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Abstract

We consider reaction-diffusion equations of KPP type in one spatial di-
mension, perturbed by a Fisher-Wright white noise, under the assumption
of uniqueness in distribution. Examples include the randomly perturbed
Fisher-KPP equations

∂tu = ∂2
xu + u(1− u) + ε

p
u(1− u)Ẇ , (0.1)

and
∂tu = ∂2

xu + u(1− u) + ε
√

uẆ , (0.2)

where Ẇ = Ẇ (t, x) is a space-time white noise.
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We prove the Brunet-Derrida conjecture that the speed of traveling
fronts is asymptotically

2− π2| log ε2|−2 (0.3)

up to a factor of order (log | log ε|)| log ε|−3.

1 Randomly perturbed KPP and the Brunet-
Derrida conjecture

In this article we study randomly perturbed Kolmogorov-Petrovsky-Piscunov
(KPP) equations,

∂tu = ∂2
xu+ f(u) + εσ(u)Ẇ t ≥ 0, x ∈ R, u ≥ 0 (1.1)

where Ẇ = Ẇ (t, x) is two-parameter white noise; f is assumed to be a Lipschitz
function satisfying standard KPP conditions,

f(0) = f(1) = 0; 0 < f(u) ≤ uf ′(0), u ∈ (0, 1), (1.2)

and in addition that for u ≥ 1,

f(u) ≤ 2− u. (1.3)

We can and will rescale so that f ′(0) = 1. We assume that σ2(u) is a Lipschitz
function satisfying

σ2(u) ≤ u (1.4)

and for which there exist a∗ > 0 and 0 < u∗ < 1 such that

σ2(u2)− σ2(u1) ≥ a∗(u2 − u1), for 0 ≤ u1 < u2 ≤ u∗. (1.5)

We will consider (1.1) with initial data u(0, x) = u0(x) satisfying, for some
x0 ∈ R,

u0(x) ≥ θ > 0, x ≤ x0, and
∫ ∞

x0

u0(x)dx <∞ (1.6)

and contained in some subset Ĉ of the set Cexp of non-negative continuous func-
tions f on R with f(x) ≤ Ce|x| for some C <∞, for which we know

u0(x) ∈ Ĉ ⇒ u(t, x) ∈ Ĉ ∀t > 0, P − a.s. (1.7)
Weak uniqueness holds in Ĉ. (1.8)

Key examples are
f(u) = u(1− u) (1.9)

and
σ2(u) = u(1− u)1(u ≤ 1) (1.10)
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or
σ2(u) = u (1.11)

with u0(x) ∈ [0, 1] for (1.10) and u0 satisfying e−x ≥ u0(x) for (1.11). (1.9)
with (1.10) appears as the limit of the long range voter model and with (1.11)
as the limit of the long range contact process (see [MT95]).

Note that (1.3) is not relevant for models such as (1.10) where 0 ≤ u(t, x) ≤ 1
for all time. But some condition on large u is needed in cases such as (1.11)
where fluctuations can take the solution above 1.

We regard the stochastic partial differential equation (SPDE) (1.1) as short-
hand for the integral equation,

u(t, x) =
∫
G(0, y, t, x)u0(y)dy +

∫ ∫ t

0

G(s, y, t, x)f(u(s, y))dsdy

+
∫ ∫ t

0

G(s, y, t, x)σ(u(s, y))W (ds, dy), (1.12)

where G(s, y, t, x) = G(t− s, y − x) is the heat kernel

G(t, x) = (4πt)−1/2 exp{−x2/4t}, (1.13)

and the white noise Ẇ is defined by specifying, for square integrable deter-
ministic functions ϕ(s, y), that W (ϕ) :=

∫ ∫∞
0
ϕ(s, y)W (ds, dy) are a Gaussian

family with mean zero and covariance

E [W (ϕ)W (ψ)] =
∫ ∫ ∞

0

ϕ(s, y)ψ(s, y)dsdy. (1.14)

Here, and throughout,
∫
fdx means the integral over the entire real line R.

