
A STOCHASTIC MOVING BOUNDARY VALUE PROBLEM

KUNWOO KIM, CARL MUELLER, AND RICHARD B. SOWERS

Abstract. We consider a stochastic perturbation of a moving boundary prob-

lem proposed by Ludford and Stewart and studied by Caffarelli and Vazquez.

We prove existence and uniqueness.

1. Introduction

Moving boundary problems are one of the important areas of partial differential
equations. They provide the correct quantitative description of a wide range of
physically interesting phenomena where a system has two phases. However, since
the boundary between these phases is defined implicitly by the behavior of the rest
of the system, they provide deep mathematical challenges in the areas of existence,
uniqueness, and regularity.

Our goal here is to study the effect of noise on a specific free boundary problem
which was introduced by Stewart [Ste85] and subsequently addressed in the mathe-
matics literature (see [CS05, CV95, Vaz96]). Fix a probability triple (Ω,F ,P) and
assume that B is a Brownian motion on (Ω,F ,P). We consider the SPDE
(1)

du(t, x) =
∂2u

∂x2
(t, x)dt+ αu(t, x)dt+ u(t, x) ◦ dBt x > β(t)

lim
x↘β(t)

∂u

∂x
(t, x) = 1

u(0, x) = u◦(x) x ∈ R
{(t, x) ∈ R+ × R | u(t, x) > 0} = {(t, x) ∈ R+ × R | x > β(t)}.

The constant α ∈ R is fixed (we shall later see why it is more natural than not to
include this term). We also assume that the initial condition u◦ ∈ C(R) satisfies
some specific properties:

• u◦ ≡ 0 on R−, u◦ > 0 on (0,∞), and limx↘0
du◦
dx (x) = 1.

• u◦ and its first three derivatives exist on (0,∞) and are square-integrable
(on (0,∞)).

In (1), ◦dBt represents Stratonovich integration, and the last line means that the
boundary between u ≡ 0 and u > 0 is the graph of β.

In fact, it is not yet clear that (1) makes sense. Differential equations are point-
wise statements. Stochastic differential equations are in fact shorthand represen-
tations of corresponding integral equations; pointwise statements typically don’t
make sense. It will take some work to restate the pointwise stochastic statement in
the first line of (1) as a statement about stochastic integrals.
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There has been fairly little written on the effect of noise on moving boundary
problems (see [BDP02] and [CLM06]; see also the work on the stochastic porous
medium equation in [BDPR09, DPR04a, DPR04b, DPRRW06, Kim06]). We note
here that the multiplicative term u in front of the dBt places this work slightly
outside of the purview of the theory of infinite-dimensional evolution equations with
Gaussian perturbations. The multiplicative term is in fact a natural nonlinearity.
It means that bubbles where u is positive cannot spontaneously nucleate within the
region where u = 0.

Our major contributions here are to formulate several techniques which can
(hopefully) be applied to a number of stochastic moving boundary value problems.
In our particular case, where the randomness comes from a single Brownian motion,
several transformations (the transformations of Lemmas 3.3 and 3.5 and (17)) can
transform the problem into a random nonlinear PDE (see (18)). All of these trans-
formations are not in general available when the noise is more complicated, but
most of the techniques we develop here should be. Secondly, the irregularity of the
Brownian driving force requires some detailed analysis, no matter what perspective
one takes; namely in the analysis of Lemma 3.2 and the iterative bounds of Lemma
4.4.

2. Weak Formulation

To see what we mean by (1), let’s replace ◦dB by a smooth path b; the Wong-
Zakai result (cf. [KS91, Section 5.2D]) implies that this is reasonable (and that the
Stratonovich interpretation is correct when we do so). Let’s also assume that there
is only one interface. Namely, consider the PDE

(2)

∂v

∂t
(t, x) =

∂2v

∂x2
+ αv(t, x) + v(t, x)b(t) x > β◦(t)

lim
x↘β◦(t)

∂v

∂x
(t, x) = 1

v(0, x) = u◦(x). x ∈ R
{(t, x) ∈ R+ × R | v(t, x) > 0} = {(t, x) ∈ R+ × R | x > β◦(t)}.

This will be our starting point.
Let’s see what a weak formulation looks like (see [Fri64, Ch. 8]). Fix ϕ ∈

C∞c (R+ × R). Assume that β◦ is differentiable. Define

Uϕ(t)
def
=

∫
x∈R

v(t, x)ϕ(t, x)dx =

∫ ∞
x=β◦(t)

v(t, x)ϕ(t, x)dx.

Differentiating, we get that

U̇ϕ(t) =

∫ ∞
x=β◦(t)

{
∂v

∂t
(t, x)ϕ(t, x) + v(t, x)

∂ϕ

∂t
(t, x)

}
dx− v(t, β◦(t))ϕ(t, β◦(t))β̇◦(t)

and we can use the fact that v(t, β◦(t)) = 0 to delete the last term. We can also
use the PDE for v for x > β◦(t) to rewrite ∂v

∂t . Integrating by parts, we have that∫ ∞
x=β◦(t)

∂2v

∂x2
(t, x)ϕ(t, x)dx

= lim
x↘β◦(t)

{
−∂v
∂x

(t, x)ϕ(t, β◦(t)) + v(t, β◦(t))
∂ϕ

∂x
(t, β◦(t))

}
+

∫ ∞
x=β◦(t)

v(t, x)
∂2ϕ

∂x2
(t, x)dx.
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Again we use the fact that v(t, β◦(t)) = 0, and we can also use the boundary
condition on ∂v

∂x . Recombining things we get the standard formula that

U̇ϕ(t) =

∫
x∈R

v(t, x)

{
∂ϕ

∂t
(t, x) +

∂2ϕ

∂x2
(t, x) + αϕ(t, x)

}
dx

+

{∫
x∈R

v(t, x)ϕ(t, x)dx

}
b(t)− ϕ(t, β◦(t)).

Replacing b by ◦dB, we should have the following formulation: that for any
ϕ ∈ C∞c (R+ × R) and any t > 0,∫

x∈R
u(t, x)ϕ(t, x)dx =

∫
x∈R

u◦(x)ϕ(t, x)dx+

∫ t

r=0

∫
x∈R

u(t, x)

{
∂ϕ

∂t
(r, x) +

∂2ϕ

∂x2
(r, x) + αϕ(r, x)

}
dx dr

+

∫ t

r=0

{∫
x∈R

u(r, x)ϕ(r, x)dx

}
◦ dBr −

∫ t

r=0

ϕ(r, β(r))dr.

The Ito formulation of this would be that∫
x∈R

u(t, x)ϕ(t, x)dx =

∫
x∈R

u◦(x)ϕ(t, x)dx+

∫ t

r=0

∫
x∈R

u(t, x)

{
∂ϕ

∂t
(r, x) +

∂2ϕ

∂x2
(r, x) + α̂ϕ(r, x)

}
dx dr

+

∫ t

r=0

{∫
x∈R

u(r, x)ϕ(r, x)dx

}
dBr −

∫ t

r=0

ϕ(r, β(r))dr

where α̂ = α+ 1
2 .

Remark 2.1 Thus the structure of the SPDE (1) is invariant under Ito and Stratonovich
formulations; this is the motivation for including α in (1)

We can now formally define a weak solution of (1). In this definition, we allow

for blowup. We let Ft
def
= σ{Bs; 0 ≤ s ≤ t} for all t ≥ 0; then B is a Brownian

motion with respect to {Ft}t>0 and stochastic integration against B will be with
respect to this filtration.

Definition 2.2. A weak solution of (1) is a predictable path {u(t, ·) | 0 ≤ t < τ}
in C(R) ∩ L1(R), where τ is a predictable stopping time with respect to {Ft}t>0,
such that for any ϕ ∈ C∞c (R+ × R) and any finite stopping time τ ′ < τ ,∫

x∈R
u(τ ′, x)ϕ(t, x)dx =

∫
x∈R

u◦(x)ϕ(τ ′, x)dx+

∫ τ ′

r=0

∫
x∈R

u(t, x)

{
∂ϕ

∂t
(r, x) +

∂2ϕ

∂x2
(r, x) + α̂ϕ(t, x)

}
dx dr

+

∫ τ ′

r=0

{∫
x∈R

u(r, x)ϕ(r, x)dx

}
dBr −

∫ τ ′

r=0

ϕ(r, β(r))dr

and where

{(t, x) ∈ [0, τ)× R | u(t, x) > 0} = {(t, x) ∈ [0, τ)× R | x > β(t)}.

Our main existence and uniqueness theorems are the following. The arguments
leading up to these results will come together in Section 4.

Theorem 2.3 (Existence). A solution of (1) exists. Furthermore, u(t, ·) ∈ C2[β(t),∞)
for all t ∈ [0, τ) and

τ ≤ inf

{
t ≥ 0 :

∣∣∣∣∂2u∂x2
(t−, β(t))

∣∣∣∣ =∞
}
.

Proof. Combine Lemmas 4.6 and 4.7. �
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We also have uniqueness.

Theorem 2.4 (Uniqueness). Suppose that {ũ1(t, ·); 0 ≤ t < τ1} and {ũ2(t, ·); 0 ≤
t < τ2} are two solutions of (1). Assume that for i ∈ {1, 2}, the map x 7→ ui(t, x−
βi(t)) has three generalized square-integrable derivatives on (0,∞). Then u1(t, ·) =
u2(t, ·) for 0 ≤ t < min{τ1, τ2}.

Proof. The proof follows from Lemma 4.8. �

3. Regularity and a Transformation

The proof of Theorems 2.3 and 2.4 will hinge upon a transformation of (1) into a
nonlinear integral equation on a fixed (as opposed to an implicitly defined) domain;
we will address this in Subsection 3.2. First, however, let’s make sure that we
understand a bit about regularity; this will illuminate the assumptions needed.

3.1. Regularity. While regularity of moving boundary-value problems is an in-
credibly challenging area (see [CS05]), we can make some headway. Namely, if we
assume enough regularity for the boundary, we can get better control of the sense
in which the boundary behavior holds.

