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of pointed topological spaces under smash product. A closed
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transformations. If C and D are categories enriched over V, we
denote by [C, D] the category of enriched functors C — D.

Day Convolution Theorem (1970)

Let(_7,®,0) be a small symmetric monoidal category
enriched over a cocomplete closed symmetric monoidal
category V. Then the enriched functor category [ 7,V)] is
closed symmetric monoidal.

Model category
structures for
equivariant spectra

Mike Hill
Mike Hopkins
Doug Ravenel

Some equivariant
homotopy theory

Three constructions of
new model categories

The main construction

Defining the four small
categories

Summary



Enriched category theory (continued)

Day Convolution Theorem (1970)

Let(_7,®,0) be a small symmetric monoidal category
enriched over a cocomplete closed symmetric monoidal
category (V,®, 1). Then the enriched functor category [ 7, V]
is closed symmetric monoidal.

Model category
structures for
equivariant spectra

Mike Hill
Mike Hopkins
Doug Ravenel

Some equivariant
homotopy theory

Three constructions of
new model categories

The main construction

Defining the four small
categories

Summary



Enriched category theory (continued)

Day Convolution Theorem (1970)

Let(_7,®,0) be a small symmetric monoidal category
enriched over a cocomplete closed symmetric monoidal
category (V,®, 1). Then the enriched functor category [ 7, V]
is closed symmetric monoidal.

To define this monoidal structure,

Model category
structures for
equivariant spectra

=

o

Mike Hill
Mike Hopkins
Doug Ravenel

Some equivariant
homotopy theory

Three constructions of
new model categories

The main construction

Defining the four small
categories

Summary



Enriched category theory (continued)

Day Convolution Theorem (1970)

Let(_7,®,0) be a small symmetric monoidal category
enriched over a cocomplete closed symmetric monoidal
category (V,®, 1). Then the enriched functor category [ 7, V]
is closed symmetric monoidal.

To define this monoidal structure, suppose we have two
functors X, Y : 7= V.

Model category
structures for
equivariant spectra

[

Mike Hill
Mike Hopkins
Doug Ravenel

Some equivariant
homotopy theory

Three constructions of
new model categories

The main construction

Defining the four small
categories

Summary



Enriched category theory (continued)

Day Convolution Theorem (1970)

Let(_7,®,0) be a small symmetric monoidal category
enriched over a cocomplete closed symmetric monoidal
category (V,®, 1). Then the enriched functor category [ 7, V]
is closed symmetric monoidal.

To define this monoidal structure, suppose we have two
functors X, Y : #— V. Consider the diagram

Model category
structures for
equivariant spectra

Mike Hill
Mike Hopkins
Doug Ravenel

Some equivariant
homotopy theory

Three constructions of
new model categories

The main construction

Defining the four small
categories

Summary



Enriched category theory (continued)

Day Convolution Theorem (1970)

Let(_7,®,0) be a small symmetric monoidal category
enriched over a cocomplete closed symmetric monoidal
category (V,®, 1). Then the enriched functor category [ 7, V]
is closed symmetric monoidal.

To define this monoidal structure, suppose we have two
functors X, Y : #— V. Consider the diagram

ard

Model category
structures for
equivariant spectra

Mike Hill
Mike Hopkins
Doug Ravenel

Some equivariant
homotopy theory

Three constructions of
new model categories

The main construction

Defining the four small
categories

Summary



Enriched category theory (continued)

Day Convolution Theorem (1970)

Let(_7,®,0) be a small symmetric monoidal category
enriched over a cocomplete closed symmetric monoidal
category (V,®, 1). Then the enriched functor category [ 7, V]
is closed symmetric monoidal.

To define this monoidal structure, suppose we have two
functors X, Y : #— V. Consider the diagram

ard -

Model category
structures for
equivariant spectra

Mike Hill
Mike Hopkins
Doug Ravenel

Some equivariant
homotopy theory

Three constructions of
new model categories

The main construction

Defining the four small
categories

Summary



Enriched category theory (continued)

Day Convolution Theorem (1970)

Let(_7,®,0) be a small symmetric monoidal category
enriched over a cocomplete closed symmetric monoidal
category (V,®, 1). Then the enriched functor category [ 7, V)]
is closed symmetric monoidal.

