Practice problems for mathematical contests to be discussed in
MTH 190 "Topics in Problem Solving" (Fall 2014)

Algebra

Introductory problems

1. Let A be the $n \times n$ matrix, whose $(i, j)^{\text {th }}$ entry is $i+j$ for all $i, j=1,2, \ldots, n$. What is the rank of A ?
2. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function such that $(f(x))^{n}$ is a polynomial for every integer $n \geq 2$. Does it follow that f is a polynomial?
3. Let $n \geq 2$ be an integer. What is the minimal and maximal possible rank of an $n \times n$ matrix whose n^{2} entries are precisely the numbers $1,2, \ldots, n^{2}$?
4. Let n, k be positive integers and suppose that the polynomial $x^{2 k}-x^{k}+1$ divides $x^{2 n}+x^{n}+1$. Prove that $x^{2 k}+x^{k}+1$ divides $x^{2 n}+x^{n}+1$.
5. Let A, B and C be real square matrices of the same size, and assume that A is invertible. Prove that if $(A-B) C=B A^{-1}$, then $C(A-B)=A^{-1} B$.
6. For an arbitrary square matrix M, define

$$
\exp (M)=I+\frac{M}{1!}+\frac{M^{2}}{2!}+\frac{M^{3}}{3!}+\ldots
$$

Construct 2×2 matrices A and B such that $\exp (A+B) \neq \exp (A) \exp (B)$.
7. Can the set of positive rationals be split into two nonempty disjoint subsets Q_{1} and Q_{2}, such that both are closed under addition (i.e., $p+q \in Q_{k}$ for every $p, q \in Q_{k}, k=1$, $2)$? Can it be done when addition is exchanged for multiplication (i.e., $p \cdot q \in Q_{k}$ for every $\left.p, q \in Q_{k}, k=1,2\right)$?
8. Find all complex roots (with multiplicities) of the polynomial

$$
P(x)=\sum_{n=1}^{2008}(1004-|1004-n|) x^{n} .
$$

9. Let A and B be two complex 2×2 matrices such that $A B-B A=B^{2}$. Prove that $A B=B A$.
10. (a) Is there a polynomial $P(x)$ with real coefficients such that

$$
P\left(\frac{1}{k}\right)=\frac{k+2}{k}
$$

for all positive integers k ?
(b) Is there a polynomial $P(x)$ with real coefficients such that

$$
P\left(\frac{1}{k}\right)=\frac{1}{2 k+1},
$$

for all positive integers k ?

More challenging problems

1. Find all polynomials $P(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots+a_{1} x+a_{0}\left(a_{n} \neq 0\right)$ satisfying the following two conditions:
i) $\left(a_{0}, a_{1}, \ldots, a_{n}\right)$ is a permutation of the numbers $(0,1, \ldots, n)$;
ii) all roots of $P(x)$ are rational numbers.
2. Given a group G, denote by $G(m)$ the subgroup generated by the $m^{\text {th }}$ powers of elements of G. If $G(m)$ and $G(n)$ are commutative, prove that $G((m, n))$ is also commutative ((m, n) denotes the greatest common factor of m and n.).
3. In the linear space of all real $n \times n$ matrices, nd the maximum possible dimension of a linear subspace V such that

$$
\operatorname{tr}(X Y)=0, \quad(\forall) X, Y \in V
$$

(Note: tr denotes the trace of a matrix, which the sum of its diagonal entries.)
4. Prove that if p and q are rational numbers and $r=p+q \sqrt{7}$, then there exists a matrix $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \neq \pm\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$ with integer entries and with $a d-b c=1$ such that

