Practice problems for mathematical contests to be discussed in MTH 190 "Topics in Problem Solving" (Fall 2014)

Analysis

Introductory problems

1. Let $f(x)=x^{2}+b x+c$, where b and c are real numbers, and let

$$
M=\{x \in \mathbb{R}:|f(x)|<1\}
$$

Clearly the set M is either empty or consists of disjoint open intervals. Denote the sum of their lengths by $|M|$. Prove that $|M| \leq 2 \sqrt{2}$.
2. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a real function. Prove or disprove each of the following statements:
a) If f is continuous and $f(\mathbb{R})=\mathbb{R}$ then f is monotone.
b) If f is monotone and $f(\mathbb{R})=\mathbb{R}$ then f is continuous.
c) If f is monotone and f is continuous then $f(\mathbb{R})=\mathbb{R}$.
3. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a continuous function. Suppose that for any $c>0$, the graph of f can be moved to the graph of $c f$ using only a translation or a rotation. Does this imply that $f(x)=a x+b$ for some real numbers a and b ?
4. Suppose that f and g are real-valued functions on the real line and $f(r) \leq g(r)$ for every rational r. Does this imply that $f(x) \leq g(x)$ for every real x if
a) f and g are nondecreasing?
b) f and g are continuous?
5. Suppose $f: \mathbb{R} \rightarrow \mathbb{R}$ is a two times differentiable function satisfying $f(0)=1, f^{\prime}(0)=0$, and

$$
f^{\prime \prime}(x)-5 f^{\prime}(x)+6 f(x) \geq 0, \quad(\forall) x \geq 0
$$

Prove that

$$
f(x) \geq 3 e^{2 x}-2 e^{3 x}, \quad(\forall) x \geq 0
$$

6. Let $0<a<b$. Prove that

$$
\int_{a}^{b}\left(x^{2}+1\right) e^{-x^{2}} d x \geq e^{-a^{2}}-e^{-b^{2}}
$$

7. (i) A sequence $\left(x_{n}\right)_{n \geq 1}$ of real numbers satisfies

$$
x_{n+1}=x_{n} \cos x_{n}, \quad \forall n \geq 1
$$

Does it follow that this sequence converges for all initial values x_{1} ?
(ii) A sequence $\left(y_{n}\right)_{n \geq 1}$ of real numbers satisfies

$$
y_{n+1}=y_{n} \sin y_{n}, \quad \forall n \geq 1
$$

Does it follow that this sequence converges for all initial values y_{1} ?
8. Let $S_{0}=\{z \in \mathbb{C}:|z|=1, z \neq-1\}$ and $f(z)=\operatorname{Im} z /(1+\operatorname{Re} z)$. Prove that f is a bijection between S_{0} and \mathbb{R}. Find f^{-1}.
9. Let $\triangle A B C$ be a non-degenerate triangle in the Euclidean plane. Define a sequence $\left(C_{n}\right)_{n \geq 0}$ of points as follows: $C_{0}=C$ and C_{n+1} is the center of the incircle of the triangle $\triangle A B C_{n}$. Find $\lim _{n \rightarrow \infty} C_{n}$.
10. Let E be the set of all continuously differentiable real valued functions f on $[0,1]$ such that $f(0)=0$ and $f(1)=1$. Define

$$
J(f)=\int_{0}^{1}\left(1+x^{2}\right)\left(f^{\prime}(x)\right)^{2} d x
$$

Prove that $\inf _{f \in E} J(f)$ is attained and find its value.

More challenging problems

1. Let $f: \mathbb{R} \rightarrow[0, \infty)$ be a continuously differentiable function. Prove that:

$$
\left|\int_{0}^{1} f^{3}(x) d x-f^{2}(0) \int_{0}^{1} f(x) d x\right| \leq \max _{x \in[0,1]}\left|f^{\prime}(x)\right|\left(\int_{0}^{1} f(x) d x\right)^{2}
$$

2. Let $f:(0, \infty) \rightarrow \mathbb{R}$ be a twice continuously differentiable function such that

$$
\left|f^{\prime \prime}(x)+2 x f^{\prime}(x)+\left(x^{2}+1\right) f(x)\right| \leq 1, \quad(\forall) x>0
$$