To define this monoidal structure, suppose we have two
functors X, Y : #— V. Consider the diagram

XxY ®
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S

The functor X ® Y is the left Kan extension of the composite
®(X x Y) along &.
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Enriched category theory (continued)

Day Convolution Theorem (1970)

Let(_7,®,0) be a small symmetric monoidal category
enriched over a cocomplete closed symmetric monoidal
category (V,®,1). Then the enriched functor category | #, V)]
is closed symmetric monoidal.

To define this monoidal structure, suppose we have two
functors X, Y : #— V. Consider the diagram

XxY ®
Ix 7 VXV4;V

-
-
R //X®Y
-

S

The functor X ® Y is the left Kan extension of the composite
®(X x Y) along &. It exists because # x _#is small and V is
cocomplete.
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Some equivariant homotopy theory

For a finite group G, let 7¢ be the category of pointed
G-spaces and equivariant maps. In the Bredon model structure
amap f: X — Y is afibration or a weak equivalence if the map
. XH — YH of fixed point sets is one for each subgroup H.
Cofibrations are defined in terms of left lifting properties.

For each subgroup H C G, there is a pair of adjoint functors
G N (=) TS TO S,

where iZ is the forgetful functor and G ﬁ (—) is the induction
functor.
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G-spaces and equivariant maps. In the Bredon model structure
amap f: X — Y is afibration or a weak equivalence if the map
. XH — YH of fixed point sets is one for each subgroup H.
Cofibrations are defined in terms of left lifting properties.

For each subgroup H C G, there is a pair of adjoint functors
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For a finite group G, let 7¢ be the category of pointed
G-spaces and equivariant maps. In the Bredon model structure
amap f: X — Y is afibration or a weak equivalence if the map
. XH — YH of fixed point sets is one for each subgroup H.
Cofibrations are defined in terms of left lifting properties.

For each subgroup H C G, there is a pair of adjoint functors
G N (=) TS TO S,

where iZ is the forgetful functor and G ﬁ (—) is the induction

functor. Both categories have a Bredon model structure. The
above is known to be a Quillen adjunction, which is very
convenient.
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For a finite group G, let 7¢ be the category of pointed
G-spaces and equivariant maps. In the Bredon model structure
amap f: X — Y is afibration or a weak equivalence if the map
. XH — YH of fixed point sets is one for each subgroup H.
Cofibrations are defined in terms of left lifting properties.

For each subgroup H C G, there is a pair of adjoint functors
G N (=) TS TO S,

where iZ is the forgetful functor and G ﬁ (—) is the induction

functor. Both categories have a Bredon model structure. The
above is known to be a Quillen adjunction, which is very
convenient. This means that the left (right) functor preserves
weak equivalences and cofibrations (fibrations).
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Some equivariant homotopy theory

For a finite group G, let 7¢ be the category of pointed
G-spaces and equivariant maps. In the Bredon model structure
amap f: X — Y is afibration or a weak equivalence if the map
. XH — YH of fixed point sets is one for each subgroup H.
Cofibrations are defined in terms of left lifting properties.

For each subgroup H C G, there is a pair of adjoint functors
G N (=) TS TO S,

where iZ is the forgetful functor and G ﬁ (—) is the induction

functor. Both categories have a Bredon model structure. The
above is known to be a Quillen adjunction, which is very
convenient. This means that the left (right) functor preserves
weak equivalences and cofibrations (fibrations).

We use the term equifibrant to describe this happy state of
affairs.

Model category
structures for
equivariant spectra

Mike Hill
Mike Hopkins
Doug Ravenel

Enriched category
theory

Three constructions of
new model categories

The main construction

Defining the four small
categories

Summary



Some equivariant homotopy theory

For a finite group G, let 7¢ be the category of pointed

G-spaces and equivariant maps. In the Bredon model structure
amap f: X — Y is afibration or a weak equivalence if the map

. XH — YH of fixed point sets is one for each subgroup H.
Cofibrations are defined in terms of left lifting properties.

For each subgroup H C G, there is a pair of adjoint functors
G N (=) TS TO S,

where iZ is the forgetful functor and G ﬁ (—) is the induction

functor. Both categories have a Bredon model structure. The
above is known to be a Quillen adjunction, which is very
convenient. This means that the left (right) functor preserves
weak equivalences and cofibrations (fibrations).