$$
\frac{a r+b}{c r+d}=r
$$

5. Let A be an $n \times n$-matrix with integer entries and b_{1}, \ldots, b_{k} be integers satisfying $\operatorname{det} A=b_{1} \cdot \ldots \cdot b_{k}$. Prove that there exist $n \times n$-matrices B_{1}, \ldots, B_{k} with integer entries such that $A=B_{1} \cdot \ldots \cdot B_{k}$ and $\operatorname{det} B_{i}=b_{i}$ for all $1 \leq i \leq k$.
6. Let f be a rational function (i.e., the quotient of two real polynomials) and suppose that $f(n)$ is an integer for infinitely many integers n. Prove that f is a polynomial.
7. Let v_{0} be the zero vector in \mathbb{R}^{n} and let $v_{1}, v_{2}, \ldots, v_{n+1} \in \mathbb{R}^{n}$ be such that the Euclidean norm $\left|v_{i}-v_{j}\right|$ is rational for every $0 \leq i, j \leq n+1$. Prove that $v_{1}, v_{2}, \ldots, v_{n+1}$ are linearly dependent over the rationals.
8. Let $A_{i}, B_{i}, S_{i}(i=1,2,3)$ be invertible real 2×2 matrices such that:
(1) not all A_{i} 's have a common real eigenvector;
(2) $A_{i}=S_{i}^{-1} B_{i} S_{i}$ for all $i=1,2,3$;
(3) $A_{1} A_{2} A_{3}=B_{1} B_{2} B_{3}=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$.

Prove that there is an invertible real 2×2 matrix S such that $A_{i}=S^{-1} B_{i} S$ for all $i=1,2,3$.
9. Call a polynomial $P\left(x_{1}, \ldots, x_{k}\right)$ "good" if there exist 2×2 real matrices A_{1}, \ldots, A_{k} such that

$$
P\left(x_{1}, \ldots, x_{k}\right)=\operatorname{det}\left(\sum_{i=1}^{k} x_{i} A_{i}\right)
$$

Find all values of k for which all homogeneous polynomials with k variables of degree 2 are "good". (Note: A polynomial is homogeneous if each term has the same total degree.)
10. Let G be a finite group. For arbitrary sets $U, V, W \subset G$, denote by $N_{U V W}$ the number of triples $(x, y, z) \in U \times V \times W$ for which $x y z$ is the unity. Suppose that G is partitioned into three sets A, B, and C (i.e., sets A, B, and C are pairwise disjoint and $G=A \cup B \cup C$). Prove that $N_{A B C}=N_{C B A}$.
11. Let n be a positive integer and a_{1}, \ldots, a_{n} be arbitrary integers. Suppose that a function $f: \mathbb{Z} \rightarrow \mathbb{R}$ satisfies $\sum_{i=1}^{n} f\left(k+a_{i} l\right)=0$ whenever k and l are integers and $l \neq 0$. Prove that $f=0$.
12. Let $n>1$ be an odd positive integer and $A=\left(a_{i j}\right)_{i, j=1, \ldots, n}$ be the $n \times n$ matrix with

$$
a_{i j}= \begin{cases}2 & \text { if } i=j \\ 1 & \text { if } i-j \equiv \pm 2(\bmod n) \\ 0 & \text { otherwise }\end{cases}
$$

Find $\operatorname{det} A$.
13. For each positive integer k, nd the smallest number n_{k} for which there exist real $n_{k} \times n_{k}$ matrices $A_{1}, A_{2}, \ldots, A_{k}$ such that all of the following conditions hold:
(1) $A_{1}^{2}=A_{2}^{2}=\ldots=A_{k}^{2}=0$;
(2) $A_{i} A_{j}=A_{j} A_{i}$ for all $1 \leq i, j \leq k$;
(3) $A_{1} A_{2} \ldots A_{k} \neq 0$.
14. Denote by V the real vector space of all real polynomials in one variable, and let $P: V \rightarrow \mathbb{R}$ be a linear map. Suppose that for all $f, g \in V$ with $P(f g)=0$, we have $P(f)=0$ or $P(g)=0$. Prove that there exist real numbers x and c such that $P(f)=c f(x)$ for all $f \in V$.
15. Does there exist a finite group G with a normal subgroup H such that \mid Aut $H \mid>$ \mid Aut $G \mid$? (Note: \mid Aut $K \mid$ represents the number of automorphisms of group K.)
16. For a permutation $\sigma=\left(i_{1}, i_{2}, \ldots, i_{n}\right)$ of $(1,2, \ldots, n)$ define

$$
D(\sigma)=\sum_{k=1}^{n}\left|i_{k}-k\right| .
$$

Let $Q(n, d)$ be the number of permutations σ of $(1,2, \ldots, n)$ with $d=D(\sigma)$. Prove that $Q(n, d)$ is even for $d \geq 2 n$.
17. Let n be a positive integer, and consider the matrix $A=\left(a_{i j}\right)_{i, j=1, \ldots, n}$, where

$$
a_{i j}= \begin{cases}1 & \text { if } i+j \text { is a prime number } \\ 0 & \text { otherwise }\end{cases}
$$