Prove that $\lim _{x \rightarrow \infty} f(x)=0$.
3. Prove that if $f: \mathbb{R} \rightarrow \mathbb{R}$ is three times differentiable, then there exists a real number $\xi \in(-1,1)$ such that

$$
f^{\prime \prime \prime}(\xi)=3(f(1)-f(-1))-6 f^{\prime}(0)
$$

4. Find all $r>0$ such that whenever $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is a differentiable function such that $|\nabla f(0,0)|=1$ and

$$
|\nabla f(u)-\nabla f(v)| \leq|u-v|, \quad(\forall) u, v \in \mathbb{R}^{2},
$$

then the maximum of f on the disk $\left\{u \in \mathbb{R}^{2}:|u| \leq r\right\}$ is attained at exactly one point. (Note: $\nabla f(u)=\left(\partial_{1} f(u), \partial_{2} f(u)\right)$ is the gradient vector of f at the point u, while for a vector $u=(a, b),|u|=\sqrt{a^{2}+b^{2}}$.
5. Let $a, b, c, d, e>0$ be real numbers such that

$$
a^{2}+b^{2}+c^{2}=d^{2}+e^{2}, \quad a^{4}+b^{4}+c^{4}=d^{4}+e^{4} .
$$

Compare the numbers $a^{3}+b^{3}+c^{3}$ and $d^{3}+e^{3}$.
6. Find all sequences $a_{0}, a_{1}, \ldots a_{n}$ of real numbers where $n \geq 1$ and $a_{n} \neq 0$, for which the following statement is true:

If $f: \mathbb{R} \rightarrow \mathbb{R}$ is an n times differentiable function and $x_{0}<x_{1}<\ldots<x_{n}$ are real numbers such that $f\left(x_{0}\right)=f\left(x_{1}\right)=\ldots=f\left(x_{n}\right)=0$, then there exists an $h \in\left(x_{0}, x_{n}\right)$ for which

$$
a_{0} f(h)+a_{1} f^{\prime}(h)+\ldots+a_{n} f^{(n)}(h)=0
$$

7. Find all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that, for any real numbers $a<b$, the image $f([a, b])$ is a closed interval of length $b-a$.
8. Compare $\tan (\sin x)$ and $\sin (\tan x)$ for all $x \in\left(0, \frac{\pi}{2}\right)$.
9. How many nonzero coefficients can a polynomial $P(z)$ have if its coefficients are integers and $|P(z)| \leq 2$ for any complex number z satisfying $|z|=1$?
10. Let C be a nonempty closed bounded subset of the real line and $f: C \rightarrow C$ be a nondecreasing continuous function. Show that there exists a point $p \in C$ such that $f(p)=p$. (Note: A set is closed if its complement is a union of open intervals. A function g is nondecreasing if $g(x) \leq g(y)$ for all $x \leq y$.)
11. Let $f \neq 0$ be a polynomial with real coefficients. Dene the sequence $\left(f_{n}\right)_{n \geq 0}$ of polynomials by $f_{0}=f$ and $f_{n+1}=f_{n}+f_{n}^{\prime}$ for every $n \geq 0$. Prove that there exists a number N such that for every $n \geq N$, all roots of f_{n} are real.
12. Find all continuous functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that $f(x)-f(y)$ is rational for all reals x and y with $x-y$ rational.
13. Let $p(z)=a_{0}+a_{1} z+a_{2} z^{2}+\ldots+a_{n} z^{n}$ be a complex polynomial. Suppose that $1=$ $c_{0} \geq c_{1} \geq \ldots \geq c_{n} \geq 0$ is a sequence of real numbers which is convex (i.e., $2 c_{k} \leq c_{k-1}+c_{k+1}$ for every $1 \leq k \leq n-1$), and consider the polynomial

$$
q(z)=c_{0} a_{0}+c_{1} a_{1} z+c_{2} a_{2} z^{2}+\ldots+c_{n} a_{n} z^{n} .
$$