We use the term equifibrant to describe this happy state of
affairs. We need an equifibrant model structure on the
category of G-spectra.
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Three ways to construct new model categories from old ones
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Three ways to construct new model categories from old ones

1. Given a model category M and a small category J, we
define the projective model structure on the functor category
M as follows.

Model category
structures for
equivariant spectra

A
S
Mike Hill

Mike Hopkins
Doug Ravenel

Enriched category
theory

Some equivariant
homotopy theory

The main construction

Defining the four small
categories

Summary
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1. Given a model category M and a small category J, we
define the projective model structure on the functor category
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Three ways to construct new model categories from old ones

1. Given a model category M and a small category J, we
define the projective model structure on the functor category
M as follows. A map (aka natural transformation) f: X — Y
between functors is a weak equivalence or a fibration if

fi : X; — Y; is one for each object j in J.
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Three ways to construct new model categories from old ones

1. Given a model category M and a small category J, we
define the projective model structure on the functor category
M as follows. A map (aka natural transformation) f: X — Y
between functors is a weak equivalence or a fibration if

fi : X; — Y; is one for each object j in J. Cofibrations are
defined in terms of left lifting properties.
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Three ways to construct new model categories from old ones
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3. Bousfield localization. Given a model category
M satisfying certain conditions, we can define a
new model structure M’ with the same underlying
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3. Bousfield localization. Given a model category
M satisfying certain conditions, we can define a
new model structure M’ with the same underlying
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TC (to be named later),

k —
S
i 7
P R
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Then we get a diagram of enriched functor categories

K

[/, T€] [ 76,79

y h

Sp® = 76, T¢ ~———— [ 76,79

where k* and k; are induced by precomposition,
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The main construction
Suppose we have a diagram of small categories enriched over
TC (to be named later),

k —
S
i 7
P R
I Ja
Then we get a diagram of enriched functor categories

K

[/, T€] [ 76,79

y h

Sp® = 76, T¢ ~———— [ 76,79

where k* and k3 are induced by precomposition, and i and i
are induced by left Kan extension.
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The main construction

Suppose we have a diagram of small categories enriched over

TC (to be named later),

k —
S
i i

/Gc—k> ;%G

Then we get a diagram of enriched functor categories

(6T~ (75,79
Sp® = 76, T¢ ~———— [ 76,79

where k* and k3 are induced by precomposition, and i and i
are induced by left Kan extension. The category #g is chosen
so that the functor category [_#g, T ¢] is that of orthogonal

G-spectra and equivariant maps.
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Now we proceed as follows.

(i) Start with the projective model structure on [ 7, T€].
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Now we proceed as follows.
(i) Start with the projective model structure on [ 7§, T€]. ltis
equifibrant, while the projective model structure on
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The main construction (continued)
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Now we proceed as follows.

(i) Start with the projective model structure on [;@,TG]. Itis
equifibrant, while the projective model structure on
[ 76, T is not.
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Model category
structures for
equivariant spectra

=

o

Mike Hill
Mike Hopkins
Doug Ravenel

Enriched category
theory

Some equivariant
homotopy theory

Three constructions of
new model categories

Defining the four small
categories

Summary



The main construction (continued)
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Now we proceed as follows.

(i) Start with the projective model structure on [ 7§, T€]. ltis
equifibrant, while the projective model structure on
[ 76, T is not.

(i) The composite functor ik} = k*i, is a left adjoint, so we
can use the Kan transfer theorem to get a model structure
on SpC.
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The main construction (continued)
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(76 T€)

Spf =[ 76, T
Now we proceed as follows.

(i) Start with the projective model structure on [ 7§, T€]. ltis
equifibrant, while the projective model structure on
[ 76, T is not.

(i) The composite functor ik} = k*i, is a left adjoint, so we
can use the Kan transfer theorem to get a model structure
on SpC. This transferred model structure is also
equifibrant.
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The main construction (continued)
ki "7+ TG
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(76 T€)

Spf =[ 76, T
Now we proceed as follows.

