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1.1

1 Introduction

Introduction
The purpose of this talk is to describe a theorem about a cofibrantly generated Quillen model

structure on certain categories of spectra. It came up in the process of writing a book about equivariant
stable homotopy theory.

A spectrum X was originally defined to be a sequence of pointed spaces or simplicial sets
{X0,X1,X2, . . .} with structure maps εX

n : ΣXn → Xn+1. A map of spectra f : X → Y is a collection of
pointed maps fn : Xn → Yn compatible with the structure maps.

There are two different notions of weak equivalence in the category of spectra S p:

• f : X → Y is a strict equivalence if each map fn is a weak equivalence.
• f : X → Y is a stable equivalence if . . .

1.2

Introduction (continued)
There are two different notions of weak equivalence in the category of spectra S p:

• f : X → Y is a strict equivalence if each map fn is a weak equivalence.
• f : X → Y is a stable equivalence if . . .

There are at least two different ways to finish the definition of stable equivalence:

(i) Define stable homotopy groups of spectra and require π∗ f to be an isomorphism.
(ii) Define a functor Λ : S p → S p where (ΛX)n is the homotopy colimit (meaning the mapping

telescope) of
Xn → ΩXn+1 → Ω

2Xn+2 → . . .

and then require Λ f to be a strict equivalence.

Classically these two definitions are equivalent, but in certain variants of the definition of spectra
themselves, they are different. They differ in the category S pΣ of symmetric spectra of Hovey-
Shipley-Smith. 1.3
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Iintroduction (continued)
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In order to understand this better we need to discuss

• Quillen model categories
• Fibrant and cofibrant replacement
• Cofibrant generation
• Bousfield localization
• Enriched category theory

We will see that the passage from strict equivalence to stable equivalence is a form of Bous-
field localization. We will give an explicit description of the cofibrant generating sets for the stable
category. 1.4

2 Quillen model categories

Quillen model categories

Definition. A Quillen model category M is a category equipped with three classes of morphisms:
weak equivalences, fibrations and cofibrations, each of which includes all isomorphisms, satisfying
the following five axioms:

MC1 Bicompleteness axiom. M has all small limits and colimits. These include products, coprod-
ucts, pullbacks and pushouts. This implies that M has initial and terminal objects.

MC2 2-out-of-3 axiom. Let X
f−→ Y

g−→ Z be morphisms in M . Then if any two of f , g and g f are
weak equivalences, so is the third.

MC3 Retract axiom. A retract of a weak equivalence, fibration or cofibration is again a weak
equivalence, fibration or cofibration.

We say that a fibration or cofibration is trivial (or acyclic) if it is also a weak equivalence. 1.5

Quillen model categories (continued)

Definition. MC4 Lifting axiom. Given a commutative diagram

A
f //

i ��

X
p
��

B g
// Y,

A
f //

cofibration i
��

X
p trivial fibration
��

B g
//

h
77

Y,

A
f //

trivial cofibration
i
��

X
p

fibration��
B g

//

h
77

Y,

2



A
f //

cofibration
trivial cofibration

i
��

X
p trivial fibration

fibration��
B g

//

h
77

Y,

a morphism h exists for i and p as indicated.
MC5 Factorization axiom. Any morphism f : X → Y can be functorially factored in two ways as

X
f // Y

?
β ( f ) = trivial fibration

((X

cofibration = α( f )
66

f // Y

X

trivial cofibration = γ( f ) ((

f // Y

?
δ ( f ) = fibration

66

?
β ( f ) = trivial fibration

((X

cofibration = α( f )
66

trivial cofibration = γ( f ) ((

f // Y

?
δ ( f ) = fibration

66

This is the hardest axiom to verify in practice.
1.6

A classical example
Let T op denote the category of (compactly generated weak Hausdorff) topological spaces. Weak

equivalences are maps inducing isomorphisms of homotopy groups. Fibrations are Serre fibrations,
that is is maps p : X → Y with the right lifting property

In f //

jn ��

X
p
��

In+1
g

//

h
77

Y,

for each n ≥ 0.

Cofibrations are maps (such as in : Sn−1 → Dn for n ≥ 0) having the left lifting property with
respect to all trivial Serre fibrations. 1.7

Some definitions
We will denote the initial and terminal objects of M by /0 and ∗. When they are the same, we say

that M is pointed.

Definition. An object X is cofibrant if the unique map /0 → X is a cofibration. It X is fibrant if the
unique map X →∗ is a fibration.

All objects in T and T op are fibrant. The cofibrant objects are the CW-complexes.