Prove that:

$$
\max _{|z| \leq 1}|q(z)| \leq \max _{|z| \leq 1}|p(z)| .
$$

14. Compute the sum of the series

$$
\sum_{k=1}^{\infty} \frac{1}{(4 k+1)(4 k+2)(4 k+3)(4 k+4)}
$$

15. Define the sequence $\left(x_{n}\right)_{n \geq 1}$ by $x_{1}=\sqrt{5}$ and $x_{n+1}=x_{n}^{2}-2$ for each $n \geq 1$. Find

$$
\lim _{n \rightarrow \infty} \frac{x_{1} \cdot x_{2} \cdot \ldots \cdot x_{n}}{x_{n+1}}
$$

16. Suppose that a, b, c are real numbers in the interval $[-1,1]$ such that

$$
1+2 a b c \geq a^{2}+b^{2}+c^{2}
$$

Prove that

$$
1+2(a b c)^{n} \geq a^{2 n}+b^{2 n}+c^{2 n}
$$

for all positive integers n.
17. Let $a_{0}, a_{1}, \ldots, a_{n}$, be positive real numbers such that $a_{k+1}-a_{k} \geq 1$ for all $0 \leq k \leq$ $n-1$. Prove that

$$
1+\frac{1}{a_{0}}\left(1+\frac{1}{a_{1}-a_{0}}\right) \cdots\left(1+\frac{1}{a_{n}-a_{0}}\right) \leq\left(1+\frac{1}{a_{0}}\right)\left(1+\frac{1}{a_{1}}\right) \cdots\left(1+\frac{1}{a_{n}}\right)
$$

18. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a continuous function. A point x is called a shadow point if there exists a point $y \in \mathbb{R}$ with $y>x$ such that $f(y)>f(x)$. Let $a<b$ be real numbers and suppose that

- all the points of the open interval $I=(a, b)$ are shadow points;
- a and b are not shadow points.

Prove that $f(x) \leq f(b)$ for all $a<x<b$ and $f(a)=f(b)$.
19. Let $\left(a_{n}\right)_{n} \subset(1 / 2,1)$ and define the sequence $\left(x_{n}\right)_{n \geq 0}$ by

$$
x_{0}=0, \quad x_{n+1}=\frac{a_{n+1}+x_{n}}{1+a_{n+1} x_{n}},(\forall) n \geq 0 .
$$

Is this sequence convergent? If yes find the limit.
20. Calculate

$$
\sum_{n=1}^{\infty} \ln \left(1+\frac{1}{n}\right) \ln \left(1+\frac{1}{2 n}\right) \ln \left(1+\frac{1}{2 n+1}\right)
$$

21. Let $\left(x_{n}\right)_{n \geq 2}$ be a sequence of real numbers such that $x_{2}>0$ and

$$
x_{n+1}=-1+\sqrt[n]{1+n x_{n}}, \quad(\forall) n \geq 2
$$

Find $\lim _{n \rightarrow \infty} x_{n}$ and $\lim _{n \rightarrow \infty} n x_{n}$.
22. Let $f:[0,1] \times[0,1] \rightarrow \mathbb{R}$ be a continuous function. Find the limit

$$
\lim _{n \rightarrow \infty}\left(\frac{(2 n+1)!}{(n!)^{2}}\right)^{2} \int_{0}^{1} \int_{0}^{1}(x y(1-x)(1-y))^{n} f(x, y) d x d y
$$

23. Given real numbers $0=x_{1}<x_{2}<\ldots<x_{2 n}<x_{2 n+1}=1$ such that $x_{i+1}-x_{i} \leq h$ for all $1 \leq i \leq 2 n$, show that

$$
\frac{1-h}{2}<\sum_{i=1}^{n} x_{2 i}\left(x_{2 i+1}-x_{2 i-1}\right)<\frac{1+h}{2} .
$$

