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1 Recollections
Recollections

The Lazard ring L = Z[x1,x2, . . . ] is the graded ring (with |xi| = 2i) over which the universal
formal group law FL is defined. This means that any formal group law F over any ring R is induced
from FL by a ring homomorphism θ : L → R.

Quillen showed that for the formal group law FMU that one sees in MU∗CP∞, the map θ is
an isomorphism. There is a Hopf algebroid, i.e., an affine groupoid scheme, (MU∗,MU∗MU). It
represents the functor that assigns to each ring R the groupoid of formal group laws over R and strict
isomorphisms between them.

We have MU∗MU = MU∗[b1,b2, . . . ] with |bi|= 2i. There is an affine group scheme, i.e., a Hopf
algebra, represented by the ring B = Z[b1,b2, . . . ]. The corresponding functor assigns to each R the
group (under functional composition) GR of formally invertible power series of the form

f (x) = x+∑
i>0

bixi+1 ∈ Rx.

Recollections (continued)

There is an affine group scheme, i.e., a Hopf algebra, represented by the ring B = Z[b1,b2, . . . ].
The corresponding functor assigns to each R the group (under functional composition) GR of formally
invertible power series of the form

f (x) = x+∑
i>0

bixi+1 ∈ Rx.

The group G = GZ acts on L ∼= MU∗ as follows. We can conjugate FL by f , defining

F f
L (x,y) := f−1FL( f (x), f (y)).

This formal group law is induced by a ring automorphism θ f : L → L.
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2 The Adams-Novikov E2-term
The Adams-Novikov E2-term

We have MU∗MU = MU∗[b1,b2, . . . ] with |bi| = 2i. For any spectrum X , MU∗X is a comodule
over MU∗MU . For any such comodule M, we can define

Ext (M) := ExtMU∗MU (MU∗,M) .

When M = MU∗X , this is the E2-term of the Adams-Novikov spectral sequence converging (in
favorable circumstances) to π∗X .

In the p-local setting, it is more convenient to look at

BP∗X = BP∗⊗MU∗ MU∗X ,

which is a comodule over BP∗BP. For any such comodule M, we can define

Ext (M) := ExtBP∗BP (BP∗,M) .

3 Invariant prime ideals
Invariant prime ideals

Fix a prime number p throughout.
For each h > 0, we have a prime ideal

Ih = (p,v1, . . . ,vh−1)⊆ L,

which is related to formal group laws of height (at p) at least h. In 1973
Peter Landweber showed that they are the only prime ideals in MU∗ that are
invariant under the action of G.

We will use the same notation for the analogous prime ideals in BP∗. Landweber’s theorem says
they are the only ones which are also comodules over BP∗BP. There is a short exact sequence of
comodules

0 // Σ|vh−1|BP∗/Ih−1
vh−1 // BP∗/Ih−1 // BP∗/Ih // 0,

where I0 = (0) and v0 = p, the (hth) Greek letter sequence.

4 Morava’s vision
Morava’s vision

I learned the following from Jack Morava in 1973 and have never forgotten
it. It was the subject of an unpublished AMS Bulletin announcement that he
recently dug up. You can find it on my archive.

Let V denote the “vector space” of ring homomorphisms θ : L → Fp.

• Each point in V corresponds to a formal group law over Fp.
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• V has an action of G= GFp
⋊F×

p for which each orbit is an isomorphism class of formal group

laws over Fp. Hence there is one orbit for each height.

• For each x ∈V , the isotropy or stabilizer group Gx = {γ ∈G : γ(x) = x} is the automorphism
group of the corresponding formal group law. When x has height h, this group is isomorphic
to the Morava stabilizer group Sh.

Morava’s vision (continued)

Let V denote the “vector space” of ring homomorphisms θ : L → Fp.

• There are G-invariant finite codimensional linear subspaces

V =V1 ⊃V2 ⊃V3 ⊃ ·· ·

where Vh = {θ ∈V : θ(v1) = · · ·= θ(vh−1) = 0}. We will call this the Morava filtration of V .

• The height h orbit is Vh −Vh+1. It is the set of Fp-valued homomorphisms on v−1
h L/Ih. We use

this fact later.

• The height ∞ orbit is the linear subspace ⋂
h>0

Vh.

5 The Morava stabilizer group
The Morava stabilizer group

Here we describe the endomorphism ring and automorphism group of a height h formal group
law over a field K of characteristic p containing Fph .

We need some notation.

