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Periodic families
MRW was also motivated by several examples of periodic
families of elements in the stable homotopy groups of spheres.

Each was constructed as follows.

We have a finite complex V equipped with maps

Sd+k Σd i // ΣdV v // V
j // S`

with the following properties:
• d > 0 and all iterates of v are essential. We say such a

map v is periodic. We know that v has this property
because it induces an isomorphism in K (n)∗(−) for some
n > 0 with K (n)∗V 6= 0. Examples had been constructed
for n = 1 by Adams and for n = 2 and 3 independently by
Toda and Larry Smith.

• In the known examples, i was the inclusion of the bottom
cell into V and j was projection onto the top cell.

• It was known that for each t > 0, the composite

Std+k Σtd i // ΣdtV v t
// V

j // S`

represented a nontrivial element in πtd+k−`S.



The Chromatic
Conjectures

Doug Ravenel

Background
Periodic families

The chromatic resolution

Bousfield localization

Bousfield equivalence

The chromatic tower
Harmonic and dissonant
spectra

Chromatic convergence

The chromatic resolution
and the chromatic tower

Some conjectures
The nilpotence and
periodicity theorems

The telescope conjecture

1.4

Periodic families
MRW was also motivated by several examples of periodic
families of elements in the stable homotopy groups of spheres.
Each was constructed as follows.

We have a finite complex V equipped with maps

Sd+k Σd i // ΣdV v // V
j // S`

with the following properties:
• d > 0 and all iterates of v are essential. We say such a

map v is periodic. We know that v has this property
because it induces an isomorphism in K (n)∗(−) for some
n > 0 with K (n)∗V 6= 0. Examples had been constructed
for n = 1 by Adams and for n = 2 and 3 independently by
Toda and Larry Smith.

• In the known examples, i was the inclusion of the bottom
cell into V and j was projection onto the top cell.

• It was known that for each t > 0, the composite

Std+k Σtd i // ΣdtV v t
// V

j // S`

represented a nontrivial element in πtd+k−`S.



The Chromatic
Conjectures

Doug Ravenel

Background
Periodic families

The chromatic resolution

Bousfield localization

Bousfield equivalence

The chromatic tower
Harmonic and dissonant
spectra

Chromatic convergence

The chromatic resolution
and the chromatic tower

Some conjectures
The nilpotence and
periodicity theorems

The telescope conjecture

1.4

Periodic families
MRW was also motivated by several examples of periodic
families of elements in the stable homotopy groups of spheres.
Each was constructed as follows.

We have a finite complex V equipped with maps

Sd+k Σd i // ΣdV v // V
j // S`

with the following properties:
• d > 0 and all iterates of v are essential. We say such a

map v is periodic. We know that v has this property
because it induces an isomorphism in K (n)∗(−) for some
n > 0 with K (n)∗V 6= 0. Examples had been constructed
for n = 1 by Adams and for n = 2 and 3 independently by
Toda and Larry Smith.

• In the known examples, i was the inclusion of the bottom
cell into V and j was projection onto the top cell.

• It was known that for each t > 0, the composite

Std+k Σtd i // ΣdtV v t
// V

j // S`

represented a nontrivial element in πtd+k−`S.



The Chromatic
Conjectures

Doug Ravenel

Background
Periodic families

The chromatic resolution

Bousfield localization

Bousfield equivalence

The chromatic tower
Harmonic and dissonant
spectra

Chromatic convergence

The chromatic resolution
and the chromatic tower

Some conjectures
The nilpotence and
periodicity theorems

The telescope conjecture

1.4

Periodic families
MRW was also motivated by several examples of periodic
families of elements in the stable homotopy groups of spheres.
Each was constructed as follows.

We have a finite complex V equipped with maps

Sd+k Σd i // ΣdV v // V
j // S`

with the following properties:

• d > 0 and all iterates of v are essential. We say such a
map v is periodic. We know that v has this property
because it induces an isomorphism in K (n)∗(−) for some
n > 0 with K (n)∗V 6= 0. Examples had been constructed
for n = 1 by Adams and for n = 2 and 3 independently by
Toda and Larry Smith.

• In the known examples, i was the inclusion of the bottom
cell into V and j was projection onto the top cell.

• It was known that for each t > 0, the composite

Std+k Σtd i // ΣdtV v t
// V

j // S`

represented a nontrivial element in πtd+k−`S.



The Chromatic
Conjectures

Doug Ravenel

Background
Periodic families

The chromatic resolution

Bousfield localization

Bousfield equivalence

The chromatic tower
Harmonic and dissonant
spectra

Chromatic convergence

The chromatic resolution
and the chromatic tower

Some conjectures
The nilpotence and
periodicity theorems

The telescope conjecture

1.4

Periodic families
MRW was also motivated by several examples of periodic
families of elements in the stable homotopy groups of spheres.
Each was constructed as follows.

We have a finite complex V equipped with maps

Sd+k Σd i // ΣdV v // V
j // S`

with the following properties:
• d > 0 and all iterates of v are essential.

We say such a
map v is periodic. We know that v has this property
because it induces an isomorphism in K (n)∗(−) for some
n > 0 with K (n)∗V 6= 0. Examples had been constructed
for n = 1 by Adams and for n = 2 and 3 independently by
Toda and Larry Smith.

• In the known examples, i was the inclusion of the bottom
cell into V and j was projection onto the top cell.

• It was known that for each t > 0, the composite

Std+k Σtd i // ΣdtV v t
// V

j // S`

represented a nontrivial element in πtd+k−`S.



The Chromatic
Conjectures

Doug Ravenel

Background
Periodic families

The chromatic resolution

Bousfield localization

Bousfield equivalence

The chromatic tower
Harmonic and dissonant
spectra

Chromatic convergence

The chromatic resolution
and the chromatic tower

Some conjectures
The nilpotence and
periodicity theorems

The telescope conjecture

1.4

Periodic families
MRW was also motivated by several examples of periodic
families of elements in the stable homotopy groups of spheres.
Each was constructed as follows.

We have a finite complex V equipped with maps

Sd+k Σd i // ΣdV v // V
j // S`

with the following properties:
• d > 0 and all iterates of v are essential. We say such a

map v is periodic.

We know that v has this property
because it induces an isomorphism in K (n)∗(−) for some
n > 0 with K (n)∗V 6= 0. Examples had been constructed
for n = 1 by Adams and for n = 2 and 3 independently by
Toda and Larry Smith.

• In the known examples, i was the inclusion of the bottom
cell into V and j was projection onto the top cell.

• It was known that for each t > 0, the composite

Std+k Σtd i // ΣdtV v t
// V

j // S`

represented a nontrivial element in πtd+k−`S.



The Chromatic
Conjectures

Doug Ravenel

Background
Periodic families

The chromatic resolution

Bousfield localization

Bousfield equivalence

The chromatic tower
Harmonic and dissonant
spectra

Chromatic convergence

The chromatic resolution
and the chromatic tower

Some conjectures
The nilpotence and
periodicity theorems

The telescope conjecture

1.4

Periodic families
MRW was also motivated by several examples of periodic
families of elements in the stable homotopy groups of spheres.
Each was constructed as follows.