(i) Start with the projective model structure on [ 7§, T€]. ltis
equifibrant, while the projective model structure on
[ 76, T is not.

(i) The composite functor ik} = k*i, is a left adjoint, so we
can use the Kan transfer theorem to get a model structure
on SpC. This transferred model structure is also
equifibrant.

(iiiy Expand the transferred class of weak equivalences on
SpC to that of stable equivalences
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The main construction (continued)
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Spf =[ 76, T
Now we proceed as follows.

(i) Start with the projective model structure on [ 7§, T€]. ltis
equifibrant, while the projective model structure on
[ 76, T is not.

(i) The composite functor ik} = k*i, is a left adjoint, so we
can use the Kan transfer theorem to get a model structure
on SpC. This transferred model structure is also
equifibrant.

(iiiy Expand the transferred class of weak equivalences on
Sp€ to that of stable equivalences and apply Bousfield
localization.
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J¢ is the Mandell-May category.
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Ja is the Mandell-May category. Its objects are finite
dimensional orthogonal representations V of G.
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Defining the four small categories

Ja is the Mandell-May category. Its objects are finite
dimensional orthogonal representations V of G. The morphism
space Zg(V, W) is the Thom space of the following vector

bundle.

-

Mike Mandell

Peter May

Model category
structures for
equivariant spectra

Mike Hill
Mike Hopkins
Doug Ravenel

Enriched category
theory

Some equivariant
homotopy theory

Three constructions of
new model categories

The main construction

Summary



Defining the four small categories

»

Mike Mandell Peter May

Ja is the Mandell-May category. Its objects are finite
dimensional orthogonal representations V of G. The morphism
space Zg(V, W) is the Thom space of the following vector
bundle.

Let O(V, W) be the (possibly empty) Stiefel manifold of
isometric embeddings (which need not be equivariant) of V

into W.
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Defining the four small categories

Mike Mandell Peter May

Ja is the Mandell-May category. Its objects are finite
dimensional orthogonal representations V of G. The morphism
space Zg(V, W) is the Thom space of the following vector
bundle.

Let O(V, W) be the (possibly empty) Stiefel manifold of
isometric embeddings (which need not be equivariant) of V
into W. For each such embedding f: V — W one has the
orthogonal compliment V+ of f(V) in W,
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Defining the four small categories

Mike Mandell Peter May
Ja is the Mandell-May category. Its objects are finite
dimensional orthogonal representations V of G. The morphism
space Zg(V, W) is the Thom space of the following vector
bundle.

Let O(V, W) be the (possibly empty) Stiefel manifold of
isometric embeddings (which need not be equivariant) of V
into W. For each such embedding f: V — W one has the
orthogonal compliment V+ of f(V) in W, which is the fiber of
our vector bundle over O(V, W).
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Defining the four small categories (continued)

The morphism space _#g(V, W) is the Thom space of a
certain vector bundle over the embedding space O(V, W).
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Defining the four small categories (continued)

The morphism space _#g(V, W) is the Thom space of a
certain vector bundle over the embedding space O(V, W).

The Mandell-May category is symmetric monoidal under direct
sum.
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Defining the four small categories (continued)

The morphism space _#g(V, W) is the Thom space of a
certain vector bundle over the embedding space O(V, W).

The Mandell-May category is symmetric monoidal under direct
sum. This means that the functor category Sp® = [ 75, 7€,
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Defining the four small categories (continued)

The morphism space _#g(V, W) is the Thom space of a
certain vector bundle over the embedding space O(V, W).

The Mandell-May category is symmetric monoidal under direct
sum. This means that the functor category Sp® = [ 75, 7€,
our category of equivariant spectra,
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Defining the four small categories (continued)

The morphism space _#g(V, W) is the Thom space of a
certain vector bundle over the embedding space O(V, W).

The Mandell-May category is symmetric monoidal under direct
sum. This means that the functor category Sp® = [ 75, 7€,
our category of equivariant spectra, is closed symmetric
monoidal by the Day Convolution Theorem.
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Defining the four small categories (continued)

The morphism space _#g(V, W) is the Thom space of a
certain vector bundle over the embedding space O(V, W).

The Mandell-May category is symmetric monoidal under direct
sum. This means that the functor category Sp® = [ 75, 7€,
our category of equivariant spectra, is closed symmetric
monoidal by the Day Convolution Theorem.