The following representation result will help us in carrying out this analysis.
Define
(3)

p◦(t, x)
def
=

1√
4πt

exp

[
−x

2

4t

]
t > 0, x ∈ R

p±(t, x, y)
def
= {p◦(t, x− y)± p◦(t, x+ y)} eαt = {p◦(t, x− y)± p◦(t,−x− y)} eαt t > 0, x, y ∈ R

p̂±(t, x, y)
def
= {p◦(t, x− y)± p◦(t, x+ y)} eα̂t = {p◦(t, x− y)± p◦(t,−x− y)} eα̂t; t > 0, x, y ∈ R

the second representations of p± and p̂± stem from the fact that p◦ is even in
its second argument. The distinction between p± and p̂± naturally lies in the
distinction between Ito and Stratonovich calculations. We then have that

(4)

∂p±
∂t

(t, x, y) =
∂2p±
∂y2

(t, x, y) + αp±(t, x, y) t > 0, x, y ∈ R

∂p̂±
∂t

(t, x, y) =
∂2p̂±
∂y2

(t, x, y) + α̂p̂±(t, x, y) t > 0, x, y ∈ R

lim
t↘0

p±(t, x, ·) = lim
t↘0

p̂±(t, x, ·) = δx; x ∈ R \ {0}

the relevant distinction between p+ and p− is their behavior at x = 0. This will
come up in the arguments of Lemma 3.2.

Lemma 3.1. Let u be a weak solution of (1) and assume that β is continuous. If
0 < t < τ and x > β(t), then
(5)

u(t, x) = −
∫ t

s=0

eBt−Bsp±(t−s, x−β(t), β(s)−β(t))ds+eBt
∫
y∈R

p±(t, x−β(t), y−β(t))u◦(y)dy.

Furthermore, u(t, ·) is C∞ on (β(t),∞).

Proof. Fix t > 0, x ∈ R, δ > 0 and c ∈ R and define

ϕt,x,δ,c(s, y)
def
= p̂±(t+ δ − s, x− c, y − c) s ∈ [0, t], y ∈ R
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Ut,x,δ,c(s)
def
=

∫
y∈R

ϕt,x,δ,c(s, y)u(s, y)dy. s < τ

Fix next a finite stopping time τ ′ < τ . For s ∈ [0, t], we have that
(6)

Ut,x,δ,c(s ∧ τ ′) = Ut,x,δ,c(0) +

∫ s∧τ ′

r=0

Ut,x,δ,c(r)dBr −
∫ s∧τ ′

r=0

ϕt,x,δ,c(r, β(r))dr

= Ut,x,δ,c(0) +

∫ s

r=0

Ut,x,δ,c(r ∧ τ ′)χ[0,τ ′](r)dBr −
∫ s

r=0

ϕt,x,δ,c(r, β(r))χ[0,τ ′](r)dr.

Thus by Ito’s formula and some simple calculations, we have that

Ut,x,δ,c(s∧τ ′) exp

[
−Bs +

1

2
s

]
= Ut,x,δ,c(0)−

∫ s

r=0

Ut,x,δ,c(r∧τ ′) exp

[
−Br +

1

2
r

]
χ(τ ′,∞)(r)dBr

+
1

2

∫ s

r=0

Ut,x,δ,c(r ∧ τ ′) exp

[
−Br +

1

2
r

]
χ(τ ′,∞)(r)dr

−
∫ s

r=0

ϕt,x,δ,c(r, β(r)) exp

[
−Br +

1

2
r

]
χ[0,τ ′](r)dr

for all s ∈ [0, t]. Taking s = t ∧ τ ′, we have that

Ut,x,δ,c(t∧τ ′) exp

[
−Bt∧τ ′ +

1

2
t ∧ τ ′

]
= Ut,x,δ,c(0)−

∫ t∧τ ′

r=0

ϕt,x,δ,c(r, β(r)) exp

[
−Br +

1

2
r

]
dr

and thus (using the fact that the integral is against ds)

Ut,x,δ,c(t ∧ τ ′) = Ut,x,δ,c(0) exp

[
Bt∧τ ′ −

1

2
t ∧ τ ′

]
−
∫ t∧τ ′

r=0

ϕt,x,δ,c(r, β(r)) exp

[
Bt∧τ ′ −Br −

1

2
(t ∧ τ ′ − r)

]
dr.

Next taking τ ′ ↗ τ , we have that

Ut,x,δ,c(t∧τ) = Ut,x,δ,c(0) exp

[
Bt∧τ −

1

2
t ∧ τ

]
−
∫ t∧τ

r=0

ϕt,x,δ,c(r, β(r)) exp

[
Bt∧τ −Br −

1

2
(t ∧ τ − r)

]
dr.

Again using the fact that this is an integral against ds, we can take c = β(t). If
t < τ , then

Ut,x,δ,β(t)(t) = Ut,x,δ,β(t)(0) exp

[
Bt −

1

2
t

]
−
∫ t

r=0

ϕt,x,δ,β(t)(r, β(r)) exp

[
Bt −Br −

1

2
(t− r)

]
dr.

If t < τ , x > β(t), and β is continuous,

inf
0≤s≤t

{|t− s|+ |(x− β(t))− (β(t)− β(s))|} = min
0≤s≤t

{|t− s|+ |(x− β(t))− (β(t)− β(s))|} > 0

inf
0≤s≤t

{|t− s|+ |(x− β(t)) + (β(t)− β(s))|} = min
0≤s≤t

{|t− s|+ |(x− β(t)) + (β(t)− β(s))|} > 0.

Thus

lim
δ↘0

sup
0≤s≤t

∣∣ϕt,x,δ,β(t)(s, β(s))− p̂±(t− s, x− β(t), β(s)− β(t))
∣∣ = 0

lim
δ↘0

sup
y∈R

∣∣ϕt,x,δ,β(t)(0, y)− p̂±(t, x− β(t), y − β(t))
∣∣ = 0.

This gives us the claimed representation result. We can then differentiate to get
the claimed smoothness. �
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Note that (5) is not an explicit formula for u since the right-hand side of (5) depends
on u through β. We also note that the proof effectively converts the Ito integral of
(6) into a Stratonovich one, implying that p̂± is converted back into p±.

Next, let’s see what happens if we in fact assume that β is continuously differen-
tiable. It turns out that not only does the boundary behavior of (1) hold pointwise,
but we can find an evolution equation for β (which depends on u). To get the gen-
eral idea of this latter fact, let’s return to our deterministic PDE (2). By definition
v(t, β◦(t)) = 0, so differentating (and using an approximation just to the right of
β◦) we get that

∂v

∂t
(t, β◦(t)) +

∂v

∂x
(t, β◦(t))β̇◦(t) = 0.

Using the PDE for v and the boundary conditions (again, a rigorous proof would
require pushing the calculation just a bit to the right of β◦), we get that in fact

(7) β̇◦(t) = −
{
∂2v

∂x2
(t, β◦(t)) + αv(t, β◦(t))

}
= −∂

2v

∂x2
(t, β◦(t)).

For the SPDE (1) we should have the same result (since the noise term vanishes at
the boundary).

To proceed, let’s rewrite (5) in a slightly more convenient way. If {u(t, ·) | 0 ≤
t < τ} is a weak solution of (1) and 0 < t < τ , set

A1(t, ε)
def
=

∫ t

s=0

exp [Bt −Bt−s + αs] p◦(s, ε+ β(t)− β(t− s))ds ε ∈ R \ {0}

A±2 (t, ε)
def
= eBt

∫
y∈R

p±(t, ε, y − β(t))u◦(y)dy. ε ∈ R

Then some simple manipulation (which reflects the second representation of p± in
(3) and the fact that p◦ is even in its second argument) shows that
(8)
u(t, β(t) + ε) = −A1(t, ε)−A1(t,−ε) +A+

2 (t, ε) = −A1(t, ε) +A1(t,−ε) +A−2 (t, ε).

We in fact have

Lemma 3.2. Let {u(t, ·) | 0 ≤ t < τ} be a solution of (1). If β is continuously
differentiable, then

(9) lim
x↘β(t)

∂u

∂x
(t, x) = 1 and lim

x↘β(t)

∂2u

∂x2
(t, x) = −β̇(t)

for all t ∈ [0, τ).

Proof. From (8), we have that

∂u

∂x
(t, β(t) + ε) = −∂A1

∂ε
(t, ε) +

∂A1

∂ε
(t,−ε) +

∂A+
2

∂ε
(t, ε)

∂2u

∂x2
(t, β(t) + ε) = −∂

2A1

∂ε2
(t, ε) +

∂2A1

∂ε2
(t,−ε) +

∂2A−2
∂ε2

(t, ε).

Note that
(10)
∂p◦
∂x

(t, x) = − 1

2
√

4π

x

t3/2
exp

[
−x

2

4t

]
and

∂2p◦
∂x2

(t, x) =
1

2
√

4πt3/2

{
x2

2t
− 1

}
exp

[
−x

2

4t

]
.
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Thus

∂A1

∂ε
(t, ε) =

∫ t

s=0

exp [Bt −Bt−s − αs]
∂p◦
∂x

(s, ε+ β(t)− β(t− s))ds

= − 1

2
√

4π

∫ t

s=0

exp [Bt −Bt−s + αs]
ε+ β(t)− β(t− s)

s3/2
exp

[
− (ε+ β(t)− β(t− s))2

4s

]
ds

= −Ã1,1(t, ε)− Ã1,2(t, ε)

∂2A1

∂ε2
(t, ε) =

∫ t

s=0

exp [Bt −Bt−s + αs]
∂2p◦
∂x2

(s, ε+ β(t)− β(t− s))ds

=
1

2
√

4π

∫ t

s=0

exp [Bt −Bt−s + αs]

{
(ε+ β(t)− β(t− s))2

2s
− 1

}

× exp

[
− (ε+ β(t)− β(t− s))2

4s

]
1

s3/2
ds

= Ã2,1(t, ε) + Ã2,2(t, ε) + Ã2,3(t, ε)

where

Ã1,1(t, ε) =
1

2
√

4π

∫ t

s=0

exp [Bt −Bt−s + αs]
ε

s3/2
exp

[
− (ε+ β(t)− β(t− s))2

4s

]
ds

Ã1,2(t, ε) =
1

2
√

4π

∫ t

s=0

exp [Bt −Bt−s + αs]
β(t)− β(t− s)

s3/2
exp

[
− (ε+ β(t)− β(t− s))2

4s

]
ds

Ã2,1(t, ε) =
1

2
√

4π

∫ t

s=0

exp [Bt −Bt−s + αs]

{
ε2

2s
− 1

}
exp

[
− (ε+ β(t)− β(t− s))2

4s

]
1

s3/2
ds

Ã2,2(t, ε) =
1

2
√

4π

∫ t

s=0

exp [Bt −Bt−s + αs]
ε

s3/2
β(t)− β(t− s)

s
exp

[
− (ε+ β(t)− β(t− s))2

4s

]
ds

Ã2,3(t, ε) =
1

4
√

4π

∫ t

s=0

exp [Bt −Bt−s + αs]
(β(t)− β(t− s))2

s5/2
exp

[
− (ε+ β(t)− β(t− s))2

4s

]
ds.