• W := W (Fph) denotes the Witt ring for Fph . It is the extension of the p-adic integers Zp

obtained by adjoining the (ph − 1)th roots of unity. It is a complete local ring with residue
field Fph and an extension of Zp of degree h. It has an automorphism σ that lifts the Frobenius
automorphism (pth power map) in the residue field. We denote the image of w ∈ W under σ

by wσ .

• Endh denotes the Zp-algebra obtained from W by adjoining an indeterminate S with Sw = wσ S
for w ∈W and setting Sh = p. We will see that it is the endomorphism ring of our formal group
law.

The Morava stabilizer group (continued)

To describe the action of Endh on the mod p reduction of the Honda formal group law Fh of
height h over W =W (Fph), we note first that each element e ∈ Endh can be written uniquely as

∑
i≥0

eiSi where eph

i = ei for each i,

meaning that each ei is either zero or a (ph −1)th root of unity.

Recall that the logarithm of Fh is

log(x) = ∑
k≥0

xpkh

pk = x+
xph

p
+

xp2h

p2 + · · · .

Now let ω ∈W satisfy ω ph
= ω . Then log(ωx) = ω log(x), so Fh has an endomorphism x 7→ ωx.

The endomorphism for

∑
i≥0

eiSi ∈ Endh is x 7→ ∑
i≥0

Fheixpi ∈ Fphx.
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The Morava stabilizer group (continued)

Again, each element e ∈ Endh can be written uniquely as

∑
i≥0

eiSi where eph

i = ei for each i.

Here are some additional properties of Endh:

• Each such expression with e0 ̸= 0 is invertible. The Morava stabilizer group Sh is the group of
units End×h . We also have the extended Morava stabilizer group

Gh = Sh ⋊Gal(Fph : Fp).

• Divh := Endh ⊗Zp Qp is a division algebra over the p-adic numbers Qp with Brauer invariant
1/h, in which Endh is a maximal order.

The Morava stabilizer group (continued)

The division algebra Divh := Endh ⊗Zp Qp contains every degree h field extension of Qp. Its
maximal order Endh contains the ring of integers of every such field. This means that Sh has an
element of order pi iff (p−1)pi−1 divides h.

The finite subgroups of Gh have been classified by Bujard.

The subgroup of order 8 in S4 for p= 2 odd was used in the solution of Kervaire invariant problem
with Hill and Hopkins.

The subgroup of order p in Sp−1 for p odd was used earlier in the solution of the odd primary
Kervaire invariant problem.

We know the mod p cohomology of S1 and S2 for all primes, and of S3
for p ≥ 5. We also know H1 and H2 for all heights. Sh has cohomologi-
cal dimension h2 when p− 1 does not divide h. H∗S4 for p > 5 has been
announced by Andrew Salch.

6 The change-of-rings isomorphism
The change-of-rings isomorphism

Recall that Morava’s height h orbit is the set of Fp-valued ring homomorphisms on v−1
h L/Ih. This

implies the following change-of-rings isomorphism due to Miller and myself:

Ext
(
v−1

h BP∗/Ih
)∼= H∗(Sh;Fp)

This is not quite right; there are caveats having to do with grading. Details can be found in
Chapter 6 of the green book, which describes methods for computing the cohomology group on the
right.
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7 The chromatic spectral sequence
The chromatic spectral sequence

We now describe a way to see Morava’s vision in the structure of the Adams-Novikov E2-term.
We will construct a long exact sequence of BP∗BP-comodules of the form

0 // BP∗ // M0 // M1 // M2 // M3 // . . .

called the chromatic resolution. Then standard homological algebra gives a spectral sequence of
the form

Eh,s
2 = Exts

(
Mh

)
=⇒ Exts+h (BP∗)

called the chromatic spectral sequence.

The chromatic spectral sequence (continued)

The chromatic spectral sequence

Eh,s
2 = Exts

(
Mh

)
=⇒ Exts+h (BP∗)

Roughly speaking, its hth column, Ext
(
Mh

)
, displays vh-periodic phenomena. This decomposi-

tion of the Adams-Novikov E2-term into its various frequencies is our reason for the use of the word
chromatic.

The chromatic spectral sequence (continued)

We will construct a long exact sequence of BP∗BP-comodules of the form

0 // BP∗ // M0 // M1 // M2 // M3 // . . .

called the chromatic resolution.

We will do so by splicing together the chromatic short exact sequences

0 // N0 := BP∗ // M0 // N1 // 0,

0 // N1 // M1 // N2 // 0,

0 // N2 // M2 // N3 // 0,

and so on.
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The chromatic spectral sequence (continued)

0 // N0 := BP∗ // M0 // N1 // 0,

We set M0 := BP0 ⊗Q, so N1 = BP∗⊗Q/Z(p), which we write as

N1 = BP∗/p∞ := colim
i

BP∗/pi.