The projective model structure on Sp€ is not equifibrant.
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Defining the four small categories (continued)

The morphism space _#g(V, W) is the Thom space of a
certain vector bundle over the embedding space O(V, W).

The Mandell-May category is symmetric monoidal under direct
sum. This means that the functor category Sp® = [ 75, 7€,
our category of equivariant spectra, is closed symmetric
monoidal by the Day Convolution Theorem.

The projective model structure on Sp€ is not equifibrant.

The positive Mandell-May category /25 is the full subcategory
of representations V for which the invariant subspace V¢ is
nontrivial.
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Defining the four small categories (continued)

Au

'\

324 —5431

241 34—41 :z

/u1 —)—132.«
2431

__' uq_mz

"und—xzu

v ¢

1432 —bzua‘ Azn—bva(z

;142 1— 142

zxu —pi2y

4

1u|

nu

Model category
structures for
equivariant spectra

Mike Hill
Mike Hopkins
Doug Ravenel

Enriched category
theory

Some equivariant
homotopy theory

Three constructions of
new model categories

The main construction

Summary



Defining the four small categories (continued)
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Defining the four small categories (continued)
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7 is the equifibrant Mandell-May
category. Its objects are finite
dimensional orthogonal
representations of finite G-sets.
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Defining the four small categories (continued)
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*_Zg is the equifibrant Mandell-May
category. Its objects are finite
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whose objects are the elements of T,
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Defining the four small categories (continued)
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*_Zg is the equifibrant Mandell-May
category. Its objects are finite
dimensional orthogonal
representations of finite G-sets. For a
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morphism that sends ¢ to ~t.
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Defining the four small categories (continued)
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}G is the equifibrant Mandell-May
category. Its objects are finite

dimensional orthogonal

representations of finite G-sets. For a
G-set T there is a category BrG
whose objects are the elements of T,
and for each (t,7) € T x Gthereis a
morphism that sends f to v¢. This
category is a split groupoid.
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Defining the four small categories (continued)

4u

2.413‘741:1

3241 —5132,4

» & ‘k
2 ._ as? ¥ 3.1.'_ a2
1‘1214—321!"

1432 -2
. —nm“’ ‘a‘nm—bam

\f *ﬁ

3142 ——1423

!

412

2314423
m‘/ ‘-\___\.2

v

341

7 is the equifibrant Mandell-May
category. Its objects are finite
dimensional orthogonal
representations of finite G-sets. For a
G-set T there is a category BrG
whose objects are the elements of T,
and for each (t,7) € T x Gthereis a
morphism that sends f to v¢. This
category is a split groupoid.

A representation V of T is a functor from 571G to the category
of finite dimensional real orthogonal vector spaces.
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Summary

A representation V of T is a functor from 571G to the category
of finite dimensional real orthogonal vector spaces.

If T = G/H, such a functor is equivalent to an orthogonal
representation of H.



Defining the four small categories (continued) e

equivariant spectra

e —— 2" 7 is the equifibrant Mandell-May i
”H category. Its objects are finite Mike Hill
_M dimensional orthogonal Doug Ravene!
12‘,1_,‘31_.:%“!;‘_: representations of finite G-sets. Fora cxteqory
G-set T there is a category BrG theory
_.‘ ‘;.“““‘:*;z«s—-m« whose objects are the elements of T, PR
3142 4—1s2 and for each (l‘7 ’y) € T x Gthereis a Three constructions of
! morphism that sends t to ~vt. This new model eztegores
¥ """ ——__ VW category is a split groupoid. Tremenconaeen

Summary

A representation V of T is a functor from 571G to the category
of finite dimensional real orthogonal vector spaces.

If T = G/H, such a functor is equivalent to an orthogonal
representation of H. In general for each orbit of T we get a
representation of its isotropy group.