Since β is by assumption continuously differentiable,

K
def
= sup

0<δ≤t

|β(t)− β(t− δ)|
δ

is finite. Thus ∣∣∣∣β(t)− β(t− s)
s3/2

∣∣∣∣ ≤ K

s1/2∣∣∣∣∣ (β(t)− β(t− s))2

s5/2

∣∣∣∣∣ ≤ K2

s1/2

for all s ∈ (0, t]. Since s 7→ 1√
s

is integrable on (0, t], we can use dominated

convergence to see that

lim
ε→0

Ã1,2(t, ε) =
1

2
√

4π

∫ t

s=0

exp [Bt −Bt−s + αs]
β(t)− β(t− s)

s3/2
exp

[
− (β(t)− β(t− s))2

4s

]
ds
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lim
ε→0

Ã2,3(t, ε) =
1

4
√

4π

∫ t

s=0

exp [Bt −Bt−s + αs]
(β(t)− β(t− s))2

s5/2
exp

[
− (β(t)− β(t− s))2

4s

]
ds.

To understand Ã1,1, Ã2,2 and Ã2,3 we make the change of variables u = |ε|/
√
s

and rearranging things to get that

Ã1,1(t, ε) = sgn(ε)
1√
4π

∫ ∞
u=|ε|/

√
t

exp
[
Bt −Bt−ε2/u2 + αε2/u2

]
exp

[
−u

2

4

(
1 +

β(t)− β(t− ε2/u2)

ε

)2
]
du

Ã2,2(t, ε) =
sgn(ε)√

4π

∫ ∞
u=|ε|/

√
t

exp
[
Bt −Bt−ε2/u2 + αε2/u2

] β(t)− β(t− ε2/u2)

ε2/u2

× exp

[
−u

2

4

(
1 +

β(t)− β(t− ε2/u2)

ε

)2
]
du.

Suppose that ε < 1/(2K). If u ≥ 1, then∣∣∣∣β(t)− β(t− ε2/u2)

ε

∣∣∣∣ ≤ K ε

u2
≤ Kε ≤ 1

2

in which case

(11) exp

[
−u

2

4

(
1 +

β(t)− β(t− ε2/u2)

ε

)2
]
≤ exp

[
−u

2

16

]
.

On the other hand, if u < 1, we obviously have that

exp

[
−u

2

4

(
1 +

β(t)− β(t− ε2/u2)

ε

)2
]
≤ 1.

Dominated convergence here ensures that

lim
ε→0

1

sgn(ε)
Ã1,1(t, ε) =

1√
4π

∫ ∞
u=0

exp

[
−u

2

4

]
du =

1

2

lim
ε→0

1

sgn(ε)
Ã2,2(t, ε) =

β̇(t)√
4π

∫ ∞
u=0

exp

[
−u

2

4

]
du =

β̇(t)

2
.

We next consider Ã2,1(t, ε). In fact, we should jointly consider Ã2,1(t, ε) and

Ã2,1(t,−ε). We have that

Ã2,1(t, ε)−Ã2,1(t,−ε) =
1

2

∫ t

s=0

exp [Bt −Bt−s]
(
ε2

2s
− 1

)
p−(s, ε, β(t)−β(t−s))1

s
ds.

The value of this is that p−(s, ε, 0) = 0 for all s > 0 and ε ∈ R. We also note that

∂p−
∂y

(t, x, 0) = −2
∂p◦
∂x

(t, x)eαt t > 0, x ∈ R

and

∂2p−
∂y2

(t, x, y) =

{
∂2p◦
∂x2

(t, x− y)− ∂2p◦
∂x2

(t, x+ y)

}
eαt

=

{
∂2p◦
∂x2

(t, x− y)− ∂2p◦
∂x2

(t,−x− y)

}
eαt

t > 0, x ∈ R, y ∈ R
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where the last representation uses the fact that p◦ is even in its second argument.
Thus

p−(s, ε, β(t)− β(t− s)) = −2 (β(t)− β(t− s)) ∂p◦
∂x

(s, ε)eαs

+ (β(t)− β(t− s))2eαs
∫ 1

r=0

(1− r)∂
2p◦
∂x2

(s, ε− r(β(t)− β(t− s))) dr

− (β(t)− β(t− s))2eαs
∫ 1

r=0

(1− r)∂
2p◦
∂x2

(s,−ε− r(β(t)− β(t− s))) dr.

Thus

Ã2,1(t, ε)− Ã2,1(t,−ε) = Ãa2,1(t, ε) + Ãb2,1(t, ε)− Ãb2,1(t,−ε) + Ãc2,1(t, ε)− Ãc2,1(t, ε)

where

Ãa2,1(t, ε) = −
∫ t

s=0

exp [Bt −Bt−s + αs]

(
ε2

2s
− 1

)
β(t)− β(t− s)

s

∂p◦
∂x

(s, ε)ds

Ãb2,1(t, ε) =
1

2

∫ t

s=0

∫ 1

r=0

exp [Bt −Bt−s + αs]
ε2

2s

(β(t)− β(t− s))2

s

∂2p◦
∂x2

(s, ε− r(β(t)− β(t− s))) dr ds

=
ε2

4

∫ t

s=0

∫ 1

r=0

exp [Bt −Bt−s + αs]

(
β(t)− β(t− s)

s

)2
∂2p◦
∂x2

(s, ε− r(β(t)− β(t− s))) dr ds

Ãc2,1(t, ε) = −1

2

∫ t

s=0

∫ 1

r=0

exp [Bt −Bt−s + αs]
(β(t)− β(t− s))2

s

∂2p◦
∂x2

(s, ε− r(β(t)− β(t− s))) dr ds

= −1

2

∫ t

s=0

∫ 1

r=0

exp [Bt −Bt−s + αs]

(
β(t)− β(t− s)

s

)2

s
∂2p◦
∂x2

(s, ε− r(β(t)− β(t− s))) dr ds.

We will again use the transformation u = |ε|/
√
s. We compute that for ε > 0

Ãa2,1(t, ε) = − 1

2
√

4π

∫ t

s=0

exp [Bt −Bt−s + αs]

(
ε2

2s
− 1

)
β(t)− β(t− s)

s

ε

s3/2
exp

[
− ε

2

4s

]
ds

= − sgn(ε)

∫ ∞
u=ε/

√
t

exp
[
Bt −Bt−ε2/u2 + αε2/u2

](u2
2
− 1

)
β(t)− β(t− ε2/u2)

ε2/u2

× exp

[
−u

2

4

]
1√
4π
du.

Thus by dominated convergence,

lim
ε↘0

Ãa2,1(t, ε) = β̇(t)

∫ ∞
u=0

(
u2

2
− 1

)
exp

[
−u

2

4

]
1√
4π
du = 0.

Similarly,

Ãb2,1(t, ε) =
ε

2

∫ ∞
u=|ε|/

√
t

∫ 1

r=0

exp
[
Bt −Bt−ε2/u2 + αε2/u2

](β(t)− β(t− ε2/u2)

ε2/u2

)2

×
(
ε3/u3

) ∂2p◦
∂x2

(
ε2/u2, ε− r(β(t)− β(t− ε2/u2))

)
dr du.

From the second equality of (10), we see that there is a K > 0 such that

(12)

∣∣∣∣∂2p◦∂x2
(s, x)

∣∣∣∣ ≤ K

s3/2
exp

[
−x

2

8s

]
≤ K

s3/2



10 KUNWOO KIM, CARL MUELLER, AND RICHARD B. SOWERS

for all s ∈ (0, t] and x ∈ R. Assume again that ε < 1/(2K). If u ≤ 1, then∣∣∣∣(ε3/u3) ∂2p◦∂x2
(
ε2/u2, ε− r(β(t)− β(t− ε2/u2))

)∣∣∣∣ ≤ K
(
ε3/u3

)
(ε2/u2)

3/2
= K.

On the other hand, if u ≥ 1, we have that∣∣∣∣(ε3/u3) ∂2p◦∂x2
(
ε2/u2, ε− r(β(t)− β(t− ε2/u2))

)∣∣∣∣
≤ K

(
ε3/u3

)
(ε2/u2)

3/2
exp

[
−
(
ε− r(β(t)− β(t− ε2/u2))

)2
4ε2/u2

]

≤ K exp

[
−u

2

4

(
1− rβ(t)− β(t− ε2/u2)

ε

)2
]
≤ K exp

[
−u

2

8

]
by again using (11). Combining things together, we see that there is a K > 0 such
that ∣∣∣Ãb2.1(t, ε)

∣∣∣ ≤ Kε∫ ∞
u=0

exp

[
−u

2

8

]
du = Kε

√
2π;

thus indeed

lim
ε→0

Ãb2.1(t, ε) = 0.

We next turn to Ãc2.1. We here use the last bound of (12). Since s 7→ 1/
√
s is

integrable on (0, 1], we can use dominated convergence to see that

lim
ε→0

Ãc2,ε(t, ε) = −1

2

∫ t

s=0

∫ 1

r=0

exp [Bt −Bt−s + αs]

(
β(t)− β(t− s)

s

)2

s
∂2p◦
∂x2

(s, r(β(t)− β(t− s))) dr ds,

this integral being finite. We have again availed ourselves of the fact that p◦ is even
in its second argument.

