
Practice problems for mathematical contests to be discussed in

MTH 190 “Topics in Problem Solving” (Fall 2014)

Combinatorics, number theory, and analytic geometry

Introductory problems

1. For an integer n ≥ 3 consider the sets

Sn = {(x1, x2, . . . , xn);∀i, xi ∈ {0, 1, 2}},

An = {(x1, x2, . . . , xn) ∈ Sn;∀i ≤ n− 2, |{xi, xi+1, xi+2}| 6= 1},

and

Bn = {(x1, x2, . . . , xn) ∈ Sn;∀i ≤ n− 1, (xi = xi+1 ⇒ xi 6= 0)}.

Prove that |An+1| = 3 · |Bn|. (Note: |A| denotes the number of elements of the set A.)

2. Let V be a convex polygon with n vertices.

(a) Prove that if n is divisible by 3 then V can be triangulated (i.e. dissected into non-

overlapping triangles whose vertices are vertices of V ) so that each vertex of V is the vertex

of an odd number of triangles.

(b) Prove that if n is not divisible by 3 then V can be triangulated so that there are

exactly two vertices that are the vertices of an even number of the triangles.

3. Find the number of positive integers x satisfying the following two conditions:

i) x < 102006;

ii) x2 − x is divisible by 102006.

4. Let f be a polynomial of degree 2 with integer coefficients. Suppose that f(k) is

divisible by 5 for every integer k. Prove that all coefficients of f are divisible by 5.

5. Let x, y, and z be integers such that S = x4 + y4 + z4 is divisible by 29. Show that S

is divisible by 294.

6. Find all functions f : Z→ Z such that

19f(x)− 17f(f(x)) = 2x, (∀)x ∈ Z.

7. Prove that the number

22k−1 − 2k − 1

is composite (not prime) for all positive integers k > 2.
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8. Let a and b be given positive coprime integers. Then for every integer n there exist

integers x and y such that

n = ax+ by.

Prove that n = ab is the greatest integer for which xy ≤ 0 in all such representations of n.

9. Two different ellipses are given. One focus of the first ellipse coincides with one focus

of the second ellipse. Prove that the ellipses have at most two points in common.

10. Let l be a line and P a point in R3. Let S be the set of points X such that the

distance from X to l is greater than or equal to two times the distance between X and P .

If the distance from P to l is d > 0, find the volume of S.

More challenging problems

1. We say a triple (a1, a2, a3) of nonnegative reals is “better” than another triple (b1, b2, b3)

if two out of the three following inequalities a1 > b1, a2 > b2, a3 > b3 are satisfied. We call

a triple (x, y, z) “special” if x, y, z are nonnegative and x + y + z = 1. Find all natural

numbers n for which there is a set S of n special triples such that for any given special triple

we can find at least one better triple in S.

2. Let Z[x] be the ring of polynomials with integer coefficients, and let f(x), g(x) ∈ Z[x]

be non-constant polynomials such that g(x) divides f(x) in Z[x]. Prove that if the polynomial

f(x)− 2008 has at least 81 distinct integer roots, then the degree of g(x) is greater than 5.

3. In a town every two residents who are not friends have a friend in common, and no

one is a friend of everyone else. Let us number the residents from 1 to n and let ai be the

number of friends of the i-th resident. Suppose that
∑n

i=1 a
2
i = n2−n. Let k be the smallest

number of residents (at least three) who can be seated at a round table in such a way that

any two neighbors are friends. Determine all possible values of k.

4. An alien race has three genders: male, female, and emale. A married triple consists of

three persons, one from each gender who all like each other. Any person is allowed to belong

to at most one married triple. The feelings are always mutual (i.e., if x likes y then y likes

x).

The race wants to colonize a planet and sends n males, n females and n emales. Every

expedition member likes at least k persons of each of the two other genders. The problem is

to create as many married triples so that the colony could grow.

a) Prove that if n is even and k = n/2 then there might be no married triple.
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b) Prove that if k ≥ 3n/4 then there can be formed n married triples (i.e., everybody is

in a triple).

5. Let A = (aij)i,j=1,...,n be a real matrix such that aii = 0 for all 1 ≤ i ≤ n. Prove that

there exists a set J ⊂ {1, 2, . . . , n} of indices such that

∑
i∈J, j /∈J

aij +
∑

i/∈J, j∈J

aij ≥
1

2

n∑
i,j=1

aij.

6. Two players play the following game: Let n be a fixed integer greater than 1. Starting

from number k = 2, each player has two possible moves: either replace the number k by

k + 1 or by 2k. The player who is forced to write a number greater than n loses the game.

Which player has a winning strategy for which n?

