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for n =1 by Adams and for n = 2 and 3 independently by
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because it induces an isomorphism in K(n)..(—) for some
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¢ In the known examples, i/ was the inclusion of the bottom
cell into V and j was projection onto the top cell.

e It was known that for each t > 0, the composite
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and with cofiber sequences

202/ (n—1) —> V(n—1) —= V(n) for1 <n<3.
That was in 1973. To this day nobody has constructed V(4).

In each case there is a lower bound on the prime p. In 2010

Lee Nave showed that V((p + 1)/2) does not exist.

The Chromatic
Conjectures

Doug Ravenel

Background

The chromatic resolution
Bousfield localization
Bousfield equivalence

The chromatic tower

Harmonic and dissonant
spectra

Chromatic convergence

The chromatic resolution
and the chromatic tower

Some conjectures

The nilpotence and
periodicity theorems

The telescope conjecture



Periodic families (continued)
In 1973 Toda constructed finite complexes he called V(n) with
BP.V(n) = BP./(p,Vi,...Vn) for0<n<3
with cofiber sequences
¥2'-2y(n—-1) > V(n—1)—= V(n)  for1<n<3.

where the map v, is periodic.
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is obtained by splicing together these short exact sequence for

alln>0.
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Nn+1 —0
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This construction is purely algebraic. It takes place in the
category of BP,.(BP)-comodules.
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This question occupied me for several years.
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This paper represents an attempt, only partially successful, to get at ;‘:Z‘:aﬁc comvergence
what appear to be some deep and hitherto unexamined properties of the The chromaic resolution
stable homotopy category. This work was motivated by the discovery of the andthe chromac tover
pervasive manifestation of various types of periodicity in the £,-term of the Someconjectures
Adams-Novikov spectral sequence converging to the stable homotopy ;25.,2,‘153;*.12?,;“"?5
groups of spheres. In section 3 of [34] and section 8 of [41], we introduced T e s

the chromatic spectral sequence, which converges to the above E,-term.
Unlike most spectral sequences, its input is in some sense more interesting
than its output, as the former displays many appealing patterns which are
somewhat hidden in the latter (see section 8 of [41] for a more detailed
discussion). It is not so much a computational aid (although it has been
used [34] for computing the Novikov 2-line) as a conceptual tool for under-
standing certain qualitative aspects of the Novikov E,-term.

Since the Novikov E-term is a reasonablv eood anproximation to sta-
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It would be nice if each short exact sequence above were the
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would have spectra M, and N, with
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This was easy enough for n = 0. We knew then how to invert a
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f*:[B,Z] = [A Z]
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Theorem (Bousfield localization of spectra 1979)

For a given E there is a coaugmented functor Lg such that for

any spectrum X, LeX is E-local and the map X — LgX is an
E.-equivalence.
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can be described in arithmetic terms. It is either obtained from

X by inverting some set of primes, or it is the p-adic completion
for a single prime p.

The Chromatic
Conjectures

Doug Ravenel

Background
Periodic families
The chromatic resolution

Bousfield equivalence

The chromatic tower

Harmonic and dissonant
spectra

Chromatic convergence

The chromatic resolution
and the chromatic tower

Some conjectures

The nilpotence and
periodicity theorems

The telescope conjecture



Bousfield localization (continued)

Theorem (Bousfield localization of spectra 1979)

For a given E there is a coaugmented functor Lg such that for
any spectrum X, LeX is E-local and the map X — LgX is an
E.-equivalence.

It turns out that when E and X are both connective, then Lg X
can be described in arithmetic terms. It is either obtained from
X by inverting some set of primes, or it is the p-adic completion
for a single prime p.

Things can be much more interesting when either E or X (or
both) fail to be connective.

The Chromatic
Conjectures

Doug Ravenel

Background
Periodic families
The chromatic resolution

Bousfield equivalence

The chromatic tower

Harmonic and dissonant
spectra

Chromatic convergence

The chromatic resolution
and the chromatic tower

Some conjectures

The nilpotence and
periodicity theorems

The telescope conjecture



Bousfield localization (continued)

Theorem (Bousfield localization of spectra 1979)

For a given E there is a coaugmented functor Lg such that for

any spectrum X, Le X is E-local and the map X — LgX is an
E.-equivalence.

