ECHT Minicourse

What is the telescope conjecture? Lecture 4 *v_h*-periodic families and telescopes

Doug Ravenel University of Rochester

December 14, 2023

ECHT Minicourse What is the telescope conjecture? Lecture 4

Doug Ravenel

In the previous three lectures we described

Doug Ravenel

Review

Greek letter elements

Type h finite complexes

The telescope conjecture

References

< □ ▶ < @ ▶ < ≧ ▶ < ≧ ▶ = りへぐ

In the previous three lectures we described

• The algebraic machinery behind complex cobordism theory,

Doug Ravenel

Review

Greek letter elements Type h finite complexes

The telescope conjecture

References

◆□▶▲母▶▲≡▶▲≡▶ ≡ めんの

In the previous three lectures we described

• The algebraic machinery behind complex cobordism theory, in particular the theory of formal group laws, their classification and endomorphism rings in characteristic *p* in Lecture 1.

ECHT Minicourse

Lecture 4

Doug Ravenel

Reviev

Greek letter elements Type h finite complexes The telescope conjecture References

▲□▶▲□▶▲≧▶▲≧▶ ▲□▶ ▲□

In the previous three lectures we described

- The algebraic machinery behind complex cobordism theory, in particular the theory of formal group laws, their classification and endomorphism rings in characteristic *p* in Lecture 1.
- The chromatic resolution in its algebraic form leading to the chromatic spectral sequence and the chromatic filtration of the Adams-Novikov *E*₂-term in Lecture 2.

ECHT Minicourse

Lecture 4

Doug Ravenel

Review

In the previous three lectures we described

- The algebraic machinery behind complex cobordism theory, in particular the theory of formal group laws, their classification and endomorphism rings in characteristic *p* in Lecture 1.
- The chromatic resolution in its algebraic form leading to the chromatic spectral sequence and the chromatic filtration of the Adams-Novikov *E*₂-term in Lecture 2.
- The geometric form of the chromatic resolution defined using Bousfield localization with respect to the theories *E*(*h*) in Lecture 3.

ECHT Minicourse

Doug Ravenel

Reviev

In the previous three lectures we described

- The algebraic machinery behind complex cobordism theory, in particular the theory of formal group laws, their classification and endomorphism rings in characteristic *p* in Lecture 1.
- The chromatic resolution in its algebraic form leading to the chromatic spectral sequence and the chromatic filtration of the Adams-Novikov *E*₂-term in Lecture 2.
- The geometric form of the chromatic resolution defined using Bousfield localization with respect to the theories *E*(*h*) in Lecture 3.

We have left out a motivating development in the stable homotopy groups of spheres:

ECHT Minicourse

Doug Ravenel

Review

In the previous three lectures we described

- The algebraic machinery behind complex cobordism theory, in particular the theory of formal group laws, their classification and endomorphism rings in characteristic *p* in Lecture 1.
- The chromatic resolution in its algebraic form leading to the chromatic spectral sequence and the chromatic filtration of the Adams-Novikov *E*₂-term in Lecture 2.
- The geometric form of the chromatic resolution defined using Bousfield localization with respect to the theories *E*(*h*) in Lecture 3.

We have left out a motivating development in the stable homotopy groups of spheres: the discovery in the early 70s of periodic families known as Greek letter elements.

ECHT Minicourse

Lecture 4

Doug Ravenel

Reviev

In the previous three lectures we described

- The algebraic machinery behind complex cobordism theory, in particular the theory of formal group laws, their classification and endomorphism rings in characteristic *p* in Lecture 1.
- The chromatic resolution in its algebraic form leading to the chromatic spectral sequence and the chromatic filtration of the Adams-Novikov *E*₂-term in Lecture 2.
- The geometric form of the chromatic resolution defined using Bousfield localization with respect to the theories *E*(*h*) in Lecture 3.

We have left out a motivating development in the stable homotopy groups of spheres: the discovery in the early 70s of periodic families known as Greek letter elements. We will describe these now.

ECHT Minicourse

Lecture 4

Doug Ravenel

Reviev

Recall the hth Greek letter sequence,

$$0 \longrightarrow \Sigma^{|v_{h-1}|} BP_*/I_{h-1} \xrightarrow{v_{h-1}} BP_*/I_{h-1} \longrightarrow BP_*/I_h \longrightarrow 0.$$

ECHT Minicourse What is the telescope conjecture? Lecture 4

Doug Ravenel

Review

Greek letter elements

Type h finite complexes

The telescope conjecture

Recall the hth Greek letter sequence,

$$0 \longrightarrow \Sigma^{|v_{h-1}|} BP_*/I_{h-1} \xrightarrow{v_{h-1}} BP_*/I_{h-1} \longrightarrow BP_*/I_h \longrightarrow 0.$$

where $I_h = (p, v_1, ..., v_{h-1}), v_0 = p$ and $I_0 = (0)$.

ECHT Minicourse What is the telescope conjecture? Lecture 4

Doug Ravenel

Review

Greek letter elements

Type h finite complexes

The telescope conjecture

References

▲□▶▲□▶▲□▶▲□▶ ▲□▶ ▲□

Recall the hth Greek letter sequence,

$$0 \longrightarrow \Sigma^{|v_{h-1}|} BP_*/I_{h-1} \xrightarrow{v_{h-1}} BP_*/I_{h-1} \longrightarrow BP_*/I_h \longrightarrow 0.$$

where $I_h = (p, v_1, ..., v_{h-1})$, $v_0 = p$ and $I_0 = (0)$. It leads to a long exact sequence of Ext groups in which we denote the connecting homomorphism by δ_h .

ECHT Minicourse What is the telescope conjecture? Lecture 4

Doug Ravenel

Review

Greek letter elements

Type h finite complexes

The telescope conjecture

Recall the hth Greek letter sequence,

$$0 \longrightarrow \Sigma^{|v_{h-1}|} BP_*/I_{h-1} \xrightarrow{v_{h-1}} BP_*/I_{h-1} \longrightarrow BP_*/I_h \longrightarrow 0.$$

where $I_h = (p, v_1, ..., v_{h-1})$, $v_0 = p$ and $I_0 = (0)$. It leads to a long exact sequence of Ext groups in which we denote the connecting homomorphism by δ_h . We know

 $\operatorname{Ext}^{0}(BP_{*}) \cong \mathbb{Z}_{(p)}$ and $\operatorname{Ext}^{0}(BP_{*}/I_{h}) \cong \mathbb{Z}/p[v_{h}]$ for each h > 0.