7. Alice has got a circular key ring with n keys, n ≥ 3. When she takes it out of her

pocket, she does not know whether it got rotated and/or flipped. The only way she can

distinguish the keys is by colouring them (a colour is assigned to each key). What is the

minimum number of colors needed?

8. Let S be a finite set with n elements and F a family of subsets of S with the following

property:

A ∈ F, A ⊆ B ⊆ S ⇒ B ∈ F.

Prove that the function f : [0, 1]→ R given by

f(t) =
∑
A∈F

t|A|(1− t)|S\A|

is nondecreasing (Note: |A| denotes the number of elements of A).

9. The numbers of the set {1, 2, . . . , n} are colored with 6 colors. Let

S = {(x, y, z) ∈ {1, 2, . . . , n}3 : x+ y + z ≡ 0 (modn) and x, y, z have the same color}

and

D = {(x, y, z) ∈ {1, 2, . . . , n}3 : x+y+z ≡ 0 (modn) and x, y, z have three different colors}.

Prove that

|D| ≤ 2|S|+ n2

2
.

(Note: |A| denotes the number of elements of A.)

3



10. Let k and n be positive integers such that k ≤ n − 1. Let S = {1, 2, . . . , n} and let

A1, A2, . . . , Ak be nonempty subsets of S. Prove that it is possible to color some elements

of S using two colors, red and blue, such that the following conditions are satisfied:

(i) Each element of S is either left uncolored or is colored red or blue.

(ii) At least one element of S is colored.

(iii) Each set Ai (1 ≤ i ≤ k) is either completely uncolored or it contains at least one red

and at least one blue element.

11. Let k, m, n be positive integers such that 1 ≤ m ≤ n and denote S = {1, 2, . . . , n}.
Suppose that A1, A2, . . . , Ak are m-element subsets of S with the following property: for

every 1 ≤ i ≤ k there exists a partition S = S1,i ∪ S2,i ∪ . . . ∪ Sm,i (into pairwise disjoint

subsets) such that

(i) Ai has precisely one element in common with each member of the above partition.

(ii) Every Aj, j 6= i is disjoint from at least one member of the above partition.

Show that k ≤
(

n−1
m−1

)
.

12. Prove that there exists an infinite number of relatively prime pairs (m,n) of positive

integers such that the equation

(x+m)3 = nx

has three distinct integer roots.

13. Let P be a polynomial with integer coefficients and let a1 < a2 < . . . < ak be integers.

a) Prove that there exists a ∈ Z such that P (ai) divides P (a) for all 1 ≤ i ≤ k.

b) Does there exist an a ∈ Z such that the product P (a1) · P (a2) · . . . · P (ak) divides

P (a)?

14. Let n be a positive integer. Prove that 2n−1 divides∑
0≤k<n/2

(
n

2k + 1

)
5k.

15. Let p be a prime number and Fp be the field of residues modulo p. Let W be the

smallest set of polynomials with coefficients in Fp such that

i) the polynomials x+ 1 and xp−2 + xp−3 + . . .+ x2 + 2x+ 1 are in W ;

ii) for any polynomials h1(x) and h2(x) in W the polynomial r(x), which is the remainder

of h1(h2(x)) modulo xp − x, is also in W .

How many polynomials are there in W?
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16. Let a, b be two integers and suppose that n is a positive integer for which the set

Z\{axn + byn|x, y ∈ Z}

is finite. Prove that n = 1.

17. Let p be a prime number. Call a positive integer n “interesting” if

xn − 1 = (xp − x+ 1) f(x) + p g(x)

for some polynomials f and g with integer coefficients.

a) Prove that the number pp − 1 is interesting.

b) For which p is pp − 1 the minimal interesting number?

18. Let f be a polynomial with real coefficients of degree n. Suppose that f(x)−f(y)
x−y

is an

integer for all 0 ≤ x < y ≤ n. Prove that f(x)−f(y)
x−y

is an integer for all distinct integers x and

y.

19. Construct a set A ⊂ [0, 1] × [0, 1] such that A is dense in [0, 1] × [0, 1] and every

vertical and every horizontal line intersects A in at most one point.

20. A positive integer m is called “self-descriptive” in base b, where b ≥ 2 is an integer,

if:

i) The representation of m in base b is of the form (a0a1 . . . ab−1)b (i.e., m = a0b
b−1 +

a1b
b−2 + . . .+ ab−2b+ ab−1, where 0 ≤ ai ≤ b− 1 are integers).

ii) ai is equal to the number of occurences of the number i in the sequence (a0a1 . . . ab−1).