Prove that $|\operatorname{det} A|=k^{2}$ for some integer k.
18. Let H be an infinite-dimensional real Hilbert space, let $d>0$, and suppose that S is a set of points (not necessarily countable) in H such that the distance between any two distinct points in S is equal to d. Show that there is a point $y \in H$ such that

$$
\left\{\frac{\sqrt{2}}{d}(x-y): x \in S\right\}
$$

is an orthonormal system of vectors in H.
19. Let n be a positive integer. An n-simplex in \mathbb{R}^{n} is given by $n+1$ points $P_{0}, P_{1}, \ldots, P_{n}$, called its vertices, which do not all belong to the same hyperplane. For every n-simplex S we denote by $v(S)$ the volume of S, and we write $C(S)$ for the center of the unique sphere containing all the vertices of S.

Suppose that P is a point inside an n-simplex S. Let S_{i} be the n-simplex obtained from S by replacing its i-th vertex by P. Prove that

$$
v\left(S_{0}\right) C\left(S_{0}\right)+v\left(S_{1}\right) C\left(S_{1}\right)+\ldots+v\left(S_{n}\right) C\left(S_{n}\right)=v(S) C(S)
$$

20. Let $A, B \in M_{n}(\mathbb{C})$ be two $n \times n$ matrices such that

$$
A^{2} B+B A^{2}=2 A B A
$$

Prove that there exists a positive integer k such that $(A B-B A)^{k}=0$.
21. Let M be the vector space of $m \times p$ real matrices. For a vector subspace $S \subseteq M$, denote by $\delta(S)$ the dimension of the vector space generated by all columns of all matrices in S.

Say that a vector subspace $T \subseteq M$ is a covering matrix space if

$$
\bigcup_{A \in T, A \neq 0} \operatorname{ker} A=\mathbb{R}^{p}
$$

Such a T is minimal if it does not contain a proper vector subspace $S \subset T$ which is also a covering matrix space.
(a) Let T be a minimal covering matrix space and let $n=\operatorname{dim} T$. Prove that

$$
\delta(T) \leq\binom{ n}{2}
$$

(b) Prove that for every positive integer n we can find m and p, and a minimal covering matrix space T as above such that $\operatorname{dim} T=n$ and $\delta(T)=\binom{n}{2}$.
22. Denote by S_{n} the group of permutations of the sequence $(1,2, \ldots, n)$. Suppose that G is a subgroup of S_{n}, such that for every $\pi \in G \backslash\{e\}$ there exists a unique $1 \leq k \leq n$ for which $\pi(k)=k$ (Here e is the unit element in the group S_{n}.). Show that this k is the same for all $\pi \in G \backslash\{e\}$.
23. Let A be a symmetric $m \times m$ matrix over the two-element field, all of whose diagonal entries are zero. Prove that for every positive integer n each column of the matrix A^{n} has a zero entry.
24. Suppose that for a function $f: \mathbb{R} \rightarrow \mathbb{R}$ and real numbers $a<b$ one has $f(x)=0$ for all $x \in(a, b)$. Prove that $f(x)=0$ for all $x \in \mathbb{R}$ if

$$
\sum_{k=0}^{p-1} f\left(y+\frac{k}{p}\right)=0
$$

for every prime number p and every real number y.
25. Does there exist a real 3×3 matrix A such that $\operatorname{tr}(A)=0$ and $A^{2}+A^{t}=I$? (Note: $\operatorname{tr}(A)$ denotes the trace of A, A^{t} the transpose of A, and I is the identity matrix.)
26. Let $A_{1}, A_{2}, \ldots, A_{n}$ be finite, nonempty sets. Define the function

$$
f(t)=\sum_{k=1}^{n} \sum_{1 \leq i_{1}<i_{2}<\ldots<i_{k} \leq n}(-1)^{k-1} t^{\left|A_{i_{1}} \cup A_{i_{2}} \cup \ldots \cup A_{i_{k}}\right|}
$$