By MC5, for any object X , the unique maps /0 → X and X →∗ have factorizations

/0 → QX → X and X → RX →∗

where QX is a cofibrant object weakly equivalent to X ,
and RX is a fibrant object weakly equivalent to X . 1.8
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Some definitions (continued)
By MC5, for any object X , the unique maps /0 → X and X →∗ have factorizations

/0 → QX → X and X → RX →∗

where QX is a cofibrant object weakly equivalent to X ,
and RX is a fibrant object weakly equivalent to X .

These maps to and from X are called cofibrant and fibrant approximations. The objects QX and
RX are called cofibrant and fibrant replacements of X . 1.9

3 Cofibrant generation

Cofibrant generation

Example. In T op, let

I =
{

in : Sn−1 → Dn,n ≥ 0
}

and J =
{

jn : In → In+1,n ≥ 0
}
.

It is known that every (trivial) cofibration in T op can be derived from the ones in (J ) I by
iterating certain elementary constructions. A map is a (trivial) fibration iff it has the right lifting
property with respect to each map in (I ) J .

Definition. A cofibrantly generated model category M is one with morphism sets I and J having
properties as above. I (J ) is a generating set of (trivial) cofibrations.

In practice, defining weak equivalences and specifying generating sets I andJ is the most
convenient way to describe a model category. 1.10

Cofibrant generation (continued)

Definition. A cofibrantly generated model category M is one with morphism sets I and J having
similar properties to the ones in T op. I (J ) is a generating set of (trivial) cofibrations.

In practice, specifying the generating sets I andJ , and defining weak equivalences is the most
convenient way to describe a model category.

The Kan Recognition Theorem gives four necessary and sufficient conditions for morphism sets
I and J to be generating sets as above, assuming that weak equivalences have already been defined.
They are too technical for this talk. 1.11

4 Bousfield localization

Bousfield localization

Around 1975 Pete Bousfield had a brilliant idea.

Suppose we have a model category M , and we wish to change the model structure (without
altering the underlying category) as follows.

• Enlarge the class of weak equivalences in some way.
• Keep the same class of cofibrations as before.
• Define fibrations in terms of right lifting properties with respect to the newly defined trivial

cofibrations. The class of trivial fibrations remains unaltered.
Since there are more weak equivalences, there are more trivial cofibrations. Hence there are

fewer fibrations and fewer fibrant objects. This could make the fibrant replacement functor much
more interesting.

The hardest part of this is showing that the new classes of weak equivalences and fibrations, along
with the original class of cofibrations, satisfy the Factorization Axiom MC5. The proof involves some
delicate set theory. 1.12
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Three examples of Bousfield localization
Let T op be the category of topological spaces with its usual model structure.

1. Choose an integer n > 0. Define a map f to be a weak equivalence if πk f is an isomorphism
for k ≤ n. Then the fibrant objects are the spaces with no homotopy above dimension n.
The fibrant replacement functor is the nth Postnikov section. It was originally constructed by
attaching cells to kill all homotopy above dimension n.

2. Choose a prime p. Define a map to be a weak equivalence if it induces an isomorphism
in mod p homology. On simply connected spaces, the fibrant replacement functor is p-adic
completion.

3. Choose a generalized homology theory h∗. Define a map f to be a weak equivalence if h∗ f
is an isomorphism. The resulting fibrant replacement functor is Bousfield localization with
respect to h∗. One can do the same with the category of spectra, once we have the right model
structure on it.

1.13

Bousfield localization in a cofibrantly generated model category
Suppose M is a cofibrantly generated model category with generating sets I and J . Let M ′

denote its Bousfield localization of M with respect to some expanded class of weak equivalences.
What are its generating sets I ′? and J ′?

Since M ′ has the same class of cofibrations as M , we can set I ′ = I .

Since M ′ has the more trivial cofibrations than M , we need to make J ′ bigger tthan J . There
is a theorem saying when such a J ′ exists, but there is no known general description of it.

We will give such a description in a certain case related to stable homotopy theory. 1.14

5 Enriched category theory

Enriched category theory
A symmetric monoidal structure on a category V0 is a functor

V0 ×V0
⊗−→ V0

sending a pair of objects (X ,Y ) to a third object X ⊗Y . It is required to have suitable properties
including

• a natural isomorphism t : X ⊗Y → Y ⊗X and
• a unit object 1 such that 1⊗X is naturally isomorphic to X .

We denote this by V = (V0,⊗,1).

Familiar examples include (S et,×,∗), (T op,×,∗), (T ,∧,S0), where T is the category of
pointed topological spaces, and (S et∆,×,∗), where S et∆ is the category of simplicial sets. 1.15

Enriched category theory (continued)
Let V = (V0,⊗,1) be a symmetric monoidal category as above.

