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This expository talk is a self contained variant of the one | gave
in Shenzhen. Its purpose is to introduce the use of Quillen
model categories in stable homotopy theory.

A spectrum X was originally defined to be a sequence of
pointed spaces or simplicial sets {Xp, X1, Xz, ... } with structure
maps X : X, — X,.1. Amap of spectraf: X — Yisa
collection of pointed maps f, : X, — Y, compatible with the
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There are two different notions of weak equivalence in the
category of spectra Sp:

e f: X — Y is a strict equivalence if each map f, is a weak
equivalence.

e f: X — Yis astable equivalence if ...

There are at least two different ways to finish the definition of
stable equivalence:

(i) Define stable homotopy groups of spectra and require 7 f
to be an isomorphism.

(i) Define a functor A : Sp — Sp where (AX), is the
homotopy colimit (meaning the mapping telescope) of

Xn g QXn+1 g Q2Xn+2 - ...

and then require Af to be a strict equivalence.
These two definitions are known to be equivalent.
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1940-2011 1928-2013 Bousfield

In order to understand this better we need to discuss
¢ Quillen model categories
e Fibrant and cofibrant replacement
e Cofibrant generation
e Bousfield localization

We will see that the passage from strict equivalence to stable
equivalence is a form of Bousfield localization.
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MC5 Factorization axiom. Any morphismf: X — Y can be
functorially factored in two ways as

5
cofibration 7«0)/ \%t:/w'al fibration
f

X Y
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Quillen model categories (continued)
Definition
MC4 Lifting axiom. Given a commutative diagram

f
—_—

A X
cofibration i h -7 i p trivial fibration
trivial cofibration B~ & fibration

g )
a morphism h (called a lifting) exists for i and p as
indicated.

MC5 Factorization axiom. Any morphism f : X — Y can be
functorially factored in two ways as

7
cofibration 7«“)/7 \w—iw}al fibration
f
Y
?

X
%):j fibration

trivial cofibration = ~(
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Quillen model categories (continued)
Definition
MC4 Lifting axiom. Given a commutative diagram

A—L - x

cofibration | h. - 7 |p trivial fibration
trivial cofibration - fibration

~
e
9,
g

a morphism h (called a lifting) exists for i and p as
indicated.

MC5 Factorization axiom. Any morphism f : X — Y can be
functorially factored in two ways as

5
cofibration :/a(f)/ \kaﬁivia/ fibration
f
X Y
trivial coﬁbratior%\ % fibration
?

This last axiom is the hardest one to verify in practice.
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Model categories

Two classical examples and spectra

Let T op denote the category of (compactly generated weak
Hausdorff) topological spaces.
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Two classical examples

Let T op denote the category of (compactly generated weak
Hausdorff) topological spaces. Weak equivalences are maps
inducing isomorphisms of homotopy groups. Fibrations are
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Let T op denote the category of (compactly generated weak
Hausdorff) topological spaces. Weak equivalences are maps
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Model categories

Two classical examples and spectra

Let 7 op denote the category of (compactly generated weak
Hausdorff) topological spaces. Weak equivalences are maps

inducing isomorphisms of homotopy groups. Fibrations are | Mike H::I:
. . . . . . ] Ike Hopkins
Serre fibrations, that is is maps p : X — Y with the right lifting S S
property Introduction
0t Et
I h _ 7X fOI’ eaCh n 2 O, Cofibréntgene.ratif)n
/n\L - - i/p where /" is the unit Bousfield localization
[+t g > Y» n-cube. 1:5;:::2;?3?3
category of spectra
i The stable model
Cofibrations are maps (such as i, : S"~* — D" for n > 0) sture _
having the left lifting property with respect to all trivial Serre .
fibrations.

Similar definitions can be made for 7T, the category of pointed
topological spaces and basepoint preserving maps.
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Some definitions and spectra

Recall that we denote the initial and terminal objects of M by
& and =. When they are the same, we say that M is pointed.
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Some definitions

Recall that we denote the initial and terminal objects of M by
& and =. When they are the same, we say that M is pointed.

Definition
An object X is cofibrant if the unique map & — X is a

cofibration. It X is fibrant if the unique map X — = is a fibration.

All objects in T and 7T op are fibrant. The cofibrant objects are
the CW-complexes.