ECHT Minicourse What is the telescope conjecture? Lecture 4

Doug Ravenel

Review

Greek letter elements

Type h finite complexes

The telescope conjecture

$$0 \longrightarrow \Sigma^{|v_{h-1}|} BP_*/I_{h-1} \xrightarrow{v_{h-1}} BP_*/I_{h-1} \longrightarrow BP_*/I_h \longrightarrow 0.$$

where $I_h = (p, v_1, ..., v_{h-1})$, $v_0 = p$ and $I_0 = (0)$. It leads to a long exact sequence of Ext groups in which we denote the connecting homomorphism by δ_h . We know

 $\operatorname{Ext}^{0}(BP_{*}) \cong \mathbb{Z}_{(p)}$ and $\operatorname{Ext}^{0}(BP_{*}/I_{h}) \cong \mathbb{Z}/p[v_{h}]$

for each h > 0. For each t > 0, we define

 $\alpha_t \coloneqq \delta_1(\mathbf{v}_1^t) \in \operatorname{Ext}^{1,t|\mathbf{v}_1|}(BP_*).$

ECHT Minicourse What is the telescope conjecture? Lecture 4

Doug Ravenel

Review

Greek letter elements

Type h finite complexes

The telescope conjecture

$$0 \longrightarrow \Sigma^{|v_{h-1}|} BP_*/I_{h-1} \xrightarrow{v_{h-1}} BP_*/I_{h-1} \longrightarrow BP_*/I_h \longrightarrow 0.$$

where $I_h = (p, v_1, ..., v_{h-1})$, $v_0 = p$ and $I_0 = (0)$. It leads to a long exact sequence of Ext groups in which we denote the connecting homomorphism by δ_h . We know

$$\operatorname{Ext}^{0}(BP_{*}) \cong \mathbb{Z}_{(p)}$$
 and $\operatorname{Ext}^{0}(BP_{*}/I_{h}) \cong \mathbb{Z}/p[v_{h}]$

for each h > 0. For each t > 0, we define

$$\alpha_t \coloneqq \delta_1(\mathbf{v}_1^t) \in \operatorname{Ext}^{1,t|\mathbf{v}_1|}(BP_*).$$

For *p* odd this represents an element or order *p* in $\pi_{t|v_t|-1}\mathbb{S}$.

ECHT Minicourse What is the telescope conjecture? Lecture 4

Doug Ravenel

Review

Greek letter elements

Type h finite complexes

The telescope conjecture

$$0 \longrightarrow \Sigma^{|v_{h-1}|} BP_*/I_{h-1} \xrightarrow{v_{h-1}} BP_*/I_{h-1} \longrightarrow BP_*/I_h \longrightarrow 0.$$

where $I_h = (p, v_1, ..., v_{h-1})$, $v_0 = p$ and $I_0 = (0)$. It leads to a long exact sequence of Ext groups in which we denote the connecting homomorphism by δ_h . We know

$$\operatorname{Ext}^{0}(BP_{*}) \cong \mathbb{Z}_{(p)}$$
 and $\operatorname{Ext}^{0}(BP_{*}/I_{h}) \cong \mathbb{Z}/p[v_{h}]$

for each h > 0. For each t > 0, we define

$$\alpha_t \coloneqq \delta_1(\mathbf{v}_1^t) \in \operatorname{Ext}^{1,t|\mathbf{v}_1|}(BP_*).$$

For *p* odd this represents an element or order *p* in $\pi_{t|v_1|-1}\mathbb{S}$. For *t* = 1, this dimension is 2p - 3,

ECHT Minicourse What is the telescope conjecture? Lecture 4

Doug Ravenel

Review

Greek letter elements

Type h finite complexes

The telescope conjecture

$$0 \longrightarrow \Sigma^{|v_{h-1}|} BP_*/I_{h-1} \xrightarrow{v_{h-1}} BP_*/I_{h-1} \longrightarrow BP_*/I_h \longrightarrow 0.$$

where $I_h = (p, v_1, ..., v_{h-1})$, $v_0 = p$ and $I_0 = (0)$. It leads to a long exact sequence of Ext groups in which we denote the connecting homomorphism by δ_h . We know

 $\operatorname{Ext}^{0}(BP_{*}) \cong \mathbb{Z}_{(p)}$ and $\operatorname{Ext}^{0}(BP_{*}/I_{h}) \cong \mathbb{Z}/p[v_{h}]$

for each h > 0. For each t > 0, we define

 $\alpha_t \coloneqq \delta_1(\mathbf{v}_1^t) \in \operatorname{Ext}^{1,t|\mathbf{v}_1|}(BP_*).$

For *p* odd this represents an element or order *p* in $\pi_{t|v_1|-1}\mathbb{S}$. For t = 1, this dimension is 2p - 3, and α_1 is the first positive dimensional element in the *p*-component of the stable homotopy groups of spheres.

ECHT Minicourse What is the telescope conjecture? Lecture 4

Doug Ravenel

Review

Greek letter elements

Type h finite complexes

The telescope conjecture

$$0 \longrightarrow \Sigma^{|v_{h-1}|} BP_*/I_{h-1} \xrightarrow{v_{h-1}} BP_*/I_{h-1} \longrightarrow BP_*/I_h \longrightarrow 0.$$

where $I_h = (p, v_1, ..., v_{h-1})$, $v_0 = p$ and $I_0 = (0)$. It leads to a long exact sequence of Ext groups in which we denote the connecting homomorphism by δ_h . We know

 $\operatorname{Ext}^{0}(BP_{*}) \cong \mathbb{Z}_{(p)}$ and $\operatorname{Ext}^{0}(BP_{*}/I_{h}) \cong \mathbb{Z}/p[v_{h}]$

for each h > 0. For each t > 0, we define

 $\alpha_t \coloneqq \delta_1(\mathbf{v}_1^t) \in \operatorname{Ext}^{1,t|\mathbf{v}_1|}(BP_*).$

For *p* odd this represents an element or order *p* in $\pi_{t|v_1|-1}\mathbb{S}$. For t = 1, this dimension is 2p - 3, and α_1 is the first positive dimensional element in the *p*-component of the stable homotopy groups of spheres.

These α_t s comprise a v_1 -periodic family.

Doug Ravenel

Review

Greek letter elements

Type h finite complexes

The telescope conjecture

$$0 \longrightarrow BP_* \xrightarrow{\rho} BP_* \longrightarrow BP_*/(\rho) \longrightarrow 0$$

Doug Ravenel

Review

Greek letter elements

Type h finite complexes

The telescope conjecture

References

▲ロト < 団ト < 三ト < 三ト < 三
シ へ ()

$$0 \longrightarrow BP_* \stackrel{\rho}{\longrightarrow} BP_* \longrightarrow BP_*/(\rho) \longrightarrow 0$$

enables us to define

$$\alpha_t \coloneqq \delta_1(\mathbf{v}_1^t) \in \operatorname{Ext}^{1,t|\mathbf{v}_1|}(BP_*)$$

Doug Ravenel

Review

Greek letter elements

Type h finite complexes

The telescope conjecture

$$0 \longrightarrow BP_* \stackrel{\rho}{\longrightarrow} BP_* \longrightarrow BP_*/(\rho) \longrightarrow 0$$

enables us to define

$$\alpha_t \coloneqq \delta_1(\mathbf{v}_1^t) \in \operatorname{Ext}^{1,t|\mathbf{v}_1|}(BP_*)$$

This algebraic construction has a geometric antecedent.

Doug Ravenel

Review

Greek letter elements

Type h finite complexes

The telescope conjecture

$$0 \longrightarrow BP_* \stackrel{\rho}{\longrightarrow} BP_* \longrightarrow BP_*/(p) \longrightarrow 0$$

enables us to define

$$\alpha_t \coloneqq \delta_1(\boldsymbol{v}_1^t) \in \operatorname{Ext}^{1,t|\boldsymbol{v}_1|}(\boldsymbol{BP}_*)$$

This algebraic construction has a geometric antecedent.

Let V(0) the cofiber of the degree p map of the sphere spectrum.