For example, (1210)4 is self-descriptive in base 4, because it has four digits and contains

one 0, two 1s, one 2 and no 3s.

a) Find all bases b ≥ 2 such that no number is self-descriptive in base b.

b) Prove that if x is a self-descriptive number in base b then the last (least signicant)

digit of x is 0.

21. For every positive integer n let σ(n) denote the sum of all its positive divisors. A

number n is called “weird” if σ(n) ≥ 2n and there exists no representation

n = d1 + d2 + . . .+ dr,

where r > 1 and d1, . . ., dr are pairwise distinct positive divisors of n. Prove that there are

infinitely many weird numbers.

22. Let F = A0A1 . . . An be a convex polygon in the plane. Define for all 1 ≤ k ≤ n− 1

the operation fk which replaces F with a new polygon fk(F ) = A0A1 . . . Ak−1A
′
kAk+1 . . . An
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where A′k is the symmetric of Ak with respect to the perpendicular bisector of Ak−1Ak+1.

Prove that (f1 ◦ f2 ◦ f3 ◦ . . . ◦ fn−1)
n(F ) = F .

23. For every positive integer n, let p(n) denote the number of ways to express n as a

sum of positive integers. For instance, p(4) = 5 because

4 = 3 + 1 = 2 + 2 = 2 + 1 + 1 = 1 + 1 + 1 + 1.

Also define p(0) = 1. Prove that p(n) − p(n − 1) is the number of ways to express n as a

sum of integers each of which is strictly greater than 1.

24. Given an integer n > 1, let Sn be the group of permutations of the numbers 1, 2, . . .,

n. Two players, A and B, play the following game. Taking turns, they select elements (one

element at a time) from the group Sn. It is forbidden to select an element that has already

been selected. The game ends when the selected elements generate the whole group Sn. The

player who made the last move loses the game. The first move is made by A. Which player

has a winning strategy?

25. Consider a polynomial

f(x) = x2012 + a2011x
2011 + . . . + a1x + a0.

Albert Einstein and Homer Simpson are playing the following game. In turn, they choose

one of the coefficients a0, . . ., a2011 and assign a real value to it. Albert has the first move.

Once a value is assigned to a coefficient, it cannot be changed any more. The game ends

after all the coefficients have been assigned values.

Homer’s goal is to make f(x) divisible by a fixed polynomial m(x) and Albert’s goal is

to prevent this.

i) Which of the players has a winning strategy if m(x) = x− 2012?

ii) Which of the players has a winning strategy if m(x) = x2 + 1?

26. Is the set of positive integers n such that n! + 1 divides (2012n)! finite or infinite?

27. There are 2n students in a school (n ∈ N, n ≥ 2). Each week n students go on a trip.

After several trips the following condition was fulfilled: every two students were together on

at least one trip. What is the minimum number of trips needed for this to happen?

28. Consider a circular necklace with 2013 beads. Each bead can be painted either white

or green. A painting of the necklace is called good, if among any 21 successive beads there

is at least one green bead. Prove that the number of good paintings of the necklace is odd.
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(Two paintings that differ on some beads, but can be obtained from each other by rotating

or flipping the necklace, are counted as different paintings.)

29. Suppose that v1, . . ., vd are unit vectors in Rd. Prove that there exists a unit vector

u such that, for all 1 ≤ i ≤ d,

|u · vi| ≤ 1/
√
d.

(Here · denotes the usual scalar product on Rd.)

30. Does there exist an infinite set M consisting of positive integers such that for any a,

b ∈M , with a < b, the sum a+ b is square-free?

(A positive integer is called square-free if no perfect square greater than 1 divides it.)

31. Let p and q be relatively prime positive integers. Prove that

pq−1∑
k=0

(−1)b
k
pc+b k

q c =

{
0 if pq is even,

1 if pq is odd.

(Here bxc denotes the integer part of x.)

32. Find all positive integers n for which there exists a positive integer k such that the

decimal representation of nk starts and ends with the same digit.

33. Let S be a finite set of integers. Prove that there exists a number c depending on

S such that, for each non-constant polynomial f with integer coefficients, the number of

integers k satisfying f(k) ∈ S does not exceed max(deg f, c).

34. Let n and k be positive integers. Evaluate the following sum:

k∑
j=0

(
k

j

)2(
n+ 2k − j

2k

)
where

(
n
k

)
= n!

k!(n−k)!
.

35. Let Sn denote the sum of the first n prime numbers. Prove that for any n there exists

the square of an integer between Sn and Sn+1.

36. An n-dimensional cube is given. Consider all the segments connecting any two

different vertices of the cube. How many distinct intersection points do these segments have

(excluding the vertices)?

37. Prove that there is no polynomial P with integer coefficients such that P ( 3
√

5+ 3
√

25) =

5 + 3
√

5.