Solutions to (1.12) are called mild solutions. See [Wal86] for the definition of
the stochastic integral in (1.12). Readers unfamiliar with SPDE can think of
the following system of ordinary stochastic differential equations on R

1
n Z,

dui/n = [n2(u(i+1)/n−2ui/n+u(i−1)/n)+f(ui/n)]dt+n1/2εσ(ui/n)dBi/n, (1.15)

where Bi/n(t) are independent standard Brownian motions, and n is large. A
corresponding evolution of functions on R is produced by connecting the points
(i/n, ui/n) and ((i + 1)/n, u(i+1)/n) by straight lines, and (1.1) is obtained in
the weak limit as n→∞.

When ε = 0, (1.1) with f of the form (1.9) is the standard KPP, or Fisher-
KPP equation, introduced in 1937 by both Fisher [F], and Komogorov, Petro-
vskii, and Piscuinov [KPP]. The basic facts in this case are: There is a one-
parameter family Fv of traveling front solutions Fv(x− vt) with Fv decreasing,
Fv(x) → 1 as x → −∞, Fv(x) → 0 as x → ∞ and Fv(x) ' e−γx for large x,
with v = γ+γ−1. For initial data u0(x) = 1(x ≤ 0) we have convergence to the
traveling front with minimal speed,

v0 = 2 (1.16)
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in the sense that

lim
t→∞

sup
x∈R

|u(t, x)− Fv0(x−m∗(t))| = 0 (1.17)

wherem∗(t) defined by u(t,m∗(t)) = 1/2 satisfies limt→∞m∗(t)/t = v0. Further
details about convergence of the KPP solution to the traveling front were given
by McKean [McK75] and [McK76], and Bramson [Bra78] and [Bra83], among
many others.

When ε > 0 with initial data in Cexp satisfying (1.6), one has non-negative,
continuous solutions, with a finite upper bound on the support

r(t) = sup{x ∈ R : u(t, x) > 0}, (1.18)

for t > 0. The process viewed from r(t),

ũ(t, x) = u(t, x+ r(t)) (1.19)

should have a unique nondegenerate stationary solution. This is the random
traveling front. One also expects t−1r(t) to have a nonrandom limit,

vε = lim
t→∞

t−1r(t). (1.20)

This was proved [MS95] in the case (1.9), (1.10), for sufficiently small ε. They
consider initial data 0 ≤ u0(x) ≤ 1 such that u0(x) = 1 for x < ` and u0 = 0 for
x > r for some −∞ < ` ≤ r <∞. Because in this case σ(1) = 0, solutions stays
within this class, and the result of [MS95] extends to any f and σ satisfying in
addition to our assumptions, that σ(u) = 1 +O(

√
1− u) as u ↑ 1.

We now make some comments to justify the form (1.4),(1.5) of the stochastic
perturbation. The most important reason for taking

σ(u) '
√
u, 0 ≤ u << 1 (1.21)

is that this is the type of correction seen when approximating the reaction-
diffusion problems by microscopic particle models. For example, the reaction-
diffusion equation with f(u) = u(1 − u) was originally derived by Fisher as
a model for the spread of an advantageous gene; the term u(1 − u) in (1.9)
represents the frequency of mating between the individuals with and without the
advantageous gene. If there is randomness in the mating, for example, if matings
were successful with a certain probability, the variance of the random term is
naturally proportional to u(1− u), and this leads to a term

√
u(1− u)Ẇ (t, x).

In this article we are primarily concerned with the asymptotics of vε as
ε → 0 in (1.1). It is not hard to see (for example, in (1.9), by taking expec-
tations, and applying Jensen’s inequality) that vε ≤ v0. Recently, Brunet and
Derrida [BD97] and [BD01] (see also [KS98], [PL99]) have made the remarkable
conjecture that as ε→ 0,

v0 − vε '
π2

| log ε2|2
. (1.22)
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It is worth noting how enormous the correction is. For example, a naive Taylor
expansion might suggest, since symmetry implies ε = 0 is a local maximum,
that v0 − vε ' O(ε2). The phenomenon was unexpected, and first observed
through computer simulations of particle systems. It was not long before this
was understood at the physical level as a consequence of the pulled nature of
the fronts. Recall that in an evolution equation with traveling fronts between
an unstable and a stable state, the front is said to be pulled if its asymptotic
speed is the same as that of the linearization of the equation about the unstable
state, and pushed if the speed is larger than that of the linearization (see [vS]).
KPP equations have (marginally) pulled fronts. Because in pulled fronts the
front speed is determined in the region where the density u is very small, in
retrospect one should not be surprised that fluctuations there of order