Doug Ravenel

Review

Greek letter elements

Type h finite complexes

The telescope conjecture

References

▲□▶▲舂▶▲壹▶▲壹▶ ≧ めへぐ

$$0 \longrightarrow BP_* \stackrel{\rho}{\longrightarrow} BP_* \longrightarrow BP_*/(p) \longrightarrow 0$$

enables us to define

$$\alpha_t \coloneqq \delta_1(\mathbf{v}_1^t) \in \operatorname{Ext}^{1,t|\mathbf{v}_1|}(BP_*)$$

This algebraic construction has a geometric antecedent.

Let V(0) the cofiber of the degree p map of the sphere spectrum. Adams showed that for p odd, there is a map

$$\Sigma^{2p-2}V(0) \longrightarrow V(0)$$

Doug Ravenel

Review

Greek letter elements

Type h finite complexes

The telescope conjecture

$$0 \longrightarrow BP_* \stackrel{\rho}{\longrightarrow} BP_* \longrightarrow BP_*/(p) \longrightarrow 0$$

enables us to define

$$\alpha_t \coloneqq \delta_1(\mathbf{v}_1^t) \in \operatorname{Ext}^{1,t|\mathbf{v}_1|}(BP_*)$$

This algebraic construction has a geometric antecedent.

Let V(0) the cofiber of the degree p map of the sphere spectrum. Adams showed that for p odd, there is a map

$$\Sigma^{2p-2}V(0) \xrightarrow{\alpha} V(0)$$

inducing multiplication by v_1 .

ECHT Minicourse What is the telescope conjecture? Lecture 4

Doug Ravenel

Review

Greek letter elements

Type h finite complexes

The telescope conjecture

$$0 \longrightarrow BP_* \stackrel{\rho}{\longrightarrow} BP_* \longrightarrow BP_*/(p) \longrightarrow 0$$

enables us to define

$$\alpha_t \coloneqq \delta_1(\boldsymbol{v}_1^t) \in \operatorname{Ext}^{1,t|\boldsymbol{v}_1|}(\boldsymbol{BP}_*)$$

This algebraic construction has a geometric antecedent.

Let V(0) the cofiber of the degree p map of the sphere spectrum. Adams showed that for p odd, there is a map

$$\Sigma^{2p-2}V(0) \xrightarrow{\alpha} V(0)$$

inducing multiplication by v_1 .

Then the homotopy element α_t is the composite

$$S^{t|v_1|} \xrightarrow{i} \Sigma^{t|v_1|} V(0) \xrightarrow{\alpha^t} V(0) \xrightarrow{j} S^1$$

ECHT Minicourse What is the telescope conjecture? Lecture 4

Doug Ravenel

Review

Greek letter elements

Type h finite complexes

The telescope conjecture

$$0 \longrightarrow BP_* \stackrel{\rho}{\longrightarrow} BP_* \longrightarrow BP_*/(\rho) \longrightarrow 0$$

enables us to define

$$\alpha_t \coloneqq \delta_1(\mathbf{v}_1^t) \in \operatorname{Ext}^{1,t|\mathbf{v}_1|}(BP_*)$$

This algebraic construction has a geometric antecedent.

Let V(0) the cofiber of the degree p map of the sphere spectrum. Adams showed that for p odd, there is a map

$$\Sigma^{2p-2}V(0) \xrightarrow{\alpha} V(0)$$

inducing multiplication by v_1 .

Then the homotopy element α_t is the composite

$$S^{t|v_1|} \xrightarrow{i} \Sigma^{t|v_1|} V(0) \xrightarrow{\alpha^t} V(0) \xrightarrow{j} S^1$$

where *i* is the inclusion of the bottom cell

Doug Ravenel

Review

Greek letter elements

Type h finite complexes

The telescope conjecture

$$0 \longrightarrow BP_* \stackrel{\rho}{\longrightarrow} BP_* \longrightarrow BP_*/(p) \longrightarrow 0$$

enables us to define

$$\alpha_t \coloneqq \delta_1(\mathbf{v}_1^t) \in \operatorname{Ext}^{1,t|\mathbf{v}_1|}(BP_*)$$

This algebraic construction has a geometric antecedent.

Let V(0) the cofiber of the degree p map of the sphere spectrum. Adams showed that for p odd, there is a map

$$\Sigma^{2p-2}V(0) \xrightarrow{\alpha} V(0)$$

inducing multiplication by v_1 .

Then the homotopy element α_t is the composite

$$S^{t|v_1|} \xrightarrow{i} \Sigma^{t|v_1|} V(0) \xrightarrow{\alpha^t} V(0) \xrightarrow{j} S^1,$$

where i is the inclusion of the bottom cell and j is the pinch map onto the top cell.

ECHT Minicourse

Lecture 4

Doug Ravenel

Review

Greek letter elements

Type h finite complexes

The telescope conjecture

$$0 \longrightarrow BP_* \stackrel{\rho}{\longrightarrow} BP_* \longrightarrow BP_*/(\rho) \longrightarrow 0$$

enables us to define

$$\alpha_t \coloneqq \delta_1(\mathbf{v}_1^t) \in \operatorname{Ext}^{1,t|\mathbf{v}_1|}(BP_*)$$

This algebraic construction has a geometric antecedent.

Let V(0) the cofiber of the degree p map of the sphere spectrum. Adams showed that for p odd, there is a map

$$\Sigma^{2p-2}V(0) \xrightarrow{\alpha} V(0)$$

inducing multiplication by v_1 .

Then the homotopy element α_t is the composite

$$S^{t|v_1|} \xrightarrow{i} \Sigma^{t|v_1|} V(0) \xrightarrow{\alpha^t} V(0) \xrightarrow{j} S^1,$$

where *i* is the inclusion of the bottom cell and *j* is the pinch map onto the top cell. Again the α_i s comprise a v_1 -periodic family.

ECHT Minicourse

Lecture 4

Doug Ravenel

Review

Greek letter elements

Type h finite complexes

The telescope conjecture

We can construct a v_2 -periodic family as follows.

Doug Ravenel

Review

Greek letter elements

Type h finite complexes

The telescope conjecture

References

▲ロト < 団ト < 三ト < 三ト < 三
シ へ ()

We can construct a v_2 -periodic family as follows. Let V(1) be the cofiber of the Adams map

ECHT Minicourse What is the telescope conjecture? Lecture 4

Doug Ravenel

Review

Greek letter elements

Type h finite complexes

The telescope conjecture

References

4 日 > 4 日 > 4 三 > 4 三 > 4 日 >

We can construct a v_2 -periodic family as follows. Let V(1) be the cofiber of the Adams map

$$\Sigma^{2p-2}V(0) \xrightarrow{\alpha} V(0).$$

inducing multiplication by v_1 .

ECHT Minicourse What is the telescope conjecture? Lecture 4

Doug Ravenel

Review

Greek letter elements

Type h finite complexes

The telescope conjecture

References

◆□▶▲□▶▲三▶▲三 少へ⊙

We can construct a v_2 -periodic family as follows. Let V(1) be the cofiber of the Adams map

 $\Sigma^{2p-2}V(0) \xrightarrow{\alpha} V(0).$

inducing multiplication by v_1 . It is a CW-spectrum of the form $V(1) = S^0 \cup_p e^1 \cup_{\alpha_1} e^{2p-1} \cup_p e^{2p}$. ECHT Minicourse What is the telescope conjecture? Lecture 4

Doug Ravenel

Review

Greek letter elements

Type h finite complexes

The telescope conjecture

We can construct a v_2 -periodic family as follows. Let V(1) be the cofiber of the Adams map

 $\Sigma^{2p-2}V(0) \xrightarrow{\alpha} V(0).$

inducing multiplication by v_1 . It is a CW-spectrum of the form $V(1) = S^0 \cup_p e^1 \cup_{\alpha_1} e^{2p-1} \cup_p e^{2p}$.

