
Practice problems for mathematical contests to be discussed in

MTH 190 “Topics in Problem Solving” (Fall 2014)

Analysis

Introductory problems

1. Let f(x) = x2 + bx+ c, where b and c are real numbers, and let

M = {x ∈ R : |f(x)| < 1}.

Clearly the set M is either empty or consists of disjoint open intervals. Denote the sum of

their lengths by |M |. Prove that |M | ≤ 2
√

2.

2. Let f : R→ R be a real function. Prove or disprove each of the following statements:

a) If f is continuous and f(R) = R then f is monotone.

b) If f is monotone and f(R) = R then f is continuous.

c) If f is monotone and f is continuous then f(R) = R.

3. Let f : R → R be a continuous function. Suppose that for any c > 0, the graph of

f can be moved to the graph of c f using only a translation or a rotation. Does this imply

that f(x) = ax+ b for some real numbers a and b?

4. Suppose that f and g are real-valued functions on the real line and f(r) ≤ g(r) for

every rational r. Does this imply that f(x) ≤ g(x) for every real x if

a) f and g are nondecreasing?

b) f and g are continuous?

5. Suppose f : R→ R is a two times differentiable function satisfying f(0) = 1, f ′(0) = 0,

and

f ′′(x)− 5f ′(x) + 6f(x) ≥ 0, (∀)x ≥ 0.

Prove that

f(x) ≥ 3e2x − 2e3x, (∀)x ≥ 0.

6. Let 0 < a < b. Prove that∫ b

a

(x2 + 1)e−x
2

dx ≥ e−a
2 − e−b2 .

7. (i) A sequence (xn)n≥1 of real numbers satisfies

xn+1 = xn cosxn, ∀n ≥ 1.
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Does it follow that this sequence converges for all initial values x1?

(ii) A sequence (yn)n≥1 of real numbers satisfies

yn+1 = yn sin yn, ∀n ≥ 1.

Does it follow that this sequence converges for all initial values y1?

8. Let S0 = {z ∈ C : |z| = 1, z 6= −1} and f(z) = Imz/(1 + Rez). Prove that f is a

bijection between S0 and R. Find f−1.

9. Let 4ABC be a non-degenerate triangle in the Euclidean plane. Define a sequence

(Cn)n≥0 of points as follows: C0 = C and Cn+1 is the center of the incircle of the triangle

4ABCn. Find limn→∞Cn.

10. Let E be the set of all continuously differentiable real valued functions f on [0, 1]

such that f(0) = 0 and f(1) = 1. Define

J(f) =

∫ 1

0

(1 + x2)(f ′(x))2 dx

Prove that inff∈E J(f) is attained and find its value.

More challenging problems

1. Let f : R→ [0,∞) be a continuously differentiable function. Prove that:∣∣∣∣∫ 1

0

f 3(x) dx − f 2(0)

∫ 1

0

f(x) dx

∣∣∣∣ ≤ max
x∈[0,1]

|f ′(x)|
(∫ 1

0

f(x) dx

)2

.

2. Let f : (0,∞)→ R be a twice continuously differentiable function such that

|f ′′(x) + 2xf ′(x) + (x2 + 1)f(x)| ≤ 1, (∀)x > 0.

Prove that limx→∞ f(x) = 0.

3. Prove that if f : R → R is three times differentiable, then there exists a real number

ξ ∈ (−1, 1) such that

f ′′′(ξ) = 3(f(1)− f(−1))− 6f ′(0).

4. Find all r > 0 such that whenever f : R2 → R is a differentiable function such that

|∇f(0, 0)| = 1 and

|∇f(u)−∇f(v)| ≤ |u− v|, (∀)u, v ∈ R2,

then the maximum of f on the disk {u ∈ R2 : |u| ≤ r} is attained at exactly one point.

(Note: ∇f(u) = (∂1f(u), ∂2f(u)) is the gradient vector of f at the point u, while for a vector

u = (a, b), |u| =
√
a2 + b2.)
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5. Let a, b, c, d, e > 0 be real numbers such that

a2 + b2 + c2 = d2 + e2, a4 + b4 + c4 = d4 + e4.