The Chromatic
Conjectures

Doug Ravenel

Background
Periodic families
The chromatic resolution

Bousfield equivalence

The chromatic tower

Harmonic and dissonant
spectra

Chromatic convergence

The chromatic resolution

and the chromatic tower
Some conjectures

The nilpotence and
periodicity theorems

The telescope conjecture



Bousfield localization (continued)

Theorem (Bousfield localization of spectra 1979)

For a given E there is a coaugmented functor Lg such that for

any spectrum X, Le X is E-local and the map X — LgX is an
E.-equivalence.

WHAT IF OUR HYPOTHETICAL SPECTRUM M, COULD BE
OBTAINED FROM THE INDUCTIVELY CONSTRUCTED N,
BY SOME FORM OF BOUSFIELD LOCALIZATION?

The Chromatic
Conjectures

Doug Ravenel

Background
Periodic families

The chromatic resolution

Bousfield equivalence

The chromatic tower

Harmonic and dissonant
spectra

Chromatic convergence
The chromatic resolution
and the chromatic tower

Some conjectures

The nilpotence and
periodicity theorems
The telescope conjecture



Bousfield localization (continued)

Theorem (Bousfield localization of spectra 1979)

For a given E there is a coaugmented functor Lg such that for

any spectrum X, Le X is E-local and the map X — LgX is an
E.-equivalence.

WHAT IF OUR HYPOTHETICAL SPECTRUM M, COULD BE
OBTAINED FROM THE INDUCTIVELY CONSTRUCTED N,
BY SOME FORM OF BOUSFIELD LOCALIZATION?

The logical choice for E appeared to be the Johnson-Wilson
spectrum E(n).

The Chromatic
Conjectures

Doug Ravenel

Background
Periodic families
The chromatic resolution

Bousfield equivalence

The chromatic tower

Harmonic and dissonant
spectra

Chromatic convergence

The chromatic resolution

and the chromatic tower
Some conjectures

The nilpotence and
periodicity theorems

The telescope conjecture



Bousfield localization (continued)

Theorem (Bousfield localization of spectra 1979)

For a given E there is a coaugmented functor Lg such that for

any spectrum X, Le X is E-local and the map X — LgX is an
E.-equivalence.

WHAT IF OUR HYPOTHETICAL SPECTRUM M, COULD BE
OBTAINED FROM THE INDUCTIVELY CONSTRUCTED N,
BY SOME FORM OF BOUSFIELD LOCALIZATION?

The logical choice for E appeared to be the Johnson-Wilson
spectrum E(n). It is a BP-module spectrum with

mE(n) = Z(p)[V1,. . Vn_1, Vni1].

The Chromatic
Conjectures

Doug Ravenel

Background
Periodic families
The chromatic resolution

Bousfield equivalence

The chromatic tower

Harmonic and dissonant
spectra

Chromatic convergence

The chromatic resolution
and the chromatic tower

Some conjectures

The nilpotence and
periodicity theorems
The telescope conjecture



Bousfield localization (continued)

Theorem (Bousfield localization of spectra 1979)

For a given E there is a coaugmented functor Lg such that for

any spectrum X, Le X is E-local and the map X — LgX is an
E.-equivalence.

WHAT IF OUR HYPOTHETICAL SPECTRUM M, COULD BE
OBTAINED FROM THE INDUCTIVELY CONSTRUCTED N,
BY SOME FORM OF BOUSFIELD LOCALIZATION?

The logical choice for E appeared to be the Johnson-Wilson
spectrum E(n). It is a BP-module spectrum with

mE(n) = Z(p)[V1,. . Vn_1, Vni1].

It is closely related to the fancier Morava spectrum E,,

The Chromatic
Conjectures

Doug Ravenel

Background
Periodic families
The chromatic resolution

Bousfield equivalence

The chromatic tower

Harmonic and dissonant
spectra

Chromatic convergence

The chromatic resolution

and the chromatic tower
Some conjectures

The nilpotence and
periodicity theorems

The telescope conjecture



Bousfield localization (continued)

Theorem (Bousfield localization of spectra 1979)

For a given E there is a coaugmented functor Lg such that for

any spectrum X, Le X is E-local and the map X — LgX is an
E.-equivalence.