24. Suppose that $\left(a_{n}\right)_{n \geq 1}$ is a sequence of real numbers such that the series

$$
\sum_{n=1}^{\infty} \frac{a_{n}}{n}
$$

is convergent. Prove that the sequence

$$
b_{n}=\frac{\sum_{i=1}^{n} a_{i}}{n}
$$

is convergent and find its limit.
25. For a function $f:[0,1] \rightarrow \mathbb{R}$, the secant of f at a and $b \in[0,1], a<b$, is the line in \mathbb{R}^{2} passing through the points $(a, f(a))$ and $(b, f(b))$. A function is said to intersect its secant at a and b if there exists a point $c \in(a, b)$ such that $(c, f(c))$ lies on the secant of f at a and b.
i) Find the set F of all continuous functions f such that for any a and $b \in[0,1], a<b$, the function f intersects its secant at a and b.
ii) Does there exist a continuous function $f \notin F$ such that for any rational a and $b \in[0,1]$, $a<b$, the function f intersects its secant at a and b ?
26. Let $f:[0, \infty) \rightarrow \mathbb{R}$ be a a strictly convex continuous function such that

$$
\lim _{x \rightarrow \infty} \frac{f(x)}{x}=\infty
$$

Prove that the improper integral $\int_{0}^{\infty} \sin (f(x)) d x$ is convergent but not absolutely convergent.
27. A function $f:[0, \infty) \rightarrow \mathbb{R} \backslash\{0\}$ is called slowly changing if for any $t>1$,

$$
\lim _{x \rightarrow \infty} \frac{f(t x)}{f(x)}=1
$$

Is it true that every slowly changing function has, for sufficiently large x, a constant sign (i.e., there exists N such that for every $x, y>N$, we have $f(x) f(y)>0$.)?
28. Let $f:[0,1] \rightarrow[0, \infty)$ be an arbitrary function satisfying

$$
\frac{f(x)+f(y)}{2} \leq f\left(\frac{x+y}{2}\right)+1, \quad(\forall) x, y \in[0,1] .
$$

Prove that

$$
\frac{w-v}{w-u} f(u)+\frac{v-u}{w-u} f(w) \leq f(v)+2, \quad(\forall) 0 \leq u<v<w \leq 1
$$

29. Let $f:[0,1] \rightarrow \mathbb{R}$ be a continuous function such that $f(0)=f(1)=0$. Prove that the Lebesgue measure of the set

$$
A=\{h \in[0,1]: f(x+h)=f(x) \text { for some } x \in[0,1]\}
$$

is at least $1 / 2$.
30. Find all functions $f:(0, \infty) \rightarrow(0, \infty)$ such that

$$
f(f(f(x)))+4 f(f(x))+f(x)=6 x, \quad(\forall) x>0 .
$$

31. Find all $c \in \mathbb{R}$ for which there exists an infinitely differentiable function $f: \mathbb{R} \rightarrow \mathbb{R}$ such that, for all positive integers n, we have:

$$
f^{(n+1)}(x)>f^{(n)}(x)+c, \quad(\forall) x \in \mathbb{R}
$$

32. Find all continuously differentiable functions $f:[0,1] \rightarrow(0, \infty)$ such that $\frac{f(1)}{f(0)}=e$ and

$$
\int_{0}^{1} \frac{1}{f(x)^{2}}+f^{\prime}(x)^{2} d x \leq 2
$$

33. We consider the following game for one person. The aim of the player is to reach a fixed capital $C>2$. The player begins with capital $0<x_{0}<C$. In each turn let x be the player's current capital. Define

$$
s(x)= \begin{cases}x & \text { if } x<1 \\ C-x & \text { if } C-x<1 \\ 1 & \text { otherwise }\end{cases}
$$

Then a fair coin is tossed and the player's capital either increases or decreases by $s(x)$, each with probability $1 / 2$. Find the probability that in a finite number of turns the player wins by reaching the capital C.
34. Let $\left(a_{n}\right)_{n \geq 1}$ be a sequence of real numbers. We say that the sequence $\left(a_{n}\right)_{n \geq 1}$ covers the set of positive integers if for any positive integer m there exists a positive integer k such that

$$
\sum_{n=1}^{\infty} a_{n}^{k}=m
$$

a) Does there exist a sequence of real positive numbers which covers the set of positive integers?
b) Does there exist a sequence of real numbers which covers the set of positive integers?
35. i) Is it true that for every bijection $f: \mathbb{N} \rightarrow \mathbb{N}$ the series

$$
\sum_{n=1}^{\infty} \frac{1}{n f(n)}
$$

is convergent?
ii) Prove that there exists a bijection $f: \mathbb{N} \rightarrow \mathbb{N}$ such that the series