√
u,

would have a dramatic effect on the front speed. Bramson [Bra78] also proved
for the KPP equation with initial data u0(x) = 1(x ≤ 0), that,

m∗(t) = v0t+
3
2

log t+O(1), (1.23)

which is also supposed to be universal for pulled fronts [vS]. These behaviors all
reflect the fact that in pulled fronts there is no spectral gap in the linearization
around Fv0 .

The phenomenon (1.22) has also been observed in systems where the variable
u is forced to take discrete values, such as particle systems on the lattice with
random walks and birth-death components. Here ε2 is the effective mass of a
particle.

Brunet and Derrida [BD97] conjectured that the front speeds in these sys-
tems behave for small ε like that of the solution of the cutoff KPP equation

∂tu = ∂2
xu+ u(1− u)1(u ≥ ε2). (1.24)

The idea is that when u < ε2, u(1 − u) < ε
√
u(1− u) and the noise term in

(1.1) beats the creation term down to zero. Alternatively (1.24) can be thought
of as a single particle cutoff. They then gave a nonrigorous argument that for
small ε, (1.24) has travelling fronts with velocity

vcutoff ' v0 −
π2

| log ε2|2
. (1.25)

The argument for (1.25), using matched asymptotics, is not difficult to make
rigorous. It is known [DPK], [BDL] that

vcutoff − v0 +
π2

| log ε2|2
= O(

1
| log ε|3

). (1.26)

Implicit in our argument is a simpler proof (with a slightly worse correction of
O( log | log ε|

| log ε|3 )).
What was less clear was how to make rigorous the connection between either

microscopic particle models or (1.1) and (1.24). Here we work with (1.1) as a
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kind of canonical model system for the phenomenon (1.22): In particular, the
fact that particle models and (1.1) both are expected to display this behaviour
is perhaps the strongest motivation for the particular form of the noise (1.5).

See [P] and references therein for a very comprehensive review of the physical
aspects of the Brunet-Derrida theory.

Conlon and Doering [CD04] recently obtained progress on (1.22) by cou-
pling (1.9), (1.10) to a contact process (see Liggett [Lig85]), proving that for
sufficiently small ε,

vε ≥ v0 −
C log | log ε|
| log ε|2

. (1.27)

Very recently, [BDMM] have made a conjecture about the corrections to
(1.22). Using a phenomenological argument, they propose

vε − v0 +
π2

| log ε2|2
' 6π2 log | log ε|

| log ε2|3
. (1.28)

The 6 on the right hand side is closely related to the 3 in (1.23).
In this article we prove the Brunet-Derrida conjecture for models of the form

(1.1)-(1.3) with a correction of the same order as conjectured in [BDMM].
However our understanding of the well-posedness of (1.1) is not complete,

and so a few comments are needed before we can state the result.
Existence for (1.1) is straightforward and can be obtained as the limit of its

spatial discretization (1.15). Starting with non-negative initial data, one obtains
in this way a non-negative solution, Hölder α < 1/2 in space and β < 1/4 in
time. Alternately, equations of the form (1.1) can be obtained as appropriate
limits of particle systems. Note that we are allowing solutions to have u ≥ 1,
which is slightly non-standard, in particular for models such as f(u) = σ2(u) =
u(1−u) where u is usually taken to be in [0, 1]. In terms of existence, this does
not make any difference.