Defining the four small categories (continued)
Recall that Mandell-May morphism objects involved orthogonal
embeddings V — W.
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Defining the four small categories (continued)

Recall that Mandell-May morphism objects involved orthogonal
embeddings V — W. An orthogonal embedding
f:(S,V)— (T, W) consists of the following data.
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Defining the four small categories (continued)

Recall that Mandell-May morphism objects involved orthogonal
embeddings V — W. An orthogonal embedding
f:(S,V)— (T, W) consists of the following data.

e Foreach t e T anelement f(t) € S
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Defining the four small categories (continued)

Recall that Mandell-May morphism objects involved orthogonal
embeddings V — W. An orthogonal embedding
f:(S,V)— (T, W) consists of the following data.

e Foreach t € T an element f(t) € S such that
dimV;,, < dimW;.
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Defining the four small categories (continued)
Recall that Mandell-May morphism objects involved orthogonal
embeddings V — W. An orthogonal embedding
f:(S,V)— (T, W) consists of the following data.
e Foreach t € T an element f(t) € S such that
dimV,, < dimW..
e Foreach t € T an orthogonal embedding f; : V?(t) — W,
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Defining the four small categories (continued)

Recall that Mandell-May morphism objects involved orthogonal
embeddings V — W. An orthogonal embedding
f:(S,V)— (T, W) consists of the following data.

e Foreach t € T an element f(t) € S such that
dimV;,, < dimW;.

e Foreach t € T an orthogonal embedding f; : V?(t) — W,

We call the map f: T — S a choice.
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Defining the four small categories (continued)

Recall that Mandell-May morphism objects involved orthogonal
embeddings V — W. An orthogonal embedding
f:(S,V)— (T, W) consists of the following data.

e Foreach t € T an element f(t) € S such that
dimV;,, < dimW;.

e Foreach t € T an orthogonal embedding f; : V?(t) — W,

We call the map f : T — S a choice. It need not be equivariant.
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Defining the four small categories (continued)
Recall that Mandell-May morphism objects involved orthogonal
embeddings V — W. An orthogonal embedding
f:(S,V)— (T, W) consists of the following data.
e Foreach t € T an element f(t) € S such that
dimV,, < dimW..
e Foreach t € T an orthogonal embedding f; : V?(t) — W,

We call the map f: T — S a choice. It need not be equivariant.

We say the embedding f is chosen by f.
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Defining the four small categories (continued)

Recall that Mandell-May morphism objects involved orthogonal
embeddings V — W. An orthogonal embedding
f:(S,V)— (T, W) consists of the following data.

e Foreach t € T an element f(t) € S such that
dimV;,, < dimW;.

e Foreach t € T an orthogonal embedding f; : V?(t) — W,

We call the map 7 : T — S a choice. It need not be equivariant.
We say the embedding f is chosen by f. For a given (S, V) and
(T, W), there may be no choices.

Model category
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Defining the four small categories (continued)

Recall that Mandell-May morphism objects involved orthogonal
embeddings V — W. An orthogonal embedding
f:(S,V)— (T, W) consists of the following data.

e Foreach t € T an element f(t) € S such that
dimV;,, < dimW;.

e Foreach t € T an orthogonal embedding f; : V?(t) — W,

We call the map 7 : T — S a choice. It need not be equivariant.
We say the embedding f is chosen by f. For a given (S, V) and
(T, W), there may be no choices.

Model category
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equivariant spectra
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new model categories

The main construction

Summary



Defining the four small categories (continued)

Recall that Mandell-May morphism objects involved orthogonal
embeddings V — W. An orthogonal embedding
f:(S,V)— (T, W) consists of the following data.

e Foreach t € T an element f(t) € S such that
dimV;,, < dimW;.

e Foreach t € T an orthogonal embedding f; : V?(t) — W,

We call the map 7 : T — S a choice. It need not be equivariant.
We say the embedding f is chosen by f. For a given (S, V) and
(T, W), there may be no choices.

Such orthogonal embeddings can be composed in an obvious
way.

Model category
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Summary



Defining the four small categories (continued)

Recall that Mandell-May morphism objects involved orthogonal
embeddings V — W. An orthogonal embedding
f:(S,V)— (T, W) consists of the following data.

e Foreach t € T an element f(t) € S such that
dimV;,, < dimW;.

e Foreach t € T an orthogonal embedding f; : V?(t) — W,

We call the map 7 : T — S a choice. It need not be equivariant.
We say the embedding f is chosen by f. For a given (S, V) and
(T, W), there may be no choices.

