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Introduction

This expository talk is a self contained variant of the one I gave
in Shenzhen.

Its purpose is to introduce the use of Quillen
model categories in stable homotopy theory.

A spectrum X was originally defined to be a sequence of
pointed spaces or simplicial sets tX0,X1,X2, . . . u with structure
maps εX

n : ΣXn Ñ Xn�1. A map of spectra f : X Ñ Y is a
collection of pointed maps fn : Xn Ñ Yn compatible with the
structure maps.

There are two different notions of weak equivalence in the
category of spectra Sp:

 f : X Ñ Y is a strict equivalence if each map fn is a weak
equivalence.

 f : X Ñ Y is a stable equivalence if . . .
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1.3

Introduction (continued)

There are two different notions of weak equivalence in the
category of spectra Sp:

 f : X Ñ Y is a strict equivalence if each map fn is a weak
equivalence.

 f : X Ñ Y is a stable equivalence if . . .

There are at least two different ways to finish the definition of
stable equivalence:

(i) Define stable homotopy groups of spectra and require π�f
to be an isomorphism.

(ii) Define a functor Λ : Sp Ñ Sp where pΛX qn is the
homotopy colimit (meaning the mapping telescope) of

Xn Ñ ΩXn�1 Ñ Ω2Xn�2 Ñ . . .

and then require Λf to be a strict equivalence.

These two definitions are known to be equivalent.
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1.4

Iintroduction (continued)

Dan Quillen Dan Kan Pete
1940-2011 1928-2013 Bousfield

In order to understand this better we need to discuss

 Quillen model categories
 Fibrant and cofibrant replacement
 Cofibrant generation
 Bousfield localization

We will see that the passage from strict equivalence to stable
equivalence is a form of Bousfield localization.
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1.5

Quillen model categories

Definition

A Quillen model category M is a category equipped with
three classes of morphisms: weak equivalences, fibrations and
cofibrations,

each of which includes all isomorphisms,
satisfying the following five axioms:

MC1 Bicompleteness axiom. M has all small limits and
colimits. These include products, coproducts, pullbacks
and pushouts. This implies that M has initial and terminal
objects, denoted by H and �.

MC2 2-out-of-3 axiom. Let X f
ÝÑ Y g

ÝÑ Z be morphisms in M.
Then if any two of f , g and gf are weak equivalences, so is
the third.

MC3 Retract axiom. A retract of a weak equivalence, fibration
or cofibration is again a weak equivalence, fibration or
cofibration.

We say that a fibration or cofibration is trivial (or acyclic) if it is
also a weak equivalence.
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1.6

Quillen model categories (continued)

Definition

MC4 Lifting axiom. Given a commutative diagram

MC5 Factorization axiom. Any morphism f : X Ñ Y can be
functorially factored in two ways as
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Quillen model categories (continued)

Definition

MC4 Lifting axiom. Given a commutative diagram

A f //

i ��

X
p��

B g
// Y ,

MC5 Factorization axiom. Any morphism f : X Ñ Y can be
functorially factored in two ways as
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Quillen model categories (continued)

Definition

MC4 Lifting axiom. Given a commutative diagram

A f //

cofibration i ��

X
p trivial fibration��

B g
//

h
77

Y ,

a morphism h (called a lifting) exists for i and p as
indicated.

MC5 Factorization axiom. Any morphism f : X Ñ Y can be
functorially factored in two ways as
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h
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Y ,

a morphism h (called a lifting) exists for i and p as
indicated.

MC5 Factorization axiom. Any morphism f : X Ñ Y can be
functorially factored in two ways as

?
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//

h
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Y ,

a morphism h (called a lifting) exists for i and p as
indicated.

MC5 Factorization axiom. Any morphism f : X Ñ Y can be
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Quillen model categories (continued)

Definition

MC4 Lifting axiom. Given a commutative diagram

A f //
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trivial cofibration
i
��

X
p trivial fibration

fibration��
B g

//

h
77

Y ,

a morphism h (called a lifting) exists for i and p as
indicated.

MC5 Factorization axiom. Any morphism f : X Ñ Y can be
functorially factored in two ways as

?
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This last axiom is the hardest one to verify in practice.
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1.7

Two classical examples

Let T op denote the category of (compactly generated weak
Hausdorff) topological spaces.

Weak equivalences are maps
inducing isomorphisms of homotopy groups. Fibrations are
Serre fibrations, that is is maps p : X Ñ Y with the right lifting
property

In f //

jn ��

X
p
��

In�1
g

//

h
66

Y ,

for each n ¥ 0,
where In is the unit
n-cube.

Cofibrations are maps (such as in : Sn�1 Ñ Dn for n ¥ 0)
having the left lifting property with respect to all trivial Serre
fibrations.

Similar definitions can be made for T , the category of pointed
topological spaces and basepoint preserving maps.
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1.8

Some definitions

Recall that we denote the initial and terminal objects of M by
H and �. When they are the same, we say that M is pointed.