We have a finite complex V equipped with maps

Sd+k Σd i // ΣdV v // V
j // S`

with the following properties:
• d > 0 and all iterates of v are essential. We say such a

map v is periodic. We know that v has this property
because it induces an isomorphism in K (n)∗(−) for some
n > 0 with K (n)∗V 6= 0.

Examples had been constructed
for n = 1 by Adams and for n = 2 and 3 independently by
Toda and Larry Smith.

• In the known examples, i was the inclusion of the bottom
cell into V and j was projection onto the top cell.

• It was known that for each t > 0, the composite

Std+k Σtd i // ΣdtV v t
// V

j // S`

represented a nontrivial element in πtd+k−`S.



The Chromatic
Conjectures

Doug Ravenel

Background
Periodic families

The chromatic resolution

Bousfield localization

Bousfield equivalence

The chromatic tower
Harmonic and dissonant
spectra

Chromatic convergence

The chromatic resolution
and the chromatic tower

Some conjectures
The nilpotence and
periodicity theorems

The telescope conjecture

1.4

Periodic families
MRW was also motivated by several examples of periodic
families of elements in the stable homotopy groups of spheres.
Each was constructed as follows.

We have a finite complex V equipped with maps

Sd+k Σd i // ΣdV v // V
j // S`

with the following properties:
• d > 0 and all iterates of v are essential. We say such a

map v is periodic. We know that v has this property
because it induces an isomorphism in K (n)∗(−) for some
n > 0 with K (n)∗V 6= 0. Examples had been constructed
for n = 1 by Adams and for n = 2 and 3 independently by
Toda and Larry Smith.

• In the known examples, i was the inclusion of the bottom
cell into V and j was projection onto the top cell.

• It was known that for each t > 0, the composite

Std+k Σtd i // ΣdtV v t
// V

j // S`

represented a nontrivial element in πtd+k−`S.



The Chromatic
Conjectures

Doug Ravenel

Background
Periodic families

The chromatic resolution

Bousfield localization

Bousfield equivalence

The chromatic tower
Harmonic and dissonant
spectra

Chromatic convergence

The chromatic resolution
and the chromatic tower

Some conjectures
The nilpotence and
periodicity theorems

The telescope conjecture

1.4

Periodic families
MRW was also motivated by several examples of periodic
families of elements in the stable homotopy groups of spheres.
Each was constructed as follows.

We have a finite complex V equipped with maps

Sd+k Σd i // ΣdV v // V
j // S`

with the following properties:
• d > 0 and all iterates of v are essential. We say such a

map v is periodic. We know that v has this property
because it induces an isomorphism in K (n)∗(−) for some
n > 0 with K (n)∗V 6= 0. Examples had been constructed
for n = 1 by Adams and for n = 2 and 3 independently by
Toda and Larry Smith.

• In the known examples, i was the inclusion of the bottom
cell into V

and j was projection onto the top cell.
• It was known that for each t > 0, the composite

Std+k Σtd i // ΣdtV v t
// V

j // S`

represented a nontrivial element in πtd+k−`S.



The Chromatic
Conjectures

Doug Ravenel

Background
Periodic families

The chromatic resolution

Bousfield localization

Bousfield equivalence

The chromatic tower
Harmonic and dissonant
spectra

Chromatic convergence

The chromatic resolution
and the chromatic tower

Some conjectures
The nilpotence and
periodicity theorems

The telescope conjecture

1.4

Periodic families
MRW was also motivated by several examples of periodic
families of elements in the stable homotopy groups of spheres.
Each was constructed as follows.

We have a finite complex V equipped with maps

Sd+k Σd i // ΣdV v // V
j // S`

with the following properties:
• d > 0 and all iterates of v are essential. We say such a

map v is periodic. We know that v has this property
because it induces an isomorphism in K (n)∗(−) for some
n > 0 with K (n)∗V 6= 0. Examples had been constructed
for n = 1 by Adams and for n = 2 and 3 independently by
Toda and Larry Smith.

• In the known examples, i was the inclusion of the bottom
cell into V and j was projection onto the top cell.

• It was known that for each t > 0, the composite

Std+k Σtd i // ΣdtV v t
// V

j // S`

represented a nontrivial element in πtd+k−`S.



The Chromatic
Conjectures

Doug Ravenel

Background
Periodic families

The chromatic resolution

Bousfield localization

Bousfield equivalence

The chromatic tower
Harmonic and dissonant
spectra

Chromatic convergence

The chromatic resolution
and the chromatic tower

Some conjectures
The nilpotence and
periodicity theorems

The telescope conjecture

1.4

Periodic families
MRW was also motivated by several examples of periodic
families of elements in the stable homotopy groups of spheres.
Each was constructed as follows.

We have a finite complex V equipped with maps

Sd+k Σd i // ΣdV v // V
j // S`

with the following properties:
• d > 0 and all iterates of v are essential. We say such a

map v is periodic. We know that v has this property
because it induces an isomorphism in K (n)∗(−) for some
n > 0 with K (n)∗V 6= 0. Examples had been constructed
for n = 1 by Adams and for n = 2 and 3 independently by
Toda and Larry Smith.

• In the known examples, i was the inclusion of the bottom
cell into V and j was projection onto the top cell.

• It was known that for each t > 0,

the composite

Std+k Σtd i // ΣdtV v t
// V

j // S`

represented a nontrivial element in πtd+k−`S.



The Chromatic
Conjectures

Doug Ravenel

Background
Periodic families

The chromatic resolution

Bousfield localization

Bousfield equivalence

The chromatic tower
Harmonic and dissonant
spectra

Chromatic convergence

The chromatic resolution
and the chromatic tower

Some conjectures
The nilpotence and
periodicity theorems

The telescope conjecture

1.4

Periodic families
MRW was also motivated by several examples of periodic
families of elements in the stable homotopy groups of spheres.
Each was constructed as follows.

We have a finite complex V equipped with maps

Sd+k Σd i // ΣdV v // V
j // S`

with the following properties:
• d > 0 and all iterates of v are essential. We say such a

map v is periodic. We know that v has this property
because it induces an isomorphism in K (n)∗(−) for some
n > 0 with K (n)∗V 6= 0. Examples had been constructed
for n = 1 by Adams and for n = 2 and 3 independently by
Toda and Larry Smith.

• In the known examples, i was the inclusion of the bottom
cell into V and j was projection onto the top cell.

• It was known that for each t > 0, the composite

Std+k Σtd i // ΣdtV v t
// V

j // S`

represented a nontrivial element in πtd+k−`S.



The Chromatic
Conjectures

Doug Ravenel

Background
Periodic families

The chromatic resolution

Bousfield localization

Bousfield equivalence

The chromatic tower
Harmonic and dissonant
spectra

Chromatic convergence

The chromatic resolution
and the chromatic tower

Some conjectures
The nilpotence and
periodicity theorems

The telescope conjecture

1.4

Periodic families
MRW was also motivated by several examples of periodic
families of elements in the stable homotopy groups of spheres.
Each was constructed as follows.