Finally, let’s understand the relevant behavior of A±2 . We have that

lim
ε↘0

∂A+
2

∂ε
(t, ε) = eBt

∫
y∈R

∂p+
∂x

(t, 0, y − β(t))u◦(y)dy

lim
ε↘0

∂2A−2
∂ε2

(t, ε) = eBt
∫
y∈R

∂2p−
∂x2

(t, 0, y − β(t))u◦(y)dy.

From the second expression for p± in (3), we have that

∂p+
∂x

(t, 0, y) = eαt
{
∂p◦
∂x

(t,−y)− ∂p◦
∂x

(t,−y)

}
= 0.

We also have that p−(t, 0, y) = 0 for all t > 0, so

∂2p−
∂x2

(t, 0, y) =
∂p−
∂t

(t, 0, y)− αp−(t, 0, y) = 0.

Thus in fact

lim
ε↘0

∂A+
2

∂ε
(t, ε) = 0 and lim

ε↘0

∂2A−2
∂ε2

(t, ε) = 0.

Combining things together, we indeed get (9). �
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3.2. A Transformation. The characterization of β given in (9) allows us to rewrite
the moving boundary-value problem in a more convenient way. The calculation
which gives us some analytical traction is found in [Lun04] (see also [Fri64, Ch. 8]).
Again, let’s return to our deterministic PDE (2). For all t ≥ 0 and x ∈ R, define
ṽ(t, x) = v(t, x + β◦(t)) + e−x. Then v(t, x) = ṽ(t, x − β◦(t)) − exp [−x+ β◦(t)].
Assuming that β◦ is differentiable, we have that for x > 0 and t > 0,

(13)

∂ṽ

∂t
(t, x) =

∂v

∂t
(t, x+ β◦(t)) +

∂v

∂x
(t, x+ β◦(t))β̇◦(t)

∂ṽ

∂x
(t, x) =

∂v

∂x
(t, x+ β◦(t))− e−x

∂2ṽ

∂x2
(t, x) =

∂2v

∂x2
(t, x+ β◦(t)) + e−x.

We can combine these equations and use the PDE for v to rewrite the evolution of
ṽ as

(14)

∂ṽ

∂t
(t, x) =

∂2v

∂x2
(t, x+ β◦(t)) + αv(t, x+ β◦(t)) + v(t, x+ β◦(t))b(t)

+
∂v

∂x
(t, x+ β◦(t))β̇◦(t)

=
∂2ṽ

∂x2
(t, x)− e−x + α

(
ṽ(t, x)− e−x

)
+

(
∂ṽ

∂x
(t, x) + e−x

)
β̇◦(t)

+
(
ṽ(t, x)− e−x

)
b(t).

Note also that
∂ṽ

∂x
(t, 0) = 1− 1 = 0.

Furthermore, ṽ(t, 0) = 1 for all t > 0, so evaluating (14) at x = 0 (or more
accurately, as x↘ 0), we get that

0 =
∂ṽ

∂t
(t, 0) =

∂2ṽ

∂x2
(t, 0)− 1 + β̇◦(t).

Thus in fact

(15) β̇◦(t) = 1− ∂2ṽ

∂x2
(t, 0);

alternately by combining (7) and the last line of (13), we have that

β̇◦(t) = −∂
2v

∂x2
(t, β◦(t)) = −

{
∂2ṽ

∂x2
(0, x)− 1

}
.

Inserting the dynamics of β◦ back into (14) we can collect things and get a PDE
for ṽ; we have that

∂ṽ

∂t
(t, x) =

∂2ṽ

∂x2
(t, x)− e−x + α

(
ṽ(t, x)− e−x

)
+

(
∂ṽ

∂x
(t, x) + e−x

)(
1− ∂2ṽ

∂x2
(t, 0)

)
+
(
ṽ(t, x)− e−x

)
b(t) t > 0, x > 0

∂ṽ

∂x
(t, 0) = 0 t > 0

ṽ(0, x) = ũ◦(x)
def
= u◦(x) + e−x x > 0

Replacing b by our Brownian motion B and α by α̂, we now get the following.
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Lemma 3.3. Suppose that {u(t, ·) | 0 ≤ t < τ} ⊂ C(R)∩L(R) is a weak solution of
(1). Suppose also that β is continuously differentiable and {Ft}t≥0-adapted. Then
ũ(t, x) = u(t, x+ β(t)) + e−x satisfies the integral equation
(16)

ũ(t, x) =

∫ ∞
y=0

p̂+(t, x, y)
(
u◦(y) + e−y

)
dy

+

∫ t

s=0

∫ ∞
y=0

p̂+(t− s, x, y)

{(
∂ũ

∂x
(s, y) + e−y

)(
1− ∂2ũ

∂x2
(s, 0)

)
− (α̂+ 1)e−y

}
dy ds

+

∫ t

s=0

∫ ∞
y=0

p̂+(t− s, x, y)
{
ũ(s, y)− e−y

}
dy dBs

for all t > 0 and x > 0.

Thanks to Lemmas 3.1 and 3.2, the assumption that β is continuously differentiable
ensures that the spatial derivatives of ũ on the right-hand side of (16) are well-
defined.

Proof of Lemma 3.3. Fix x > 0 and T > 0. For t ∈ [0, τ), define

UT (t)
def
=

∫ ∞
y=0

ũ(t, y)p̂+(T − t, x, y)dy = AT1 (t) +AT2 (t)

where

AT1 (t) =

∫ ∞
y=0

u(t, y + β(t))p̂+(T − t, x, y)dy =

∫ ∞
y=β(t)

u(t, y)p̂+(T − t, x, y − β(t))dy

=

∫
y∈R

u(t, y)p̂+(T − t, x, y − β(t))dy

AT2 (t) =

∫ ∞
y=0

e−yp̂+(T − t, x, y)dy.

Using Definition 2.2 and (4), we get that

dAT1 (t) =

∫
y∈R

u(t, y)

{
−∂p̂+
∂t

(T − t, x, y − β(t)) +
∂2p̂+
∂y2

(T − t, x, y − β(t))

+α̂p̂+(T − t, x, y − β(t))− ∂p̂+
∂y

(T − t, x, y − β(t))β̇(t)

}
dxdt

+

{∫
y∈R

u(t, y)p̂+(T − t, x, y − β(t))dy

}
dBt − p̂+(T − t, x, 0)dt

= −

{∫ ∞
y=β(t)

u(t, y)
∂p̂+
∂y

(T − t, x, y − β(t))dx

}
β̇(t)dt

+

{∫ ∞
y=β(t)

u(t, y)p̂+(T − t, x, y − β(t))dy

}
dBt − p̂+(T − t, x, 0)dt

=

{∫ ∞
y=β(t)

∂u

∂y
(t, y)p̂+(T − t, x, y − β(t))dx

}
β̇(t)dt

+

{∫ ∞
y=β(t)

u(t, y)p̂+(T − t, x, y − β(t))dy

}
dBt − p̂+(T − t, x, 0)dt
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=

{∫ ∞
y=0

∂u

∂y
(t, y + β(t))p̂+(T − t, x, y)dx

}
β̇(t)dt

+

{∫ ∞
y=0

u(t, y + β(t))p̂+(T − t, x, y)dy

}
dBt − p̂+(T − t, x, 0)dt

=

{∫ ∞
y=0

(
∂ũ

∂y
(t, y) + e−y

)
p̂+(T − t, x, y)dx

}
β̇(t)dt

+

{∫ ∞
y=0

(
ũ(t, y)− e−y

)
p̂+(T − t, x, y)dy

}
dBt − p̂+(T − t, x, 0)dt.

We have here used the fact that u(t, β(t)) = 0. We have also employed a fairly
straightforward generalization of the integral equality in Definition 2.2 to pre-
dictable integrands; the continuous differentiability and adaptedness of β allow
us to apply this. Combining the characterization of β̇ as in Lemma 3.2 and a
calculation as in (15), we get that

β̇(t) = 1− ∂2ũ

∂x2
(t, 0).

Thus

AT1 (t) =

∫ t

s=0

{∫ ∞
y=0

(
∂ũ

∂y
(s, y) + e−y

)(
1− ∂2ũ

∂x2
(s, 0)

)
p̂+(T − s, x, y)dy

}
ds

+

∫ t

s=0

{∫ ∞
y=0

(
ũ(s, y)− e−y

)
p̂+(T − s, x, y)dy

}
dBs −

∫ t

s=0

p̂+(T − s, x, 0)ds.

A straightforward differentiation, on the other hand, shows that

ȦT2 (t) = −
∫ ∞
y=0

e−y
∂p̂+
∂t

(T − t, x, y)dy

= −
∫ ∞
y=0

e−y
∂2p̂+
∂y2

(T − t, x, y)dy −
∫ ∞
y=0

e−yα̂p̂+(T − t, x, y)dy

=
∂p̂+
∂y

(T − t, x, 0) + p̂+(T − t, x, 0)− (α̂+ 1)

∫ ∞
y=0

e−yp̂+(T − t, x, y)dy.

Note that ∂p̂+
∂y (T − t, x, 0) = 0. Combine things to get that

UT (t) = UT (0) +

∫ t

s=0

{∫ ∞
y=0

(
∂ũ

∂y
(s, y) + e−y

)(
1− ∂2ũ

∂x2
(s, 0)

)
p̂+(T − s, x, y)dy

}
ds

− (α̂+ 1)

∫ t

s=0

{∫ ∞
y=0

e−yp̂+(T − s, x, y)dy

}
ds

+

∫ t

s=0

{∫ ∞
y=0

(
ũ(s, y)− e−y

)
p̂+(T − s, x, y)dy

}
dBs.

Now let T ↘ t to get the claimed result. �

Of course (16) is equivalent to the SPDE

dũ(t, x) =

{
∂2ũ

∂x2
(t, x) + α̂

(
ũ(t, x)− e−x

)
− e−x +

(
∂ũ

∂x
(t, x) + e−x

)(
1− ∂2ũ

∂x2
(t, 0)

)}
dt

+
(
ũ(t, x)− e−x

)
dBt t > 0, x > 0
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∂ũ

∂x
(t, 0) = 0 t > 0

ũ(0, x) = ũ◦(x) = u◦(x) + e−x. x > 0

We can also find a converse to Lemma 3.3. First of all note the following.