Independently Larry Smith and Hirosi Toda showed that for $p \ge 5$, there is a map

ECHT Minicourse What is the telescope conjecture? Lecture 4

Doug Ravenel

Review

Greek letter elements

Type h finite complexes

The telescope conjecture

We can construct a v_2 -periodic family as follows. Let V(1) be the cofiber of the Adams map

 $\Sigma^{2p-2}V(0) \xrightarrow{\alpha} V(0).$

inducing multiplication by v_1 . It is a CW-spectrum of the form $V(1) = S^0 \cup_p e^1 \cup_{\alpha_1} e^{2p-1} \cup_p e^{2p}$.

Independently Larry Smith and Hirosi Toda showed that for $p \ge 5$, there is a map

 $\Sigma^{|2p^2-2|}V(1) \xrightarrow{\beta} V(1)$

ECHT Minicourse What is the telescope conjecture? Lecture 4

Doug Ravenel

Review

Greek letter elements

Type h finite complexes

The telescope conjecture

We can construct a v_2 -periodic family as follows. Let V(1) be the cofiber of the Adams map

 $\Sigma^{2p-2}V(0) \xrightarrow{\alpha} V(0).$

inducing multiplication by v_1 . It is a CW-spectrum of the form $V(1) = S^0 \cup_p e^1 \cup_{\alpha_1} e^{2p-1} \cup_p e^{2p}.$

Independently Larry Smith and Hirosi Toda showed that for $p \ge 5$, there is a map

 $\Sigma^{|2p^2-2|}V(1) \xrightarrow{\beta} V(1)$

inducing multiplication by v_2 in $BP_*(-)$.

ECHT Minicourse What is the telescope conjecture? Lecture 4

Doug Ravenel

Review

Greek letter elements

Type h finite complexes

The telescope conjecture

References

▲□▶▲□▶▲≧▶▲≧▶ ≧ めんの

We can construct a v_2 -periodic family as follows. Let V(1) be the cofiber of the Adams map

 $\Sigma^{2p-2}V(0) \xrightarrow{\alpha} V(0).$

inducing multiplication by v_1 . It is a CW-spectrum of the form $V(1) = S^0 \cup_p e^1 \cup_{\alpha_1} e^{2p-1} \cup_p e^{2p}.$

Independently Larry Smith and Hirosi Toda showed that for $p \ge 5$, there is a map

$$\Sigma^{|2p^2-2|}V(1) \xrightarrow{\beta} V(1)$$

inducing multiplication by v_2 in $BP_*(-)$.

Then the element

$$\beta_t \coloneqq \delta_1 \delta_2 \mathbf{v}_2^t \in \operatorname{Ext}^{2,t|\mathbf{v}_2|-|\mathbf{v}_1|} (BP_*)$$

is represented by the composite

Doug Ravenel

Review

Greek letter elements

Type h finite complexes

The telescope conjecture

References

ECHT Minicourse What is the telescope conjecture? Lecture 4
Greek letter elements (continued)

We can construct a v_2 -periodic family as follows. Let V(1) be the cofiber of the Adams map

 $\Sigma^{2p-2}V(0) \xrightarrow{\alpha} V(0).$

inducing multiplication by v_1 . It is a CW-spectrum of the form $V(1) = S^0 \cup_p e^1 \cup_{\alpha_1} e^{2p-1} \cup_p e^{2p}.$

Independently Larry Smith and Hirosi Toda showed that for $p \ge 5$, there is a map

$$\Sigma^{|2p^2-2|}V(1) \xrightarrow{\beta} V(1)$$

inducing multiplication by v_2 in $BP_*(-)$.

Then the element

$$\beta_t \coloneqq \delta_1 \delta_2 \mathbf{v}_2^t \in \operatorname{Ext}^{2,t|\mathbf{v}_2|-|\mathbf{v}_1|} (BP_*)$$

is represented by the composite

$$S^{t|v_2|} \xrightarrow{i} \Sigma^{t|v_2|} V(1) \xrightarrow{\beta^t} V(1) \xrightarrow{j} S^{2p}.$$

ロ * 4 日 * 4 日 * 4 日 * 9 0 0

ECHT Minicourse What is the telescope conjecture? Lecture 4

Doug Ravenel

Review

Greek letter elements

Type h finite complexes

The telescope conjecture

Doug Ravenel

Review

Greek letter elements

Type h finite complexes

The telescope conjecture

References

▲□▶▲□▶▲□▶▲□▶▲□▶▲□

$$\eta_t^{(h)} \coloneqq \delta_1 \delta_2 \dots \delta_h(\boldsymbol{v}_h^t) \in \operatorname{Ext}^{h, t|\boldsymbol{v}_h| - \boldsymbol{w}_h}(\boldsymbol{BP}_*)$$

ECHT Minicourse What is the telescope conjecture? Lecture 4

Doug Ravenel

Review

Greek letter elements

Type h finite complexes

The telescope conjecture

$$\eta_t^{(h)} \coloneqq \delta_1 \delta_2 \dots \delta_h(\mathbf{v}_h^t) \in \operatorname{Ext}^{h,t|\mathbf{v}_h|-\mathbf{w}_h}(BP_*)$$

where $\eta^{(h)}$ denotes the *h*th letter of the Greek alphabet

Doug Ravenel

Review

Greek letter elements

Type h finite complexes

The telescope conjecture

References

▲□▶▲□▶▲≧▶▲≧▶ ≧ の�?

$$\eta_t^{(h)} \coloneqq \delta_1 \delta_2 \dots \delta_h(\mathbf{v}_h^t) \in \operatorname{Ext}^{h, t | \mathbf{v}_h | - \mathbf{w}_h}(BP_*)$$

where $\eta^{(h)}$ denotes the *h*th letter of the Greek alphabet and $w_h = |v_1| + \cdots + |v_{h-1}|$.

Doug Ravenel

Review

Greek letter elements

Type h finite complexes

The telescope conjecture

References

・ロト・西・・川・・ 一世・ うくら

$$\eta_t^{(h)} \coloneqq \delta_1 \delta_2 \dots \delta_h(\mathbf{v}_h^t) \in \operatorname{Ext}^{h, t | \mathbf{v}_h | - \mathbf{w}_h}(BP_*)$$

where $\eta^{(h)}$ denotes the *h*th letter of the Greek alphabet and $w_h = |v_1| + \cdots + |v_{h-1}|$.

However, we can go only one step further geometrically, defining elements γ_t for $p \ge 7$.

Doug Ravenel

Review

Greek letter elements

Type h finite complexes

The telescope conjecture

References

- ロ ト 4 酉 ト 4 至 ト 4 回 ト 4 回 - ク 9 9

$$\eta_t^{(h)} \coloneqq \delta_1 \delta_2 \dots \delta_h(\mathbf{v}_h^t) \in \operatorname{Ext}^{h, t | \mathbf{v}_h | - \mathbf{w}_h} (\mathbf{BP}_*)$$

where $\eta^{(h)}$ denotes the *h*th letter of the Greek alphabet and $w_h = |v_1| + \cdots + |v_{h-1}|$.