We have a finite complex V equipped with maps

Sd+k Σd i // ΣdV v // V
j // S`

with the following properties:
• d > 0 and all iterates of v are essential. We say such a

map v is periodic. We know that v has this property
because it induces an isomorphism in K (n)∗(−) for some
n > 0 with K (n)∗V 6= 0. Examples had been constructed
for n = 1 by Adams and for n = 2 and 3 independently by
Toda and Larry Smith.

• In the known examples, i was the inclusion of the bottom
cell into V and j was projection onto the top cell.

• It was known that for each t > 0, the composite

Std+k Σtd i // ΣdtV v t
// V

j // S`

represented a nontrivial element in πtd+k−`S.



The Chromatic
Conjectures

Doug Ravenel

Background
Periodic families

The chromatic resolution

Bousfield localization

Bousfield equivalence

The chromatic tower
Harmonic and dissonant
spectra

Chromatic convergence

The chromatic resolution
and the chromatic tower

Some conjectures
The nilpotence and
periodicity theorems

The telescope conjecture

1.5

Periodic families (continued)

Std+k Σtd i // ΣdtV v t
// V

j // S`

Only three examples were known at the time. Toda had
constructed finite complexes he called V (n) with

BP∗V (n) ∼= BP∗/(p, v1, . . . vn) for 0 ≤ n ≤ 3

and with cofiber sequences

Σ2pn−2V (n − 1)
vn // V (n − 1) // V (n) for 1 ≤ n ≤ 3.

That was in 1973. To this day nobody has constructed V (4).

In each case there is a lower bound on the prime p. In 2010
Lee Nave showed that V ((p + 1)/2) does not exist.
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1.5

Periodic families (continued)

Std+k Σtd i // ΣdtV v t
// V

j // S`

Only three examples were known at the time. Toda had
constructed finite complexes he called V (n) with

BP∗V (n) ∼= BP∗/(p, v1, . . . vn) for 0 ≤ n ≤ 3

and with cofiber sequences

Σ2pn−2V (n − 1)
vn // V (n − 1) // V (n) for 1 ≤ n ≤ 3.

That was in 1973. To this day nobody has constructed V (4).

In each case there is a lower bound on the prime p. In 2010
Lee Nave showed that V ((p + 1)/2) does not exist.
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Periodic families (continued)
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with cofiber sequences

Σ2pn−2V (n − 1)
vn // V (n − 1) // V (n) for 1 ≤ n ≤ 3.

where the map vn is periodic.

ARE THERE MORE MAPS LIKE THIS? ARE THERE MORE
PERIODIC FAMILIES IN π∗S?

Are there any periodic maps that are not detected by
BP-theory?

What would happen if we replace In = (p, . . . vn−1) by a smaller
invariant regular ideal with n generators, and look for a self
map inducing multiplication by some power of vn?
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1.7

The chromatic resolution

Recall that BP∗ ∼= Z(p)[v1, v2, . . . ], where |vn| = 2(pn − 1),

and

Γ := BP∗(BP) ∼= BP∗[t1, t2, . . . ],with |ti | = 2(pi − 1)

which has a Hopf algebroid structure.

The E2-term of the Adams-Novikov spectral sequence
converging to the p-local stable homotopy groups of spheres is

Es,t
2 = Exts,tBP∗(BP) (BP∗,BP∗) ,

so this object is of great interest. It can be studied with the long
exact sequence of BP∗(BP)-comodules

0 → BP∗ → M0 → M1 → M2 → M3 → · · · ,

the chromatic resolution.
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1.8

The chromatic resolution (continued)

0 → BP∗ → M0 → M1 → M2 → M3 → · · ·

This leads to a trigraded chromatic spectral sequence
converging to the bigraded Adams-Novikov E2-term, with

En,s,t
1 = Exts,tBP∗(BP) (BP∗,Mn) ⇒ En+s,t

2 .

For a fixed n, this group is related to the cohomology of the nth
Morava stabilizer group, which is the automorphism group of a
certain formal group law of height n. It is also related to
vn-periodic phenomena in the stable homotopy groups of
spheres.

We used the term CHROMATIC because each column (value
of n) displays periodic families of elements with varying
frequencies, like a spectrum in the astronomical sense.
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1.9

The chromatic resolution (continued)

0 → BP∗ → M0 → M1 → M2 → M3 → · · ·

The comodules Mn are defined inductively as follows.
• M0 is obtained from BP∗ by inverting p. This means there

is a short exact sequence

0 // N0 p−1
// M0 // N1 // 0

BP∗ BP∗ ⊗ Q BP∗/(p∞)

• For n > 0, Mn is obtained from Nn by inverting vn. There is
a short exact sequence

0 // Nn v−1
n // Mn // Nn+1 // 0

BP∗/(p∞, . . . v∞
n−1) BP∗/(p∞, . . . v∞

n )

v−1
n BP∗/(p∞, . . . v∞

n−1)
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0 // Nn v−1
n // Mn // Nn+1 // 0

BP∗/(p∞, . . . v∞
n−1) BP∗/(p∞, . . . v∞

n )

v−1
n BP∗/(p∞, . . . v∞

n−1)



The Chromatic
Conjectures

Doug Ravenel

Background
Periodic families

The chromatic resolution

Bousfield localization

Bousfield equivalence

The chromatic tower
Harmonic and dissonant
spectra

Chromatic convergence

The chromatic resolution
and the chromatic tower

Some conjectures
The nilpotence and
periodicity theorems

The telescope conjecture

1.10

The chromatic resolution (continued)
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The chromatic resolution

0 → BP∗ → M0 → M1 → M2 → M3 → · · ·

is obtained by splicing together these short exact sequence for
all n ≥ 0.

This construction is purely algebraic. It takes place in the
category of BP∗(BP)-comodules.

IS THERE A SIMILAR CONSTRUCTION IN THE STABLE
HOMOTOPY CATEGORY?
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The chromatic resolution (continued)

0 // Nn v−1
n // Mn // Nn+1 // 0

0 → BP∗ → M0 → M1 → M2 → M3 → · · ·

IS THERE A SIMILAR CONSTRUCTION, AND THE
BEAUTIFUL ALGEBRA THAT GOES ALONG WITH IT, IN

THE STABLE HOMOTOPY CATEGORY?

OR IS IT JUST AN ARTIFACT OF COMPLEX COBORDISM
THEORY?

This question occupied me for several years.
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The chromatic resolution (continued)
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1.13

Bousfield localization

0 // Nn v−1
n // Mn // Nn+1 // 0

0 → BP∗ → M0 → M1 → M2 → M3 → · · ·

It would be nice if each short exact sequence above were the
BP∗ homology of a cofiber sequence of spectra. Then we
would have spectra Mn and Nn with

BP∗Mn ∼= Mn and BP∗Nn ∼= Nn.