Definition

An object X is cofibrant if the unique map HÑ X is a
cofibration. It X is fibrant if the unique map X Ñ � is a fibration.

All objects in T and T op are fibrant. The cofibrant objects are
the CW-complexes.

By MC5, for any object X , the unique maps HÑ X and X Ñ �
have factorizations

HÑ QX Ñ X and X Ñ RX Ñ �

where QX is a cofibrant object weakly equivalent to X ,
and RX is a fibrant object weakly equivalent to X .
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cofibration. It X is fibrant if the unique map X Ñ � is a fibration.

All objects in T and T op are fibrant. The cofibrant objects are
the CW-complexes.

By MC5, for any object X , the unique maps HÑ X and X Ñ �
have factorizations

HÑ QX Ñ X and X Ñ RX Ñ �

where QX is a cofibrant object weakly equivalent to X ,
and RX is a fibrant object weakly equivalent to X .
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Some definitions (continued)

By MC5, for any object X , the unique maps HÑ X and X Ñ �
have factorizations

HÑ QX Ñ X and X Ñ RX Ñ �

where QX is a cofibrant object weakly equivalent to X ,
and RX is a fibrant object weakly equivalent to X .

These maps to and from X are called cofibrant and fibrant
approximations. The objects QX and RX are called cofibrant
and fibrant replacements of X .
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1.10

Cofibrant generation

In T op, let

I �
 
in : Sn�1 Ñ Dn,n ¥ 0

(
and J �

 
jn : In Ñ In�1,n ¥ 0

(
.

It is known that every (trivial) cofibration in T op can be derived
from the ones in (J ) I by iterating certain elementary
constructions. A map is a (trivial) fibration iff it has the right
lifting property with respect to each map in (I) J . This
condition is easier to verify than the previous one.

In T , the category of pointed topological spaces, one can
define similar sets I� and J�, by adding disjoint basepoints to
the above.
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1.11

Cofibrant generation (continued)

Definition

A cofibrantly generated model category M

is one with
morphism sets I and J having similar properties to the ones in
T op. I (J ) is a generating set of (trivial) cofibrations.

In practice, specifying the generating sets I and J , and
defining weak equivalences is the most convenient way to
describe a model category.
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1.12

Bousfield localization

Around 1975 Pete Bousfield had a brilliant idea.

Suppose we have a model category M, and we wish to
change the model structure (without altering the underlying
category) as follows.
 Enlarge the class of weak equivalences in some way.
 Keep the same class of cofibrations as before.
 Define fibrations in terms of right lifting properties with

respect to the newly defined trivial cofibrations. The class
of trivial fibrations remains unaltered.

Since there are more weak equivalences, there are more trivial
cofibrations. Hence there are fewer fibrations and fewer fibrant
objects. This could make the fibrant replacement functor much
more interesting.

The hardest part of this is showing that the new classes of
weak equivalences and fibrations, along with the original class
of cofibrations, satisfy the second Factorization Axiom MC5.
The proof involves some delicate set theory.
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 Define fibrations in terms of right lifting properties with

respect to the newly defined trivial cofibrations. The class
of trivial fibrations remains unaltered.

Since there are more weak equivalences, there are more trivial
cofibrations. Hence there are fewer fibrations and fewer fibrant
objects. This could make the fibrant replacement functor much
more interesting.

The hardest part of this is showing that the new classes of
weak equivalences and fibrations, along with the original class
of cofibrations, satisfy the second Factorization Axiom MC5.
The proof involves some delicate set theory.
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1.13

An elementary examples of Bousfield localization

Let T op be the category of topological spaces with its usual
model structure.

Choose an integer n ¡ 0. Define a map f to be a weak
equivalence if πk f is an isomorphism for k ¤ n. Then the
fibrant objects are the spaces with no homotopy above
dimension n. The fibrant replacement functor is the nth
Postnikov section. It was originally constructed by attaching
cells to kill all homotopy above dimension n.
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The strict model structure on the category of spectra

Recall that a spectrum X is a sequence of pointed spaces
tX0,X1,X2, . . . u with structure maps εX

n : ΣXn Ñ Xn�1. A map
of spectra f : X Ñ Y is a collection of pointed maps
fn : Xn Ñ Yn compatible with the structure maps. We will
denote the category of spectra by Sp.

Definition

The mth Yoneda spectrum S�m is given by

pS�mqn �

"
� for n   m
Sn�m otherwise,

with the evident structure maps.

In particular, S�0 is the sphere spectrum.
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1.15

The strict model structure on the category of spectra
(continued)

Definition

The strict or projective model structure on Sp. A map of
spectra f : X Ñ Y is a weak equivalence or a fibration if fn is
one for each n ¥ 0. A map is a cofibration if it has the left lifting
property with respect to all trivial fibrations.