By MCS5, for any object X, the unique maps & — X and X — =
have factorizations

g—->QX - X and X — RX —

where QX is a cofibrant object weakly equivalent to X,
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Some definitions

Recall that we denote the initial and terminal objects of M by
& and =. When they are the same, we say that M is pointed.

Definition
An object X is cofibrant if the unique map & — X is a

cofibration. It X is fibrant if the unique map X — = is a fibration.

All objects in T and 7T op are fibrant. The cofibrant objects are
the CW-complexes.

By MCS5, for any object X, the unique maps & — X and X — =
have factorizations

g—->QX - X and X — RX —

where QX is a cofibrant object weakly equivalent to X,
and RX is a fibrant object weakly equivalent to X.
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Some definitions (continued)

By MCS5, for any object X, the unique maps & — X and X — =
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Some definitions (continued) and spectra
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Some definitions (continued)

By MCS5, for any object X, the unique maps & — X and X — =
have factorizations

F->QX - X and X — RX —

where QX is a cofibrant object weakly equivalent to X,
and RX is a fibrant object weakly equivalent to X.

These maps to and from X are called cofibrant and fibrant
approximations. The objects QX and RX are called cofibrant
and fibrant replacements of X.
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Cofibrant generation

In Top, let

I={ih:S"'>D"n>0}andJ = {jp: "> """, n>0}.
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Cofibrant generation

In Top, let

I={ih:S"'>D"n>0}andJ = {jp: "> """, n>0}.

It is known that every (trivial) cofibration in 7 op can be derived
from the ones in (7) Z by iterating certain elementary
constructions.
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constructions. A map is a (trivial) fibration iff it has the right
lifting property with respect to each map in (Z) J.

Model categories
and spectra

Mike Hill
Mike Hopkins
Doug Ravenel

Introduction

Quillen model
categories

Bousfield localization

The strict model
structure on the
category of spectra

The stable model
structure

Cofibrant generation
for spectra



Cofibrant generation

In Top, let
I={ih:S"'>D"n>0}andJ = {jp: "> """, n>0}.

It is known that every (trivial) cofibration in 7 op can be derived
from the ones in (7) Z by iterating certain elementary
constructions. A map is a (trivial) fibration iff it has the right
lifting property with respect to each map in (Z) J. This
condition is easier to verify than the previous one.

Model categories
and spectra

Mike Hill
Mike Hopkins
Doug Ravenel

Introduction

Quillen model
categories

Bousfield localization

The strict model
structure on the
category of spectra

The stable model
structure

Cofibrant generation
for spectra



Cofibrant generation

In Top, let
I={ih:S"'>D"n>0}andJ = {jp: "> """, n>0}.

It is known that every (trivial) cofibration in 7 op can be derived
from the ones in (7) Z by iterating certain elementary
constructions. A map is a (trivial) fibration iff it has the right
lifting property with respect to each map in (Z) J. This
condition is easier to verify than the previous one.
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In Top, let
I={ih:S"'>D"n>0}andJ = {jp: "> """, n>0}.

It is known that every (trivial) cofibration in 7 op can be derived
from the ones in (7) Z by iterating certain elementary
constructions. A map is a (trivial) fibration iff it has the right
lifting property with respect to each map in (Z) J. This
condition is easier to verify than the previous one.

In T, the category of pointed topological spaces, one can
define similar sets Z,. and 7,
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Cofibrant generation

In Top, let
I={ih:S"'>D"n>0}andJ = {jp: "> """, n>0}.

It is known that every (trivial) cofibration in 7 op can be derived
from the ones in (7) Z by iterating certain elementary
constructions. A map is a (trivial) fibration iff it has the right
lifting property with respect to each map in (Z) J. This
condition is easier to verify than the previous one.

In T, the category of pointed topological spaces, one can
define similar sets Z, and 7., by adding disjoint basepoints to
the above.
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Cofibrant generation (continued)

Definition
A cofibrantly generated model category M
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Cofibrant generation (continued)

Definition

A cofibrantly generated model category M is one with
morphism sets Z and J having similar properties to the ones in
T op.
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Cofibrant generation (continued)

Definition

A cofibrantly generated model category M is one with
morphism sets Z and J having similar properties to the ones in
Top. T (J)is agenerating set of (trivial) cofibrations.
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Definition '
Introduction
A cofibrantly generated model category M is one with Quillen model

categories

morphism sets Z and J having similar properties to the ones in r—
Top. T (J)is agenerating set of (trivial) cofibrations.