However, we can go only one step further geometrically, defining elements γ_t for $p \ge 7$. Nobody knows how to construct a map

Doug Ravenel

Review

Greek letter elements

Type h finite complexes

The telescope conjecture

$$\eta_t^{(h)} \coloneqq \delta_1 \delta_2 \dots \delta_h(\mathbf{v}_h^t) \in \operatorname{Ext}^{h, t | \mathbf{v}_h | - \mathbf{w}_h} (\mathbf{BP}_*)$$

where $\eta^{(h)}$ denotes the *h*th letter of the Greek alphabet and $w_h = |v_1| + \cdots + |v_{h-1}|$.

However, we can go only one step further geometrically, defining elements γ_t for $p \ge 7$. Nobody knows how to construct a map

$$\Sigma^{|2p^4-2|}V(3) \xrightarrow{\delta} V(3)$$

ECHT Minicourse What is the telescope conjecture? Lecture 4

Doug Ravenel

Review

Greek letter elements

Type h finite complexes

The telescope conjecture

$$\eta_t^{(h)} \coloneqq \delta_1 \delta_2 \dots \delta_h(\mathbf{v}_h^t) \in \operatorname{Ext}^{h, t | \mathbf{v}_h | - \mathbf{w}_h} (\mathbf{BP}_*)$$

where $\eta^{(h)}$ denotes the *h*th letter of the Greek alphabet and $w_h = |v_1| + \cdots + |v_{h-1}|$.

However, we can go only one step further geometrically, defining elements γ_t for $p \ge 7$. Nobody knows how to construct a map $\sum_{k=1}^{|2p^4-2|} V(3) \xrightarrow{\delta} V(3)$

inducing multiplication by v_4 in $BP_*(-)$ at any prime.

ECHT Minicourse What is the telescope conjecture? Lecture 4

Doug Ravenel

Review

Greek letter elements

Type h finite complexes

The telescope conjecture

For a *p*-local finite spectrum *X*, we know that $K(h)_*X = 0$ implies $K(h-1)_*X = 0$, ECHT Minicourse What is the telescope conjecture? Lecture 4

Doug Ravenel

Review

Greek letter elements

Type h finite complexes

The telescope conjecture

References

▲ロト < 団ト < 三ト < 三ト < 三
● < < □ > < < □ > < < □ >

For a *p*-local finite spectrum *X*, we know that $K(h)_*X = 0$ implies $K(h-1)_*X = 0$, and that $K(h)_*X \neq 0$ for $h \gg 0$ unless *X* is contractible. ECHT Minicourse What is the telescope conjecture? Lecture 4

Doug Ravenel

Review

Greek letter elements

Type h finite complexes

The telescope conjecture

References

▲ロト < 団ト < 三ト < 三ト < 三
● < < □ > < < □ > < < □ >

For a *p*-local finite spectrum *X*, we know that $K(h)_*X = 0$ implies $K(h-1)_*X = 0$, and that $K(h)_*X \neq 0$ for $h \gg 0$ unless *X* is contractible. We say that *X* has type *h* if *h* is the smallest integer with $K(h)_*X \neq 0$.

ECHT Minicourse What is the telescope conjecture? Lecture 4

Doug Ravenel

Review

Greek letter elements

Type h finite complexes

The telescope conjecture

For a *p*-local finite spectrum *X*, we know that $K(h)_*X = 0$ implies $K(h-1)_*X = 0$, and that $K(h)_*X \neq 0$ for $h \gg 0$ unless *X* is contractible. We say that *X* has type *h* if *h* is the smallest integer with $K(h)_*X \neq 0$. Hence Toda's V(h-1) has type *h*. ECHT Minicourse What is the telescope conjecture? Lecture 4

Doug Ravenel

Review

Greek letter elements

Type h finite complexes

The telescope conjecture

References

▲□▶▲□▶▲≡▶▲≡▶ ≡ めへで

For a *p*-local finite spectrum *X*, we know that $K(h)_*X = 0$ implies $K(h-1)_*X = 0$, and that $K(h)_*X \neq 0$ for $h \gg 0$ unless *X* is contractible. We say that *X* has type *h* if *h* is the smallest integer with $K(h)_*X \neq 0$. Hence Toda's V(h-1) has type *h*. If $K(h)_*X = 0$ for all *h*, then *X* is contractible. ECHT Minicourse What is the telescope conjecture? Lecture 4

Doug Ravenel

Review

Greek letter elements

Type h finite complexes

The telescope conjecture

For a *p*-local finite spectrum *X*, we know that $K(h)_*X = 0$ implies $K(h-1)_*X = 0$, and that $K(h)_*X \neq 0$ for $h \gg 0$ unless *X* is contractible. We say that *X* has type *h* if *h* is the smallest integer with $K(h)_*X \neq 0$. Hence Toda's V(h-1) has type *h*. If $K(h)_*X = 0$ for all *h*, then *X* is contractible.

The following was conjectured in [Rav84] and proved by Ethan Devinatz, Mike Hopkins and Jeff Smith in [DHS88].

Doug Ravenel

Review

Greek letter elements

Type h finite complexes

The telescope conjecture

For a *p*-local finite spectrum *X*, we know that $K(h)_*X = 0$ implies $K(h-1)_*X = 0$, and that $K(h)_*X \neq 0$ for $h \gg 0$ unless *X* is contractible. We say that *X* has type *h* if *h* is the smallest integer with $K(h)_*X \neq 0$. Hence Toda's V(h-1) has type *h*. If $K(h)_*X = 0$ for all *h*, then *X* is contractible.

The following was conjectured in [Rav84] and proved by Ethan Devinatz, Mike Hopkins and Jeff Smith in [DHS88].

Class Invariance Theorem

The Bousfield equivalence class of a p-local finite spectrum is determined by its type.

ECHT Minicourse What is the telescope conjecture? Lecture 4

Doug Ravenel

Review

Greek letter elements

Type h finite complexes

The telescope conjecture

References

●□▶●□▶●□▼●▼= ●

For a *p*-local finite spectrum *X*, we know that $K(h)_*X = 0$ implies $K(h-1)_*X = 0$, and that $K(h)_*X \neq 0$ for $h \gg 0$ unless *X* is contractible. We say that *X* has type *h* if *h* is the smallest integer with $K(h)_*X \neq 0$. Hence Toda's V(h-1) has type *h*. If $K(h)_*X = 0$ for all *h*, then *X* is contractible.

The following was conjectured in [Rav84] and proved by Ethan Devinatz, Mike Hopkins and Jeff Smith in [DHS88].

Class Invariance Theorem

The Bousfield equivalence class of a p-local finite spectrum is determined by its type.

ECHT Minicourse What is the telescope conjecture? Lecture 4

Doug Ravenel

Review

Greek letter elements

Type h finite complexes

The telescope conjecture

References

・ロ・・団・・川・・日・

For a *p*-local finite spectrum *X*, we know that $K(h)_*X = 0$ implies $K(h-1)_*X = 0$, and that $K(h)_*X \neq 0$ for $h \gg 0$ unless *X* is contractible. We say that *X* has type *h* if *h* is the smallest integer with $K(h)_*X \neq 0$. Hence Toda's V(h-1) has type *h*. If $K(h)_*X = 0$ for all *h*, then *X* is contractible.