This was easy enough for n = 0. We knew then how to invert a
prime p homotopically. The resulting N1 is the Moore spectrum
for the group Q/Z(p). But how would we invert v1 to do the next
step?
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1.14

Bousfield localization (continued)

As luck would have it,

Bousfield local-
ization had just been invented!

Pete Bousfield
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Bousfield localization (continued)

Suppose we have a generalized homology theory represented
by a spectrum E .

We say a spectrum Z is E-local if, whenever
f : A → B is an E∗-equivalence, that is a map inducing an
isomorphism E∗A → E∗B, then the induced map

f ∗ : [B,Z ] → [A,Z ]

is also an isomorphism.
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Bousfield localization (continued)

Suppose we have a generalized homology theory represented
by a spectrum E . We say a spectrum Z is E-local if, whenever
f : A → B is an E∗-equivalence, that is a map inducing an
isomorphism E∗A → E∗B, then the induced map
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Bousfield localization (continued)

Theorem (Bousfield localization of spectra 1979)

For a given E there is a coaugmented functor LE such that for
any spectrum X, LEX is E-local and the map X → LEX is an
E∗-equivalence.

It turns out that when E and X are both connective, then LEX
can be described in arithmetic terms. It is either obtained from
X by inverting some set of primes, or it is the p-adic completion
for a single prime p.

Things can be much more interesting when either E or X (or
both) fail to be connective.
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Bousfield localization (continued)

Theorem (Bousfield localization of spectra 1979)
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1.17

Bousfield localization (continued)

Theorem (Bousfield localization of spectra 1979)

For a given E there is a coaugmented functor LE such that for
any spectrum X, LEX is E-local and the map X → LEX is an
E∗-equivalence.

WHAT IF OUR HYPOTHETICAL SPECTRUM Mn COULD BE
OBTAINED FROM THE INDUCTIVELY CONSTRUCTED Nn
BY SOME FORM OF BOUSFIELD LOCALIZATION?

The logical choice for E appeared to be the Johnson-Wilson
spectrum E(n). It is a BP-module spectrum with

π∗E(n) ∼= Z(p)[v1, . . . vn−1, v±1
n ].

It is closely related to the fancier Morava spectrum En, but the
latter had not been invented yet. It turns out that both lead to
the same localization functor.
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Bousfield localization (continued)
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1.18

Bousfield equivalence

Recall that a spectrum Z is E-local if, whenever f : A → B is an
E∗-equivalence, that is a map inducing an isomorphism
E∗A → E∗B, then the induced map

f ∗ : [B,Z ] → [A,Z ]

is also an isomorphism.

This condition is equivalent to the
following: if C is an E∗-acyclic spectrum, meaning that
E∗C = 0, then [C,Z ] = 0.

Definition

Two spectra E and E ′ are Bousfield equivalent if they have the
same class of acyclic spectra, that is E∗C = 0 iff E ′

∗C = 0. The
Bousfield equivalence class of E is denoted by 〈E〉.

We say that 〈E〉 ≥ 〈F 〉 if E∗C = 0 implies F∗C = 0. This means
that the homology theory E∗ gives at least as much information
as F∗.
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1.19

Bousfield equivalence (continued)

Definition

Two spectra E and E ′ are Bousfield equivalent if they have the
same class of acyclic spectra, that is E∗C = 0 iff E ′

∗C = 0. The
Bousfield equivalence class of E is denoted by 〈E〉.

We say that 〈E〉 ≥ 〈F 〉 if E∗C = 0 implies F∗C = 0. This means
that the homology theory E∗ gives at least as much information
as F∗.

It follows that the maximal Bousfield class is that of the sphere
spectrum S, and the minimal one is that of a point ∗.

It is easy to check that wedges and smash products of
Bousfield classes are well defined, that is we can define

〈E〉 ∨ 〈F 〉 := 〈E ∨ F 〉 and 〈E〉 ∧ 〈F 〉 := 〈E ∧ F 〉.
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1.19

Bousfield equivalence (continued)
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1.19

Bousfield equivalence (continued)
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Bousfield equivalence (continued)
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1.19

Bousfield equivalence (continued)

Definition
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1.20

Bousfield equivalence (continued)

〈E〉 ∨ 〈F 〉 := 〈E ∨ F 〉 and 〈E〉 ∧ 〈F 〉 := 〈E ∧ F 〉.

These two operations satisfy the expected distributive law. A
collection with such operations is called a lattice, and this
particular collection is called the Bousfield lattice A.

For any spectrum E , 〈E〉 ∨ 〈E〉 = 〈E〉, but there are spectra E
for which 〈E〉 ∧ 〈E〉 6= 〈E〉.

The collection of classes 〈E〉 for which 〈E〉 ∧ 〈E〉 = 〈E〉 is
called the Bousfield distributive lattice DL. It includes the
classes of all connective spectra and all ring spectra.

The complement (if it exists) 〈E〉c of 〈E〉 is a class with

〈E〉c ∨ 〈E〉 = 〈S〉 and 〈E〉c ∧ 〈E〉 = 〈∗〉.

The collection of classes with complements forms a Boolean
algebra BA.
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1.21

Bousfield equivalence (continued)

Theorem (Formal properties of Bousfield classes)

1 If W → X → Y f−→ ΣW is a cofiber sequence, then

〈X 〉 ≤ 〈W 〉 ∨ 〈Y 〉.

2 If f is smash nilpotent (meaning that f∧k : Y∧k → (ΣW )∧k

is null for some k), then 〈X 〉 = 〈W 〉 ∨ 〈Y 〉.
3 For a self-map ΣdX v−→ X, let Cv denote its cofiber and let

X̂ denote the homotopy colimit (mapping telescope) of

X v // Σ−dX v // Σ−2dX v // · · ·.

Then 〈X 〉 = 〈X̂ 〉 ∨ 〈Cv 〉 and 〈X̂ 〉 ∧ 〈Cv 〉 = 〈∗〉.
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1.22

Bousfield equivalence (continued)

Theorem (Some Bousfield equivalence classes)

1

〈S〉 = 〈SQ〉 ∨
∨

p prime

〈S/p〉,

where SQ is the rational Moore spectrum and S/p is the
mod p Moore spectrum.

2

〈BP〉 ≥ 〈H/p〉 ∨
∨
n≥0

〈K (n)〉,

where H/p is the mod p Eilenberg-Mac Lane spectrum
and K (n) is the nth Morava K-theory.

3

〈E(n)〉 = 〈En〉 =
∨

0≤i≤n

〈K (i)〉.

In each case, the smash product of any two of the wedge
summands on the right is contractible.
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1.23

The chromatic tower

The localization functor LE is determined by the Bousfield class
〈E〉. When 〈E〉 ≥ 〈F 〉, there is a natural transformation
LE ⇒ LF .

For a fixed prime p, let Ln = LE(n). Then for any spectrum X we
get a diagram

X → L∞X · · · → LnX → Ln−1X → · · · → L1X → L0X .

This the chromatic tower of X . Here L∞ denotes localization
with respect to the Bousfield class∨

n≥0

〈K (n)〉.
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1.24

The chromatic tower (continued)

The chromatic tower of a p-local spectrum X is the diagram

X → L∞X · · · → LnX → Ln−1X → · · · → L1X → L0X .