Compare the numbers a3 + b3 + c3 and d3 + e3.

6. Find all sequences a0, a1, . . . an of real numbers where n ≥ 1 and an 6= 0, for which the

following statement is true:

If f : R → R is an n times differentiable function and x0 < x1 < . . . < xn are real

numbers such that f(x0) = f(x1) = . . . = f(xn) = 0, then there exists an h ∈ (x0, xn) for

which

a0f(h) + a1f
′(h) + . . .+ anf

(n)(h) = 0

7. Find all functions f : R→ R such that, for any real numbers a < b, the image f([a, b])

is a closed interval of length b− a.

8. Compare tan(sin x) and sin(tanx) for all x ∈ (0, π
2
).

9. How many nonzero coefficients can a polynomial P (z) have if its coefficients are

integers and |P (z)| ≤ 2 for any complex number z satisfying |z| = 1?

10. Let C be a nonempty closed bounded subset of the real line and f : C → C

be a nondecreasing continuous function. Show that there exists a point p ∈ C such that

f(p) = p. (Note: A set is closed if its complement is a union of open intervals. A function g

is nondecreasing if g(x) ≤ g(y) for all x ≤ y.)

11. Let f 6= 0 be a polynomial with real coefficients. Dene the sequence (fn)n≥0 of

polynomials by f0 = f and fn+1 = fn +f ′n for every n ≥ 0. Prove that there exists a number

N such that for every n ≥ N , all roots of fn are real.

12. Find all continuous functions f : R→ R such that f(x)−f(y) is rational for all reals

x and y with x− y rational.

13. Let p(z) = a0 + a1z + a2z
2 + . . .+ anz

n be a complex polynomial. Suppose that 1 =

c0 ≥ c1 ≥ . . . ≥ cn ≥ 0 is a sequence of real numbers which is convex (i.e., 2ck ≤ ck−1 + ck+1

for every 1 ≤ k ≤ n− 1), and consider the polynomial

q(z) = c0a0 + c1a1z + c2a2z
2 + . . .+ cnanz

n.

Prove that:

max
|z|≤1
|q(z)| ≤ max

|z|≤1
|p(z)|.
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14. Compute the sum of the series

∞∑
k=1

1

(4k + 1)(4k + 2)(4k + 3)(4k + 4)

15. Define the sequence (xn)n≥1 by x1 =
√

5 and xn+1 = x2
n − 2 for each n ≥ 1. Find

lim
n→∞

x1 · x2 · . . . · xn
xn+1

16. Suppose that a, b, c are real numbers in the interval [−1, 1] such that

1 + 2abc ≥ a2 + b2 + c2.

Prove that

1 + 2(abc)n ≥ a2n + b2n + c2n

for all positive integers n.

17. Let a0, a1, . . ., an, be positive real numbers such that ak+1 − ak ≥ 1 for all 0 ≤ k ≤
n− 1. Prove that

1 +
1

a0

(
1 +

1

a1 − a0

)
· · ·
(

1 +
1

an − a0

)
≤
(

1 +
1

a0

)(
1 +

1

a1

)
· · ·
(

1 +
1

an

)
18. Let f : R→ R be a continuous function. A point x is called a shadow point if there

exists a point y ∈ R with y > x such that f(y) > f(x). Let a < b be real numbers and

suppose that

• all the points of the open interval I = (a, b) are shadow points;

• a and b are not shadow points.

Prove that f(x) ≤ f(b) for all a < x < b and f(a) = f(b).

19. Let (an)n ⊂ (1/2, 1) and define the sequence (xn)n≥0 by

x0 = 0, xn+1 =
an+1 + xn
1 + an+1xn

, (∀)n ≥ 0.

Is this sequence convergent? If yes find the limit.

20. Calculate ∞∑
n=1

ln

(
1 +

1

n

)
ln

(
1 +

1

2n

)
ln

(
1 +

1

2n+ 1

)
.