WHAT IF OUR HYPOTHETICAL SPECTRUM M, COULD BE
OBTAINED FROM THE INDUCTIVELY CONSTRUCTED N,
BY SOME FORM OF BOUSFIELD LOCALIZATION?

The logical choice for E appeared to be the Johnson-Wilson
spectrum E(n). It is a BP-module spectrum with

mE(n) = Z(p)[V1,. . Vn_1, Vni1].

It is closely related to the fancier Morava spectrum E,, but the
latter had not been invented yet.

The Chromatic
Conjectures

Doug Ravenel

Background
Periodic families
The chromatic resolution

Bousfield equivalence

The chromatic tower

Harmonic and dissonant
spectra

Chromatic convergence

The chromatic resolution

and the chromatic tower
Some conjectures

The nilpotence and
periodicity theorems

The telescope conjecture



Bousfield localization (continued)

Theorem (Bousfield localization of spectra 1979)
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Recall that L, denotes localization with respect to the
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A p-local spectrum is harmonic if X ~ L, X. It is dissonant if
L. X ~ %, meaning that K(n).X = 0 for all n. It follows from the
definitions that there are no essential maps from a dissonant
spectrum to a harmonic one.

In the 1984 paper | showed that

e Every p-local finite spectrum is harmonic.
e A p-local connective spectrum X is harmonic when BP, X
has finite projective dimension as a BP,-module.

e The mod p Eilenberg-Mac Lane spectrum H/p is
dissonant. The same is true for any spectrum whose
homotopy groups are all torsion and bounded above.
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of 1992.

In 2014 Tobias Barthel proved a p-local connective spectrum X
is chromatically convergent when BP, X has finite projective
dimension as a BP.-module.
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equivalent to the homotopy limit of the diagram

e L X = Ly X = X = LoX.

Around 1990 Hopkins and | showed that p-local finite spectra
are chromatically convergent. The proof can be found in the
orange book,

of 1992.

In 2014 Tobias Barthel proved a p-local connective spectrum X
is chromatically convergent when BP, X has finite projective
dimension as a BP,.-module. Such spectra were previously
known to be harmonic.
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chromatic resolution (leading to the chromatic spectral
sequence of Miller-R-Wilson) have a geometric underpinning?
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More specifically, is the short exact sequence
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the BP-homology of a cofiber sequence? My hope was that
there are spectra M, and N, with
BP. M, = M" and BP.N,, = N",

and that M, = L,N,. We can use Bousfield localization to
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BP.M, = M" and BP.N, = N",

and that M, = L,N,. We can use Bousfield localization to
construct some spectra this way, but how do we know they
have the desired BP-homology?

This is a special case of the localization question,

The Chromatic
Conjectures

Doug Ravenel

Background
Periodic families
The chromatic resolution

Bousfield localization
Bousfield equivalence

The chromatic tower

Harmonic and dissonant
spectra

Chromatic convergence

Some conjectures

The nilpotence and
periodicity theorems

The telescope conjecture



The chromatic resolution and the chromatic tower
Recall one of the original questions of this lecture: Does the
chromatic resolution (leading to the chromatic spectral
sequence of Miller-R-Wilson) have a geometric underpinning?

More specifically, is the short exact sequence

v—1

0 N - mn N1 —0
| |
BP./(p>,...v°,) BP./(p>,... V)

v, 'BP./(p>,... V)
the BP-homology of a cofiber sequence? My hope was that
there are spectra M, and N, with
BP. M, = M" and BP.N,, = N",

and that M, = L,N,. We can use Bousfield localization to
construct some spectra this way, but how do we know they
have the desired BP-homology?