This raises some questions:
• When is the map X → L∞X an equivalence? When it is,

we say X is harmonic. We call L∞X the harmonic
localization of X . We say X is dissonant when L∞X ' ∗.

• When is the map X → holimLnX an equivalence? This is
the chromatic convergence question.

• Can we describe BP∗LnX in terms of BP∗X? This is the
localization question.
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1.25

Harmonic and dissonant spectra

Recall that L∞ denotes localization with respect to the
Bousfield class ∨

n≥0

〈K (n)〉.

A p-local spectrum is harmonic if X ' L∞X . It is dissonant if
L∞X ' ∗, meaning that K (n)∗X = 0 for all n. It follows from the
definitions that there are no essential maps from a dissonant
spectrum to a harmonic one.

In the 1984 paper I showed that

• Every p-local finite spectrum is harmonic.
• A p-local connective spectrum X is harmonic when BP∗X

has finite projective dimension as a BP∗-module.
• The mod p Eilenberg-Mac Lane spectrum H/p is

dissonant. The same is true for any spectrum whose
homotopy groups are all torsion and bounded above.
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1.26

Chromatic convergence

A p-local spectrum X is chromatically convergent if it is
equivalent to the homotopy limit of the diagram

· · · → LnX → Ln−1X → · · · → L1X → L0X .

Around 1990 Hopkins and I showed that p-local finite spectra
are chromatically convergent. The proof can be found in the
orange book, Nilpotence and periodicity in stable homotopy
theory of 1992.

In 2014 Tobias Barthel proved a p-local connective spectrum X
is chromatically convergent when BP∗X has finite projective
dimension as a BP∗-module. Such spectra were previously
known to be harmonic.
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1.27

The chromatic resolution and the chromatic tower
Recall one of the original questions of this lecture:

Does the
chromatic resolution (leading to the chromatic spectral
sequence of Miller-R-Wilson) have a geometric underpinning?

More specifically, is the short exact sequence

0 // Nn v−1
n // Mn // Nn+1 // 0

BP∗/(p∞, . . . v∞
n−1) BP∗/(p∞, . . . v∞

n )

v−1
n BP∗/(p∞, . . . v∞

n−1)

the BP-homology of a cofiber sequence? My hope was that
there are spectra Mn and Nn with

BP∗Mn ∼= Mn and BP∗Nn ∼= Nn,

and that Mn = LnNn. We can use Bousfield localization to
construct some spectra this way, but how do we know they
have the desired BP-homology?

This is a special case of the localization question, namely how
to describe BP∗LnX in terms of BP∗X .
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1.28

The chromatic resolution and the chromatic tower
(continued)

It turns out that LnBP is easy to analyze, and this makes it easy
to understand the spectrum X ∧ LnBP.

Theorem (The localization conjecture)

For any spectrum X,

BP ∧ LnX ' X ∧ LnBP.

In particular, when E(n − 1)∗X = 0, BP∗LnX = v−1
n BP∗X.

It follows that the chromatic resolution can be realized as
desired.

It turns out that the functor Ln satisfies a stronger condition,
conjectured in 1984, proved with Hopkins a few years later, and
reported in the orange book.
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n BP∗X.

It follows that the chromatic resolution can be realized as
desired.

It turns out that the functor Ln satisfies a stronger condition,
conjectured in 1984, proved with Hopkins a few years later, and
reported in the orange book.



The Chromatic
Conjectures

Doug Ravenel

Background
Periodic families

The chromatic resolution

Bousfield localization

Bousfield equivalence

The chromatic tower
Harmonic and dissonant
spectra

Chromatic convergence

The chromatic resolution
and the chromatic tower

Some conjectures
The nilpotence and
periodicity theorems

The telescope conjecture

1.28

The chromatic resolution and the chromatic tower
(continued)

It turns out that LnBP is easy to analyze, and this makes it easy
to understand the spectrum X ∧ LnBP.

Theorem (The localization conjecture)

For any spectrum X,

BP ∧ LnX ' X ∧ LnBP.

In particular, when E(n − 1)∗X = 0, BP∗LnX = v−1
n BP∗X.

It follows that the chromatic resolution can be realized as
desired.

It turns out that the functor Ln satisfies a stronger condition,
conjectured in 1984, proved with Hopkins a few years later, and
reported in the orange book.



The Chromatic
Conjectures

Doug Ravenel

Background
Periodic families

The chromatic resolution

Bousfield localization

Bousfield equivalence

The chromatic tower
Harmonic and dissonant
spectra

Chromatic convergence

The chromatic resolution
and the chromatic tower

Some conjectures
The nilpotence and
periodicity theorems

The telescope conjecture

1.28

The chromatic resolution and the chromatic tower
(continued)

It turns out that LnBP is easy to analyze, and this makes it easy
to understand the spectrum X ∧ LnBP.

Theorem (The localization conjecture)

For any spectrum X,

BP ∧ LnX ' X ∧ LnBP.

In particular, when E(n − 1)∗X = 0, BP∗LnX = v−1
n BP∗X.

It follows that the chromatic resolution can be realized as
desired.

It turns out that the functor Ln satisfies a stronger condition,
conjectured in 1984, proved with Hopkins a few years later, and
reported in the orange book.



The Chromatic
Conjectures

Doug Ravenel

Background
Periodic families

The chromatic resolution

Bousfield localization

Bousfield equivalence

The chromatic tower
Harmonic and dissonant
spectra

Chromatic convergence

The chromatic resolution
and the chromatic tower

Some conjectures
The nilpotence and
periodicity theorems

The telescope conjecture

1.28

The chromatic resolution and the chromatic tower
(continued)

It turns out that LnBP is easy to analyze, and this makes it easy
to understand the spectrum X ∧ LnBP.

Theorem (The localization conjecture)

For any spectrum X,

BP ∧ LnX ' X ∧ LnBP.

In particular, when E(n − 1)∗X = 0, BP∗LnX = v−1
n BP∗X.

It follows that the chromatic resolution can be realized as
desired.

It turns out that the functor Ln satisfies a stronger condition,

conjectured in 1984, proved with Hopkins a few years later, and
reported in the orange book.



The Chromatic
Conjectures

Doug Ravenel

Background
Periodic families

The chromatic resolution

Bousfield localization

Bousfield equivalence

The chromatic tower
Harmonic and dissonant
spectra

Chromatic convergence

The chromatic resolution
and the chromatic tower

Some conjectures
The nilpotence and
periodicity theorems

The telescope conjecture

1.28

The chromatic resolution and the chromatic tower
(continued)

It turns out that LnBP is easy to analyze, and this makes it easy
to understand the spectrum X ∧ LnBP.

Theorem (The localization conjecture)

For any spectrum X,

BP ∧ LnX ' X ∧ LnBP.

In particular, when E(n − 1)∗X = 0, BP∗LnX = v−1
n BP∗X.

It follows that the chromatic resolution can be realized as
desired.

