of f is the direct sum of the
orthogonal complements of ft(Vf (t)) in Wt . Using these direct
sums as fibers, we get a vector bundle over the space
O((S,V ), (T ,W ))f of embeddings chosen by f . We denote its
Thom space by

J̃G((S,V ), (T ,W ))f .

It is a smash product of ordinary Mandell-May morphism
spaces.

The morphism object in J̃G is

J̃G((S,V ), (T ,W )) :=
∨

f :T→S

J̃G((S,V ), (T ,W ))f ,

the one point union over all possible choices f .
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1.15

Defining the four small categories (continued)

Given an orthogonal embedding

(S,V )
f // (T ,W ),

the orthogonal complement f⊥ of f is the direct sum of the
orthogonal complements of ft(Vf (t)) in Wt . Using these direct
sums as fibers, we get a vector bundle over the space
O((S,V ), (T ,W ))f of embeddings chosen by f . We denote its
Thom space by

J̃G((S,V ), (T ,W ))f .

It is a smash product of ordinary Mandell-May morphism
spaces.

The morphism object in J̃G is

J̃G((S,V ), (T ,W )) :=
∨

f :T→S

J̃G((S,V ), (T ,W ))f ,

the one point union over all possible choices f .
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1.15

Defining the four small categories (continued)

Given an orthogonal embedding

(S,V )
f // (T ,W ),

the orthogonal complement f⊥ of f is the direct sum of the
orthogonal complements of ft(Vf (t)) in Wt . Using these direct
sums as fibers, we get a vector bundle over the space
O((S,V ), (T ,W ))f of embeddings chosen by f . We denote its
Thom space by

J̃G((S,V ), (T ,W ))f .

It is a smash product of ordinary Mandell-May morphism
spaces.

The morphism object in J̃G is

J̃G((S,V ), (T ,W )) :=
∨

f :T→S

J̃G((S,V ), (T ,W ))f ,

the one point union over all possible choices f .
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1.15

Defining the four small categories (continued)

Given an orthogonal embedding

(S,V )
f // (T ,W ),

the orthogonal complement f⊥ of f is the direct sum of the
orthogonal complements of ft(Vf (t)) in Wt . Using these direct
sums as fibers, we get a vector bundle over the space
O((S,V ), (T ,W ))f of embeddings chosen by f . We denote its
Thom space by

J̃G((S,V ), (T ,W ))f .

It is a smash product of ordinary Mandell-May morphism
spaces.

The morphism object in J̃G is

J̃G((S,V ), (T ,W )) :=
∨

f :T→S

J̃G((S,V ), (T ,W ))f ,

the one point union over all possible choices f .
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Defining the four small categories (continued)

The morphism object in J̃G is

J̃G((S,V ), (T ,W )) :=
∨

f :T→S

J̃G((S,V ), (T ,W ))f ,

the one point union over all possible choices.

This category is symmetric monoidal under Cartesian product,
so the functor category [J̃G, T G] is closed symmetric monoidal
by the Day Convolution Theorem.

The ordinary Mandell-May category JG is the full subcategory
of J̃G with objects of the form (G/G,V ).

The positive equifibrant Mandell-May category J̃
+
G is the full

subcategory with objects (T ,V ) in which the representation for
each orbit of T has a nontrivial invariant vector.
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1.16

Defining the four small categories (continued)

The morphism object in J̃G is

J̃G((S,V ), (T ,W )) :=
∨

f :T→S

J̃G((S,V ), (T ,W ))f ,

the one point union over all possible choices.

This category is symmetric monoidal under Cartesian product,

so the functor category [J̃G, T G] is closed symmetric monoidal
by the Day Convolution Theorem.

The ordinary Mandell-May category JG is the full subcategory
of J̃G with objects of the form (G/G,V ).

The positive equifibrant Mandell-May category J̃
+
G is the full

subcategory with objects (T ,V ) in which the representation for
each orbit of T has a nontrivial invariant vector.
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Defining the four small categories (continued)
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Defining the four small categories (continued)
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The main construction again

[J+
G , T

G]

i!

��

[J̃+
G , T

G]

ĩ!

��

k∗
+oo

J
+
G

k+ //

i
��

J̃
+
G

ĩ��
JG

k // J̃G

SpG [JG, T G] [J̃G, T G]
k∗

oo

(i) Start with the projective model structure on [J̃+
G , T

G].
(ii) Use Kan’s theorem to transfer it to a model structure on

SpG. This is the positive equifibrant model structure.
(iii) Expand the class of weak equivalences on SpG to that of

stable equivalences and apply Bousfield localization. The
result is the positive stable equifibrant model structure.
The positivity condition enables us to define a model
structure on the category of equivariant commutative ring
spectra.
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THANK YOU!
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