The following was conjectured in [Rav84] and proved by Ethan Devinatz, Mike Hopkins and Jeff Smith in [DHS88].

Class Invariance Theorem

The Bousfield equivalence class of a p-local finite spectrum is determined by its type.

In particular any *p*-local finite spectrum *X* with nontrivial rational homology is Bousfield equivalent to $\mathbb{S}_{(p)}$.

ECHT Minicourse What is the telescope conjecture? Lecture 4

Doug Ravenel

Review

Greek letter elements

Type h finite complexes

The telescope conjecture

A few years later in [HS98], Hopkins and Smith proved the following.

Doug Ravenel

Review

Greek letter elements

Type h finite complexes

The telescope conjecture

References

< □ ▶ < @ ▶ < ≧ ▶ < ≧ ▶ E りへぐ

A few years later in [HS98], Hopkins and Smith proved the following.

Periodicity Theorem

Let X by p-local finite spectrum of type h.

A few years later in [HS98], Hopkins and Smith proved the following.

Periodicity Theorem

Let X by p-local finite spectrum of type h. Then there is a map $v : \Sigma^d X \to X$ for some d > 0

Doug Ravenel

Review

Greek letter elements

Type h finite complexes

The telescope conjecture

A few years later in [HS98], Hopkins and Smith proved the following.

Periodicity Theorem

Let X by p-local finite spectrum of type h. Then there is a map $v : \Sigma^d X \to X$ for some d > 0 that induces an isomorphism in $K(h)_*(-)$ and a nilpotent map in every other Morava K-theory.

ECHT Minicourse

Review

Greek letter elements

Type h finite complexes

The telescope conjecture

A few years later in [HS98], Hopkins and Smith proved the following.

Periodicity Theorem

Let X by p-local finite spectrum of type h. Then there is a map $v : \Sigma^d X \to X$ for some d > 0 that induces an isomorphism in $K(h)_*(-)$ and a nilpotent map in every other Morava K-theory. We call it a v_h self-map.

Doug Ravenel

Review

Greek letter elements

Type h finite complexes

The telescope conjecture

A few years later in [HS98], Hopkins and Smith proved the following.

Periodicity Theorem

Let X by p-local finite spectrum of type h. Then there is a map $v : \Sigma^d X \to X$ for some d > 0 that induces an isomorphism in $K(h)_*(-)$ and a nilpotent map in every other Morava K-theory. We call it a v_h self-map.

This map is asymptotically unique in the following sense.

Doug Ravenel

Review

Greek letter elements

Type h finite complexes

The telescope conjecture

References

▲□▶▲酉▶▲≧▶▲≧▶ ≧ めんの

A few years later in [HS98], Hopkins and Smith proved the following.

Periodicity Theorem

Let X by p-local finite spectrum of type h. Then there is a map $v : \Sigma^d X \to X$ for some d > 0 that induces an isomorphism in $K(h)_*(-)$ and a nilpotent map in every other Morava K-theory. We call it a v_h self-map.

This map is asymptotically unique in the following sense. Given a second such map $v' : \Sigma^{d'} X \to X$, there exist integers e and e' with ed = e'd' and $v^e = (v')^{e'}$.

ECHT Minicourse What is the telescope conjecture? Lecture 4

Doug Ravenel

Review

Greek letter elements

Type h finite complexes

The telescope conjecture

A few years later in [HS98], Hopkins and Smith proved the following.

Periodicity Theorem

Let X by p-local finite spectrum of type h. Then there is a map $v : \Sigma^d X \to X$ for some d > 0 that induces an isomorphism in $K(h)_*(-)$ and a nilpotent map in every other Morava K-theory. We call it a v_h self-map.

This map is asymptotically unique in the following sense. Given a second such map $v' : \Sigma^{d'} X \to X$, there exist integers e and e' with ed = e'd' and $v^e = (v')^{e'}$.

If follows that the cofiber C_v has type h + 1.

Doug Ravenel

Review

Greek letter elements

Type h finite complexes

The telescope conjecture

A few years later in [HS98], Hopkins and Smith proved the following.

Periodicity Theorem

Let X by p-local finite spectrum of type h. Then there is a map $v : \Sigma^d X \to X$ for some d > 0 that induces an isomorphism in $K(h)_*(-)$ and a nilpotent map in every other Morava K-theory. We call it a v_h self-map.

This map is asymptotically unique in the following sense. Given a second such map $v' : \Sigma^{d'} X \to X$, there exist integers e and e' with ed = e'd' and $v^e = (v')^{e'}$.

If follows that the cofiber C_v has type h + 1. Hence we can produce finite spectra of all higher types by iterating this process.

ECHT Minicourse What is the telescope conjecture? Lecture 4

Doug Ravenel

Review

Greek letter elements

Type h finite complexes

The telescope conjecture

A few years later in [HS98], Hopkins and Smith proved the following.

Periodicity Theorem

Let X by p-local finite spectrum of type h. Then there is a map $v : \Sigma^d X \to X$ for some d > 0 that induces an isomorphism in $K(h)_*(-)$ and a nilpotent map in every other Morava K-theory. We call it a v_h self-map.

This map is asymptotically unique in the following sense. Given a second such map $v' : \Sigma^{d'} X \to X$, there exist integers e and e' with ed = e'd' and $v^e = (v')^{e'}$.

If follows that the cofiber C_v has type h + 1. Hence we can produce finite spectra of all higher types by iterating this process. The Class Invariance theorem implies that the Bousfield class of the telescope $v^{-1}X$ is independent of the choices of both X and v. ECHT Minicourse What is the telescope conjecture? Lecture 4

Doug Ravenel

Review

Greek letter elements

Type h finite complexes

The telescope conjecture

A few years later in [HS98], Hopkins and Smith proved the following.

Periodicity Theorem

Let X by p-local finite spectrum of type h. Then there is a map $v : \Sigma^d X \to X$ for some d > 0 that induces an isomorphism in $K(h)_*(-)$ and a nilpotent map in every other Morava K-theory. We call it a v_h self-map.

This map is asymptotically unique in the following sense. Given a second such map $v' : \Sigma^{d'} X \to X$, there exist integers e and e' with ed = e'd' and $v^e = (v')^{e'}$.

If follows that the cofiber C_v has type h + 1. Hence we can produce finite spectra of all higher types by iterating this process. The Class Invariance theorem implies that the Bousfield class of the telescope $v^{-1}X$ is independent of the choices of both X and v. We denote it by $\langle T(h) \rangle$. ECHT Minicourse What is the telescope conjecture? Lecture 4

Doug Ravenel

Review

Greek letter elements

Type h finite complexes

The telescope conjecture

The telescope conjecture

Periodicity Theorem

Let X by p-local finite spectrum of type h.

Doug Ravenel

Review

Greek letter elements

Type h finite complexes

The telescope conjecture

References

◆□▶▲∰▶▲≧▶▲≧▶ ≧ ∽��?

The telescope conjecture

Periodicity Theorem

Let X by p-local finite spectrum of type h. Then there is a map $v : \Sigma^d X \to X$ for some d > 0 that induces an isomorphism in $K(h)_*(-)$. We call it a v_h self-map.