Such orthogonal embeddings can be composed in an obvious
way.

We denote the space of all such embeddings chosen by f by
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Defining the four small categories (continued)

Recall that Mandell-May morphism objects involved orthogonal
embeddings V — W. An orthogonal embedding
f:(S,V)— (T, W) consists of the following data.

e Foreach t € T an element f(t) € S such that
dimV;,, < dimW;.

e Foreach t € T an orthogonal embedding f; : V?(t) — W,

We call the map 7 : T — S a choice. It need not be equivariant.
We say the embedding f is chosen by f. For a given (S, V) and
(T, W), there may be no choices.

Such orthogonal embeddings can be composed in an obvious
way.

We denote the space of all such embeddings chosen by f by

O((87 V)v (Ta W))?
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Defining the four small categories (continued)

Recall that Mandell-May morphism objects involved orthogonal
embeddings V — W. An orthogonal embedding
f:(S,V)— (T, W) consists of the following data.

e Foreach t € T an element f(t) € S such that
dimV;,, < dimW;.

e Foreach t € T an orthogonal embedding f; : V?(t) — W,

We call the map 7 : T — S a choice. It need not be equivariant.
We say the embedding f is chosen by f. For a given (S, V) and
(T, W), there may be no choices.

Such orthogonal embeddings can be composed in an obvious
way.

We denote the space of all such embeddings chosen by f by
O((S. V). (T, W));.

It is a product of ordinary Stiefel manifolds.
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Defining the four small categories (continued)
Given an orthogonal embedding

(S, V)

f

(T, w),
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Defining the four small categories (continued) e
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Defining the four small categories (continued)
Given an orthogonal embedding

(8, V) — (T, W),

the orthogonal complement f+ of f is the direct sum of the
orthogonal complements of f,(V;(t)) in W;.
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Defining the four small categories (continued)
Given an orthogonal embedding

(8, V) — (T, W),

the orthogonal complement f+ of f is the direct sum of the
orthogonal complements of f,(V;(t)) in W;. Using these direct

sums as fibers,
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Defining the four small categories (continued)
Given an orthogonal embedding

(8, V) — (T, W),

the orthogonal complement f+ of f is the direct sum of the
orthogonal complements of f,(V;(t)) in W;. Using these direct
sums as fibers, we get a vector bundle over the space

O((Sv V)> (T’ W))f
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Defining the four small categories (continued)
Given an orthogonal embedding

(8, V) — (T, W),

the orthogonal complement f+ of f is the direct sum of the
orthogonal complements of f,(V;(t)) in W;. Using these direct
sums as fibers, we get a vector bundle over the space

O((S, V), (T, W)); of embeddings chosen by f.

Model category
structures for
equivariant spectra

\,~

Mike Hill
Mike Hopkins
Doug Ravenel

Enriched category
theory

Some equivariant
homotopy theory

Three constructions of
new model categories

The main construction

Summary



Defining the four small categories (continued)
Given an orthogonal embedding

(8, V) — (T, W),

the orthogonal complement f+ of f is the direct sum of the
orthogonal complements of f,(V;(t)) in W;. Using these direct
sums as fibers, we get a vector bundle over the space
O((S, V), (T, W)); of embeddings chosen by f. We denote its
Thom space by -

/G((Sa V)v (T7 W))?
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Defining the four small categories (continued)
Given an orthogonal embedding

(8, V) — (T, W),

the orthogonal complement f+ of f is the direct sum of the
orthogonal complements of f,(V;(t)) in W;. Using these direct
sums as fibers, we get a vector bundle over the space

O((S, V), (T, W)); of embeddings chosen by f. We denote its

Thom space by -

/G((Sv V)a (T7 W))?
It is a smash product of ordinary Mandell-May morphism
spaces.
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Defining the four small categories (continued)
Given an orthogonal embedding

f

(S, V) (T, W),

the orthogonal complement f+ of f is the direct sum of the
orthogonal complements of f,(V;(t)) in W;. Using these direct

sums as fibers, we get a vector bundle over the space
O((S, V), (T, W)); of embeddings chosen by f. We denote its
Thom space by

Ja((S.V),(T, W))y.
It is a smash product of ordinary Mandell-May morphism
spaces.