$$
\sum_{n=1}^{\infty} \frac{1}{n+f(n)}
$$

is convergent. (Note \mathbb{N} is the set of positive integers.)
36. Prove that there exist positive constants c_{1} and c_{2} with the following properties:
a) For all real $k>1$,

$$
\left|\int_{0}^{1} \sqrt{1-x^{2}} \cos k x d x\right|<\frac{c_{1}}{k^{3 / 2}}
$$

b) For all real $k>1$,

$$
\left|\int_{0}^{1} \sqrt{1-x^{2}} \sin k x d x\right|>\frac{c_{2}}{k}
$$

37. Prove or disprove that if a real sequence $\left(a_{n}\right)_{n}$ satisfies $a_{n+1}-a_{n} \rightarrow 0$ and $a_{2 n}-2 a_{n} \rightarrow 0$ as $n \rightarrow \infty$, then $a_{n} \rightarrow 0$.
38. Let $f:[0,1] \rightarrow \mathbb{R}$ be a function satisfying

$$
|f(x)-f(y)| \leq|x-y|, \quad(\forall) x, y \in[0,1]
$$

Show that for every $\epsilon>0$ there exists a countable family of rectangles $\left(R_{n}\right)_{n}$ of dimensions $a_{n} \times b_{n}, a_{n} \leq b_{n}$, respectively, in the plane such that

$$
\{(x, f(x)): x \in[0,1]\} \subset \bigcup_{n} R_{n} \quad \text { and } \quad \sum_{n} a_{n}<\epsilon
$$

(The edges of the rectangles are not necessarily parallel to the coordinate axes.)
39. Let $\left(a_{n}\right)_{n \geq 1}$ be an unbounded and strictly increasing sequence of positive reals such that the arithmetic mean of any four consecutive terms $a_{n}, a_{n+1}, a_{n+2}, a_{n+3}$ belongs to the same sequence. Prove that the sequence $\left(a_{n+1} / a_{n}\right)_{n}$ converges and find all possible values of its limit.
40. Prove that

$$
\sum_{n=0}^{\infty} x^{n} \frac{1+x^{2 n+2}}{\left(1-x^{2 n+2}\right)^{2}}=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{n}}{\left(1-x^{n+1}\right)^{2}}
$$

for all $-1<x<1$.
41. Let k be a positive integer. Compute

$$
\sum_{n_{1}=1}^{\infty} \sum_{n_{2}=1}^{\infty} \cdots \sum_{n_{k}=1}^{\infty} \frac{1}{n_{1} n_{2} \ldots n_{k}\left(n_{1}+\ldots+n_{k}+1\right)}
$$

42. Let p and q be complex polynomials with $\operatorname{deg} p>\operatorname{deg} q$ and let $f(z)=\frac{p(z)}{q(z)}$. Suppose that all roots of p lie inside the unit circle $|z|=1$ and that all roots of q lie outside the unit circle. Prove that:

$$
\max _{|z|=1}\left|f^{\prime}(z)\right|>\frac{\operatorname{deg} p-\operatorname{deg} q}{2} \max _{|z|=1}|f(z)| .
$$

43. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a continuously differentiable function that satisfies

$$
f^{\prime}(t)>f(f(t)), \quad(\forall) t \in \mathbb{R}
$$

Prove that $f(f(f(t))) \leq 0$ for all $t \geq 0$.
44. Define the sequence $\left(a_{n}\right)_{n \geq 0}$ inductively by $a_{0}=1, a_{1}=1 / 2$, and

$$
a_{n+1}=\frac{n a_{n}^{2}}{1+(n+1) a_{n}}, \quad(\forall) n \geq 1
$$

Show that the series

$$
\sum_{k=0}^{\infty} \frac{a_{k+1}}{a_{k}}
$$

converges and determine its value.
45. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a twice differentiable function. Suppose $f(0)=0$. Prove that there exists $\xi \in(-\pi / 2, \pi / 2)$ such that

$$
f^{\prime \prime}(\xi)=f(\xi)\left(1+2 \tan ^{2} \xi\right)
$$

46. Let $n \geq 3$ and let x_{1}, \ldots, x_{n} be nonnegative real numbers. Define $A=\sum_{i=1}^{n} x_{i}$, $B=\sum_{i=1}^{n} x_{i}^{2}$, and $C=\sum_{i=1}^{n} x_{i}^{3}$. Prove that