On the other hand, uniqueness of (1.1) is not known in our case because
the coefficient in front of the noise in not Lipschitz. At the time of writing
there is not even a consensus whether strong uniqueness should be true (for
new results on strong uniqueness for stochastic partial differential equations
with non-Lipschitz coefficients see [MP], although they still do not cover the
present case). Weak uniqueness means uniqueness of the martingale problem
for (1.1) with respect to the family of functionals fφ(u) = exp{−

∫
uφdx}, φ

smooth, non-negative, with compact support, within the class of continuous non-
negative solutions u, and in addition, the measurability of the Markov transition
functions Ps,u(·)(A) = P (u(t, ·) ∈ A | u(s, ·) = u(·)). Weak uniqueness in
particular implies the strong Markov property, which is one of our basic tools.
Weak uniqueness can be obtained in special cases of (1.1) using duality. An
example is when σ is of the form (1.10) or (1.11). The case (1.9), (1.10) has
an explicit dual particle system, described below, whose existence allows one
in principle to compute the law for the stochastic partial differential equation.
The case (1.9), (1.11) is self-dual (see [HT]).
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What we really use about our solutions are the strong Markov property with
respect to a family of hitting times, together with the comparison principle.
Roughly the comparison principle for SPDE states that if u and v are solutions
of

∂tu = ∂2
xu+ f(x, u) + σ(u)Ẇ , ∂tv = ∂2

xv + g(x, v) + σ(v)Ẇ (1.29)

on [0, T ] with v(0, x) ≤ u(0, x), and g(x, u) ≤ f(x, u) for all x, u, then v(t, x) ≤
u(t, x) for all t ∈ [0, T ] and x ∈ R almost surely. It is the analogue of mono-
tonicity or attractiveness in particle systems. Examples of such theorems can
be found in [Pa]. A simple variant of the above it that our v will, in addition,
satisfy a Dirichlet condition v = 0 on a set U such as x > vt or |x| ≥ vt + L.
This is not a large leap, as one can think of it as the N →∞ limit of g = −N
on U . So there is no surprise that the comparison continues to hold. There
will be a few other twists and we will be a little more precise later. But the
main point is that proofs of comparison theorems of this type require as input
a strong uniqueness theorem. Hence they are not directly available to us.

Now any solution we are really interested in will be the result of some ap-
proximation scheme by systems, for example particle systems, for which the
comparison principle is essentially obvious. Similarly, the strong Markov prop-
erty will hold for such systems. And both are maintained under weak limits.
So we could in principle just take a pragmatic approach and simply assume
that our solution has the needed properties. Since this is a little cumbersome,
instead we will state our results under the assumption of weak uniqueness.

Note that weak uniqueness implies the existence of versions satisfying both
the strong Markov property and comparison principle. That it implies the strong
Markov property is well known. To obtain a version satisfying the comparison
principle, construct a sequence of Lipschitz σ(n)(u) converging uniformly to
σ(u). The corresponding equations have strong uniqueness and therefore the
comparison principle. It is not hard to check that such sequences are tight and
it is easy to see that the comparison principle continues to hold in the weak
limits. Note that all our results are statements in distribution. It is therefore
always enough to work with appropriate versions of our process, and therefore
weak uniqueness is sufficient.

We can now state the main theorem. Let u(t, x) be the solution of (1.1) and
r(t) be as in (1.18). For initial data in Cexp satisfying (1.6) let

v̄ε = lim sup
t→∞

t−1r(t). (1.30)

For initial data satisfying u(0, x) ≥ θ > 0, x ≤ 0, u(0, x) = 0, x > 0, let

vε = lim inf
t→∞

t−1r(t). (1.31)

Let α(a) be the largest α such that

(1− a)u1(u ≤ α) ≤ f(u). (1.32)

Note that α(a) > 0 if a > 0 from the assumptions on f . For example, if
f ′′(0) > −∞ we have α(a) = Ca for some C <∞.
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Theorem 1.1. Assume u0(x) ∈ Ĉ satisfying (1.6), (1.7), (1.8). Then there
exists ε0 > 0 such that for all ε ≤ ε0,

vε ≥ v0 −
π2

| log ε2|2
− 2π2[9 log | log ε| − logα(| log ε|−3)

| log ε2|3
(1.33)

v̄ε ≤ v0 −
π2

| log ε2|2
+

8π2 log | log ε|
| log ε2|3

. (1.34)

Remark on ε0. Since the phenomena is observed in particle simulations, it
is worthwhile to ask whether the mathematical result can be proven with ε0
of a size approachable by computation. In fact, computations with effectively
N = 1010 particles are commonplace at the time of writing. In case (1.9),
(1.10), we can check that our method works with ε0 = e−11. Since N particles
corresponds to a correction of size ε = N−1/2 the mathematical result covers
the typical regime of computations.