The morphism object in }G is

Jal(S V) (T, W)=\ _76((S,V),(T, W),

£.T—S
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Defining the four small categories (continued)
Given an orthogonal embedding

(8, V) — (T, W),

the orthogonal complement f+ of f is the direct sum of the
orthogonal complements of f,(V;(t)) in W;. Using these direct

sums as fibers, we get a vector bundle over the space
O((S, V), (T, W)); of embeddings chosen by f. We denote its
Thom space by

J6((S, V), (T, W));.

It is a smash product of ordinary Mandell-May morphism
spaces.

The morphism object in }G is

Jal(S V) (T, W)=\ _76((S,V),(T, W),

£.T—S

the one point union over all possible choices f.
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Defining the four small categories (continued)

The morphism object in }G is

Ja(S V) (T, W)= \/ Z6((S,V).(T.W));,

TS

the one point union over all possible choices.
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Defining the four small categories (continued)

The morphism object in }G is

Ja(S V) (T, W)= \/ Z6((S,V).(T.W));,

TS

the one point union over all possible choices.

This category is symmetric monoidal under Cartesian product,
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Defining the four small categories (continued)

The morphism object in }G is

Ja(S V(T W)=\ 76((S. V), (T, W),
TS
the one point union over all possible choices.
This category is symmetric monoidal under Cartesian product,

so the functor category [_#g, T is closed symmetric monoidal
by the Day Convolution Theorem.
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Defining the four small categories (continued)

The morphism object in }G is

Ja(S V(T W)=\ 76((S. V), (T, W),
TS
the one point union over all possible choices.

This category is symmetric monoidal under Cartesian product,

so the functor category [_#g, T is closed symmetric monoidal
by the Day Convolution Theorem.

The ordinary Mandell-May category # is the full subcategory
of #s with objects of the form (G/G, V).
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Defining the four small categories (continued)

The morphism object in }G is
Je((SV),(T.W) =\ Ja((S,V),(T, W),
f:T—S

the one point union over all possible choices.

This category is symmetric monoidal under Cartesian product,

so the functor category [_#g, T is closed symmetric monoidal
by the Day Convolution Theorem.

The ordinary Mandell-May category # is the full subcategory
of #s with objects of the form (G/G, V).

The positive equifibrant Mandell-May category ;%5 is the full
subcategory with objects (T, V) in which the representation for
each orbit of T has a nontrivial invariant vector.
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The main construction again
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The main construction again

K*
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(i) Start with the projective model structure on [_#, T€].

(i) Use Kan'’s theorem to transfer it to a model structure on
SpC. This is the positive equifibrant model structure.
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The main construction again

K*
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(i) Start with the projective model structure on [}57 TE].
(i) Use Kan'’s theorem to transfer it to a model structure on
SpC. This is the positive equifibrant model structure.
(i) Expand the class of weak equivalences on Sp€ to that of
stable equivalences
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The main construction again

K*

76 T4 u (/6 TC]
S —— 7§
i il 7 7

/G—k>}e

Sp® =1 76,7 K [ 76, T

(i) Start with the projective model structure on [_#, T€].

(i) Use Kan'’s theorem to transfer it to a model structure on
SpC. This is the positive equifibrant model structure.

(i) Expand the class of weak equivalences on Sp€ to that of
stable equivalences and apply Bousfield localization.
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The main construction again

K*

76 T4 u (/6 TC]
S —— 7§
i il 7 7

/G—k>}e

Sp® =1 76,7 K [ 76, T

(i) Start with the projective model structure on [}57 TE).
(i) Use Kan'’s theorem to transfer it to a model structure on
SpC. This is the positive equifibrant model structure.
(i) Expand the class of weak equivalences on Sp€ to that of

stable equivalences and apply Bousfield localization. The
result is the positive stable equifibrant model structure.
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The main construction again

K*
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(i) Start with the projective model structure on [_#, T€].

(i) Use Kan'’s theorem to transfer it to a model structure on
SpC. This is the positive equifibrant model structure.

(i) Expand the class of weak equivalences on Sp€ to that of
stable equivalences and apply Bousfield localization. The
result is the positive stable equifibrant model structure.
The positivity condition enables us to define a model
structure on the category of equivariant commutative ring
spectra.
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