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In the previous three lectures we described

● The algebraic machinery behind complex cobordism
theory, in particular the theory of formal group laws, their
classification and endomorphism rings in characteristic p
in Lecture 1.
● The chromatic resolution in its algebraic form leading to

the chromatic spectral sequence and the chromatic
filtration of the Adams-Novikov E2-term in Lecture 2.
● The geometric form of the chromatic resolution defined

using Bousfield localization with respect to the theories
E(h) in Lecture 3.

We have left out a motivating development in the stable
homotopy groups of spheres: the discovery in the early 70s of
periodic families known as Greek letter elements. We will
describe these now.
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Greek letter elements

Recall the hth Greek letter sequence,

0 // Σ∣vh−1∣BP∗/Ih−1
vh−1 // BP∗/Ih−1 // BP∗/Ih // 0.

where Ih = (p,v1, . . . ,vh−1), v0 = p and I0 = (0). It leads to a
long exact sequence of Ext groups in which we denote the
connecting homomorphism by δh. We know

Ext0 (BP∗) ≅ Z(p) and Ext0 (BP∗/Ih) ≅ Z/p[vh]

for each h > 0. For each t > 0, we define
αt ∶= δ1(v t

1) ∈ Ext1,t ∣v1∣ (BP∗) .
For p odd this represents an element or order p in πt ∣v1∣−1S. For
t = 1, this dimension is 2p − 3, and α1 is the first positive
dimensional element in the p-component of the stable
homotopy groups of spheres.

These αts comprise a v1-periodic family.
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Greek letter elements (continued)

To repeat, the α sequence,

0 // BP∗
p // BP∗ // BP∗/(p) // 0.

enables us to define
αt ∶= δ1(v t

1) ∈ Ext1,t ∣v1∣ (BP∗)
This algebraic construction has a geometric antecedent.

Let V(0) the cofiber of the degree p map of
the sphere spectrum. Adams showed that for
p odd, there is a map

Σ2p−2V(0) α // V(0)

inducing multiplication by v1.

Then the homotopy element αt is the composite

St ∣v1∣ i // Σt ∣v1∣V(0) αt
// V(0)

j // S1,

where i is the inclusion of the bottom cell and j is the pinch map
onto the top cell. Again the αts comprise a v1-periodic family.
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Greek letter elements (continued)

We can construct a v2-periodic family as follows.

Let V(1) be
the cofiber of the Adams map

Σ2p−2V(0) α // V(0).

inducing multiplication by v1. It is a CW-spectrum of the form
V(1) = S0

∪p e1
∪α1 e2p−1

∪p e2p.

Independently Larry Smith and Hirosi
Toda showed that for p ≥ 5, there is a map

Σ∣2p2
−2∣V(1)

β // V(1)
inducing multiplication by v2 in BP∗(−).

Then the element
βt ∶= δ1δ2v t

2 ∈ Ext2,t ∣v2∣−∣v1∣ (BP∗)
is represented by the composite

St ∣v2∣ i // Σt ∣v2∣V(1)
βt
// V(1)

j // S2p.
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Greek letter elements (continued)

Algebraically we can do a similar thing at all heights and at all
primes.

We can define

η
(h)
t ∶= δ1δ2 . . . δh(v t

h) ∈ Exth,t ∣vh ∣−wh (BP∗)

where η(h) denotes the hth letter of the Greek alphabet and
wh = ∣v1∣ + ⋅ ⋅ ⋅ + ∣vh−1∣.

However, we can go only one step further geometrically,
defining elements γt for p ≥ 7. Nobody knows how to construct
a map

Σ∣2p4
−2∣V(3) δ // V(3)

inducing multiplication by v4 in BP∗(−) at any prime.
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Algebraically we can do a similar thing at all heights and at all
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h) ∈ Exth,t ∣vh ∣−wh (BP∗)

where η(h) denotes the hth letter of the Greek alphabet and
wh = ∣v1∣ + ⋅ ⋅ ⋅ + ∣vh−1∣.

However, we can go only one step further geometrically,
defining elements γt for p ≥ 7. Nobody knows how to construct
a map

Σ∣2p4
−2∣V(3) δ // V(3)

inducing multiplication by v4 in BP∗(−) at any prime.
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Finite complexes of type h

For a p-local finite spectrum X , we know that K (h)∗X = 0
implies K (h − 1)∗X = 0,

and that K (h)∗X ≠ 0 for h≫ 0 unless
X is contractible. We say that X has type h if h is the smallest
integer with K (h)∗X ≠ 0. Hence Toda’s V(h − 1) has type h. If
K (h)∗X = 0 for all h, then X is contractible.

The following was conjectured in [Rav84] and proved by Ethan
Devinatz, Mike Hopkins and Jeff Smith in [DHS88].

Class Invariance Theorem

The Bousfield equivalence class of a p-local finite spectrum is
determined by its type.

In particular any p-local finite spectrum X with nontrivial
rational homology is Bousfield equivalent to S(p).
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Finite complexes of type h (continued)

A few years later in [HS98], Hopkins and Smith proved the
following.