$$
(n+1) A^{2} B+(n-2) B^{2} \geq A^{4}+(2 n-2) A C .
$$

47. Does there exist a sequence $\left(a_{n}\right)_{n}$ of complex numbers such that for every positive integer p we have that $\sum_{n} a_{n}^{p}$ converges if and only if p is not a prime?
48. Let z be a complex number with $|z+1|>2$. Prove that $\left|z^{3}+1\right|>1$.
49. Let $f:[0,1] \rightarrow[0,1]$ be a differentiable function such that $\left|f^{\prime}(x)\right| \neq 1$ for all $x \in[0,1]$. Prove that there exist unique points $\alpha, \beta \in[0,1]$ such that $f(\alpha)=\alpha$ and $f(\beta)=1-\beta$.
50. Determine the smallest real number C such that the inequality

$$
\frac{x}{(x+1) \sqrt{y z}}+\frac{y}{(y+1) \sqrt{z x}}+\frac{z}{(z+1) \sqrt{x y}} \leq C
$$

holds for all positive real numbers x, y and z with

$$
\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}=1
$$

51. Let $f:[1, \infty) \rightarrow(0, \infty)$ be a non-increasing function such that

$$
\limsup _{n \rightarrow \infty} \frac{f\left(2^{n+1}\right)}{f\left(2^{n}\right)}<\frac{1}{2}
$$

Prove that $\int_{1}^{\infty} f(x) d x<\infty$.
52. Let a, b, c, x, y, z, t be positive real numbers with $1 \leq x, y, z \leq 4$. Prove that

$$
\frac{x}{(2 a)^{t}}+\frac{y}{(2 b)^{t}}+\frac{z}{(2 c)^{t}} \geq \frac{y+z-x}{(b+c)^{t}}+\frac{z+x-y}{(c+a)^{t}}+\frac{x+y-z}{(a+b)^{t}} .
$$

53. Let $f:[0, \infty) \rightarrow \mathbb{R}$ be a differentiable function with $|f(x)| \leq M$ and $f(x) f^{\prime}(x) \geq \cos x$ for all $x \in[0, \infty)$, where $M>0$. Prove that $f(x)$ does not have a limit as $x \rightarrow \infty$.
54. Let \mathcal{F} be the set of all continuous functions $f:[0,1] \rightarrow \mathbb{R}$ with the property

$$
\left|\int_{0}^{x} \frac{f(t)}{\sqrt{x-t}} d t\right| \leq 1, \quad(\forall) x \in(0,1]
$$

Compute $\sup _{f \in \mathcal{F}}\left|\int_{0}^{1} f(x) d x\right|$.
55. Find all complex numbers z such that $\left|z^{3}+2-2 i\right|+z \bar{z}|z|=2 \sqrt{2} .(\bar{z}$ is the conjugate of z.)
56. Let $n \geq 2$ be an integer and let $x>0$ be a real number. Prove that

$$
(1-\sqrt{\tanh x})^{n}+\sqrt{\tanh (n x)}<1 .
$$

Recall that $\tanh t=\frac{e^{2 t}-1}{e^{2 t}+1}$.
57. Let $f:(0, \infty) \rightarrow \mathbb{R}$ be a differentiable function. Assume that

$$
\lim _{x \rightarrow \infty} f(x)+\frac{f^{\prime}(x)}{x}=0
$$

Prove that $\lim _{x \rightarrow \infty} f(x)=0$.
58. Let $0<a<b$ and let $f:[a, b] \rightarrow \mathbb{R}$ be a continuous function with $\int_{a}^{b} f(t) d t=0$. Show that

$$
\int_{a}^{b} \int_{a}^{b} f(x) f(y) \ln (x+y) d x d y \leq 0
$$

59. Let n be a nonzero natural number and $f: \mathbb{R} \rightarrow \mathbb{R} \backslash\{0\}$ be a function such that $f(2014)=1-f(2013)$. Let $x_{1}, x_{2}, x_{3}, \ldots, x_{n}$ be real numbers not equal to each other. If