21. Let (xn)n≥2 be a sequence of real numbers such that x2 > 0 and

xn+1 = −1 + n
√

1 + nxn, (∀)n ≥ 2.

4



Find limn→∞ xn and limn→∞ nxn.

22. Let f : [0, 1]× [0, 1]→ R be a continuous function. Find the limit

lim
n→∞

(
(2n+ 1)!

(n!)2

)2 ∫ 1

0

∫ 1

0

(xy(1− x)(1− y))n f(x, y) dx dy.

23. Given real numbers 0 = x1 < x2 < . . . < x2n < x2n+1 = 1 such that xi+1 − xi ≤ h for

all 1 ≤ i ≤ 2n, show that

1− h
2

<

n∑
i=1

x2i(x2i+1 − x2i−1) <
1 + h

2
.

24. Suppose that (an)n≥1 is a sequence of real numbers such that the series

∞∑
n=1

an
n

is convergent. Prove that the sequence

bn =

∑n
i=1 ai
n

is convergent and find its limit.

25. For a function f : [0, 1] → R, the secant of f at a and b ∈ [0, 1], a < b, is the line

in R2 passing through the points (a, f(a)) and (b, f(b)). A function is said to intersect its

secant at a and b if there exists a point c ∈ (a, b) such that (c, f(c)) lies on the secant of f

at a and b.

i) Find the set F of all continuous functions f such that for any a and b ∈ [0, 1], a < b,

the function f intersects its secant at a and b.

ii) Does there exist a continuous function f /∈ F such that for any rational a and b ∈ [0, 1],

a < b, the function f intersects its secant at a and b?

26. Let f : [0,∞)→ R be a a strictly convex continuous function such that

lim
x→∞

f(x)

x
= ∞.

Prove that the improper integral
∫∞

0
sin(f(x)) dx is convergent but not absolutely convergent.

27. A function f : [0,∞)→ R\{0} is called slowly changing if for any t > 1,

lim
x→∞

f(tx)

f(x)
= 1.

Is it true that every slowly changing function has, for sufficiently large x, a constant sign

(i.e., there exists N such that for every x, y > N , we have f(x)f(y) > 0.)?
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28. Let f : [0, 1]→ [0,∞) be an arbitrary function satisfying

f(x) + f(y)

2
≤ f

(
x+ y

2

)
+ 1, (∀)x, y ∈ [0, 1].

Prove that

w − v
w − u

f(u) +
v − u
w − u

f(w) ≤ f(v) + 2, (∀)0 ≤ u < v < w ≤ 1.

29. Let f : [0, 1] → R be a continuous function such that f(0) = f(1) = 0. Prove that

the Lebesgue measure of the set

A = {h ∈ [0, 1] : f(x+ h) = f(x) for some x ∈ [0, 1]}

is at least 1/2.

30. Find all functions f : (0,∞)→ (0,∞) such that

f(f(f(x))) + 4f(f(x)) + f(x) = 6x, (∀)x > 0.

31. Find all c ∈ R for which there exists an infinitely differentiable function f : R → R
such that, for all positive integers n, we have:

f (n+1)(x) > f (n)(x) + c, (∀)x ∈ R.

32. Find all continuously differentiable functions f : [0, 1] → (0,∞) such that f(1)
f(0)

= e

and ∫ 1

0

1

f(x)2
+ f ′(x)2 dx ≤ 2.

33. We consider the following game for one person. The aim of the player is to reach a

fixed capital C > 2. The player begins with capital 0 < x0 < C. In each turn let x be the

player’s current capital. Define

s(x) =


x if x < 1

C − x if C − x < 1

1 otherwise.

Then a fair coin is tossed and the player’s capital either increases or decreases by s(x), each

with probability 1/2. Find the probability that in a finite number of turns the player wins

by reaching the capital C.