Our first chromatic short exact sequence is

0 // N0 // M0 // N1 // 0,

BP∗ p−1BP∗ BP∗/(p∞)

We want the next one to be
0 // N1 // M1 // N2 // 0,

BP∗/(p∞) v−1
1 BP∗/(p∞) BP∗/(p∞,v∞

1 ),

but inverting v1 in the comodule category requires some care.

The chromatic spectral sequence (continued)

We want a short exact sequence of comodules

0 // N1 // M1 // N2 // 0,

BP∗/(p∞) v−1
1 BP∗/(p∞) BP∗/(p∞,v∞

1 ),

but inverting v1 in the comodule category requires some care.

Consider the BP∗-module v−1
1 BP∗. Since ηR(v1) = v1 + pt1, formally we have

ηR(vk
1) = (v1 + pt1)k = ∑

i≥0

(
k
i

)
pivk−i

1 t i
1.

When k < 0, this sum is infinite and therefore does not lie in v−1
1 BP∗BP. This means that v−1

1 BP∗
is not a comodule. We claim that v−1

1 BP∗/p∞ is one nevertheless.

The chromatic spectral sequence (continued)

The following sum is infinite for k < 0.

ηR(vk
1) = (v1 + pt1)k = ∑

i≥0

(
k
i

)
pivk−i

1 t i
1.

Each element in BP∗/p∞ can be written as a fraction of the form

x
p j where j > 0 and x ∈ BP∗ is not divisible by p.

This element is killed by p j. It follows that

ηR

(
vk

1x
p j

)
= ∑

0≤i< j

(
k
i

)
vk−i

1 t i
1ηR(x)

p j−i .

This sum is finite for all k, unlike the previous one, so v−1
1 BP∗/p∞ is a comodule as claimed.
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The chromatic spectral sequence (continued)

Thus we have our second chromatic short exact sequence

0 // N1 // M1 // N2 // 0

BP∗/(p∞) v−1
1 BP∗/(p∞) BP∗/(p∞,v∞

1 ).

In a similar manner we can work by induction on h and construct

0 // Nh // Mh // Nh+1 // 0

BP∗/(p∞, . . . ,v∞
h−1) v−1

h Nh BP∗/(p∞, . . . ,v∞
h ).

Splicing these together for all h gives the desired long exact sequence,

0 // BP∗ // M0 // M1 // M2 // M3 // M4 // · · · .

The chromatic spectral sequence (continued)

Recall that the change-of-ring-isomorphism gives us a handle on Ext
(
v−1

h BP∗/Ih
)
. For h = 1,

consider the short exact sequence

0 // M0
1

// M1 p // M1 // 0.

v−1
1 BP∗/(p) v−1

1 BP∗/(p∞) v−1
1 BP∗/(p∞)

This leads to a Bockstein spectral sequence of the form

Ext
(
M0

1
)
⊗P(a0) +3 Ext

(
M1

)
x⊗a j

0
// x
p j+1

The chromatic spectral sequence (continued)

For h = 2 we have two short exact sequences

0 // M1
1

// M2 p // M2 // 0

v−1
2 BP∗/(p,v∞

1 ) v−1
2 BP∗/(p∞,v∞

1 )

and
0 // M2

0
// Σ|v1|M1

1
v1 // M1

1
// 0.

v−1
2 BP∗/(p,v1)

x
pvi+1

1

� // x
pvi

1

x � // x
pv1

Each one leads to a Bockstein spectral sequence, making the desired Ext
(
M2

)
two steps removed

from the known quantity Ext
(
v−1

2 BP∗/(p,v1)
)
.

The chromatic spectral sequence (continued)

More generally we have a short exact sequence of comodules

0 // Σ|vi|Mh−i−1
i+1

// Σ|vi|Mh−i
i

vi // Mh−i
i

// 0
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for 0 ≤ i < h, where Mh
0 = Mh and v0 = 0. This leads to a Bockstein spectral sequence

Ext
(
Mh−i−1

i+1

)
⊗P(ai) +3 Ext

(
Mh−i

i

)
x

pv1 · · ·vi−1viv
ji+1
i+1 · · ·v jh−1

h−1

⊗a j
i

// x

pv1 · · ·vi−1v j+1
i . . .v jh−1

h−1

.

This makes Ext
(
Mh

)
h steps removed from the cohomology of Sh.

The chromatic spectral sequence (continued)

Computations with these Bockstein spectral sequence can be quite
delicate. Nearly all of them published since 1977 have been due to
Katsumi Shimomura and various coauthors.
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