It turns out that the functor Ln satisfies a stronger condition,
conjectured in 1984,

proved with Hopkins a few years later, and
reported in the orange book.



The Chromatic
Conjectures

Doug Ravenel

Background
Periodic families

The chromatic resolution

Bousfield localization

Bousfield equivalence

The chromatic tower
Harmonic and dissonant
spectra

Chromatic convergence

The chromatic resolution
and the chromatic tower

Some conjectures
The nilpotence and
periodicity theorems

The telescope conjecture

1.28

The chromatic resolution and the chromatic tower
(continued)

It turns out that LnBP is easy to analyze, and this makes it easy
to understand the spectrum X ∧ LnBP.

Theorem (The localization conjecture)

For any spectrum X,

BP ∧ LnX ' X ∧ LnBP.

In particular, when E(n − 1)∗X = 0, BP∗LnX = v−1
n BP∗X.

It follows that the chromatic resolution can be realized as
desired.

It turns out that the functor Ln satisfies a stronger condition,
conjectured in 1984, proved with Hopkins a few years later,

and
reported in the orange book.



The Chromatic
Conjectures

Doug Ravenel

Background
Periodic families

The chromatic resolution

Bousfield localization

Bousfield equivalence

The chromatic tower
Harmonic and dissonant
spectra

Chromatic convergence

The chromatic resolution
and the chromatic tower

Some conjectures
The nilpotence and
periodicity theorems

The telescope conjecture

1.28

The chromatic resolution and the chromatic tower
(continued)

It turns out that LnBP is easy to analyze, and this makes it easy
to understand the spectrum X ∧ LnBP.

Theorem (The localization conjecture)

For any spectrum X,

BP ∧ LnX ' X ∧ LnBP.

In particular, when E(n − 1)∗X = 0, BP∗LnX = v−1
n BP∗X.

It follows that the chromatic resolution can be realized as
desired.

It turns out that the functor Ln satisfies a stronger condition,
conjectured in 1984, proved with Hopkins a few years later, and
reported in the orange book.



The Chromatic
Conjectures

Doug Ravenel

Background
Periodic families

The chromatic resolution

Bousfield localization

Bousfield equivalence

The chromatic tower
Harmonic and dissonant
spectra

Chromatic convergence

The chromatic resolution
and the chromatic tower

Some conjectures
The nilpotence and
periodicity theorems

The telescope conjecture

1.29

The chromatic resolution and the chromatic tower
(continued)

Theorem (The smash product conjecture)

For any spectrum X, LnX ∼= X ∧ LnS.
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1.30

Some conjectures

I ended the 1984 paper with a list of conjectures, all but one of
which (the telescope conjecture) were proved within a 15
years, most by Hopkins and various collaborators. I have
already mentioned some of them. I will state some more of
them here as theorems.

Nilpotence Theorem (Devinatz-Hopkins-Smith 1988)

1 For a finite spectrum X, a map v : ΣdX → X is nilpotent iff
MU∗(v) is nilpotent.

2 For a finite spectrum X, a map g : X → Y is smash
nilpotent if the map MU ∧ g is null homotopic.

3 Let R be a connective ring spectrum of finite type, and let
h : π∗R → MU∗R be the Hurewicz map. Then α ∈ π∗R is
nilpotent when h(α) = 0.

4 Let
W // X // Y f // ΣW

be a cofiber sequence of finite spectra with MU∗(f ) = 0.
Then 〈X 〉 = 〈W 〉 ∨ 〈Y 〉.
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1.31

Some conjectures (continued)

If it were the case that 〈MU〉 = 〈S〉, or if 〈BP〉 = 〈S(p)〉 for each
prime p, then the Nilpotence Theorem would follow
immediately.

However 〈BP〉 < 〈S(p)〉, meaning there are BP∗-acyclic p-local
spectra that are not contractible. In other words MU does NOT
“see everything.”

In fact there are connective p-local spectra T (m) for m ≥ 0 with

BP∗T (m) ∼= BP∗[t1, t2, . . . tm] (so T (0) = S(p))

and
〈T (0)〉 > 〈T (1)〉 > 〈T (2)〉 · · · > 〈BP〉.
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Some conjectures (continued)

If it were the case that 〈MU〉 = 〈S〉, or if 〈BP〉 = 〈S(p)〉 for each
prime p, then the Nilpotence Theorem would follow
immediately.

However 〈BP〉 < 〈S(p)〉,

meaning there are BP∗-acyclic p-local
spectra that are not contractible. In other words MU does NOT
“see everything.”

In fact there are connective p-local spectra T (m) for m ≥ 0 with

BP∗T (m) ∼= BP∗[t1, t2, . . . tm] (so T (0) = S(p))

and
〈T (0)〉 > 〈T (1)〉 > 〈T (2)〉 · · · > 〈BP〉.
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prime p, then the Nilpotence Theorem would follow
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However 〈BP〉 < 〈S(p)〉, meaning there are BP∗-acyclic p-local
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In other words MU does NOT
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If it were the case that 〈MU〉 = 〈S〉, or if 〈BP〉 = 〈S(p)〉 for each
prime p, then the Nilpotence Theorem would follow
immediately.

However 〈BP〉 < 〈S(p)〉, meaning there are BP∗-acyclic p-local
spectra that are not contractible. In other words MU does NOT
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In fact there are connective p-local spectra T (m) for m ≥ 0 with
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If it were the case that 〈MU〉 = 〈S〉, or if 〈BP〉 = 〈S(p)〉 for each
prime p, then the Nilpotence Theorem would follow
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However 〈BP〉 < 〈S(p)〉, meaning there are BP∗-acyclic p-local
spectra that are not contractible. In other words MU does NOT
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In fact there are connective p-local spectra T (m) for m ≥ 0 with
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If it were the case that 〈MU〉 = 〈S〉, or if 〈BP〉 = 〈S(p)〉 for each
prime p, then the Nilpotence Theorem would follow
immediately.

However 〈BP〉 < 〈S(p)〉, meaning there are BP∗-acyclic p-local
spectra that are not contractible. In other words MU does NOT
“see everything.”

In fact there are connective p-local spectra T (m) for m ≥ 0 with

BP∗T (m) ∼= BP∗[t1, t2, . . . tm] (so T (0) = S(p))

and
〈T (0)〉 > 〈T (1)〉 > 〈T (2)〉 · · · > 〈BP〉.
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Some conjectures (continued)

If it were the case that 〈MU〉 = 〈S〉, or if 〈BP〉 = 〈S(p)〉 for each
prime p, then the Nilpotence Theorem would follow
immediately.

However 〈BP〉 < 〈S(p)〉, meaning there are BP∗-acyclic p-local
spectra that are not contractible. In other words MU does NOT
“see everything.”