This is a special case of the localization question, namely how
to describe BP,.L,X in terms of BP, X.
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The Chromatic
Conjectures

Doug Ravenel

Background
Periodic families
The chromatic resolution

Bousfield localization
Bousfield equivalence

The chromatic tower

Harmonic and dissonant
spectra

Chromatic convergence

Some conjectures

The nilpotence and
periodicity theorems

The telescope conjecture



The chromatic resolution and the chromatic tower
(continued)

It turns out that L,BP is easy to analyze, and this makes it easy
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Theorem (The localization conjecture)

For any spectrum X,
BP AL, X ~ XA L,BP.
In particular, when E(n —1),X =0, BP.L,X = v, 'BP,X.

It follows that the chromatic resolution can be realized as
desired.
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It turns out that L,BP is easy to analyze, and this makes it easy
to understand the spectrum X A L,BP.
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For any spectrum X,
BP A L,X ~ XA L,BP.
In particular, when E(n —1),X =0, BP.L,X = v, 'BP,X.

It follows that the chromatic resolution can be realized as
desired.

It turns out that the functor L, satisfies a stronger condition,
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It turns out that L,BP is easy to analyze, and this makes it easy
to understand the spectrum X A L,BP.

Theorem (The localization conjecture)

For any spectrum X,
BP A L,X ~ XA L,BP.
In particular, when E(n —1),X =0, BP.L,X = v, 'BP,X.

It follows that the chromatic resolution can be realized as
desired.

It turns out that the functor L, satisfies a stronger condition,
conjectured in 1984, proved with Hopkins a few years later,
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The chromatic resolution and the chromatic tower
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It turns out that L,BP is easy to analyze, and this makes it easy
to understand the spectrum X A L,BP.

Theorem (The localization conjecture)
For any spectrum X,

BP AL, X~ XA L,BP.
In particular, when E(n —1),X =0, BP.L,X = v, 'BP,X.

It follows that the chromatic resolution can be realized as
desired.

It turns out that the functor L, satisfies a stronger condition,
conjectured in 1984, proved with Hopkins a few years later, and
reported in the
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The chromatic resolution and the chromatic tower
(continued)

Theorem (The smash product conjecture)

For any spectrum X, L,X = X A L,S.

when your localization functor
satisfies Lg X = X ®s LgS

SMASHING!
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which (the telescope conjecture) were proved within a 15
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| ended the 1984 paper with a list of conjectures, all but one of
which (the telescope conjecture) were proved within a 15
years, most by Hopkins and various collaborators. | have
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| ended the 1984 paper with a list of conjectures, all but one of
which (the telescope conjecture) were proved within a 15
years, most by Hopkins and various collaborators. | have
already mentioned some of them. | will state some more of
them here as theorems.
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| ended the 1984 paper with a list of conjectures, all but one of
which (the telescope conjecture) were proved within a 15
years, most by Hopkins and various collaborators. | have
already mentioned some of them. | will state some more of
them here as theorems.
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| ended the 1984 paper with a list of conjectures, all but one of
which (the telescope conjecture) were proved within a 15
years, most by Hopkins and various collaborators. | have
already mentioned some of them. | will state some more of
them here as theorems.

Nilpotence Theorem (Devinatz-Hopkins-Smith 1988)

@ For a finite spectrum X, amap v : ¥9X — X is nilpotent iff
MU,.(v) is nilpotent.
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years, most by Hopkins and various collaborators. | have
already mentioned some of them. | will state some more of
them here as theorems.

Nilpotence Theorem (Devinatz-Hopkins-Smith 1988)
@ For a finite spectrum X, amap v : ¥9X — X is nilpotent iff
MU,.(v) is nilpotent.

® For afinite spectrum X, amap g : X — Y is smash
nilpotent if the map MU A g is null homotopic.
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| ended the 1984 paper with a list of conjectures, all but one of
which (the telescope conjecture) were proved within a 15
years, most by Hopkins and various collaborators. | have
already mentioned some of them. | will state some more of
them here as theorems.

Nilpotence Theorem (Devinatz-Hopkins-Smith 1988)

© For a finite spectrum X, a map v : ¥9X — X is nilpotent iff
MU,.(v) is nilpotent.

® For afinite spectrum X, amap g : X — Y is smash
nilpotent if the map MU A g is null homotopic.