Lemma 3.4. Suppose that {ũ(t, ·) | 0 ≤ t < τ} ⊂ C2(R+) satisfies (16). Then
ũ(t, 0) = 1 for all 0 ≤ t < τ . Furthermore, ũ(t, x) > 0 for all t ≥ 0 and x ≥ 0.

Proof. Let’s first smooth things out. Fix δ > 0 and define

ũδ(t, x)
def
=

∫ ∞
y=0

p̂+(δ, x, y)ũ(t, y)dy =

∫ ∞
y=0

p̂+(t+ δ, x, y)
(
u◦(y) + e−y

)
dy

+

∫ t

s=0

∫ ∞
y=0

p̂+(t+ δ − s, x, y)

{(
∂ũ

∂x
(s, y) + e−y

)(
1− ∂2ũ

∂x2
(s, 0)

)
− (α̂+ 1)e−y

}
dy ds

+

∫ t

s=0

∫ ∞
y=0

p̂+(t+ δ − s, x, y)
{
ũ(s, y)− e−y

}
dy dBs;

we have of course used the fact that p̂+ is a semigroup of integral kernels. For each
x > 0, some straightforward computations show that

dũδ(t, x)
def
=

{
∂2ũδ
∂x2

(t, x) + α̂ũδ(t, x)

}
dt

+

(∫ ∞
y=0

p̂+(δ, x, y)

{(
∂ũ

∂x
(s, y) + e−y

)(
1− ∂2ũ

∂x2
(s, 0)

)
− (α̂+ 1)e−y

}
dy

)
dt

+

(∫ ∞
y=0

p̂+(δ − s, x, y)
{
ũ(s, y)− e−y

}
dy

)
dBt.

We now let δ ↘ 0 and use the assumed continuity of ũ. We also fix ε > 0 and
evaluate the result at x = ε. We get that

ũ(t, ε) = ũ◦(ε) +

∫ t

s=0

∂2ũ

∂x2
(s, ε)ds+ α̂

∫ t

s=0

ũ(s, ε)ds

+

∫ t

s=0

(
∂ũ

∂x
(s, ε) + e−s

)(
1− ∂2ũ

∂x2
(s, 0)

)
ds− (α̂+ 1)

∫ t

s=0

e−εds

+

∫ t

s=0

(
ũ(s, ε)− e−ε

)
dBs

= ũ◦(ε) +

∫ t

s=0

{
∂2ũ

∂x2
(s, ε)− ∂2ũ

∂x2
(s, 0)

(
∂ũ

∂x
(s, ε) + e−s

)}
ds

+

∫ t

s=0

∂ũ

∂x
(s, ε)ds+

∫ t

s=0

(
ũ(s, ε)− e−ε

)
dBs.

Letting ε↘ 0, we see that

ũ(t, 0) = 1 +

∫ 1

s=0

(ũ(s, 0)− 1) dBs

or alternately

ũ(t, 0)− 1 =

∫ 1

s=0

(ũ(s, 0)− 1) dBs

which indeed implies that ũ(t, 0) = 1 for all t ∈ [0, τ).
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To see the positivity, we define

(17) u∗(t, x)
def
=
(
ũ(t, x)− e−x

)
e−Bt . t ≥ 0, x ≥ 0

Some straightforward calculations show that u∗ satisfies the random PDE
(18)
∂u∗

∂x
(t, x) =

∂2u∗

∂x2
(t, x) + αu∗(t, x)−

(
∂2u∗

∂x2
(t, 0)eBt

)
∂u∗

∂x
(t, x) t > 0, x > 0

u∗(t, 0) = e−Bt t > 0

u∗(0, x) = u◦(x). x > 0

Note that e−Bt > 0 for all t > 0 and u◦(x) > 0 for all x > 0. Standard calculations
for the heat equation then ensure that indeed u∗(t, x) > 0 for all t > 0 and x∗ >
0. �

We then have

Lemma 3.5. Suppose that {ũ(t, ·) | 0 ≤ t < τ} ⊂ C2(R+) ∩ L1(R+) satisfies (16).
Set

(19) β(t) =

∫ t

s=0

{
1− ∂2ũ

∂x2
(s, 0)

}
ds 0 ≤ t < τ

and define

(20) u(t, x)
def
=

{
ũ(t, x− β(t))− exp [− (x− β(t))] x ≥ β(t), 0 ≤ t < τ

0 x < β(t), 0 ≤ t < τ

Then {u(t, ·) | 0 ≤ t < τ} is a weak solution of (1).

Proof. Fix ϕ ∈ C∞c (R+ × R) and define

U(t)
def
=

∫
x∈R

ϕ(t, x)u(t, x)dx = A1(t)−A2(t) 0 ≤ t < τ

where

A1(t) =

∫ ∞
x=β(t)

ϕ(t, x)ũ(t, x− β(t))dx =

∫ ∞
x=0

ϕ(t, x+ β(t))ũ(t, x)dx

A2(t) =

∫ ∞
x=β(t)

ϕ(t, x) exp [−(x− β(t))] dx =

∫ ∞
x=0

ϕ(t, x+ β(t))e−xdx

To see the evolution of A1, we repeat some of the regularization we used in
Lemma 3.4. Fix δ > 0 and define

ũδ(t, x)
def
=

∫ ∞
y=0

p̂+(δ, x, y)ũ(t, y)dy x ≥ 0

uδ(t, x)
def
=

{
ũδ(t, x− β(t))− exp [− (x− β(t))] x ≥ β(t), 0 ≤ t < τ

0 x < β(t), 0 ≤ t < τ

Then define

Aδ1(t)
def
=

∫ ∞
x=0

ϕ(t, x+ β(t))ũδ(t, x)dx = Aδ,a1 (t) +Aδ,b1 (t) +Aδ,c1 (t)

where

Aδ,a1 (t) =

∫ t

s=0

∫ ∞
x=0

∫ ∞
y=0

ϕ(t, x+ β(t))p̂+(t+ δ − s, x, y)ξ1(s, y)dx dy ds



16 KUNWOO KIM, CARL MUELLER, AND RICHARD B. SOWERS

Aδ,b1 (t) =

∫ t

s=0

∫ ∞
x=0

∫ ∞
y=0

ϕ(t, x+ β(t))p̂+(t+ δ − s, x, y)ξ2(s, y)dx dy dBs

Aδ,c1 (t) =

∫ ∞
x=0

∫ ∞
y=0

ϕ(t, x+ β(t))p̂+(t+ δ, x, y)ũ◦(y)dx dy

where finally

ξ1(t, x) =

(
∂ũ

∂x
(t, x) + e−y

)(
1− ∂2ũ

∂x2
(t, 0)

)
− (α̂+ 1)e−x

= −∂u
∂x

(t, x+ β(t))
∂2u

∂x2
(t, β(t))− (α̂+ 1)e−x

ξ2(t, x) = ũ(t, x)− e−x = u(t, x+ β(t)).

We also note that we can rewrite the evolution of β as

β̇(t) = −∂
2u

∂x2
(t, β(t)). t ∈ [0, τ)

Thus

dAδ,a1 (t) =

(∫ t

s=0

∫ ∞
x=0

∫ ∞
y=0

{
∂ϕ

∂t
(t, x+ β(t))p̂+(t+ δ − s, x, y) +

∂ϕ

∂x
(t, x+ β(t))p̂+(t+ δ − s, x, y)β̇(t)

+ϕ(t, x+ β(t))
∂p̂+
∂t

(t+ δ − s, x, y)

}
ξ1(s, y)dx dy ds

)
dt

+

(∫ ∞
x=0

∫ ∞
y=0

ϕ(t, x+ β(t))p̂+(δ, x, y)ξ1(t, y)dx dy

)
dt

=

(∫ t

s=0

∫ ∞
x=0

∫ ∞
y=0

{
∂ϕ

∂t
(t, x+ β(t))p̂+(t+ δ − s, x, y)

+ϕ(t, x+ β(t))
∂2p̂+
∂x2

(t+ δ − s, x, y) + α̂ϕ(t, x+ β(t))p̂+(t+ δ − s, x, y)

}
ξ1(s, y)dx dy ds

+

∫ t

s=0

∫ ∞
x=0

∫ ∞
y=0

∂ϕ

∂x
(t, x+ β(t))p̂+(t+ δ − s, x, y)ξ1(s, y)ds dx dy β̇(t)

)
dt

+

(∫ ∞
x=0

∫ ∞
y=0

ϕ(t, x+ β(t))p̂+(δ, x, y)ξ1(t, y)dx dy

)
dt.

Similar calculations show that

dAδ,b1 (t) =

(∫ t

s=0

∫ ∞
x=0

∫ ∞
y=0

{
∂ϕ

∂t
(t, x+ β(t))p̂+(t+ δ − s, x, y)

+ϕ(t, x+ β(t))
∂2p̂+
∂x2

(t+ δ − s, x, y) + α̂ϕ(t, x+ β(t))p̂+(t+ δ − s, x, y)

}
ξ2(s, y)dx dy dBs

+

∫ t

s=0

∫ ∞
x=0

∫ ∞
y=0

∂ϕ

∂x
(t, x+ β(t))p̂+(t+ δ − s, x, y)ξ2(s, y)dBs dx dy β̇(t)

)
dt

+

(∫ ∞
x=0

∫ ∞
y=0

ϕ(t, x+ β(t))p̂+(δ, x, y)ξ2(t, y)dx dy

)
dBt

and finally

dAδ,c1 (t) =

(∫ ∞
x=0

∫ ∞
y=0

{
∂ϕ

∂t
(t, x+ β(t))p̂+(t+ δ, x, y)
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+ϕ(t, x+ β(t))
∂2p̂+
∂x2

(t+ δ, x, y) + α̂ϕ(t, x+ β(t))p̂+(t+ δ, x, y)

}
ũ◦(y)dx dy

+

∫ ∞
x=0

∫ ∞
y=0

∂ϕ

∂x
(t, x+ β(t))p̂+(t+ δ, x, y)û◦(y)dx dy β̇(t)

)
dt.