In fact there are connective p-local spectra T (m) for m ≥ 0 with

BP∗T (m) ∼= BP∗[t1, t2, . . . tm] (so T (0) = S(p))

and
〈T (0)〉 > 〈T (1)〉 > 〈T (2)〉 · · · > 〈BP〉.
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Some conjectures (continued)

Nilpotence Theorem (Devinatz-Hopkins-Smith 1988)

1 For a finite spectrum X, a map f : ΣdX → X is nilpotent iff
MU∗(f ) is nilpotent.

This means that such a map can be periodic (the opposite of
being nilpotent) only if it detected as such by MU-homology. In
the p-local case, the internal properties of MU-theory imply
that f must induce a nontriivial isomorphism in some Morava
K-theory K (n)∗.
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Nilpotence Theorem (Devinatz-Hopkins-Smith 1988)

1 For a finite spectrum X, a map f : ΣdX → X is nilpotent iff
MU∗(f ) is nilpotent.

This means that such a map can be periodic (the opposite of
being nilpotent) only if it detected as such by MU-homology.

In
the p-local case, the internal properties of MU-theory imply
that f must induce a nontriivial isomorphism in some Morava
K-theory K (n)∗.



The Chromatic
Conjectures

Doug Ravenel

Background
Periodic families

The chromatic resolution

Bousfield localization

Bousfield equivalence

The chromatic tower
Harmonic and dissonant
spectra

Chromatic convergence

The chromatic resolution
and the chromatic tower

Some conjectures
The nilpotence and
periodicity theorems

The telescope conjecture

1.32

Some conjectures (continued)

Nilpotence Theorem (Devinatz-Hopkins-Smith 1988)

1 For a finite spectrum X, a map f : ΣdX → X is nilpotent iff
MU∗(f ) is nilpotent.

This means that such a map can be periodic (the opposite of
being nilpotent) only if it detected as such by MU-homology. In
the p-local case, the internal properties of MU-theory imply
that f must induce a nontriivial isomorphism in some Morava
K-theory K (n)∗.
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Some conjectures (continued)

Periodicity Theorem (Hopkins-Smith 1998)

Let X be a p-local finite spectrum of chromatic type n,

meaning
that K (n − 1)∗X = 0, but K (n)∗X 6= 0. Then there is a map
v : ΣdX → X (a vn self-map) with K (n)∗(v) an isomorphism
and H∗(v ;Z/p) = 0. If n = 0 then d = 0, and when n > 0, d is
a multiple of 2pn − 2.

Given a second such map w : ΣeX → X, there are positive
integers i and j such that id = je and v i = w j . In other words, v
is assymptotically unique.

It follows that the cofiber of v (or of any of its iterates) is a
p-local finite spectrum of chromatic type n + 1. This means that
there are finite complexes of all chromatic types. Finite
complexes of arbitrary chromatic type were first constructed by
Steve Mitchell in 1985.

HENCE THERE ARE LOTS OF PERIODIC FAMILIES IN π∗S.
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Periodicity Theorem (Hopkins-Smith 1998)

Let X be a p-local finite spectrum of chromatic type n, meaning
that K (n − 1)∗X = 0, but K (n)∗X 6= 0.

Then there is a map
v : ΣdX → X (a vn self-map) with K (n)∗(v) an isomorphism
and H∗(v ;Z/p) = 0. If n = 0 then d = 0, and when n > 0, d is
a multiple of 2pn − 2.

Given a second such map w : ΣeX → X, there are positive
integers i and j such that id = je and v i = w j . In other words, v
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Periodicity Theorem (Hopkins-Smith 1998)

Let X be a p-local finite spectrum of chromatic type n, meaning
that K (n − 1)∗X = 0, but K (n)∗X 6= 0. Then there is a map
v : ΣdX → X (a vn self-map) with K (n)∗(v) an isomorphism
and H∗(v ;Z/p) = 0.

If n = 0 then d = 0, and when n > 0, d is
a multiple of 2pn − 2.

Given a second such map w : ΣeX → X, there are positive
integers i and j such that id = je and v i = w j . In other words, v
is assymptotically unique.
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Periodicity Theorem (Hopkins-Smith 1998)

Let X be a p-local finite spectrum of chromatic type n, meaning
that K (n − 1)∗X = 0, but K (n)∗X 6= 0. Then there is a map
v : ΣdX → X (a vn self-map) with K (n)∗(v) an isomorphism
and H∗(v ;Z/p) = 0. If n = 0 then d = 0,

and when n > 0, d is
a multiple of 2pn − 2.

Given a second such map w : ΣeX → X, there are positive
integers i and j such that id = je and v i = w j . In other words, v
is assymptotically unique.

It follows that the cofiber of v (or of any of its iterates) is a
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Some conjectures (continued)

Periodicity Theorem (Hopkins-Smith 1998)

Let X be a p-local finite spectrum of chromatic type n, meaning
that K (n − 1)∗X = 0, but K (n)∗X 6= 0. Then there is a map
v : ΣdX → X (a vn self-map) with K (n)∗(v) an isomorphism
and H∗(v ;Z/p) = 0. If n = 0 then d = 0, and when n > 0, d is
a multiple of 2pn − 2.

Given a second such map w : ΣeX → X, there are positive
integers i and j such that id = je and v i = w j . In other words, v
is assymptotically unique.

It follows that the cofiber of v (or of any of its iterates) is a
p-local finite spectrum of chromatic type n + 1. This means that
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Some conjectures (continued)

Periodicity Theorem (Hopkins-Smith 1998)

Let X be a p-local finite spectrum of chromatic type n, meaning
that K (n − 1)∗X = 0, but K (n)∗X 6= 0. Then there is a map
v : ΣdX → X (a vn self-map) with K (n)∗(v) an isomorphism
and H∗(v ;Z/p) = 0. If n = 0 then d = 0, and when n > 0, d is
a multiple of 2pn − 2.

Given a second such map w : ΣeX → X, there are positive
integers i and j

such that id = je and v i = w j . In other words, v
is assymptotically unique.

It follows that the cofiber of v (or of any of its iterates) is a
p-local finite spectrum of chromatic type n + 1. This means that
there are finite complexes of all chromatic types. Finite
complexes of arbitrary chromatic type were first constructed by
Steve Mitchell in 1985.

HENCE THERE ARE LOTS OF PERIODIC FAMILIES IN π∗S.
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Some conjectures (continued)

Periodicity Theorem (Hopkins-Smith 1998)

Let X be a p-local finite spectrum of chromatic type n, meaning
that K (n − 1)∗X = 0, but K (n)∗X 6= 0. Then there is a map
v : ΣdX → X (a vn self-map) with K (n)∗(v) an isomorphism
and H∗(v ;Z/p) = 0. If n = 0 then d = 0, and when n > 0, d is
a multiple of 2pn − 2.

Given a second such map w : ΣeX → X, there are positive
integers i and j such that id = je and v i = w j .

In other words, v
is assymptotically unique.

It follows that the cofiber of v (or of any of its iterates) is a
p-local finite spectrum of chromatic type n + 1. This means that
there are finite complexes of all chromatic types. Finite
complexes of arbitrary chromatic type were first constructed by
Steve Mitchell in 1985.