® Let R be a connective ring spectrum of finite type, and let
h:m.R — MU,R be the Hurewicz map.
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© For a finite spectrum X, a map v : ¥9X — X is nilpotent iff
MU,.(v) is nilpotent.

® For afinite spectrum X, amap g : X — Y is smash
nilpotent if the map MU A g is null homotopic.

® Let R be a connective ring spectrum of finite type, and let
h: r.R — MU.R be the Hurewicz map. Then o € 7R is
nilpotent when h(«) = 0.
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| ended the 1984 paper with a list of conjectures, all but one of
which (the telescope conjecture) were proved within a 15
years, most by Hopkins and various collaborators. | have
already mentioned some of them. | will state some more of
them here as theorems.

Nilpotence Theorem (Devinatz-Hopkins-Smith 1988)

© For a finite spectrum X, a map v : ¥9X — X is nilpotent iff
MU,.(v) is nilpotent.

® For afinite spectrum X, amap g : X — Y is smash
nilpotent if the map MU A g is null homotopic.

® Let R be a connective ring spectrum of finite type, and let
h: r.R — MU.R be the Hurewicz map. Then o € 7R is
nilpotent when h(«) = 0.

O Let
w X y ‘'Ssw

be a cofiber sequence of finite spectra with MU,.(f) = 0.
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Some conjectures

| ended the 1984 paper with a list of conjectures, all but one of
which (the telescope conjecture) were proved within a 15
years, most by Hopkins and various collaborators. | have
already mentioned some of them. | will state some more of
them here as theorems.

Nilpotence Theorem (Devinatz-Hopkins-Smith 1988)

© For a finite spectrum X, a map v : ¥9X — X is nilpotent iff
MU,.(v) is nilpotent.

® For afinite spectrum X, amap g : X — Y is smash
nilpotent if the map MU A g is null homotopic.

® Let R be a connective ring spectrum of finite type, and let
h: r.R — MU.R be the Hurewicz map. Then o € 7R is
nilpotent when h(«) = 0.

O Let

w X y ‘'Ssw

be a cofiber sequence of finite spectra with MU,.(f) = 0.
Then (X) = (W) Vv (Y).
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If it were the case that (MU) = (S), or if (BP) = (S;)) for each
prime p,
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Some conjectures (continued)

If it were the case that (MU) = (S), or if (BP) = (S;)) for each
prime p, then the Nilpotence Theorem would follow
immediately.

However (BP) < (S(p)), meaning there are BP.-acyclic p-local
spectra that are not contractible.
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If it were the case that (MU) = (S), or if (BP) = (S;)) for each
prime p, then the Nilpotence Theorem would follow
immediately.

However (BP) < (S(p)), meaning there are BP.-acyclic p-local

spectra that are not contractible. In other words MU does NOT
“see everything.”
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If it were the case that (MU) = (S), or if (BP) = (S;)) for each
prime p, then the Nilpotence Theorem would follow
immediately.

However (BP) < (S(p)), meaning there are BP.-acyclic p-local
spectra that are not contractible. In other words MU does NOT
“see everything.”

In fact there are connective p-local spectra T(m) for m > 0 with
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If it were the case that (MU) = (S), or if (BP) = (S;)) for each
prime p, then the Nilpotence Theorem would follow
immediately.

However (BP) < (S(p)), meaning there are BP.-acyclic p-local
spectra that are not contractible. In other words MU does NOT
“see everything.”

In fact there are connective p-local spectra T(m) for m > 0 with

BP,T(m) = BP,[t;,to,...tn] (50 T(0) = S(p))
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Some conjectures (continued)

If it were the case that (MU) = (S), or if (BP) = (S;)) for each
prime p, then the Nilpotence Theorem would follow
immediately.

However (BP) < (S(p)), meaning there are BP.-acyclic p-local
spectra that are not contractible. In other words MU does NOT
“see everything.”