Adding these expressions together, we get that, we get that

Aδ1(t)−Aδ1(0) =

∫ t

s=0

(∫ ∞
x=0

(
∂ϕ

∂t
+ α̂ϕ

)
(s, x+ β(s))ũδ(s, x)dx

+

∫ ∞
x=0

ϕ(s, x+ β(s))
∂2ũδ
∂x2

(s, x)dx+

∫ ∞
x=0

∂ϕ

∂x
(t, x+ β(t))ũδ(s, x)dxβ̇(s)

)
ds

+

∫ t

s=0

(∫ ∞
x=0

∫ ∞
y=0

ϕ(s, x+ β(s))p̂+(δ, x, y)ξ1(s, y)dx dy

)
ds

+

∫ t

s=0

(∫ ∞
x=0

∫ ∞
y=0

ϕ(s, x+ β(s))p̂+(δ, x, y)ξ2(s, y)dx dy

)
dBs.

We can force the evolution of A2 into a similar expression. We have

Ȧ2(t) =

∫ ∞
x=0

{
∂ϕ

∂t
(t, x+ β(t)) +

∂ϕ

∂x
(t, x+ β(t))β̇(t)

}
e−xdx

=

∫ ∞
x=0

(
∂ϕ

∂t
+ α̂ϕ

)
(t, x+ β(t))e−xdx

+

∫ ∞
x=0

ϕ(t, x+ β(t))e−xdx+

∫ ∞
x=0

∂ϕ

∂x
(t, x+ β(t))e−xdx β̇(t)

− (α̂+ 1)

∫ ∞
x=0

ϕ(t, x+ β(t))e−xdx.

Again combining things we get that(
Aδ1(t)−A2(t)

)
−
(
Aδ1(0)−A2(0)

)
=

∫ t

s=0

(∫ ∞
x=0

(
∂ϕ

∂t
+ α̂ϕ

)
(s, x+ β(s))uδ(s, x+ β(s))dx

+

∫ ∞
x=0

ϕ(s, x+ β(s))
∂2uδ
∂x2

(s, x+ β(s))dx+

∫ ∞
x=0

∂ϕ

∂x
(t, x+ β(s))uδ(s, x+ β(s))dxβ̇(s)

+(α̂+ 1)

∫ ∞
x=0

ϕ(t, x+ β(t))e−xdx

)
ds

+

∫ t

s=0

(∫ ∞
x=0

∫ ∞
y=0

ϕ(s, x+ β(s))p̂+(δ, x, y)ξ1(s, y)dx dy

)
ds

+

∫ t

s=0

(∫ ∞
x=0

∫ ∞
y=0

ϕ(s, x+ β(s))p̂+(δ, x, y)ξ2(s, y)dx dy

)
dBs

=

∫ t

s=0

(∫ ∞
x=0

(
∂ϕ

∂t
+
∂2ϕ

∂x2
+ α̂ϕ

)
(s, x+ β(s))uδ(s, x+ β(s))dx

−
∫ ∞
x=0

ϕ(t, x+ β(s))
∂uδ
∂x

(s, x+ β(s))dxβ̇(s)

−ϕ(s, β(s))
∂uδ
∂x

(s, β(s)) +
∂ϕ

∂x
(s, β(s))uδ(s, β(s))− ϕ(s, β(s))uδ(s, β(s))β̇(s)dx
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+(α̂+ 1)

∫ ∞
x=0

ϕ(t, x+ β(t))e−xdx

)
ds

+

∫ t

s=0

(∫ ∞
x=0

∫ ∞
y=0

ϕ(s, x+ β(s))p̂+(δ, x, y)ξ1(s, y)dx dy

)
ds

+

∫ t

s=0

(∫ ∞
x=0

∫ ∞
y=0

ϕ(s, x+ β(s))p̂+(δ, x, y)ξ2(s, y)dx dy

)
dBs.

By definition of p̂+, we conclude that ∂uδ
∂x (s, β(s)) = 0. We also have by Lemma 3.4

that limδ↘0 uδ(s, β(s)) = 0. Upon letting δ ↘ 0 and rearranging things, we indeed
get a weak solution of (1). �

4. A Picard Iteration

Our main task now is to show that we can indeed solve (16). The main com-

plication is that (16) is fully nonlinear due to the presence of the ∂2ũ
∂x2 (t, 0) term

in the drift. If we turn off the noise, we can do this via semigroup theory as in
[Lun04]. The noise, however, complicates things, as we need to respect the rules
of Ito integration and (unless we want to use more advanced theories of stochastic
integrals) integrate against predictable functions.

Our approach will be to set up a functional framework in which we can use
Picard-type iterations to show existence and uniqueness. As usual, C∞0 (R+) is the
collection of infinitely smooth functions on [0,∞) whose support is bounded. Define
next

C∞0,even(R+)
def
=
{
ϕ ∈ C∞0 (R+) | ϕ(n)(0) = 0 for all odd n ∈ N

}
;

in other words, C∞0,even(R+) are those elements of C∞0 (R+) which can be extended
to an even element of C∞(R) (namely, consider the map y 7→ ϕ(|y|)). For all
ϕ ∈ C∞0 (R+), define

‖ϕ‖H
def
=

√√√√ 3∑
i=0

∫
x∈(0,∞)

∣∣ϕ(i)(x)
∣∣2 dx.

Let H be the closure of C∞0 (R+) with respect to ‖ · ‖H and let Heven be the closure
of C∞0,even(R+) with respect to ‖ · ‖H . We also define

‖ϕ‖L
def
=

√∫
x∈(0,∞)

|ϕ(x)|2 dx

for all square-integrable functions on R+. Of course H and Heven are Hilbert spaces
(H is more commonly written as H3; i.e., it is the collection of functions on R+

which possess three weak square-integrable derivatives). The important aspect of
H is the following fairly standard result.

Lemma 4.1. We have that H ⊂ C2. More precisely, for any ϕ ∈ H, we have that

sup
x∈R+

i∈{0,1,2}

∣∣∣ϕ(i)(x)
∣∣∣ ≤ 2‖ϕ‖H .

Finally, for i ∈ {0, 1, 2}, ϕ(i)(0)
def
= limx↘0 ϕ

(i)(x) is well-defined.
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The proof is in Subsection 4.1.
Fix L > 0 and ΨL ∈ C∞(R; [0, 1]) such that ΨL(x) = 1 if |x| ≤ L and ΨL(x) = 0

if |x| ≥ L+ 1. Set

ũL1 (t, x) =

∫ ∞
y=0

p̂+(t, x, y)ũ◦(y)dy

for all t > 0 and x ∈ R and recursively define

(21) ũLn+1(t, x) =

∫ ∞
y=0

p̂+(t, x, y)ũ◦(y)dy

+

∫ t

s=0

∫ ∞
y=0

p̂+(t− s, x, y)

{(
∂ũLn
∂x

(t, y) + e−y
)(

1− ∂2ũLn
∂x2

(t, 0)

)
ΨL

(
‖ũLn(t, ·)‖H

)
−(α̂+ 1)e−y

}
dy ds+

∫ t

s=0

∫ ∞
y=0

p̂+(t−s, x, y)
{
ũLn(s, y)− e−y

}
dy dBs. t > 0, x > 0

For each n ∈ N, {ũLn(t, ·); t ≥ 0} is a well-defined, adapted, and continuous path in
Heven.

To study (21), we will use the Neumann heat semigroup. For ϕ ∈ C∞0 (R+),
t > 0, and x > 0, define

(Ttϕ)(x)
def
=

∫ ∞
y=0

p+(t, x, y)ϕ(y)dy.

Lemma 4.2. For each t > 0, Tt has a unique extension from C∞0 (R+) to H such
that TtH ⊂ Heven and such that ‖Ttf‖H ≤ ‖f‖H for all f ∈ H. Secondly, there is
a KA > 0 such that

‖Ttḟ‖H ≤
KA

t3/4
‖f‖H

for all f ∈ Heven ∩ C4(R+).

Again, we delay the proof until Subsection 4.1.
Another convenience will be to rewrite the ds part of (21). Define

Ψ̃L(ψ)
def
= (1− ψ̈(0))ΨL (‖ψ‖H)

for all ψ ∈ H. Then{
∂ũLn
∂x

(t, x) + e−x
}(

1− ∂2ũLn
∂x2

(t, 0)

)
ΨL

(
‖ũLn(t, ·)‖H

)
=

{
∂ũLn
∂x

(t, x) + e−x
}

Ψ̃L(ũLN (t, ·))

for all n ∈ N. For ψ and η in H, let’s also define

(DΨ̃L)(ψ; η)
def
= −η̈(0)ΨL(‖ψ‖H) + (1− ψ̈(0))Ψ̇L(‖ψ‖H)

〈ψ, η〉H
‖ψ‖H

.

Lemma 4.3. For each ψ and η in H, (DΨ̃L)(ψ, η) is the Gâteaux derivative of

Ψ̃L at ψ in the direction of η. Furthermore, there is a KB > 0 such that∣∣∣(DΨ̃L)(ψ, η)
∣∣∣ ≤ KBχ[0,L](‖ψ‖H)‖η‖H

for all ψ and η in H.