Prove that f is nondecreasing on $[0,1]$. (Note: $|A|$ denotes the number of elements in A.)
27. Let n be a positive integer and let V be a $(2 n-1)$-dimensional vector space over the two-element field. Prove that for arbitrary vectors $v_{1}, \ldots, v_{4 n-1} \in V$, there exists a sequence $1 \leq i_{1}<\ldots<i_{2 n} \leq 4 n-1$ of indices such that $v_{i_{1}}+\ldots+v_{i_{2 n}}=0$.
28. Let $f: A^{3} \rightarrow A$ where A is a nonempty set and f satisfies:
(a) for all $x, y \in A, f(x, y, y)=x=f(y, y, x)$;
(b) for all $x_{1}, x_{2}, x_{3}, y_{1}, y_{2}, y_{3}, z_{1}, z_{2}, z_{3} \in A$,

$$
f\left(f\left(x_{1}, x_{2}, x_{3}\right), f\left(y_{1}, y_{2}, y_{3}\right), f\left(z_{1}, z_{2}, z_{3}\right)\right)=f\left(f\left(x_{1}, y_{1}, z_{1}\right), f\left(x_{2}, y_{2}, z_{2}\right), f\left(x_{3}, y_{3}, z_{3}\right)\right)
$$

Prove that for an arbitrary fixed $a \in A$, the operation $x+y=f(x, a, y)$ is an abelian group addition.
29. Find all reals λ for which there is a nonzero polynomial P with real coefficients such that

$$
\frac{P(1)+P(3)+P(5)+\ldots+P(2 n-1)}{n}=\lambda P(n)
$$

for all positive integers n, and find all such polynomials for $n=2$.
30. Let R be a finite ring with the following property: for any $a, b \in R$ there exists an element $c \in R$ (depending on a and b) such that $a^{2}+b^{2}=c^{2}$. Prove that for any $a, b, d \in R$ there exists $f \in R$ such that $2 a b d=f^{2}$. (Note: Here $2 a b d$ denotes $a b d+a b d$. The ring R is assumed to be associative, but not necessarily commutative and not necessarily containing a unit.)
31. Let $A=\left(a_{i j}\right)_{i, j=1, \ldots, n}$ be a matrix with nonnegative entries such that

$$
\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i j}=n
$$

(a) Prove that $|\operatorname{det} A| \leq 1$.
(b) If $|\operatorname{det} A|=1$ and $\lambda \in \mathbb{C}$ is an arbitrary eigenvalue of A, show that $|\lambda|=1$.
(Note: We call $\lambda \in \mathbb{C}$ an eigenvalue of A if there exists a nonzero vector $x \in \mathbb{C}^{n}$ such that $A x=\lambda x$.)
32. a) Let u and v be two nilpotent elements in a commutative ring (with or without unity). Prove that $u+v$ is also nilpotent. (Note: An element u is called nilpotent if there exists a positive integer n for which $u^{n}=0$.)
(b) Show an example of a (non-commutative) ring R and nilpotent elements $u, v \in R$ such that $u+v$ is not nilpotent.
33. Let (G, \cdot) be a finite group of order n. Show that each element of G is a square if and only if n is odd.
34. Let A be a real $n \times n$ matrix satisfying $A+A^{t}=I$, where A^{t} denotes the transpose of A and I the $n \times n$ identity matrix. Show that $\operatorname{det} A>0$.
35. Find all pairs of positive integers (n, m), with $1<n<m$, such that the numbers 1 , $\sqrt[n]{n}$, and $\sqrt[m]{m}$ are linearly dependent over the field of rational numbers \mathbb{Q}.
36. Let A be an $n \times n$ square matrix with integer entries. Suppose that