HENCE THERE ARE LOTS OF PERIODIC FAMILIES IN π∗S.
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Some conjectures (continued)

Periodicity Theorem (Hopkins-Smith 1998)

Let X be a p-local finite spectrum of chromatic type n, meaning
that K (n − 1)∗X = 0, but K (n)∗X 6= 0. Then there is a map
v : ΣdX → X (a vn self-map) with K (n)∗(v) an isomorphism
and H∗(v ;Z/p) = 0. If n = 0 then d = 0, and when n > 0, d is
a multiple of 2pn − 2.

Given a second such map w : ΣeX → X, there are positive
integers i and j such that id = je and v i = w j . In other words, v
is assymptotically unique.

It follows that the cofiber of v (or of any of its iterates) is a
p-local finite spectrum of chromatic type n + 1. This means that
there are finite complexes of all chromatic types. Finite
complexes of arbitrary chromatic type were first constructed by
Steve Mitchell in 1985.

HENCE THERE ARE LOTS OF PERIODIC FAMILIES IN π∗S.
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Some conjectures (continued)

Periodicity Theorem (Hopkins-Smith 1998)

Let X be a p-local finite spectrum of chromatic type n, meaning
that K (n − 1)∗X = 0, but K (n)∗X 6= 0. Then there is a map
v : ΣdX → X (a vn self-map) with K (n)∗(v) an isomorphism
and H∗(v ;Z/p) = 0. If n = 0 then d = 0, and when n > 0, d is
a multiple of 2pn − 2.

Given a second such map w : ΣeX → X, there are positive
integers i and j such that id = je and v i = w j . In other words, v
is assymptotically unique.

It follows that the cofiber of v (or of any of its iterates) is a
p-local finite spectrum of chromatic type n + 1.

This means that
there are finite complexes of all chromatic types. Finite
complexes of arbitrary chromatic type were first constructed by
Steve Mitchell in 1985.

HENCE THERE ARE LOTS OF PERIODIC FAMILIES IN π∗S.
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Some conjectures (continued)

Periodicity Theorem (Hopkins-Smith 1998)

Let X be a p-local finite spectrum of chromatic type n, meaning
that K (n − 1)∗X = 0, but K (n)∗X 6= 0. Then there is a map
v : ΣdX → X (a vn self-map) with K (n)∗(v) an isomorphism
and H∗(v ;Z/p) = 0. If n = 0 then d = 0, and when n > 0, d is
a multiple of 2pn − 2.

Given a second such map w : ΣeX → X, there are positive
integers i and j such that id = je and v i = w j . In other words, v
is assymptotically unique.

It follows that the cofiber of v (or of any of its iterates) is a
p-local finite spectrum of chromatic type n + 1. This means that
there are finite complexes of all chromatic types.

Finite
complexes of arbitrary chromatic type were first constructed by
Steve Mitchell in 1985.

HENCE THERE ARE LOTS OF PERIODIC FAMILIES IN π∗S.
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Some conjectures (continued)

Periodicity Theorem (Hopkins-Smith 1998)

Let X be a p-local finite spectrum of chromatic type n, meaning
that K (n − 1)∗X = 0, but K (n)∗X 6= 0. Then there is a map
v : ΣdX → X (a vn self-map) with K (n)∗(v) an isomorphism
and H∗(v ;Z/p) = 0. If n = 0 then d = 0, and when n > 0, d is
a multiple of 2pn − 2.

Given a second such map w : ΣeX → X, there are positive
integers i and j such that id = je and v i = w j . In other words, v
is assymptotically unique.

It follows that the cofiber of v (or of any of its iterates) is a
p-local finite spectrum of chromatic type n + 1. This means that
there are finite complexes of all chromatic types. Finite
complexes of arbitrary chromatic type were first constructed by
Steve Mitchell in 1985.

HENCE THERE ARE LOTS OF PERIODIC FAMILIES IN π∗S.
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Some conjectures (continued)

Periodicity Theorem (Hopkins-Smith 1998)

Let X be a p-local finite spectrum of chromatic type n, meaning
that K (n − 1)∗X = 0, but K (n)∗X 6= 0. Then there is a map
v : ΣdX → X (a vn self-map) with K (n)∗(v) an isomorphism
and H∗(v ;Z/p) = 0. If n = 0 then d = 0, and when n > 0, d is
a multiple of 2pn − 2.

Given a second such map w : ΣeX → X, there are positive
integers i and j such that id = je and v i = w j . In other words, v
is assymptotically unique.

It follows that the cofiber of v (or of any of its iterates) is a
p-local finite spectrum of chromatic type n + 1. This means that
there are finite complexes of all chromatic types. Finite
complexes of arbitrary chromatic type were first constructed by
Steve Mitchell in 1985.

HENCE THERE ARE LOTS OF PERIODIC FAMILIES IN π∗S.
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1.34

Some conjectures (continued)

A pleasant consequence of the Nilpotence Theorem is the
following.

Theorem (The class invariance conjecture)

The Bousfield class of a p-local finite spectrum X is determined
by its chromatic type, i.e., the smallest n for which K (n)∗X 6= 0.
In particular if H∗X is not all torsion, then 〈X 〉 = 〈S(p)〉.
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Some conjectures (continued)

A pleasant consequence of the Nilpotence Theorem is the
following.

Theorem (The class invariance conjecture)

The Bousfield class of a p-local finite spectrum X is determined
by its chromatic type, i.e., the smallest n for which K (n)∗X 6= 0.

In particular if H∗X is not all torsion, then 〈X 〉 = 〈S(p)〉.
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Some conjectures (continued)

A pleasant consequence of the Nilpotence Theorem is the
following.

Theorem (The class invariance conjecture)

The Bousfield class of a p-local finite spectrum X is determined
by its chromatic type, i.e., the smallest n for which K (n)∗X 6= 0.
In particular if H∗X is not all torsion, then 〈X 〉 = 〈S(p)〉.
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1.35

The telescope conjecture

Suppose X is a p-local finite spectrum of chromatic type n. The
Periodicity Theorem says that it has a vn self-map
v : ΣdX → X . Let X̂ be the associated mapping telescope,
meaning the homotopy colimit of

X v // Σ−dX v // Σ−2dX v // · · ·.

Note that it is independent of the choice of v . Since v is a
K (n)-equivalence and therefore an E(n)-equivalence, we have
maps

X // X̂ λ // LnX .
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The telescope conjecture

Suppose X is a p-local finite spectrum of chromatic type n.

The
Periodicity Theorem says that it has a vn self-map
v : ΣdX → X . Let X̂ be the associated mapping telescope,
meaning the homotopy colimit of

X v // Σ−dX v // Σ−2dX v // · · ·.

Note that it is independent of the choice of v . Since v is a
K (n)-equivalence and therefore an E(n)-equivalence, we have
maps

X // X̂ λ // LnX .
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1.36

The telescope conjecture (continued)

Telescope Conjecture

For any p-local spectrum X of chromatic type n, the map
λ : X̂ → LnX is an equivalence.
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The telescope conjecture (continued)

Telescope Conjecture

For any p-local spectrum X of chromatic type n, the map
λ : X̂ → LnX is an equivalence.
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THANK YOU!
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