This model structure is known to be cofibrantly generated.
Recall that T , the category of pointed topological spaces, has
generating sets I� and J�. The ones for Sp are

rI � ¤
m¥0

S�m ^ I� and rJ �
¤

m¥0

S�m ^ J�.

Note that here we are smashing a spectrum X with a map of
pointed spaces g : A Ñ B. The nth component of X ^ g is the
map Xn ^ A Ñ Xn ^ B. The categorical term for being able to
smash a spectrum with a spaces is to say that Sp is tensored
over T .
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Note that here we are smashing a spectrum X with a map of
pointed spaces g : A Ñ B. The nth component of X ^ g is the
map Xn ^ A Ñ Xn ^ B.

The categorical term for being able to
smash a spectrum with a spaces is to say that Sp is tensored
over T .
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The strict model structure on the category of spectra
(continued)
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1.16

The stable model structure

Definition

The strict or projective model structure on Sp. A map of
spectra f : X Ñ Y is a weak equivalence or a fibration

if fn is
one for each n ¥ 0. A map is a cofibration if it has the left lifting
property with respect to all trivial fibrations.

Experience has taught us that to do stable homotopy theory,
we need a looser notion of weak equivalence, one which
involves stable homotopy groups. To define them, recall our
functor Λ : Sp Ñ Sp where pΛX qn is the homotopy colimit
(meaning the mapping telescope) of

Xn Ñ ΩXn�1 Ñ Ω2Xn�2 Ñ . . .

Each space pΛX qn is an infinite loop space, and the adjoint
structure map

ηΛX
n : pΛX qn Ñ ΩpΛX qn�1

is a weak equivalence for all n, so ΛX is an Ω-spectrum.
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1.17

The stable model structure (continued)

Again, pΛX qn is the homotopy colimit (meaning the mapping
telescope) of

Xn Ñ ΩXn�1 Ñ Ω2Xn�2 Ñ . . .

We can use it to define the stable homotopy groups of X by

πk X :� πn�k pΛX qn,

which is independent of n. We say a map f : X Ñ Y is a stable
equivalence if π�f is an isomorphism. This is equivalent to Λf
being a strict equivalence.

Thus we have expanded the class of weak equivalences, so we
can use Bousfield localization to construct the stable model
structure. It turns out that the fibrant objects are precisely the
Ω-spectra and that our functor Λ is fibrant replacement!
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The stable model structure (continued)
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Thus we have expanded the class of weak equivalences, so we
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1.18

Cofibrant generation

We will now describe cofibrant generating sets for the stable
model structure on the category of spectra Sp. Recall that the
strict model structure has generating sets

Istrict �
¤

m¥0

S�m ^ I� and J strict �
¤

m¥0

S�m ^ J�.

The stable model structure has the same cofibrations, but more
trivial cofibrations. This means we need to enlarge J strict .

In order to do so, we need another construction, the pushout
product or corner map.
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Cofibrant generation (continued)

Suppose f : A Ñ B and g : C Ñ D are maps of pointed
spaces. Consider the diagram
Here P is the pushout of the two maps from A^ C. Since the
outer diagram commutes, there is a unique map from it to
B ^D which we denote by f l g. This is the pushout product or
corner map of f and g.

This construction also makes sense if f : A Ñ B is a map of
spectra, with g : C Ñ D still being a map of spaces.
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Cofibrant generation (continued)

Recall that we need to enlarge the generating set of trivial
cofibrations,

J strict �
¤

m¥0

S�m ^ J�.

We will do so by defining a set S of stable equivalences of
spectra and adjoining the set S l I� to J strict .

Recall the Yoneda spectrum S�k given by

pS�k qn �

"
� for n   k
Sn�k otherwise.

It follows that S�k ^ Sk given by

pS�k ^ Sk qn �

"
� for n   k
Sn otherwise.

This is the same as the sphere spectrum S�0 for n ¥ k . Hence
there is a stable equivalence sk : S�k ^ Sk Ñ S�0 whose nth
component is the identity map for n ¥ k .
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Cofibrant generation (continued)
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Cofibrant generation (continued)
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Cofibrant generation (continued)
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Cofibrant generation (continued)

Recall that the strict model structure on the category of spectra
Sp is cofibrantly generated by the sets

Istrict �
¤

m¥0

S�m ^ I� and J strict �
¤

m¥0

S�m ^ J�.

The stable model structure has the same cofibrations, but more
trivial cofibrations. This means we need to enlarge J strict .

The stable model structure is cofibrantly generated by the sets

Istable � Istrict

and J stable � J strict Y
¤
k¥0

sk l I�,

where sk : S�k ^ Sk Ñ S�0 is the stable equivalence defined
above.
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Cofibrant generation (continued)
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Cofibrant generation (continued)
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where sk : S�k ^ Sk Ñ S�0 is the stable equivalence defined
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