6



34. Let (an)n≥1 be a sequence of real numbers. We say that the sequence (an)n≥1 covers

the set of positive integers if for any positive integer m there exists a positive integer k such

that ∞∑
n=1

akn = m.

a) Does there exist a sequence of real positive numbers which covers the set of positive

integers?

b) Does there exist a sequence of real numbers which covers the set of positive integers?

35. i) Is it true that for every bijection f : N→ N the series

∞∑
n=1

1

nf(n)

is convergent?

ii) Prove that there exists a bijection f : N→ N such that the series

∞∑
n=1

1

n+ f(n)

is convergent. (Note N is the set of positive integers.)

36. Prove that there exist positive constants c1 and c2 with the following properties:

a) For all real k > 1, ∣∣∣∣∫ 1

0

√
1− x2 cos kx dx

∣∣∣∣ < c1
k3/2

.

b) For all real k > 1, ∣∣∣∣∫ 1

0

√
1− x2 sin kx dx

∣∣∣∣ > c2
k
.

37. Prove or disprove that if a real sequence (an)n satisfies an+1−an → 0 and a2n−2an → 0

as n→∞, then an → 0.

38. Let f : [0, 1]→ R be a function satisfying

|f(x)− f(y)| ≤ |x− y|, (∀)x, y ∈ [0, 1].

Show that for every ε > 0 there exists a countable family of rectangles (Rn)n of dimensions

an × bn, an ≤ bn, respectively, in the plane such that

{(x, f(x)) : x ∈ [0, 1]} ⊂
⋃
n

Rn and
∑
n

an < ε.

(The edges of the rectangles are not necessarily parallel to the coordinate axes.)
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39. Let (an)n≥1 be an unbounded and strictly increasing sequence of positive reals such

that the arithmetic mean of any four consecutive terms an, an+1, an+2, an+3 belongs to the

same sequence. Prove that the sequence (an+1/an)n converges and find all possible values of

its limit.

40. Prove that ∞∑
n=0

xn
1 + x2n+2

(1− x2n+2)2
=

∞∑
n=0

(−1)n
xn

(1− xn+1)2

for all −1 < x < 1.

41. Let k be a positive integer. Compute

∞∑
n1=1

∞∑
n2=1

· · ·
∞∑

nk=1

1

n1n2 . . . nk(n1 + . . .+ nk + 1)
.

42. Let p and q be complex polynomials with deg p > deg q and let f(z) = p(z)
q(z)

. Suppose

that all roots of p lie inside the unit circle |z| = 1 and that all roots of q lie outside the unit

circle. Prove that:

max
|z|=1
|f ′(z)| > deg p− deg q

2
max
|z|=1
|f(z)|.

43. Let f : R→ R be a continuously differentiable function that satisfies

f ′(t) > f(f(t)), (∀) t ∈ R.

Prove that f(f(f(t))) ≤ 0 for all t ≥ 0.

44. Define the sequence (an)n≥0 inductively by a0 = 1, a1 = 1/2, and

an+1 =
na2

n

1 + (n+ 1)an
, (∀)n ≥ 1.

Show that the series ∞∑
k=0

ak+1

ak

converges and determine its value.

45. Let f : R → R be a twice differentiable function. Suppose f(0) = 0. Prove that

there exists ξ ∈ (−π/2, π/2) such that

f ′′(ξ) = f(ξ)(1 + 2 tan2 ξ).

46. Let n ≥ 3 and let x1, . . ., xn be nonnegative real numbers. Define A =
∑n

i=1 xi,

B =
∑n

i=1 x
2
i , and C =

∑n
i=1 x

3
i . Prove that

(n+ 1)A2B + (n− 2)B2 ≥ A4 + (2n− 2)AC.
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47. Does there exist a sequence (an)n of complex numbers such that for every positive

integer p we have that
∑

n a
p
n converges if and only if p is not a prime?

48. Let z be a complex number with |z + 1| > 2. Prove that |z3 + 1| > 1.

49. Let f : [0, 1]→ [0, 1] be a differentiable function such that |f ′(x)| 6= 1 for all x ∈ [0, 1].

Prove that there exist unique points α, β ∈ [0, 1] such that f(α) = α and f(β) = 1− β.