Definition. A V -category (or a category enriched over V ) consists of

• a collection of objects,
• for each pair of objects (X ,Y ) a morphism object C (X ,Y ) in V0 (instead of a set of morphisms

X → Y ),
• for each triple of objects (X ,Y,Z) a composition morphism in V0

cX ,Y,Z : C (Y,Z)⊗C (X ,Y )→ C (X ,Z)

(replacing the usual composition) and
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• for each object X, an identity morphism in V0 1 → C (X ,X), replacing the usual identity mor-
phism X → X.

There is an underlying ordinary category C0 with the same objects as C and morphism sets

C0(X ,Y ) = V0(1,C (X ,Y )).
1.16

Enriched category theory (continued)
One can define enriched functors (V -functors) between V -categories and enriched natural trans-

formations (V -natural transformations) between them.

In this language, an ordinary category is enriched over S et.

A topological category is one that is enriched over T op.

A simplicial category is one that is enriched over S et∆, the category of simplicial sets.

A symmetric monoidal category V0 is closed if it enriched over itself. This means that for each
pair of objects (X ,Y ) there is an internal Hom object V (X ,Y ) with natural isomorphisms

V0(X ⊗Y,Z)∼= V0(X ,V (Y,Z)).

The symmetric monoidal categories S et, T op, T and S et∆ are each closed. 1.17

6 Spectra as enriched functors

Spectra as enriched functors
Recall that a spectrum X was originally defined to be a sequence of pointed spaces {Xn} with

structure maps ΣXn → Xn+1. We will redefine it to be an enriched T -valued functor on a small T -
category JN. This will make the structure maps built in to the functor. Maps between spectra will be
enriched natural transformations.

Definition. The indexing category JN has natural numbers n ≥ 0 as objects with

JN(m,n) =
{

Sn−m for n ≥ m
∗ otherwise.

For m ≤ m ≤ p, the composition morphism

jm,n,p : Sp−n ∧Sn−m → Sp−m

is the standard homeomorphism.
1.18

Spectra as enriched functors (continued)
We can define a spectrum X to be an enriched functor X : JN → T . We denote its value at n by

Xn. Functoriality means that for each m,n ≥ 0 there is a continuous structure map

ε
X
m,n : JN(m,n)∧Xm → Xn.

Since

JN(m,n) =
{

Sn−m for n ≥ m
∗ otherwise,

for m ≤ n we get the expected map Σn−mXm → Xn.

Definition. For m ≥ 0, the Yoneda spectrumHm = S−m is given by

(S−m)n = JN(m,n) =
{

Sn−m for n ≥ m
∗ otherwise.

In particular, S−0 is the sphere spectrum, and S−m is its formal mth desuspension.
1.19

6



Spectra as enriched functors (continued)
Warning The catgeory JN is monoidal (under addition) but not symmetric monoidal. It admits

an embedding functor into T , namely the Yoneda functorH0 given by

n 7→ JN(0,n) = Sn

T is symmetric monoidal, and there is a twist isomorphism

t : Sm ∧Sn → Sn ∧Sm.

However this morphism is not in the image of the functor H0. There is no twist isomorphism in
JN, so its monoidal structure is not symmetric.

This is the reason that the category of spectra S p defined in this way does not have a convenient
smash product. This was a headache in the subject for decades! 1.20

Spectra as enriched functors (continued)
However we can define the smash product of a spectrum X and a pointed space K by

(X ∧K)n = Xn ∧K.

The categorical term for this is that S p is tensored over T .

The category of spectra is also cotensored over T , meaning we can define a spectrum XK by

(XK)n = XK
n .

More generally when a V -category is both tensored and cotensored over V , we say it is biten-
sored over V . 1.21

7 The projective model structure

The projective model structure on the category of spectra
We can define the category of spectra to be [JN,T ], the category of T -valued T -functors on the

T -category JN. We define the projective model structure on it as follows.

• A map f : X → Y is a weak equivalence or fibration if fn : Xn → Yn is one for each n ≥ 0. In
other words, weak equivalences and fibrations are strict weak equivalences and fibrations.

• Cofibrations are defined in terms of left lifting properties.

This model structure is known to be cofibrantly generated with the following generating sets.

I pro j =
{

S−m ∧ (in+ : Sn−1
+ → Dn

+) : m,n ≥ 0
}
=
{

S−m}∧I+

J pro j =
{

S−m ∧ ( jn+ : In
+ → In+1

+ ) : m,n ≥ 0
}
=
{

S−m}∧J+

where f+ : X+ → Y+ denotes f : X → Y with disjoint base points added to X and Y . I+ and J+

are generating sets for T . They are the pointed analogs of I and J , the generating sets for T op. 1.22

A generalization
The above can be generalized as follows.