38. We have a deck of 2n cards. Each shuffling changes the order from a1, a2, . . . , an,

b1, b2, . . . , bn to a1, b1, a2, b2, . . . , an, bn. Determine all even numbers 2n such that after

shuffling the deck 8 times the original order is restored.
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39. Let P1, P2, P3, P4 be the graphs of four quadratic polynomials drawn in the coordinate

plane. Suppose that P1 is tangent to P2 at the point q2, P2 is tangent to P3 at the point q3,

P3 is tangent to P4 at the point q4, and P4 is tangent to P1 at the point q1. Assume that all

the points q1, q2, q3, q4 have distinct x-coordinates. Prove that q1, q2, q3, q4 lie on a graph

of an at most quadratic polynomial.

40. Let k be a positive even integer. Show that

k/2∑
n=0

(−1)n

(
k + 2

n

)(
2(k − n) + 1

k + 1

)
=

(k + 1)(k + 2)

2
.

41. Given vectors ā, b̄, c̄ ∈ Rn, show that

‖ā‖2〈b̄, c̄〉2 + ‖b̄‖2〈ā, c̄〉2 ≤ ‖ā‖‖b̄‖‖c̄‖2(‖ā‖‖b̄‖ + |〈ā, b̄〉|),

where 〈x̄, ȳ〉 denotes the inner product of vectors x̄ and ȳ and ‖x̄‖2 = 〈x̄, x̄〉.
42. Inside a square consider circles such that the sum of their circumferences is twice the

perimeter of the square.

a) Find the minimum number of circles having this property.

b) Prove that there exist infinitely many lines which intersect at least 3 of these circles.

43. Let P0, P1, P2, . . . be a sequence of convex polygons such that, for each k ≥ 0, the

vertices of Pk+1 are the midpoints of all sides of Pk. Prove that there exists a unique point

lying inside all these polygons.

44. Given a ∈ (0, 1) ∩Q, let a = 0.a1a2a3 . . . be its decimal representation. Define

fa(x) =
∑
n≥1

anx
n, x ∈ (0, 1).

Prove that fa is a rational function of the form fa = P
Q

, where P and Q are polynomials

with integer coefficients.

Conversely, if ak ∈ {0, 1, 2, . . . , 9} for all positive integers k, and fa(x) =
∑

n≥1 anx
n for

x ∈ (0, 1) is a rational function of the form fa = P
Q

, where P and Q are polynomials with

integer coefficients, show that a = 0.a1a2a3 . . . is rational.

45. Let n > 6 be a perfect number, and let n = pe1
1 . . . pek

k be its prime factorization with

1 < p1 < . . . < pk. Prove that e1 is an even number (n is called perfect if s(n) = 2n, where

s(n) is the sum of the factors of n).

46. Let A1A2 . . . A3n be a closed broken line consisting of 3n line segments in the Eu-

clidean plane. Suppose that no three of its vertices are collinear, and for each index 1 ≤ i ≤
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3n, the triangle AiAi+1Ai+2 has counterclockwise orientation and ∠AiAi+1Ai+2 = 60◦, using

the notation A3n+1 = A1 and A3n+2 = A2. Prove that the number of self-intersections of the

broken line is at most 3n2

2
− 2n+ 1.

47. For a positive integer x, denote its nth decimal digit by dn(x), i.e., dn(x) ∈ {0, 1, . . . , 9}
and x =

∑
n≥1 dn(x)10n−1. Suppose that for some sequence (an)n≥1, there are only finitely

many zeros in the sequence (dn(an))n≥1. Prove that there are infinitely many positive integers

that do not occur in the sequence (an)n≥1.

48. We say that a subset of Rn is k−almost contained by a hyperplane if there are less

than k points in that set which do not belong to the hyperplane. We call a finite set of points

k-generic if there is no hyperplane that k-almost contains the set. For each pair of positive

integers k and n, find the minimal number d(k, n) such that every finite k-generic set in Rn

contains a k-generic subset with at most d(k, n) elements.

49. For every positive integer n, denote by Dn the number of permutations (x1, x2, . . . , xn)

of (1, 2, . . . , n) such that xj 6= j for every 1 ≤ j ≤ n. For 1 ≤ k ≤ n/2, denote by ∆(n, k)

the number of permutations (x1, x2, . . . , xn) of (1, 2, . . . , n) such that xi = k + i for every

1 ≤ i ≤ k and xj 6= j for every 1 ≤ j ≤ n. Prove that

∆(n, k) =
k−1∑
i=0

(
k − 1

i

)
D(n+1)−(k+i)

n− (k + i)
.
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