In fact there are connective p-local spectra T(m) for m > 0 with

BP,T(m) = BP,[t;,to,...tn] (50 T(0) = S(p))

and

(T(0)) >(T(1)) > (T(2))--- > (BP).
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Some conjectures (continued)

Nilpotence Theorem (Devinatz-Hopkins-Smith 1988)

© For a finite spectrum X, amap f : ¥9X — X is nilpotent iff
MU.(f) is nilpotent.
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Some conjectures (continued)

Nilpotence Theorem (Devinatz-Hopkins-Smith 1988)

© For a finite spectrum X, amap f : ¥9X — X is nilpotent iff
MU.(f) is nilpotent.

This means that such a map can be periodic (the opposite of
being nilpotent) only if it detected as such by MU-homology.
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Some conjectures (continued)

Nilpotence Theorem (Devinatz-Hopkins-Smith 1988)

@ For a finite spectrum X, amap f : £9X — X is nilpotent iff
MU.(f) is nilpotent.

This means that such a map can be periodic (the opposite of
being nilpotent) only if it detected as such by MU-homology. In
the p-local case, the internal properties of MU-theory imply
that f must induce a nontriivial isomorphism in some Morava
K-theory K(n)..
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Some conjectures (continued)

Periodicity Theorem (Hopkins-Smith 1998)
Let X be a p-local finite spectrum of chromatic type n,
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Some conjectures (continued)

Periodicity Theorem (Hopkins-Smith 1998)

Let X be a p-local finite spectrum of chromatic type n, meaning
that K(n—1).X =0, but K(n).X # 0.
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Some conjectures (continued)

Periodicity Theorem (Hopkins-Smith 1998)

Let X be a p-local finite spectrum of chromatic type n, meaning
that K(n—1).X =0, but K(n).X # 0. Then there is a map
v:Y9X — X (a v, self-map) with K(n).(v) an isomorphism
and H.(v;Z/p) = 0.
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Periodicity Theorem (Hopkins-Smith 1998)

Let X be a p-local finite spectrum of chromatic type n, meaning
that K(n—1).X =0, but K(n).X # 0. Then there is a map
v:Y9X — X (a v, self-map) with K(n).(v) an isomorphism
and H.(v;Z/p) =0. Ifn=0thend =0,
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Some conjectures (continued)

Periodicity Theorem (Hopkins-Smith 1998)

Let X be a p-local finite spectrum of chromatic type n, meaning
that K(n—1).X =0, but K(n).X # 0. Then there is a map
v:Y9X — X (a v, self-map) with K(n).(v) an isomorphism
and H.(v;Z/p) =0. Ifn=0thend =0, and whenn > 0, d is
a multiple of 2p" — 2.
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Periodicity Theorem (Hopkins-Smith 1998)

Let X be a p-local finite spectrum of chromatic type n, meaning
that K(n—1).X =0, but K(n).X # 0. Then there is a map
v:Y9X — X (a v, self-map) with K(n).(v) an isomorphism
and H.(v;Z/p) =0. Ifn=0thend =0, and whenn > 0, d is
a multiple of 2p" — 2.

Given a second such map w : ¢ X — X, there are positive
integers i and j
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Some conjectures (continued)

Periodicity Theorem (Hopkins-Smith 1998)

Let X be a p-local finite spectrum of chromatic type n, meaning
that K(n—1).X =0, but K(n).X # 0. Then there is a map
v:Y9X — X (a v, self-map) with K(n).(v) an isomorphism
and H.(v;Z/p) =0. Ifn=0thend =0, and whenn > 0, d is
a multiple of 2p" — 2.

Given a second such map w : ¥°X — X, there are positive
integers i and j such that id = je and v! = w/.
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Some conjectures (continued)

Periodicity Theorem (Hopkins-Smith 1998)

Let X be a p-local finite spectrum of chromatic type n, meaning
that K(n—1).X =0, but K(n).X # 0. Then there is a map
v:Y9X — X (a v, self-map) with K(n).(v) an isomorphism
and H.(v;Z/p) =0. Ifn=0thend =0, and whenn > 0, d is
a multiple of 2p" — 2.