Bousfield localization

The strict model

In practice, specifying the generating sets Z and 7, and e s
defining weak equivalences is the most convenient way to "
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Around 1975 Pete Bousfield had a brilliant idea. @

Suppose we have a model category M, and we wish to
change the model structure (without altering the underlying
category) as follows.
e Enlarge the class of weak equivalences in some way.
o Keep the same class of cofibrations as before.
o Define fibrations in terms of right lifting properties with
respect to the newly defined trivial cofibrations. The class
of trivial fibrations remains unaltered.
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Bousfield localization

Around 1975 Pete Bousfield had a brilliant idea. @

Suppose we have a model category M, and we wish to
change the model structure (without altering the underlying
category) as follows.

e Enlarge the class of weak equivalences in some way.

o Keep the same class of cofibrations as before.

o Define fibrations in terms of right lifting properties with
respect to the newly defined trivial cofibrations. The class
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Bousfield localization

Around 1975 Pete Bousfield had a brilliant idea. @

Suppose we have a model category M, and we wish to
change the model structure (without altering the underlying
category) as follows.

e Enlarge the class of weak equivalences in some way.

o Keep the same class of cofibrations as before.

o Define fibrations in terms of right lifting properties with
respect to the newly defined trivial cofibrations. The class
of trivial fibrations remains unaltered.

Since there are more weak equivalences, there are more ftrivial
cofibrations. Hence there are fewer fibrations and fewer fibrant
objects. This could make the fibrant replacement functor much
more interesting.

The hardest part of this is showing that the new classes of
weak equivalences and fibrations, along with the original class
of cofibrations, satisfy the second Factorization Axiom MC5.
The proof involves some delicate set theory.
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Choose an integer n > 0. Define a map f to be a weak Cofirant generation
equivalence if i f is an isomorphism for k < n. Then the * Bousfeld ocalizaton
fibrant objects are the spaces with no homotopy above The strict model
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The strict or projective model structure on Sp. A map of Wik Hil
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Definition
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Definition

The strict or projective model structure on Sp. A map of
spectra f - X — Y is a weak equivalence or a fibration if f, is
one for each n > 0. A map is a cofibration if it has the left lifting
property with respect to all trivial fibrations.

This model structure is known to be cofibrantly generated.
Recall that T, the category of pointed topological spaces, has
generating sets Z.. and 7. The ones for Sp are
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Note that here we are smashing a spectrum X with a map of
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Definition

The strict or projective model structure on Sp. A map of
spectra f - X — Y is a weak equivalence or a fibration if f, is
one for each n > 0. A map is a cofibration if it has the left lifting
property with respect to all trivial fibrations.

This model structure is known to be cofibrantly generated.
Recall that T, the category of pointed topological spaces, has
generating sets Z.. and 7. The ones for Sp are

I=Js™ArZy and J=[)ST"AT:
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Note that here we are smashing a spectrum X with a map of
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smash a spectrum with a spaces is to say that

Model categories
and spectra

Mike Hill
Mike Hopkins
Doug Ravenel

Introduction

Quillen model
categories

Cofibrant generation

Bousfield localization

The stable model
structure

Cofibrant generation
for spectra



The strict model structure on the category of spectra
(continued)

Definition

The strict or projective model structure on Sp. A map of
spectra f - X — Y is a weak equivalence or a fibration if f, is
one for each n > 0. A map is a cofibration if it has the left lifting
property with respect to all trivial fibrations.

This model structure is known to be cofibrantly generated.
Recall that T, the category of pointed topological spaces, has
generating sets Z.. and 7. The ones for Sp are

I=Js™ArZy and J=[)ST"AT:

m=0 m=0

Note that here we are smashing a spectrum X with a map of
pointed spaces g : A — B. The nth component of X A g is the
map X, A A — X, A B. The categorical term for being able to
smash a spectrum with a spaces is to say that Sp is tensored
over 7.
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Definition

The strict or projective model structure on Sp. A map of
spectraf: X — Y is a weak equivalence or a fibration if f, is
one for each n = 0. A map is a cofibration if it has the left lifting
property with respect to all trivial fibrations.

Experience has taught us that to do stable homotopy theory,
we need a looser notion of weak equivalence, one which
involves stable homotopy groups. To define them, recall our
functor A : Sp — Sp where (AX), is the homotopy colimit
(meaning the mapping telescope) of

Xy — QXpi1 — P Xnwo — ...