ECHT Minicourse What is the telescope conjecture? Lecture 4

Doug Ravenel

Review

Greek letter elements

Type h finite complexes

The telescope conjecture

Let X by p-local finite spectrum of type h. Then there is a map $v : \Sigma^d X \to X$ for some d > 0 that induces an isomorphism in $K(h)_*(-)$. We call it a v_h self-map.

The map $X \rightarrow v^{-1}X$ is a $K(h)_*$ - equivalence,

Doug Ravenel

Review

Greek letter elements

Type h finite complexes

The telescope conjecture

Let X by p-local finite spectrum of type h. Then there is a map $v : \Sigma^d X \to X$ for some d > 0 that induces an isomorphism in $K(h)_*(-)$. We call it a v_h self-map.

The map $X \to v^{-1}X$ is a $K(h)_*$ - equivalence, so we have a map $\lambda : v^{-1}X \to L_{K(h)}X = L_hX,$

Doug Ravenel

Review

Greek letter elements

Type h finite complexes

The telescope conjecture

Let X by p-local finite spectrum of type h. Then there is a map $v : \Sigma^d X \to X$ for some d > 0 that induces an isomorphism in $K(h)_*(-)$. We call it a v_h self-map.

The map $X \to v^{-1}X$ is a $K(h)_*$ - equivalence, so we have a map $\lambda : v^{-1}X \to L_{K(h)}X = L_hX$,

where the equality holds because the lower Morava K-theories vanish on X.

Doug Ravenel

Review

Greek letter elements

Type h finite complexes

The telescope conjecture

Let X by p-local finite spectrum of type h. Then there is a map $v : \Sigma^d X \to X$ for some d > 0 that induces an isomorphism in $K(h)_*(-)$. We call it a v_h self-map.

The map $X \to v^{-1}X$ is a $K(h)_*$ - equivalence, so we have a map

$$\lambda: \mathbf{v}^{-1}\mathbf{X} \to L_{K(h)}\mathbf{X} = L_h\mathbf{X},$$

where the equality holds because the lower Morava K-theories vanish on *X*. The following appeared in [Rav84].

Doug Ravenel

Review

Greek letter elements

Type h finite complexes

The telescope conjecture

Let X by p-local finite spectrum of type h. Then there is a map $v : \Sigma^d X \to X$ for some d > 0 that induces an isomorphism in $K(h)_*(-)$. We call it a v_h self-map.

The map $X \to v^{-1}X$ is a $K(h)_*$ - equivalence, so we have a map $\lambda : v^{-1}X \to L_{K(h)}X = L_hX$,

where the equality holds because the lower Morava K-theories vanish on X. The following appeared in [Rav84].

Telescope Conjecture

The map

$$\lambda: v^{-1}X \to L_{K(h)}X$$

is an equivalence.

ECHT Minicourse What is the telescope conjecture? Lecture 4

Doug Ravenel

Review

Greek letter elements

Type h finite complexes

The telescope conjecture

References

しちゃ 前 えばやえばや 4日・
Telescope Conjecture

The map

$$\lambda: v^{-1}X \to L_{K(h)}X$$

is an equivalence.

Doug Ravenel

Review

Greek letter elements

Type h finite complexes

The telescope conjecture

References

▲□▶▲□▶▲≡▶▲≡▶ ≡ めへで

Telescope Conjecture

The map

$$\lambda: v^{-1}X \to L_{\mathcal{K}(h)}X$$

is an equivalence.

This is trivially true for h = 0, and for h = 1 it was proved around 1980 by Mahowald for p = 2 and by Miller for p odd.

Doug Ravenel

Review

Greek letter elements

Type h finite complexes

The telescope conjecture

Telescope Conjecture

The map

$$\lambda: v^{-1}X \to L_{K(h)}X$$

is an equivalence.

This is trivially true for h = 0, and for h = 1 it was proved around 1980 by Mahowald for p = 2 and by Miller for p odd. In 1989 I began to think it was false for $h \ge 2$.

ECHT Minicourse What is the telescope conjecture? Lecture 4

Doug Ravenel

Review

Greek letter elements

Type h finite complexes

The telescope conjecture

Telescope Conjecture

The map

$$\lambda: v^{-1}X \to L_{K(h)}X$$

is an equivalence.

This is trivially true for h = 0, and for h = 1 it was proved around 1980 by Mahowald for p = 2 and by Miller for p odd. In 1989 I began to think it was false for $h \ge 2$. This is now a theorem of Robert Burklund, Jeremy Hahn, Ishan Levy and Tomer Schlank.

ECHT Minicourse What is the telescope conjecture? Lecture 4

Doug Ravenel

Review

Greek letter elements

Type h finite complexes

The telescope conjecture

Telescope Conjecture

The map

$$\lambda: v^{-1}X \to L_{K(h)}X$$

is an equivalence.

This is trivially true for h = 0, and for h = 1 it was proved around 1980 by Mahowald for p = 2 and by Miller for p odd. In 1989 I began to think it was false for $h \ge 2$. This is now a theorem of Robert Burklund, Jeremy Hahn, Ishan Levy and Tomer Schlank.

Jeremy, Tomer, myself, Ishan and Robert at Oxford University, June 9, 2023. Photo by Matteo Barucco.

□▶ ▲母▶ ▲ミ≯ ▲ミ≯ → 臣 → ��

ECHT Minicourse What is the telescope conjecture? Lecture 4

Doug Ravenel

Review

Greek letter elements

Type h finite complexes

The telescope conjecture

Telescope Conjecture

The map

$$\lambda: \mathbf{v}^{-1}\mathbf{X} \to L_{\mathcal{K}(h)}\mathbf{X}$$

is an equivalence.

ECHT Minicourse What is the telescope conjecture? Lecture 4

Doug Ravenel

Review

Greek letter elements

Type h finite complexes

The telescope conjecture

References

▲□▶▲舂▶▲≧▶▲≧▶ ▲□▶ ▲◎ ��

Telescope Conjecture

The map

$$\lambda: v^{-1}X \to L_{\mathcal{K}(h)}X$$

is an equivalence.

This conjecture equated the geometrically interesting object $v^{-1}X$,

ECHT Minicourse What is the telescope conjecture? Lecture 4

Doug Ravenel

Review

Greek letter elements

Type h finite complexes

The telescope conjecture

References

▲□▶▲舂▶▲≧▶▲≧▶ ≧ 少�?

Telescope Conjecture

The map

$$\lambda: \mathbf{v}^{-1}\mathbf{X} \to L_{\mathcal{K}(h)}\mathbf{X}$$

is an equivalence.

This conjecture equated the geometrically interesting object $v^{-1}X$, the v_h -periodic telescope associated with the type *h* finite complex *X*,

ECHT Minicourse What is the telescope conjecture? Lecture 4

Doug Ravenel

Review

Greek letter elements

Type h finite complexes

The telescope conjecture

References

・ロト・日下・山川・山市・山口・

Telescope Conjecture

The map

$$\lambda: \mathbf{v}^{-1}\mathbf{X} \to L_{\mathcal{K}(h)}\mathbf{X}$$

is an equivalence.

This conjecture equated the geometrically interesting object $v^{-1}X$, the v_h -periodic telescope associated with the type h finite complex X, with the more computationally accessible spectrum $L_{K(h)}X$.