• Replace T by a pointed cofibrantly generated model category M with a closed symmetic
monoidal structure (sometimes called a cofibrantly generated Quillen ring) and generating sets
I an J . For example, M could be T G, the category of pointed G-spaces with the Bredon
model structure.

• Replace the suspension functor Σ = S1 ∧− by the functor K∧− for a fixed cofibrant object K,
such as SρG , the sphere associated with the regular representation of the finite group G.
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• Replace JN by the M -category JN
K with morphism objects

JN
K (m,n) =

{
K∧(n−m) for n ≥ m
∗ otherwise.

• Replace the Yoneda spectrum S−m by the functor K−m : JN
K → M given by

(K−m)n = JN
K (m,n).

1.23

A generalization (continued)
Then we can define the projective model structure on the enriched functor category [JN

K ,M ] as
follows.

• A map f : X → Y is a weak equivalence or fibration if fn : Xn → Yn is one for each n ≥ 0.
• Cofibrations are defined in terms of left lifting properties.

This model structure is known to be cofibrantly generated with generating sets

I pro j =
{

K−m : m ≥ 0
}
∧I

and J pro j =
{

K−m : m ≥ 0
}
∧J .

1.24

8 The stable model structure

More about Bousfield localization
In order to discuss Bousfield localization more precisely, it helps to start with a model category

that is enriched over a Quillen ring M (possibly but not necessarily the category we want to localize),
so we can speak of weak equivalences of morphisms objects. Recall that a Quillen ring M is model
category with a closed symmetic monoidal structure. A Quillen M -module is a model category N
that is enriched and bitensored over M . 1.25

More about Bousfield localization (continued)

Definition. Let N be a module over Quillen ring M as above, and let S be a set of morphisms in
N .

An object Z is S-local if for each f : A → B in S, the map

f ∗ : N (B,Z)→ N (A,Z)

is a weak equivalence in M .

A morphism g : X → Y in N is an S-equivalence if for each S-local object Z the map

g∗ : N (Y,Z)→ N (X ,Z)

is a weak equivalence in M .
1.26
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More about Bousfield localization (continued)
It is easy to verify that every weak equivalence is an S-equivalence, that a retract of an S-

equivalence is an S-equivalence, and that S-equivalences have the 2-of-3 property.

Clark Phil Jacob Jeff
Barwick Hirschhorn Lurie Smith

The four shown above have shown that under various mild hypotheses on N , the class of S-
equivalences leads to a new model structure on N for any morphism set S. We denote this new
model category by LSN . We also denote its fibrant replacement functor by LS. The fibrant objects
of LSN are the S-local objects of N . 1.27

Stabilizing maps and the stable model structure
We will define a set S of morphisms in S p = [JN,T ] (and more generally in [JN

K ,M ])such that
S-equivalences are stable equivalences.

For each m ≥ 0, let the mth stabilizing map

sm : S−1−m ∧S1 → S−m

be the one whose nth component is
∗→ ∗ for n < m
∗→ S0 for n = m
Sn−m−1 ∧S1 → Sn−m otherwise

Since this is a homeomorphism, and hence a weak equivalence, for large n, sm is a stable equiva-
lence.

The morphism set we want is
S = {sm : m ≥ 0} .

1.28

Stabilizing maps and the stable model structure (continued)
The morphism set we want is

S =
{

sm : S−1−m ∧S1 → S−m : m ≥ 0
}
.

What are the S-local objects? Now for the fun part! The Yoneda lemma implies that for any
space K and spectrum Z,

S p(S−n ∧K,Z)∼= (Zn)
K .

This means that s∗m is the map
η

Z
m : Zm → ΩZm+1,

the adjoint of the structure map εZ
m : ΣZm → Zm+1.

The spectrum Z is S-local iff the map ηZ
m is a weak equivalence for each m ≥ 0, i.e., Z is an Ω-

spectrum as classically defined. The observation that the fibrant objects are the Ω-spectra is originally
due to Bousfield-Friedlander, 1978. 1.29
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Stabilizing maps and the stable model structure (continued)
For

S =
{

sm : S−1−m ∧S1 → S−m : m ≥ 0
}
,

a spectrum Z is S-local iff it is an Ω-spectrum.

What are the S-equivalences? A map g : X → Y is an S-equivalence if

g∗ : S p(Y,Z)→ S p(X ,Z)

is a weak equivalence for every Ω-psectrum Z, if g induces an isomorphism in every generalized
cohomology theory. This coincides with a classical definition of stable equivalence.