$$
\left(\begin{array}{ccccc}
1+f\left(x_{1}\right) & f\left(x_{2}\right) & f\left(x_{3}\right) & \ldots & f\left(x_{n}\right) \\
f\left(x_{1}\right) & 1+f\left(x_{2}\right) & f\left(x_{3}\right) & \ldots & f\left(x_{n}\right) \\
f\left(x_{1}\right) & f\left(x_{2}\right) & 1+f\left(x_{3}\right) & \ldots & f\left(x_{n}\right) \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
f\left(x_{1}\right) & f\left(x_{2}\right) & f\left(x_{3}\right) & \ldots & 1+f\left(x_{n}\right)
\end{array}\right)
$$

is singular, show that f is not continous.
60. Consider the sequence $\left(x_{n}\right)_{n}$ given by

$$
x_{1}=2, \quad x_{n+1}=\frac{x_{n}+1+\sqrt{x_{n}^{2}+2 x_{n}+5}}{2}, \quad n \geq 1
$$

Prove that the series

$$
\sum_{n=1}^{\infty} \frac{1}{x_{n}^{2}-1}
$$

is convergent and find its sum.
61. i) Show that

$$
\lim _{n \rightarrow \infty} n \int_{0}^{n} \frac{\arctan \frac{x}{n}}{x\left(x^{2}+1\right)} d x=\frac{\pi}{2}
$$

ii) Find the limit

$$
\lim _{n \rightarrow \infty} n\left(n \int_{0}^{n} \frac{\arctan \frac{x}{n}}{x\left(x^{2}+1\right)} d x-\frac{\pi}{2}\right) .
$$

62. Find all continuous functions $f:[1,8] \rightarrow \mathbb{R}$, such that

$$
\int_{1}^{2} f^{2}\left(t^{3}\right) d t+2 \int_{1}^{2} f\left(t^{3}\right) d t=\frac{2}{3} \int_{1}^{8} f(t) d t-\int_{1}^{2}\left(t^{2}-1\right)^{2} d t
$$

63. Find the maximum value of

$$
\int_{0}^{1}\left|f^{\prime}(x)\right|^{2}|f(x)| \frac{1}{\sqrt{x}} d x
$$

over all continuously differentiable functions $f:[0,1] \rightarrow \mathbb{R}$ with $f(0)=0$ and

$$
\int_{0}^{1}\left|f^{\prime}(x)\right|^{2} d x \leq 1
$$

64. a) Compute

$$
\lim _{n \rightarrow \infty} n \int_{0}^{1}\left(\frac{1-x}{1+x}\right)^{n} d x
$$

b) Let $k \geq 1$ be an integer. Compute

$$
\lim _{n \rightarrow \infty} n^{k+1} \int_{0}^{1}\left(\frac{1-x}{1+x}\right)^{n} x^{k} d x
$$

65. Let $a_{n}>0, n \geq 1$. Consider the sequence of right triangles $\triangle A_{0} A_{1} A_{2}, \triangle A_{0} A_{2} A_{3}$, $\ldots, \triangle A_{0} A_{n-1} A_{n}, \ldots$, such that:
for every $n \geq 2$, the hypotenuse $A_{0} A_{n}$ of $\triangle A_{0} A_{n-1} A_{n}$ is a leg in $\triangle A_{0} A_{n} A_{n+1}$ with right angle $\angle A_{0} A_{n} A_{n+1}$, and the vertices A_{n-1} and A_{n+1} lie on the opposite sides of the straight line $A_{0} A_{n}$. Moreover $\left|A_{n-1} A_{n}\right|=a_{n}$ for every $n \geq 1$.