$$
p^{2} A^{p^{2}}=q^{2} A^{q^{2}}+r^{2} I_{n}
$$

for some positive integers p, q, r where r is odd and $p^{2}=q^{2}+r^{2}$. Prove that $|\operatorname{det} A|=1$. (Note: Here I_{n} means the $n \times n$ identity matrix.)
37. Let A and B be two $n \times n$ matrices with integer entries such that all of the matrices

$$
A, A+B, A+2 B, A+3 B, \ldots, A+(2 n) B
$$

are invertible and their inverses have integer entries, too. Show that $A+(2 n+1) B$ is also invertible and that its inverse has integer entries.
38. Let a, b, c be elements of finite order in some group. Prove that if $a^{-1} b a=b^{2}$, $b^{-2} c b^{2}=c^{2}$ and $c^{-3} a c^{3}=a^{2}$, then $a=b=c=e$, where e is the unit element.
39. Let $n>k$ and let A_{1}, \ldots, A_{k} be real $n \times n$ matrices of rank $n-1$. Prove that

$$
A_{1} \cdot \ldots \cdot A_{k} \neq 0
$$

40. Let $\mathbb{Q}[x]$ denote the vector space over \mathbb{Q} of polynomials with rational coefficients in one variable x. Find all \mathbb{Q}-linear maps $\Phi: \mathbb{Q}[x] \rightarrow \mathbb{Q}[x]$ such that for any irreducible polynomial $p \in \mathbb{Q}[x]$ the polynomial $\Phi(p)$ is also irreducible. (Note: A polynomial $p \in \mathbb{Q}[x]$ is called irreducible if it is non-constant and the equality $p=q_{1} q_{2}$ is impossible for nonconstant polynomials $q_{1}, q_{2} \in \mathbb{Q}[x]$.)
41. Let n be a fixed positive integer. Determine the smallest possible rank of an $n \times n$ matrix that has zeros along the main diagonal and strictly positive real numbers off the main diagonal.
42. Let a be a rational number and let n be a positive integer. Prove that the polynomial $X^{2^{n}}(X+a)^{2^{n}}+1$ is irreducible in the ring $\mathbb{Q}[X]$ of polynomials with rational coefficients.
43. Let $n \geq 2$ be an integer. Find all real numbers a such that there exist real numbers x_{1}, \ldots, x_{n} satisfying

$$
x_{1}\left(1-x_{2}\right)=x_{2}\left(1-x_{3}\right)=\ldots=x_{n-1}\left(1-x_{n}\right)=x_{n}\left(1-x_{1}\right)=a
$$

44. Let $c \geq 1$ be a real number. Let G be an abelian group and let $A \subset G$ be a finite set satisfying $|A+A| \leq c|A|$, where $X+Y=\{x+y \mid x \in X, y \in Y\}$ and $|Z|$ denotes the
cardinality of Z. Prove that

$$
|\underbrace{A+A+\ldots+A}_{k}| \leq c^{k}|A|
$$

for every positive integer k.
45. Let A and B be real symmetric matrices with all eigenvalues strictly greater than 1 . Let λ be a real eigenvalue of matrix $A B$. Prove that $|\lambda|>1$.
46. Determine all 2×2 integer matrices A having the following properties:
i) the entries of A are (positive) prime numbers;
ii) there exists a 2×2 integer matrix B such that $A=B^{2}$ and the determinant of B is the square of a prime number.
47. Let $(A,+, \cdot)$ be a ring with unity, having the following property: for all $x \in A$ either $x^{2}=1$ or $x^{n}=0$ for some positive integer n. Show that A is a commutative ring.
48. Let M be the (tridiagonal) 10×10 matrix

$$
M=\left(\begin{array}{ccccccc}
-1 & 3 & 0 & \cdots & \cdots & \cdots & 0 \\
3 & 2 & -1 & 0 & & & \vdots \\
0 & -1 & 2 & -1 & \ddots & & \vdots \\
\vdots & 0 & -1 & 2 & \ddots & 0 & \vdots \\
\vdots & & \ddots & \ddots & \ddots & -1 & 0 \\
\vdots & & & 0 & -1 & 2 & -1 \\
0 & \cdots & \cdots & \cdots & 0 & -1 & 2
\end{array}\right)
$$