Proof. The claim is straightforward. �
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For each n ∈ N, we now define w̃Ln (t, x)
def
= ũLn+1(t, x)− ũLn(t, x) for all x ≥ 0 and

t ≥ 0. Clearly sup0≤t≤T E
[
‖w̃L1 ‖2H

]
<∞ for all T > 0. We then write that

w̃Ln+1(t, x) =

4∑
j=1

A
(n)
j (t, x)

where

A
(n)
1 (t, x) =

∫ 1

λ=0

∫ t

s=0

(∫ ∞
y=0

p̂+(t− s, x, y)
∂w̃Ln
∂x

(s, y)dy

)
Ψ̃L

(
ũLn(s, ·) + λw̃Ln (s, ·)

)
ds dλ

=

∫ 1

λ=0

∫ t

s=0

(
Tt−s

∂w̃Ln
∂x

(s, ·)
)

(x)Ψ̃L

(
ũLn(s, ·) + λw̃Ln (s, ·)

)
ds dλ

A
(n)
2 (t, x) =

∫ 1

λ=0

∫ t

s=0

(∫ ∞
y=0

p̂+(t− s, x, y)

{
∂uLn
∂x

(s, y) + λ
∂w̃nL
∂x

(s, y)

}
dy

)
×DΨ̃L

(
ũLn(s, ·) + λw̃Ln (s, ·), w̃Ln (s, ·)

)
ds dλ

=

∫ 1

λ=0

∫ t

s=0

(
Tt−s

{
∂uLn
∂x

(s, ·) + λ
∂w̃nL
∂x

(s, ·)
})

(x)DΨ̃L

(
ũLn(s, ·) + λw̃Ln (s, ·), w̃Ln (s, ·)

)
ds dλ

A
(n)
3 (t, x) =

∫ 1

λ=0

∫ t

s=0

∫ ∞
y=0

p̂+(t− s, x, y)e−ydyDΨ̃L

(
ũLn(s, ·) + λw̃Ln (s, ·), w̃Ln (s, ·)

)
ds dλ

=

∫ 1

λ=0

∫ t

s=0

(Tt−sE)(x)DΨ̃L

(
ũLn(s, ·) + λw̃Ln (s, ·), w̃Ln (s, ·)

)
ds dλ

A
(n)
4 (t, x) =

∫ t

s=0

(∫ ∞
y=0

p̂+(t− s, x, y)w̃Ln (s, y)dy

)
dBs

=

∫ t

s=0

(
Tt−sw̃

L
n (s, ·)

)
(x)dBs

where for convenience we have set E(x)
def
= e−x for all x ≥ 0. Note that the ũLn ’s

and w̃Ln ’s are all in Heven.
An easy calculation gives us that

E
[
‖A(n)

4 (t, ·)‖2H
]

=

∫ t

s=0

E
[
‖Tt−sw̃Ln (s, ·)‖2

]
ds ≤

∫ t

s=0

E
[
‖w̃Ln (s, ·)‖2H

]
ds.

We similarly have (using Jensen’s inequality) that

E
[
‖A(n)

3 (t, ·)‖2H
]
≤ tK2

B

∫ t

s=0

‖Tt−sE‖2HE
[
‖w̃Ln (s, ·)‖2H

]
ds ≤ tK2

B‖E‖2H
∫ t

s=0

E
[
‖w̃Ln (s, ·)‖2H

]
ds.

To bound A
(n)
1 and A

(n)
2 , we use the fact that t−3/4 is locally integrable. More

precisely, ∫ t

s=0

1

(t− s)3/4
ds = 4t1/4

for all t > 0. Thus

E
[
‖A(n)

1 (t, ·)‖2H
]
≤ K2

BE

[∣∣∣∣∫ t

s=0

∥∥∥∥Tt−s ∂w̃Ln∂x (s, ·)
∥∥∥∥
H

ds

∣∣∣∣2
]
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≤ K2
BE

∣∣∣∣∣
∫ t

s=0

∥∥w̃Ln (s, ·)
∥∥2
H

(t− s)3/4
ds

∣∣∣∣∣
2
 ≤ 4K2

Bt
1/4

∫ t

s=0

E
[∥∥w̃Ln (s, ·)

∥∥2
H

]
(t− s)3/4

ds.

Finally, we have that

E
[
‖A(n)

2 (t, ·)‖2H
]

≤ K2
BE

[∣∣∣∣∫ t

s=0

∥∥∥∥Tt−s(∂ũLn∂x (s, ·) + λ
∂ũLn
∂x

(s, ·)
)∥∥∥∥

H

χ[0,L]

(∥∥ũLn(s, ·) + λw̃Ln (s, ·)
∥∥
H

)
‖w̃Ln (s, ·)‖Hds

∣∣∣∣2
]

≤ K2
BE

[∣∣∣∣∫ t

s=0

L

(t− s)3/4
‖w̃Ln (s, ·)‖Hds

∣∣∣∣2
]
≤ 4K2

BL
2t1/4

∫ t

s=0

E[‖w̃Ln (s, ·)‖2H ]

(t− s)3/4
ds.

Lemma 4.4. For each T > 0, we have that
∑∞
n=1 sup0≤t≤T E

[
‖ũLn+1 − ũLn‖H

]
<

∞. Thus P-a.s., uL(t, ·) def
= limn→∞ uLn(t, ·) exists as a limit in C([0, T ];H) and uL

satisfies the integral equation
(22)

ũL(t, x) =

∫ ∞
y=0

p̂+(t, x, y)ũ◦(y)dy

+

∫ t

s=0

∫ ∞
y=0

p̂+(t− s, x, y)

{(
∂ũL

∂x
(t, y) + e−y

)(
1− ∂2ũL

∂x2
(t, 0)

)
ΨL

(
‖ũL(t, ·)‖H

)
−(α̂+ 1)e−y

}
dy ds

+

∫ t

s=0

∫ ∞
y=0

p̂+(t− s, x, y)
{
ũL(s, y)− e−y

}
dBs. t > 0, x > 0

Proof. See also [Wal86, Lemma 3.3]. Fixing T > 0 we collect the above calculations
to see that there is a KT > 0 such that

E[‖w̃Ln+1(t, ·)‖2H ] ≤ KT

∫ t

s=0

E[‖w̃Ln (t, ·)‖2H ]

(t− s)3/4
ds

for all t ∈ [0, T ]. Iterating this, we get that

E[‖w̃Ln (t, ·)‖2H ] ≤ Kn−1
T t(n−1)/4


n−2∏
j=1

B(1 + j/4, 1/4)

 sup
0≤t≤T

E[‖w̃L1 ‖2H ]

where B is the standard Beta function and thus that√
E[‖w̃Ln (t, ·)‖2H ] ≤ K(n−1)/2

T t(n−1)/8


n−2∏
j=1

B(1 + j/4, 1/4)


1/2

sup
0≤t≤T

√
E[‖w̃L1 ‖2H ].

To show that the terms on the right are summable, we use the ratio test. It suffices
to show that

(23) lim
n→∞

K
1/2
T t1/8

(
B

(
1 +

n− 2

4
, 1/4

))1/2

= 0.

We calculate that

B(1+n/4, 1/4) =

∫ 1

s=0

sn/4(1−s)−3/4ds =

∫ 1/2

s=0

sn/4(1−s)−3/4ds+
∫ 1

s=1/2

sn/4(1−s)−3/4ds
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≤
(

1

2

)n/4 ∫ 1/2

s=0

(1− s)−3/4ds+

(
1

2

)−3/4 ∫ 1

s=1/2

sn/4ds

=

(
1

2

)(n+1)/4

+

(
1

2

)−3/4
1− (1/2)n/4+1

n/4 + 1
.

This implies (23). The rest of the proof follows by standard calculations. �

We can finally show uniqueness.

Lemma 4.5. The solution of (22) is unique.

Proof. Let u1 and u2 be two solutions. Define w̃
def
= u1 − u2. By calculations as

above we get that

E[‖w̃(t, ·)‖2H ] ≤ KT

∫ t

s=0

(t− s)−3/4E[‖w̃(s, ·)‖2H ]ds.

We can iterate this inequality several times to get (cf. [Wal86, Theorem 3.2])

E[‖w̃(t, ·)‖2H ] ≤ K2
T

∫ t

s=0

(t− s)−3/4
∫ s

r=0

(s− r)−3/4E[‖w̃(r, ·)‖2H ]dr ds

= K2
TB(1/4, 1/4)

∫ t

r=0

(t− r)−2/4E[‖w̃(r, ·)‖2H ]dr

≤ K3
TB(1/4, 1/4)

∫ t

r=0

(t− r)−2/4
∫ r

s=0

(r − s)−3/4E[‖w̃(s, ·)‖2H ]ds dr

= K3
TB(1/4, 1/4)B(1/2, 1/4)

∫ t

r=0

(t− s)−1/4E[‖w̃(s, ·)‖2H ]ds

≤ K4
TB(1/4, 1/4)B(1/2, 1/4)

∫ t

s=0

(t− s)−1/4
∫ s

r=0

(s− r)−3/4E[‖w̃(r, ·)‖2H ]dr ds

= K4
TB(1/4, 1/4)B(1/2, 1/4)B(3/4, 1/4)

∫ t

r=0

E[‖w̃(r, ·)‖2H ]dr

We can now use Gronwall’s inequality. �

Let’s now see what happens as L↗∞. Define the random times

τL
def
= inf{t ≥ 0 : ‖ũL(t, ·)‖H ≥ L} L > 0

τ
def
= lim

L→∞
(τL ∧ L).

Let’s also define

ũ(t, x)
def
= lim

L→∞
ũL(t ∧ τL, x). t ≥ 0, x ≥ 0

Lemma 4.6. We have that

lim
t↗τ
‖ũ(t, ·)‖H =∞.

Define u as in (19)–(20). Then {u(t, ·) | 0 ≤ t < τ} is a weak solution of (1).

Proof. Fixing L′ > L we have from the uniqueness claim of Lemma 4.5 that
ũL
′
(t, ·) = ũL(t, ·) for 0 ≤ t ≤ τL. Thus τL′ ≥ τL for all L′ > L, and so

τ = limL→∞ τL = limL→∞(τL ∧ L) and τ is predictable. We also have that
ũ(t, ·) = limL→∞ ũL(t, ·) for 0 ≤ t < τ . From this and Lemma 3.5, we conclude
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that {u(t, ·) | 0 ≤ t < τ} as defined by (19)–(20) indeed is a weak solution of (1).
The characterization of ‖ũ(t, ·)‖H at τ− is obvious. �

In fact, we have a more explicit characterization of τ .

Lemma 4.7. We have that

lim
t↗τ

∣∣∣∣∂2ũ∂x2
(t, 0)

∣∣∣∣ =∞.

Proof. For each L > 0, define

τ ′L
def
= inf

{
t ∈ [0, τ ] |

∣∣∣∣∂2ũ∂x2
(t−, 0)

∣∣∣∣ ≥ L} . (inf ∅ = τ)

By standard SPDE calculations like we used in Lemma 4.4, we know that (22) has
a solution on [0, τ ′L]. Thus in fact τ > τ ′L and hence∣∣∣∣∂2ũ∂x2

(τ ′L, 0)

∣∣∣∣ = L.

Consequently

lim
L→∞

∣∣∣∣∂2ũ∂x2
(τ ′L, 0)

∣∣∣∣ =∞.