Given a second such map w : ¥°X — X, there are positive
integers i and j such that id = je and v' = w!. In other words, v
is assymptotically unique.
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Some conjectures (continued)

Periodicity Theorem (Hopkins-Smith 1998)

Let X be a p-local finite spectrum of chromatic type n, meaning
that K(n—1).X =0, but K(n).X # 0. Then there is a map
v:Y9X — X (a v, self-map) with K(n).(v) an isomorphism
and H.(v;Z/p) =0. Ifn=0thend =0, and whenn > 0, d is
a multiple of 2p" — 2.

Given a second such map w : ¥°X — X, there are positive
integers i and j such that id = je and v' = w!. In other words, v
is assymptotically unique.

It follows that the cofiber of v (or of any of its iterates) is a
p-local finite spectrum of chromatic type n+ 1.
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Some conjectures (continued)

Periodicity Theorem (Hopkins-Smith 1998)

Let X be a p-local finite spectrum of chromatic type n, meaning
that K(n—1).X =0, but K(n).X # 0. Then there is a map
v:Y9X — X (a v, self-map) with K(n).(v) an isomorphism
and H.(v;Z/p) =0. Ifn=0thend =0, and whenn > 0, d is
a multiple of 2p" — 2.

Given a second such map w : ¥°X — X, there are positive
integers i and j such that id = je and v' = w!. In other words, v
is assymptotically unique.

It follows that the cofiber of v (or of any of its iterates) is a
p-local finite spectrum of chromatic type n+ 1. This means that
there are finite complexes of all chromatic types.
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Some conjectures (continued)

Periodicity Theorem (Hopkins-Smith 1998)

Let X be a p-local finite spectrum of chromatic type n, meaning
that K(n—1).X =0, but K(n).X # 0. Then there is a map
v:Y9X — X (a v, self-map) with K(n).(v) an isomorphism
and H.(v;Z/p) =0. Ifn=0thend =0, and whenn > 0, d is
a multiple of 2p" — 2.

Given a second such map w : ¥°X — X, there are positive
integers i and j such that id = je and v' = w!. In other words, v
is assymptotically unique.

It follows that the cofiber of v (or of any of its iterates) is a
p-local finite spectrum of chromatic type n+ 1. This means that
there are finite complexes of all chromatic types. Finite
complexes of arbitrary chromatic type were first constructed by
Steve Mitchell in 1985.
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Some conjectures (continued)

Periodicity Theorem (Hopkins-Smith 1998)

Let X be a p-local finite spectrum of chromatic type n, meaning
that K(n—1).X =0, but K(n).X # 0. Then there is a map
v:Y9X — X (a v, self-map) with K(n).(v) an isomorphism
and H.(v;Z/p) =0. Ifn=0thend =0, and whenn > 0, d is
a multiple of 2p" — 2.

Given a second such map w : ¥°X — X, there are positive
integers i and j such that id = je and v' = w!. In other words, v
is assymptotically unique.

It follows that the cofiber of v (or of any of its iterates) is a
p-local finite spectrum of chromatic type n+ 1. This means that
there are finite complexes of all chromatic types. Finite
complexes of arbitrary chromatic type were first constructed by
Steve Mitchell in 1985.

HENCE THERE ARE LOTS OF PERIODIC FAMILIES IN 7, S.
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Some conjectures (continued)

A pleasant consequence of the Nilpotence Theorem is the

following.

Theorem (The class invariance conjecture)

The Bousfield class of a p-local finite spectrum X is determined
by its chromatic type, i.e., the smallest n for which K(n). X # 0.
In particular if H. X is not all torsion, then (X) = (Sy)).
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The telescope conjecture

Suppose X is a p-local finite spectrum of chromatic type n. The
Periodicity Theorerg says that it has a v, self-map

v:¥9X — X. Let X be the associated mapping telescope,
meaning the homotopy colimit of

X—Ytsy-dx Yoy-2dy Yo ...

Note that it is independent of the choice of v. Since v is a

K(n)-equivalence and therefore an E(n)-equivalence, we have
maps

X— = X—2-1.X
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The telescope conjecture (continued)

Telescope Conjecture

For any p-local spectrum X of chromatic type n, the map

A: X — L,X is an equivalence.
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