Each space (AX), is an infinite loop space, and the adjoint
structure map
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The stable model structure

Definition

The strict or projective model structure on Sp. A map of
spectraf: X — Y is a weak equivalence or a fibration if f, is
one for each n = 0. A map is a cofibration if it has the left lifting
property with respect to all trivial fibrations.

Experience has taught us that to do stable homotopy theory,
we need a looser notion of weak equivalence, one which
involves stable homotopy groups. To define them, recall our
functor A : Sp — Sp where (AX), is the homotopy colimit
(meaning the mapping telescope) of

Xy — QXpi1 — P Xnwo — ...

Each space (AX), is an infinite loop space, and the adjoint
structure map
77;7\X t(AX)n = QAX) 41
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The stable model structure

Definition

The strict or projective model structure on Sp. A map of
spectraf: X — Y is a weak equivalence or a fibration if f, is
one for each n = 0. A map is a cofibration if it has the left lifting
property with respect to all trivial fibrations.

Experience has taught us that to do stable homotopy theory,
we need a looser notion of weak equivalence, one which
involves stable homotopy groups. To define them, recall our
functor A : Sp — Sp where (AX), is the homotopy colimit
(meaning the mapping telescope) of

Xy — QXpi1 — P Xngo — ...

Each space (AX), is an infinite loop space, and the adjoint
structure map
77;7\X t(AX)n = QAX) 41

is a weak equivalence for all n, so AX is an Q-spectrum.
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Again, (AX), is the homotopy colimit (meaning the mapping
telescope) of

Xy — QXpi1 — P Xnwo — ...
We can use it to define the stable homotopy groups of X by
7TkX = 7rn+k(/\X)n,

which is independent of n. We say amap f: X — Y is a stable
equivalence if 7, f is an isomorphism.
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Again, (AX), is the homotopy colimit (meaning the mapping
telescope) of

Xy — QXpi1 — P Xnwo — ...
We can use it to define the stable homotopy groups of X by
7TkX = 7rn+k(/\X)n,

which is independent of n. We say amap f: X — Y is a stable
equivalence if m,f is an isomorphism. This is equivalent to Af
being a strict equivalence.
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The stable model structure (continued)

Again, (AX), is the homotopy colimit (meaning the mapping
telescope) of

Xy — QXpi1 — P Xnwo — ...
We can use it to define the stable homotopy groups of X by
7TkX = 7rn+k(/\X)n,

which is independent of n. We say amap f: X — Y is a stable
equivalence if m,f is an isomorphism. This is equivalent to Af
being a strict equivalence.

Thus we have expanded the class of weak equivalences, so we
can use Bousfield localization to construct the stable model
structure.
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Again, (AX), is the homotopy colimit (meaning the mapping
telescope) of

Mike Hill
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. . Introduction
We can use it to define the stable homotopy groups of X by [
categories
ﬂ_kX = Ttk (/\X)n’ Cofibrant generation

Bousfield localization

which is independent of n. We sayamap f : X — Y is astable  [restctmodel

structure on the

equivalence if m,f is an isomorphism. This is equivalent to Af S e

being a strict equivalence. _

Cofibrant generation
Thus we have expanded the class of weak equivalences, sowe
can use Bousfield localization to construct the stable model
structure. It turns out that the fibrant objects are precisely the

Q-spectra and that our functor A is fibrant replacement!
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We will now describe cofibrant generating sets for the stable
model structure on the category of spectra Sp. Recall that the
strict model structure has generating sets

Zsma LJ s—m and jst LJ s—m
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We will now describe cofibrant generating sets for the stable Mike Hill
model structure on the category of spectra Sp. Recall that the S
strict model structure has generating sets ,
Introduction
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m=0 m=0 Bousfield localization

The strict model
structure on the

The stable model structure has the same cofibrations, but more  category of spectia
trivial cofibrations. This means we need to enlarge 75", The stable model

structure

In order to do so, we need another construction, the pushout _
product or corner map.
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Suppose f: A— Band g : C — D are maps of pointed
spaces. Consider the diagram

Mike Hill

fAC ’ :
ArNC—22sBAC Doug Ravene!
An gi l/ Introduction
Bnag Quillen model
A A D P categories
fg Cofibrant generation
Bousfield localization
fAD )
The strict model
B AD structure on the
category of spectra
Here P is the pushout of the two maps from A A C. Since the The stable model
outer diagram commutes, there is a unique map from it to _

B A D which we denote by f[1g. This is the pushout product or
corner map of f and g.