Is it possible for the set of points $\left\{A_{n} \mid n \geq 0\right\}$ to be unbounded but the series

$$
\sum_{n \geq 2} m\left(\angle A_{n-1} A_{0} A_{n}\right)
$$

to be convergent? Here $m(\angle A B C)$ denotes the measure of $\angle A B C$.
66. For a given integer $n \geq 1$, let $f:[0,1] \rightarrow \mathbb{R}$ be a nondecreasing function. Prove that

$$
\int_{0}^{1} f(x) d x \leq(n+1) \int_{0}^{1} x^{n} f(x) d x
$$

Find all non-decreasing continuous functions for which equality holds.
67. Let $f:[0,1] \rightarrow \mathbb{R}$ be a twice continuously differentiable increasing function. Define the sequences given by

$$
L_{n}=\sum_{k=0}^{n-1} f(k / n), \quad U_{n}=\sum_{k=1}^{n} f(k / n), \quad n \geq 1
$$

The interval $\left[L_{n}, U_{n}\right]$ is divided into three equal segments. Prove that, for large enough n , the number $I=\int_{0}^{1} f(x) d x$ belongs to the middle one of these three segments.
68. Let $f_{0}:[0,1] \rightarrow \mathbb{R}$ be a continuous function. Define the sequence of functions $f_{n}:[0,1] \rightarrow \mathbb{R}$ by

$$
f_{n}(x)=\int_{0}^{x} f_{n-1}(t) d t, \quad(\forall) n \geq 1
$$

Prove that the series $\sum_{n \geq 1} f_{n}(x)$ is convergent for every $x \in[0,1]$ and find an explicit formula for its sum.
69. a) Calculate the limit

$$
\lim _{n \rightarrow \infty} \frac{(2 n+1)!}{(n!)^{2}} \int_{0}^{1}(x(1-x))^{n} x^{k} d x
$$

where k is a nonnegative integer.
b) Calculate the limit

$$
\lim _{n \rightarrow \infty} \frac{(2 n+1)!}{(n!)^{2}} \int_{0}^{1}(x(1-x))^{n} f(x) d x
$$

where $f:[0,1] \rightarrow \mathbb{R}$ is a continuous function.
70. Let $f:[1, \infty) \rightarrow(0, \infty)$ be a continuous function. Assume that, for every $a>0$, the equation $f(x)=a x$ has at least one solution in the interval $[1, \infty)$.
a) Prove that, for every $a>0$, the equation $f(x)=a x$ has infinitely many solutions.
b) Give an example of a strictly increasing continuous function f with these properties.
71. Let n be a positive integer and $f:[0,1] \rightarrow \mathbb{R}$ be a continuous function such that

$$
\int_{0}^{1} x^{k} f(x) d x=1, \quad(\forall) 0 \leq k \leq n-1
$$

Prove that

$$
\int_{0}^{1} f^{2}(x) d x \geq n^{2}
$$

72. For $x \in \mathbb{R}, y \geq 0$, and $n \in \mathbb{Z}$, denote by $w_{n}(x, y) \in[0, \pi)$ the angle in radians formed by the segments joining the point $(x, 1) \in \mathbb{R}^{2}$ with the points $(n, 0)$ and $(n+y, 0)$, respectively.
a) Show that, for every $(x, y) \in \mathbb{R} \times[0, \infty)$, the series $\sum_{n=-\infty}^{\infty} w_{n}(x, y)$ converges. Moreover, if we set $w(x, y)=\sum_{n=-\infty}^{\infty} w_{n}(x, y)$, prove that

$$
w(x, y) \leq(\lfloor y\rfloor+1) \pi
$$

where $\lfloor y\rfloor$ is the floor function computed at y.
b) Prove that for every $\epsilon>0$ there exists $\delta>0$ such that

$$
w(x, y)<\epsilon, \quad(\forall) x \in \mathbb{R}, 0<y<\delta .
$$

c) Prove that the function $w: \mathbb{R} \times[0, \infty) \rightarrow[0, \infty)$ defined in a) is continuous.
73. Consider the following sequence

$$
\left(a_{n}\right)_{n=1}^{\infty}=(1,1,2,1,2,3,1,2,3,4,1,2,3,4,5,1, \ldots)
$$

Find all pairs (α, β) of positive real numbers such that

$$
\lim _{n \rightarrow \infty} \frac{\sum_{k=1}^{n} a_{k}}{n^{\alpha}}=\beta
$$

74. Let $f(x)=\frac{\sin x}{x}$, for $x>0$, and let n be a positive integer. Prove that $\left|f^{(n)}(x)\right|<\frac{1}{n+1}$, where $f^{(n)}$ denotes the $n^{\text {th }}$ derivative of f.