50. Determine the smallest real number C such that the inequality

x

(x+ 1)
√
yz

+
y

(y + 1)
√
zx

+
z

(z + 1)
√
xy
≤ C

holds for all positive real numbers x, y and z with

1

x+ 1
+

1

y + 1
+

1

z + 1
= 1.

51. Let f : [1,∞)→ (0,∞) be a non-increasing function such that

lim sup
n→∞

f(2n+1)

f(2n)
<

1

2
.

Prove that
∫∞

1
f(x) dx <∞.

52. Let a, b, c, x, y, z, t be positive real numbers with 1 ≤ x, y, z ≤ 4. Prove that

x

(2a)t
+

y

(2b)t
+

z

(2c)t
≥ y + z − x

(b+ c)t
+
z + x− y
(c+ a)t

+
x+ y − z
(a+ b)t

.

53. Let f : [0,∞)→ R be a differentiable function with |f(x)| ≤M and f(x)f ′(x) ≥ cosx

for all x ∈ [0,∞), where M > 0. Prove that f(x) does not have a limit as x→∞.

54. Let F be the set of all continuous functions f : [0, 1]→ R with the property∣∣∣∣∫ x

0

f(t)√
x− t

dt

∣∣∣∣ ≤ 1, (∀)x ∈ (0, 1].

Compute supf∈F

∣∣∣∫ 1

0
f(x) dx

∣∣∣.
55. Find all complex numbers z such that |z3 + 2−2i|+ zz̄|z| = 2

√
2. (z̄ is the conjugate

of z.)

56. Let n ≥ 2 be an integer and let x > 0 be a real number. Prove that(
1−
√

tanhx
)n

+
√

tanh(nx) < 1.

Recall that tanh t = e2t−1
e2t+1

.

57. Let f : (0,∞)→ R be a differentiable function. Assume that

lim
x→∞

f(x) +
f ′(x)

x
= 0.
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Prove that limx→∞ f(x) = 0.

58. Let 0 < a < b and let f : [a, b] → R be a continuous function with
∫ b
a
f(t) dt = 0.

Show that ∫ b

a

∫ b

a

f(x) f(y) ln(x+ y) dx dy ≤ 0.

59. Let n be a nonzero natural number and f : R → R\{0} be a function such that

f(2014) = 1− f(2013). Let x1, x2, x3, . . ., xn be real numbers not equal to each other. If
1 + f(x1) f(x2) f(x3) . . . f(xn)
f(x1) 1 + f(x2) f(x3) . . . f(xn)
f(x1) f(x2) 1 + f(x3) . . . f(xn)

...
...

...
. . .

...
f(x1) f(x2) f(x3) . . . 1 + f(xn)


is singular, show that f is not continous.

60. Consider the sequence (xn)n given by

x1 = 2, xn+1 =
xn + 1 +

√
x2
n + 2xn + 5

2
, n ≥ 1.

Prove that the series ∞∑
n=1

1

x2
n − 1

is convergent and find its sum.

61. i) Show that

lim
n→∞

n

∫ n

0

arctan x
n

x(x2 + 1)
dx =

π

2
.

ii) Find the limit

lim
n→∞

n

(
n

∫ n

0

arctan x
n

x(x2 + 1)
dx − π

2

)
.

62. Find all continuous functions f : [1, 8]→ R, such that∫ 2

1

f 2(t3) dt + 2

∫ 2

1

f(t3) dt =
2

3

∫ 8

1

f(t) dt −
∫ 2

1

(t2 − 1)2 dt.

63. Find the maximum value of∫ 1

0

|f ′(x)|2 |f(x)| 1√
x
dx

over all continuously differentiable functions f : [0, 1]→ R with f(0) = 0 and∫ 1

0

|f ′(x)|2 dx ≤ 1.
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64. a) Compute

lim
n→∞

n

∫ 1

0

(
1− x
1 + x

)n
dx.

b) Let k ≥ 1 be an integer. Compute

lim
n→∞

nk+1

∫ 1

0

(
1− x
1 + x

)n
xk dx.