ECHT Minicourse What is the telescope conjecture? Lecture 4

Doug Ravenel

Review

Greek letter elements

Type h finite complexes

The telescope conjecture

References

(□ ▶ ◀ @ ▶ ◀ ≧ ▶ ◀ ≧ ▶ ○ ♀ ♡ ♀ ♡

Telescope Conjecture

The map

$$\lambda: \mathbf{v}^{-1}\mathbf{X} \to L_{\mathcal{K}(h)}\mathbf{X}$$

is an equivalence.

This conjecture equated the geometrically interesting object $v^{-1}X$, the v_h -periodic telescope associated with the type *h* finite complex *X*, with the more computationally accessible spectrum $L_{K(h)}X$.

For example, we know how to compute $\pi_* L_{K(2)} V(1)$ for $p \ge 5$,

ECHT Minicourse What is the telescope conjecture? Lecture 4

Doug Ravenel

Review

Greek letter elements

Type h finite complexes

The telescope conjecture

Telescope Conjecture

The map

$$\lambda: \mathbf{v}^{-1}\mathbf{X} \to L_{\mathcal{K}(h)}\mathbf{X}$$

is an equivalence.

This conjecture equated the geometrically interesting object $v^{-1}X$, the v_h -periodic telescope associated with the type *h* finite complex *X*, with the more computationally accessible spectrum $L_{K(h)}X$.

For example, we know how to compute $\pi_* L_{K(2)} V(1)$ for $p \ge 5$, where V(1) is Toda's 4-cell complex.

ECHT Minicourse What is the telescope conjecture? Lecture 4

Doug Ravenel

Review

Greek letter elements

Type h finite complexes

The telescope conjecture

Telescope Conjecture

The map

$$\lambda: \mathbf{v}^{-1}\mathbf{X} \to L_{\mathcal{K}(h)}\mathbf{X}$$

is an equivalence.

This conjecture equated the geometrically interesting object $v^{-1}X$, the v_h -periodic telescope associated with the type *h* finite complex *X*, with the more computationally accessible spectrum $L_{K(h)}X$.

For example, we know how to compute $\pi_* L_{K(2)} V(1)$ for $p \ge 5$, where V(1) is Toda's 4-cell complex. It consists of exactly 12 v_2 -periodic families.

ECHT Minicourse What is the telescope conjecture? Lecture 4

Doug Ravenel

Review

Greek letter elements

Type h finite complexes

The telescope conjecture

For example, we know how to compute $\pi_* L_{K(2)} V(1)$ for $p \ge 5$, where V(1) is Toda's 4-cell complex. It consists of exactly 12 v_2 -periodic families.

ECHT Minicourse What is the telescope conjecture? Lecture 4

Doug Ravenel

Review

Greek letter elements

Type h finite complexes

The telescope conjecture

We do not know $\pi_* v_2^{-1} V(1)$, which is likely to be much larger

Doug Ravenel

Review

Greek letter elements

Type h finite complexes

The telescope conjecture

We do not know $\pi_* v_2^{-1} V(1)$, which is likely to be much larger. There are possibly infinitely many such families not detected by the localized Adams-Novikov spectral sequence,

Doug Ravenel

Review

Greek letter elements

Type h finite complexes

The telescope conjecture

We do not know $\pi_* v_2^{-1} V(1)$, which is likely to be much larger. There are possibly infinitely many such families not detected by the localized Adams-Novikov spectral sequence, which is known to converge to $\pi_* L_{K(2)} V(1)$, ECHT Minicourse What is the telescope conjecture? Lecture 4

Doug Ravenel

Review

Greek letter elements

Type h finite complexes

The telescope conjecture

We do not know $\pi_* v_2^{-1} V(1)$, which is likely to be much larger. There are possibly infinitely many such families not detected by the localized Adams-Novikov spectral sequence, which is known to converge to $\pi_* L_{K(2)} V(1)$, but not to $\pi_* v_2^{-1} V(1)$. ECHT Minicourse What is the telescope conjecture? Lecture 4

Doug Ravenel

Review

Greek letter elements

Type h finite complexes

The telescope conjecture

We do not know $\pi_* v_2^{-1} V(1)$, which is likely to be much larger. There are possibly infinitely many such families not detected by the localized Adams-Novikov spectral sequence, which is known to converge to $\pi_* L_{K(2)} V(1)$, but not to $\pi_* v_2^{-1} V(1)$.

Meanwhile the ordinary Adams-Novikov spectral sequence does converge to $\pi_* V(1)$ but only sees 12 v_2 -periodic families there.

Doug Ravenel

Review

Greek letter elements

Type h finite complexes

The telescope conjecture

We do not know $\pi_* v_2^{-1} V(1)$, which is likely to be much larger. There are possibly infinitely many such families not detected by the localized Adams-Novikov spectral sequence, which is known to converge to $\pi_* L_{K(2)} V(1)$, but not to $\pi_* v_2^{-1} V(1)$.

Meanwhile the ordinary Adams-Novikov spectral sequence does converge to $\pi_*V(1)$ but only sees 12 v_2 -periodic families there. How can this be?

Doug Ravenel

Review

Greek letter elements

Type h finite complexes

The telescope conjecture

We do not know $\pi_* v_2^{-1} V(1)$, which is likely to be much larger. There are possibly infinitely many such families not detected by the localized Adams-Novikov spectral sequence, which is known to converge to $\pi_* L_{K(2)} V(1)$, but not to $\pi_* v_2^{-1} V(1)$.

Meanwhile the ordinary Adams-Novikov spectral sequence does converge to $\pi_*V(1)$ but only sees 12 v_2 -periodic families there. How can this be? One could have a v_2 -periodic family (or many of them) ECHT Minicourse What is the telescope conjecture? Lecture 4

Doug Ravenel

Review

Greek letter elements

Type h finite complexes

The telescope conjecture

We do not know $\pi_* v_2^{-1} V(1)$, which is likely to be much larger. There are possibly infinitely many such families not detected by the localized Adams-Novikov spectral sequence, which is known to converge to $\pi_* L_{K(2)} V(1)$, but not to $\pi_* v_2^{-1} V(1)$.

Meanwhile the ordinary Adams-Novikov spectral sequence does converge to $\pi_*V(1)$ but only sees 12 v_2 -periodic families there. How can this be? One could have a v_2 -periodic family (or many of them) that are spread out over infinitely many Adams-Novikov filtrations. ECHT Minicourse What is the telescope conjecture? Lecture 4

Doug Ravenel

Review

Greek letter elements

Type h finite complexes

The telescope conjecture

ECHT Minicourse What is the telescope conjecture? Lecture 4

Doug Ravenel

Review

Greek letter elements

Type h finite complexes

The telescope conjecture

References

THANK YOU!

・ロト・日・ ・ 川 ・ ・ 日・

[DHS88] Ethan S. Devinatz, Michael J. Hopkins, and Jeffrey H. Smith. Nilpotence and stable homotopy theory. I. Ann. of Math. (2), 128(2):207–241, 1988.

[HS98] Michael J. Hopkins and Jeffrey H. Smith. Nilpotence and stable homotopy theory. II. Ann. of Math. (2), 148(1):1–49, 1998.

[Rav84] Douglas C. Ravenel. Localization with respect to certain periodic homology theories. *Amer. J. Math.*, 106(2):351–414, 1984.

ECHT Minicourse What is the telescope conjecture? Lecture 4

Doug Ravenel

Review Greek letter elements Type h finite complexes The telescope conjecture References