This construction also makes sense if f : A — Bis a map of
spectra, with g : C — D still being a map of spaces.
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Cofibrant generation (continued)

Recall that we need to enlarge the generating set of trivial
cofibrations, ,

jstr/ct — Sfm A j+.
We will do so by defining a set S of stable equivalences of
spectra and adjoining the set S[1Z, to J5",
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Cofibrant generation (continued)

Recall that we need to enlarge the generating set of trivial

cofibrations,
jstrict _ U s—m Aj+.

m=0

We will do so by defining a set S of stable equivalences of
spectra and adjoining the set S[1Z, to J5",

Recall the Yoneda spectrum S—* given by

Ky o forn < k
(S )”_{ S"—k  otherwise.
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Recall that we need to enlarge the generating set of trivial

cofibrations,
jstrict _ U S~ A j+.

m=0

We will do so by defining a set S of stable equivalences of
spectra and adjoining the set S[1Z, to J5",

Recall the Yoneda spectrum S—* given by

Ky o forn < k
(S )”_{ S"—k  otherwise.

It follows that S—% A S* given by

* forn< k

—k k _
(575 A S = { S"  otherwise.
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jstrict _ U S~ A j+.
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Cofibrant generation (continued)

Recall that we need to enlarge the generating set of trivial
cofibrations,

jstrict _ U S~ A j+.

m=0

We will do so by defining a set S of stable equivalences of
spectra and adjoining the set S[1Z, to J5",

Recall the Yoneda spectrum S—* given by

Ky o forn < k
(S )”_{ S"—k  otherwise.

It follows that S—% A S* given by

* forn< k

—k k _
(575 A S = { S"  otherwise.

This is the same as the sphere spectrum S—° for n > k. Hence

there is a stable equivalence sk : S% A Sk —» S0
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Cofibrant generation (continued)

Recall that we need to enlarge the generating set of trivial
cofibrations,

jstrict _ U S~ A j+.

m=0

We will do so by defining a set S of stable equivalences of
spectra and adjoining the set S[1Z, to J5",

Recall the Yoneda spectrum S—* given by

Ky o forn < k
(S )”_{ S"—k  otherwise.

It follows that S—% A S* given by

* forn< k

—k k _
(575 A S = { S"  otherwise.

This is the same as the sphere spectrum S—° for n > k. Hence
there is a stable equivalence sx : S~% A S¥ — S0 whose nth

component is the identity map for n > k.
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Recall that the strict model structure on the category of spectra
Sp is cofibrantly generated by the sets
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Cofibrant generation (continued)

Recall that the strict model structure on the category of spectra
Sp is cofibrantly generated by the sets

Istrlct U gm and jSthCt U gm

mz=0 mz0

The stable model structure has the same cofibrations, but more
trivial cofibrations.
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Cofibrant generation (continued)

Recall that the strict model structure on the category of spectra
Sp is cofibrantly generated by the sets

Istrlct U gm and jSthCt U gm

mz=0 mz0

The stable model structure has the same cofibrations, but more
trivial cofibrations. This means we need to enlarge 75!,
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Cofibrant generation (continued)

Recall that the strict model structure on the category of spectra
Sp is cofibrantly generated by the sets

Istrlct U gm and jSthCt U gm

mz=0 mz0

The stable model structure has the same cofibrations, but more
trivial cofibrations. This means we need to enlarge 75!,

The stable model structure is cofibrantly generated by the sets
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Cofibrant generation (continued)

Recall that the strict model structure on the category of spectra
Sp is cofibrantly generated by the sets

Istrlct U gm and jSthCt U gm

mz=0 mz0

The stable model structure has the same cofibrations, but more
trivial cofibrations. This means we need to enlarge 75!,

The stable model structure is cofibrantly generated by the sets

stable __ ~strict
7 =7

and jstable _ jstrict U U Sk DI+,
k=0
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Cofibrant generation (continued)

Recall that the strict model structure on the category of spectra
Sp is cofibrantly generated by the sets

Istrlct U gm and jStI'ICt U gm

mz=0 mz0

The stable model structure has the same cofibrations, but more
trivial cofibrations. This means we need to enlarge 75!,

The stable model structure is cofibrantly generated by the sets

stable __ ~strict
7 =7

and jstable _ jstrict U U Sk DI+,
k=0

where s : S™% A S — S0 is the stable equivalence defined
above.
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