65. Let an > 0, n ≥ 1. Consider the sequence of right triangles 4A0A1A2, 4A0A2A3,

. . ., 4A0An−1An, . . ., such that:

for every n ≥ 2, the hypotenuse A0An of 4A0An−1An is a leg in 4A0AnAn+1 with right

angle ∠A0AnAn+1, and the vertices An−1 and An+1 lie on the opposite sides of the straight

line A0An. Moreover |An−1An| = an for every n ≥ 1.

Is it possible for the set of points {An|n ≥ 0} to be unbounded but the series∑
n≥2

m(∠An−1A0An)

to be convergent? Here m(∠ABC) denotes the measure of ∠ABC.

66. For a given integer n ≥ 1, let f : [0, 1]→ R be a nondecreasing function. Prove that∫ 1

0

f(x) dx ≤ (n+ 1)

∫ 1

0

xnf(x) dx.

Find all non-decreasing continuous functions for which equality holds.

67. Let f : [0, 1] → R be a twice continuously differentiable increasing function. Define

the sequences given by

Ln =
n−1∑
k=0

f(k/n), Un =
n∑
k=1

f(k/n), n ≥ 1.

The interval [Ln, Un] is divided into three equal segments. Prove that, for large enough n,

the number I =
∫ 1

0
f(x) dx belongs to the middle one of these three segments.

68. Let f0 : [0, 1] → R be a continuous function. Define the sequence of functions

fn : [0, 1]→ R by

fn(x) =

∫ x

0

fn−1(t) dt, (∀)n ≥ 1.

Prove that the series
∑

n≥1 fn(x) is convergent for every x ∈ [0, 1] and find an explicit formula

for its sum.

69. a) Calculate the limit

lim
n→∞

(2n+ 1)!

(n!)2

∫ 1

0

(x(1− x))nxk dx,
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where k is a nonnegative integer.

b) Calculate the limit

lim
n→∞

(2n+ 1)!

(n!)2

∫ 1

0

(x(1− x))nf(x) dx,

where f : [0, 1]→ R is a continuous function.

70. Let f : [1,∞)→ (0,∞) be a continuous function. Assume that, for every a > 0, the

equation f(x) = ax has at least one solution in the interval [1,∞).

a) Prove that, for every a > 0, the equation f(x) = ax has infinitely many solutions.

b) Give an example of a strictly increasing continuous function f with these properties.

71. Let n be a positive integer and f : [0, 1]→ R be a continuous function such that∫ 1

0

xkf(x) dx = 1, (∀) 0 ≤ k ≤ n− 1.

Prove that ∫ 1

0

f 2(x) dx ≥ n2.

72. For x ∈ R, y ≥ 0, and n ∈ Z, denote by wn(x, y) ∈ [0, π) the angle in radians

formed by the segments joining the point (x, 1) ∈ R2 with the points (n, 0) and (n + y, 0),

respectively.

a) Show that, for every (x, y) ∈ R× [0,∞), the series
∑∞

n=−∞wn(x, y) converges. More-

over, if we set w(x, y) =
∑∞

n=−∞wn(x, y), prove that

w(x, y) ≤ (byc+ 1)π,

where byc is the floor function computed at y.

b) Prove that for every ε > 0 there exists δ > 0 such that

w(x, y) < ε, (∀)x ∈ R, 0 < y < δ.

c) Prove that the function w : R× [0,∞)→ [0,∞) defined in a) is continuous.

73. Consider the following sequence

(an)∞n=1 = (1, 1, 2, 1, 2, 3, 1, 2, 3, 4, 1, 2, 3, 4, 5, 1, . . .).

Find all pairs (α, β) of positive real numbers such that

lim
n→∞

∑n
k=1 ak
nα

= β.

74. Let f(x) = sinx
x

, for x > 0, and let n be a positive integer. Prove that |f (n)(x)| < 1
n+1

,

where f (n) denotes the nth derivative of f .
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