Show that M has exactly nine positive real eigenvalues (counted with multiplicities).
49. Let $A=\left(a_{i j}\right)_{i, j}$ and $B=\left(b_{i j}\right)_{i, j}$ be two real 10×10 matrices such that $a_{i j}=b_{i j}+1$ for all i, j, and $A^{3}=0$. Prove that $\operatorname{det} B=0$.
50. Let p be a prime number and let A be a subgroup of the multiplicative group \mathbb{F}_{p}^{*} of the finite field \mathbb{F}_{p} with p elements. Prove that if the order of A is a multiple of 6 , then there exist $x, y, z \in A$ satisfying $x+y=z$.
51. Let $A \in M_{n}(\mathbb{C})$ and $a \in \mathbb{C} \backslash\{0\}$ such that $A-A^{*}=2 a I_{n}$, where $A^{*}=(\bar{A})^{t}$ and \bar{A} is the conjugate of the matrix A .
i) Show that $|\operatorname{det} A| \geq|a|^{n}$.
ii) Show that if $|\operatorname{det} A|=|a|^{n}$ then $A=a I_{n}$.
52. Let $A \in M_{2}(\mathbb{Q})$ such that there exists a positive integer n with $A^{n}=-I_{2}$. Prove that either $A^{2}=-I_{2}$ or $A^{3}=-I_{2}$.
53. Let $M, N \in M_{2}(\mathbb{C})$ be two nonzero matrices such that

$$
M^{2}=N^{2}=O_{2} \quad \text { and } \quad M N+N M=I_{2},
$$

where O_{2} is the 2×2 zero matrix and I_{2} is the 2×2 unit matrix. Prove that there exists an invertible matrix $A \in M_{2}(\mathbb{C})$ such that

$$
M=A\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right) A^{-1} \quad \text { and } \quad N=A\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right) A^{-1} .
$$

54. Let $A=\left(a_{i j}\right)_{i, j}$ be the $n \times n$ matrix, where $a_{i j}$ is the remainder of the division of $i^{j}+j^{i}$ by 3 for $i, j=1,2, \ldots, n$. Find the greatest n for which $\operatorname{det} A \neq 0$.
55. Prove that if k is an even positive integer and A is a real symmetric $n \times n$ matrix such that $\left(\operatorname{Tr}\left(A^{k}\right)\right)^{k+1}=\left(\operatorname{Tr}\left(A^{k+1}\right)\right)^{k}$, then

$$
A^{n}=\operatorname{Tr}(A) A^{n-1}
$$

Does the previous assertion also hold for odd positive integers k ?
56. Let $A=\left(a_{i j}\right)_{i, j}$ be a real $n \times n$ matrix such that $A^{n} \neq 0$ and $a_{i j} a_{j i} \leq 0$ for all i, j. Prove that there exist two non-real numbers among the eigenvalues of A.
57. Prove that:
a) for every $A \in M_{2}(\mathbb{R})$ there exist $B, C \in M_{2}(\mathbb{R})$ such that $A=B^{2}+C^{2}$.
b) there do not exist $B, C \in M_{2}(\mathbb{R})$ such that $B C=C B$ and $B^{2}+C^{2}=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$.
58. Suppose that A and B are $n \times n$ matrices with integer entries, and $\operatorname{det} B \neq 0$. Prove that there exists m positive integer such that

$$
A B^{-1}=\sum_{k=1}^{m} N_{k}^{-1}
$$

where N_{k} are $n \times n$ matrices with integer entries for all $k=1, \ldots, m$, and $N_{i} \neq N_{j}$ for $i \neq j$.
59. Let P be a real polynomial of degree five. Assume that the graph of P has three inflection points lying on a straight line. Calculate the ratios of the areas of the bounded regions between this line and the graph of the polynomial P.
60. Let $S L_{2}(\mathbb{Z})=\{A \mid A$ is a 2×2 matrix with integer entries and $\operatorname{det} A=1\}$.
a) Find an example of matrices $A, B, C \in S L_{2}(\mathbb{Z})$ such that $A^{2}+B^{2}=C^{2}$.
b) Show that there do not exist matrices $A, B, C \in S L_{2}(\mathbb{Z})$ such that $A^{4}+B^{4}=C^{4}$.
61. Given the real numbers $a_{1}, a_{2}, \ldots, a_{n}$ and $b_{1}, b_{2}, \ldots, b_{n}$, we define the $n \times n$ matrices $A=\left(a_{i j}\right)_{i, j}$ and $B=\left(b_{i j}\right)_{i, j}$ by