Periodicity Theorem

Let X by p-local finite spectrum of type h. Then there is a map
v ∶ ΣdX → X for some d > 0 that induces an isomorphism in
K (h)∗(−) and a nilpotent map in every other Morava K-theory.
We call it a vh self-map.

This map is asymptotically unique in the following sense. Given
a second such map v ′ ∶ Σd ′X → X, there exist integers e and e′

with ed = e′d ′ and ve = (v ′)e
′

.

If follows that the cofiber Cv has type h + 1. Hence we can
produce finite spectra of all higher types by iterating this
process. The Class Invariance theorem implies that the
Bousfield class of the telescope v−1X is independent of the
choices of both X and v . We denote it by ⟨T (h)⟩.
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v ∶ ΣdX → X for some d > 0 that induces an isomorphism in
K (h)∗(−) and a nilpotent map in every other Morava K-theory.
We call it a vh self-map.

This map is asymptotically unique in the following sense. Given
a second such map v ′ ∶ Σd ′X → X, there exist integers e and e′

with ed = e′d ′ and ve = (v ′)e
′

.

If follows that the cofiber Cv has type h + 1. Hence we can
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Periodicity Theorem

Let X by p-local finite spectrum of type h.

Then there is a map
v ∶ ΣdX → X for some d > 0 that induces an isomorphism in
K (h)∗(−). We call it a vh self-map.

The map X → v−1X is a K (h)∗- equivalence, so we have a
map

λ ∶ v−1X → LK(h)X = LhX ,

where the equality holds because the lower Morava K-theories
vanish on X . The following appeared in [Rav84].

Telescope Conjecture

The map
λ ∶ v−1X → LK(h)X

is an equivalence.
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The telescope conjecture (continued)

Telescope Conjecture

The map
λ ∶ v−1X → LK(h)X

is an equivalence.

This is trivially true for h = 0, and for h = 1 it was proved around
1980 by Mahowald for p = 2 and by Miller for p odd. In 1989 I
began to think it was false for h ≥ 2. This is now a theorem of
Robert Burklund, Jeremy Hahn, Ishan Levy and Tomer
Schlank.

Jeremy, Tomer, myself, Ishan and Robert at Oxford University,
June 9, 2023.

Photo by Matteo Barucco.
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Telescope Conjecture

The map
λ ∶ v−1X → LK(h)X

is an equivalence.

This conjecture equated the geometrically interesting object
v−1X , the vh-periodic telescope associated with the type h
finite complex X , with the more computationally accessible
spectrum LK(h)X .

For example, we know how to compute π∗LK(2)V(1) for p ≥ 5,
where V(1) is Toda’s 4-cell complex. It consists of exactly 12
v2-periodic families.
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The telescope conjecture (continued)

For example, we know how to compute π∗LK(2)V(1) for p ≥ 5,
where V(1) is Toda’s 4-cell complex. It consists of exactly 12
v2-periodic families.

We do not know π∗v−1
2 V(1), which is likely to be much larger.

There are possibly infinitely many such families not detected by
the localized Adams-Novikov spectral sequence, which is
known to converge to π∗LK(2)V(1), but not to π∗v−1

2 V(1).

Meanwhile the ordinary Adams-Novikov spectral sequence
does converge to π∗V(1) but only sees 12 v2-periodic families
there. How can this be? One could have a v2-periodic family
(or many of them) that are spread out over infinitely many
Adams-Novikov filtrations.
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Adams-Novikov filtrations.
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The telescope conjecture (continued)

For example, we know how to compute π∗LK(2)V(1) for p ≥ 5,
where V(1) is Toda’s 4-cell complex. It consists of exactly 12
v2-periodic families.

We do not know π∗v−1
2 V(1), which is likely to be much larger.

There are possibly infinitely many such families not detected by
the localized Adams-Novikov spectral sequence, which is
known to converge to π∗LK(2)V(1), but not to π∗v−1

2 V(1).

Meanwhile the ordinary Adams-Novikov spectral sequence
does converge to π∗V(1) but only sees 12 v2-periodic families
there. How can this be? One could have a v2-periodic family
(or many of them)

that are spread out over infinitely many
Adams-Novikov filtrations.



ECHT Minicourse
What is the telescope

conjecture?
Lecture 4

Doug Ravenel

Review

Greek letter elements

Type h finite complexes

The telescope conjecture

References

The telescope conjecture (continued)

For example, we know how to compute π∗LK(2)V(1) for p ≥ 5,
where V(1) is Toda’s 4-cell complex. It consists of exactly 12
v2-periodic families.

We do not know π∗v−1
2 V(1), which is likely to be much larger.

There are possibly infinitely many such families not detected by
the localized Adams-Novikov spectral sequence, which is
known to converge to π∗LK(2)V(1), but not to π∗v−1

2 V(1).

Meanwhile the ordinary Adams-Novikov spectral sequence
does converge to π∗V(1) but only sees 12 v2-periodic families
there. How can this be? One could have a v2-periodic family
(or many of them) that are spread out over infinitely many
Adams-Novikov filtrations.
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THANK YOU!
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