This means that the Bousfield localization LSS p is the category of classically define spectra in
which weak equivalences are stable equivalences. Its homotopy cetegory is the one described long
ago by Boardman and Vogt. 1.30

9 Stable cofibrant generating sets

Cofibrant generating sets for the stable category
Recall that the projective (or strict) model structure on S p has cofibrant generating sets

I pro j =
{

S−m ∧ (in+ : Sn−1
+ → Dn

+) : m,n ≥ 0
}
=
{

S−m}∧I+

J pro j =
{

S−m ∧ ( jn+ : In
+ → In+1

+ ) : m,n ≥ 0
}
=
{

S−m}∧J+

We can define I stable to be I pro j, but we must enlarge J pro j in some way to get J stable. To
describe this we need the following. 1.31

Cofibrant generating sets for the stable category (continued)

Definition. Let M be a Quillen ring with a morphism g : X →Y , and N a Quillen M -module with
a morphism f : A → B. Consider the diagram

A∧X
A∧g //

f∧X
����

A∧Y

f∧Y

��

��
B∧X

B∧g
++

// P f �g

''
B∧Y

where P is the pushout of the two maps from A∧X. Then the pushout corner map (or pushout
smash product) f �g is the unique map P → B∧Y that makes the diagram commute.

1.32

Cofibrant generating sets for the stable category (continued)
An easy example of a pushout corner map. Let M = N = T op, let M and N be manifolds

with boundary, and consider the morphisms f : ∂M → M and g : ∂N → N, the inclusions of the
boundaries. Then the diagram is

∂M×∂N
∂M×g //

f×∂N
����

∂M×N

f×N

��

��
M×∂N

M×g
++

// P f �g

((
M×N
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In this case the pushout is

P = (∂M×N)∪∂M×∂N (M×∂N) = ∂ (M×N),

and f �g is the inclusion ∂ (M×N)→ M×N. 1.33

Cofibrant generating sets for the stable category (continued)
Now we can describe the cofibrant generating sets for LsS p.
Recall again that

I pro j =
{

S−m ∧ (in+ : Sn−1
+ → Dn

+) : m,n ≥ 0
}
=
{

S−m}∧I+

J pro j =
{

S−m ∧ ( jn+ : In
+ → In+1

+ ) : m,n ≥ 0
}
=
{

S−m}∧J+

Theorem. The following are cofibrant generating sets for LSS p.

I stable = I pro j

J stable = J pro j ∪{sm� in+ : m,n ≥ 0}
= J pro j ∪ (S�I+).

The proof consists of showing that these two sets satisfy the four (unnamed) technical conditions
of the Kan Recognition Theorem. Most of it is routine. 1.34

Cofibrant generating sets for the stable category (continued)

Theorem. The following are cofibrant generating sets for LSS p.

I stable = I pro j

J stable = J pro j ∪{sm� in+ : m,n ≥ 0}
= J pro j ∪ (S�I+).

The proof consists of showing that these two sets satisfy the four (unnamed) technical conditions
of the Kan Recognition Theorem. Most of it is routine.

The most difficult point is to show that a stable equivalence with the right lifting property with
respect to J stable also has it with respect to I stable, which means it is a trivial fibration. 1.35

Cofibrant generating sets for the stable category (continued)
Again, the key point is to show that a stable equivalence p : X →Y with the right lifting property

with respect to

J stable =
{

S−m ∧ (in+ : Sn−1
+ → Dn

+) : m,n ≥ 0
}

∪{sm� in+ : m,n ≥ 0}

also has it with respect to

I pro j =
{

S−m ∧ (in+ : Sn−1
+ → Dn

+) : m,n ≥ 0
}
.

Hence we are looking at a strict fibration that has the right lifting property with respect to each
pushout corner map sm� in+.

The latter condition is equivalent to the diagram

Xm
pm //

ηX
m ��

Ym

ηY
m��

ΩXm+1
Ωpm+1 // ΩYm+1

being homotopy Cartesian. 1.36
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Cofibrant generating sets for the stable category (continued)
Recall the functor Λ : S p → S p for which (ΛX)m is the homotopy colimit of

Xm
ηX

m // ΩXm+1
ΩηX

m+1 // Ω2Xm+2
Ω2ηX

m+2 // . . .

We know that the corner map condition on our strict fibration p : X →Y implies that the diagram

Xm
pm //

��

Ym

��
(ΛX)m

Λpm // (ΛY )m

is homotopy Cartesian. It is known that Λ converts stable equivalences to strict ones, so pm is a weak
equivalence, which makes p a trivial fibration as desired. 1.37

Thank you!
1.38
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