$$
a_{i j}=a_{i}-b_{j}, \quad b_{i j}= \begin{cases}1, & \text { if } \quad a_{i j} \geq 0 \\ 0, & \text { if } \quad a_{i j}<0\end{cases}
$$

for all $i, j \in\{1,2, \ldots, n\}$. Consider also the $n \times n$ matrix $C=\left(c_{i j}\right)_{i, j}$ having only 0 s and 1 s as its entries such that

$$
\begin{aligned}
& \sum_{i=1}^{n} b_{i j}=\sum_{i=1}^{n} c_{i j}, \quad(\forall) 1 \leq j \leq n, \\
& \sum_{j=1}^{n} b_{i j}=\sum_{j=1}^{n} c_{i j}, \quad(\forall) 1 \leq i \leq n
\end{aligned}
$$

Prove that:
i) $\sum_{i, j=1}^{n} a_{i j}\left(b_{i j}-c_{i j}\right)=0$ and $B=C$.
ii) B is invertible if and only if there exists two permutations σ and τ of the set $\{1,2$, $\ldots, n\}$ such that

$$
b_{\tau(1)} \leq a_{\sigma(1)}<b_{\tau(2)} \leq a_{\sigma(2)}<\cdots \leq a_{\sigma(n-1)}<b_{\tau(n)} \leq a_{\sigma(n)} .
$$

62. Let $M_{n}(\mathbb{R})$ denote the set of all real $n \times n$ matrices. Find all surjective functions $f: M_{n}(\mathbb{R}) \rightarrow\{0,1, \ldots, n\}$ which satisfy

$$
f(X Y) \leq \min \{f(X), f(Y)\}
$$

for all $X, Y \in M_{n}(\mathbb{R})$.
63. Let $f(x)=\max _{1 \leq i \leq n}\left|x_{i}\right|$ for $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$ and let $A \in M_{n}(\mathbb{R})$ such that $f(A x)=f(x)$ for all $x \in \mathbb{R}^{n}$. Prove that there exists a positive integer m such that $A^{m}=I_{n}$.
64. Let F be a field and let $P: F \times F \rightarrow F$ be a function such that for every $x_{0} \in F$ the function $y \mapsto P\left(x_{0}, y\right)$ is a polynomial in y and for every $y_{0} \in F$ the function $x \mapsto P\left(x, y_{0}\right)$ is a polynomial in x. Is it true that P is necessarily a polynomial in x and y, when
a) $F=\mathbb{Q}$, the field of rational numbers?
b) F is a finite field?
65. Determine all pairs (a, b) of real numbers for which there exists a unique symmetric 2×2 matrix M with real entries satisfying $\operatorname{tr}(M)=a$ and det $M=b$.
66. Let n be a positive integer. Show that there are positive real numbers $a_{0}, a_{1}, \ldots, a_{n}$ such that, for each choice of signs, the polynomial

$$
\pm a_{n} x^{n} \pm a_{n-1} x^{n-1} \pm \ldots \pm a_{1} x \pm a_{0}
$$

has n distinct real roots.
67. Let $A=\left(a_{i j}\right)_{i, j=1}^{n}$ be a symmetric $n \times n$ matrix with real entries, and let $\lambda_{1}, \lambda_{2}, \ldots$, λ_{n} denote its eigenvalues. Show that

$$
\sum_{1 \leq i<j \leq n} a_{i i} a_{j j} \geq \sum_{1 \leq i<j \leq n} \lambda_{i} \lambda_{j}
$$

and determine all matrices for which equality holds.