Since τ ′L ≤ τ , we of course also have that limL→∞ τ ′L ≤ τ . On the other hand,

‖u(t, ·)‖H may become large for many reasons other than
∣∣∣∂2ũ
∂x2 (τ ′L, 0)

∣∣∣ becom-

ing large, so necessarily τ ≤ limL→∞ τ ′L. Putting things together, we get that
limL→∞ τL = τ . The claimed result now follows. �

To finish things off, we prove uniqueness.

Lemma 4.8 (Uniqueness). If {u(t, ·) | 0 ≤ t < τ} ⊂ H and {u′(t, ·) | 0 ≤ t < τ ′} ⊂
H are two solutions of (16), then u(t, ·) = u′(t, ·) for 0 ≤ t < min{τ, τ ′}.

Proof. For each L > 0, define

σL
def
= inf

{
t ∈ [0, τ ∧ τ ′) :

∣∣∣∣∂2ũ∂x2
(t, 0)

∣∣∣∣ ≥ L or

∣∣∣∣∂2ũ′∂x2
(t, 0)

∣∣∣∣ ≥ L} . inf ∅ = τ ∧ τ ′

Then τ ∧ τ ′ ≤ limL→∞ σL. We can use standard uniqueness theory to conclude
that u and u′ coincide on [0, σL], and we then let L↗∞. �

4.1. Proofs. We here give the delayed proofs. We start with the structural claims
about H.

Proof of Lemma 4.1. The fact that H ⊂ C2 is well-known; [Eva98]. Fix ϕ ∈
C∞0 (R+), x ∈ (0,∞), and i ∈ {0, 1, 2}. We then have that

∂iϕ

∂xi
(x) =

∫ x+1

s=x

∂iϕ

∂xi
(s)ds−

∫ x+1

s=x

{
∂iϕ

∂xi
(s)− ∂iϕ

∂xi
(x)

}
ds

=

∫ x+1

s=x

∂iϕ

∂xi
(s)ds−

∫ x+1

s=x

∫ s

r=x

∂i+1ϕ

∂xi+1
(r)dr ds =

∫ x+1

s=x

∂iϕ

∂xi
(s)ds−

∫ x+1

r=x

(x+1−r)∂
i+1ϕ

∂xi+1
(r)dr

Thus ∣∣∣∣∂iϕ∂xi (x)

∣∣∣∣ ≤
√∫ x+1

s=x

∣∣∣∣∂iϕ∂xi (s)

∣∣∣∣2 ds+

√∫ x+1

r=x

∣∣∣∣∂i+1ϕ

∂xi+1
(r)

∣∣∣∣2 dr ≤ 2‖ϕ‖H .
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Of course we also have that∣∣∣ϕ(i)(x)− ϕ(i)(y)
∣∣∣ ≤√‖ϕ‖H√|x− y|

so the stated limits at x = 0 exist. �

We next study {Tt}t>0.

Proof of Lemma 4.2. The proof relies upon a combination of fairly standard calcu-
lations.

To begin, fix ϕ ∈ C∞0 (R+) and define

u(t, x)
def
=

∫
y∈R

p◦(t, x− y)ϕ(|y|)dy

=

∫ ∞
y=0

p◦(t, x−y)ϕ(y)dy+

∫ 0

y=−∞
p◦(t, x−y)ϕ(−y)dy =

∫ ∞
y=0

{p◦(t, x− y) + p◦(t, x+ y)}ϕ(y)dy.

Thus u(t, x) = (Ttϕ)(x) for x > 0, and since p◦ is even in its second argument,

u(t,−x) =

∫
y∈R

p◦(t,−x+ y)ϕ(|y|)dy =

∫
y∈R

p◦(t,−x− y)ϕ(|y|)dy = u(t, x)

so in fact u(t, ·) is even. Thus we indeed have that ∂nu
∂xn (t, 0) = 0 for all odd n ∈ N;

thus Ttϕ ∈ Heven.
A standard calculation shows that Tt is a contraction on H. Indeed, for each

nonnegative integer n,

d

dt

∫
x∈R

∣∣∣∣∂nu∂xn
(t, x)

∣∣∣∣2 dx = 2

∫
x∈R

∂n+2u

∂xn+2
(t, x)

∂nu

∂xn
(t, x)dx = −2

∫
x∈R

∣∣∣∣∂n+1u

∂xn+1
(t, x)

∣∣∣∣2 dx ≤ 0

and thus

(24)

∫ ∞
x=0

∣∣∣∣∂nu∂xn
(t, x)

∣∣∣∣2 dx =
1

2

∫
x∈R

∣∣∣∣∂nu∂xn
(t, x)

∣∣∣∣2 dx ≤ 1

2

∫
x∈R

∣∣∣∣∂nu∂xn
(0, x)

∣∣∣∣2 dx
=

∫ ∞
x=0

∣∣∣ϕ(n)(x)
∣∣∣2 dx.

Summing these inequalities up for n ∈ {0, 1, 2, 3}, we see that ‖Ttϕ‖2H ≤ ‖ϕ‖2H for
all ϕ ∈ C∞0 (R+). This implies that Tt is a contraction on C∞0 (R+) and has the
claimed extension.

To proceed, fix ϕ ∈ C∞0,even(R+) and define

v(t, x) =

∫ ∞
y=0

p̂+(t, x, y)ϕ(1)(y)dy =

∫
y∈R

p◦(t, x− y)ϕ(1)(|y|)dy;

note for future reference that since ϕ(1)(0) = 0, y 7→ ϕ(1)(|y|) is continuous at y = 0.
Differentiating, we get that

(25)
∂v

∂x
(t, x) =

∫
y∈R

∂p◦
∂x

(t, x−y)ϕ(1)(|y|)dy =

∫
y∈R

p◦(t, x−y)ϕ(2)(|y|) sgn(y)dy.

Thus in particular ∫ ∞
x=0

|v(t, x)|2 dx ≤
∫ ∞
x=0

∣∣∣ϕ(1)(x)
∣∣∣2 dx∫ ∞

x=0

∣∣∣∣∂v∂x (t, x)

∣∣∣∣2 dx ≤ ∫ ∞
x=0

∣∣∣ϕ(2)(x)
∣∣∣2 dx.
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Differentiating (25) again, we get that

∂2v

∂x2
(t, x) =

∫
y∈R

∂p◦
∂x

(t, x− y)ϕ(2)(|y|) sgn(y)dy

∂3v

∂x3
(t, x) =

∫
y∈R

∂2p◦
∂x2

(t, x− y)ϕ(2)(|y|) sgn(y)dy

= 2
∂p◦
∂x

(t, x)ϕ(2)(0) +

∫
y∈R

∂p◦
∂x

(t, x− y)ϕ(3)(|y|)dy.

We now note that there is a K > 0 such that∣∣∣∣∂p◦∂x (t, x)

∣∣∣∣ ≤ K√
t
p◦(2t, x)

for all t > 0 and x ∈ R. Thus∣∣∣∣∂2v∂x2
(t, x)

∣∣∣∣ ≤ K√
t

∫
y∈R

p◦(2t, x− y)
∣∣∣ϕ(2)(|y|)

∣∣∣ dy∣∣∣∣∂3v∂x3
(t, x)

∣∣∣∣ ≤ 2K√
t
p◦(2t, x)

∣∣∣ϕ(2)(0)
∣∣∣+

K√
t

∫
y∈R

p◦(2t, x− y)
∣∣∣ϕ(3)(|y|)

∣∣∣ dy.
We can now fairly easily conclude from (24) with n = 0 that√∫ ∞

x=0

∣∣∣∣∂2v∂x2
(t, x)

∣∣∣∣2 dx ≤ K√
t

√∫ ∞
x=0

∣∣ϕ(2)(x)
∣∣2 dx.

We also note that√∫ ∞
x=0

p2◦(2t, x)dx =

√
1√
2πt

∫ ∞
x=0

1√
2πt

exp

[
−x

2

2t

]
dx ≤ 1

(2πt)1/4
.

Thus√∫ ∞
x=0

∣∣∣∣∂3v∂x3
(t, x)

∣∣∣∣2 dx ≤ K

(2π)1/4t3/4
|ϕ(2)(0)|+ K√

t

√∫ ∞
x=0

∣∣ϕ(3)(x)
∣∣2 dx.

Combine things together to get the last claim. �

5. Numerical Simulation

In this section, we will see from numerical simulations where the moving bound-
ary is. In general, it is difficult to simulate the SPDE (1) directly since we need
to find a solution of a stochastic heat equation and at the same time we need to
trace the position of the moving boundary. Here we can avoid this difficulty since
we have the explicit formula for the solution u in Lemma 3.5. That is,

(26) u(t, x)
def
=

{
ũ(t, x− β(t))− exp [− (x− β(t))] x ≥ β(t), 0 ≤ t < τ

0 x < β(t), 0 ≤ t < τ,

where β(t) is defined as

(27) β(t) =

∫ t

s=0

{
1− ∂2ũ

∂x2
(s, 0)

}
ds 0 ≤ t < τ
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and ũ is a solution of the SPDE
(28)

dũ(t, x) =

{
∂2ũ

∂x2
(t, x) + α̂

(
ũ(t, x)− e−x

)
− e−x +

(
∂ũ

∂x
(t, x) + e−x

)(
1− ∂2ũ

∂x2
(t, 0)

)}
dt

+
(
ũ(t, x)− e−x

)
dBt t > 0, x > 0

∂ũ

∂x
(t, 0) = 0 t > 0

ũ(0, x) = ũ◦(x) = u◦(x) + e−x. x > 0

Therefore we first need to solve the SPDE (28) numerically in order to obtain the
moving boundary β(t) and then the weak solution u(t, x). Here we first discretize
space by using the explicit finite difference scheme, then we can obtain SDE’s.
Now we use the Euler-Maruyama Method to find numerical solutions of SDE’s (see
[Gai96, Hig02]). Since there is a stability issue for parabolic PDE we note that
∆t/(∆x)2 < 1/2, where ∆t is a time step and ∆x is a space step. Figure 1 is a
simulation with initial condition

u◦(x) =

{
x+x2

1+x4 if x ≥ 0

0 else

and α = .5. We can clearly see that there are two phases separated by the black
line, which is the moving boundary, and how u is changing on the colored region
where u > 0.
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Figure 1. Weak solution u(t, x)
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