Remark on duality for the case of (1.1) with f(u) = σ(u) = u(1 − u). Let
xi(t) : i = 1, . . . , N(t) ≤ ∞ be a system of independent Brownian motions with
generators ∂2

x. Each particle splits in two at rate 1, and pairs of particles coalesce
at exponential rate ε2 during their intersection local time. The generator is

Af(x) =
∑

i

∆if(x) +
∑

i

(f(x+
i )− f(x)) + ε2

∑
i>j

δxi=xj (f(x−i )− f(x)) (1.35)

where x+
i is the configuration obtained from x by replacing xi by two particles

at the same location, and x−i is the configuration obtained from x by removing
xi. We have the duality relation [Shi88],

E

[∏
i

(1− u(t, xi(0)))

]
= E

[∏
i

(1− u(0, xi(t)))

]
, (1.36)

where the expectation is taken over independent u and xi. Among other things,
(1.36) gives us an expression for the moments of u, providing the weak unique-
ness.

One can also deduce from the result about the wavespeed in the random KPP
results about the wavespeed in the dual process. Suppose we start our branching
and coalescing system with one particle at 0, and let L(t), R(t) denote the
positions of the leftmost and rightmost particles in the system at time t. Take
u0(x) = 1(x ≤ 0). The duality relation, together with the natural reflection
symmetry and spatial homogeneity, give P (L(t) < −x) = P (R(t) > x) =
E[u(t, x)], and Theorem 1.1 then translates to

lim
t→∞

t−1R(t) = − lim
t→∞

t−1L(t) = vε. (1.37)

Here then is another example of the Brunet-Derrida theory: The branching-
coalescing Brownian motions model possesses two invariant measures. The sta-
ble one is a Poisson point process with intensity ε−2, and the unstable one
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consists of no particles at all. On a large scale we see the first invading the
second at linear speed vε. If we introduce a phase variable in [0, 1] so that 0
corresponds to the unstable phase and 1 corresponds to the stable phase, then
the effective particle mass is ε2, as predicted.

Finally we comment on the structure of the paper. To make the arguments
leading to Theorem 1.1 more transparent, in the next section we sketch the logic
of the proof, assuming the main technical lemmas, which are then left for later
sections, and assuming as well that the necessary manipulations of the SPDEs
can be performed. We then prove the validity of these manipulations in Section
3.

2 Outline of the proof

2.1 Comparison equation

The general idea behind our proof of Theorem 1.1 is to compare the stochastic
KPP evolution (1.1) to:{

∂t% = ∂2
x%+ f(%), x < vt,

%(t, x) = 0, x ≥ vt. (2.1)

We search for the v = vcom for which there exists a traveling front solution

%(x, t) = F (x− vcomt) (2.2)

with limx→−∞ F (x) = 1 and

F ′(0) = −ε2. (2.3)

The problem (2.1)-(2.3) is our replacement for Brunet and Derrida’s com-
parison equation (1.24). The idea is that the solution will have a mass of O(ε2)
within a distance O(1) of x = vcomt. Here ε is a small parameter which does
not necessarily have to be related to the perturbation parameter ε in (1.1). In
fact, it will be convenient to take ε to be slightly larger or smaller than ε. But
if ε = ε, the mass O(ε2) is the critical mass which can survive in the stochastic
equation when u is small. Heuristically, this will provide a consistent strategy
for a stochastic traveling front in (1.1) to propagate.

To determine the resulting v = vcom(ε2), let x(t) = F (−t) and note that
the problem is equivalent to that of finding the v such that the solution of the
ordinary differential equation

x′′ = vx′ − f(x), x(0) = 0, x′(0) = ε2 (2.4)

has x(∞) = 1. Let y = x′. In the phase plane of

x′ = y (2.5)
y′ = vy − f(x)
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there is an unstable node at (x,y) = (0, 0) and a saddle point at (x,y) = (1, 0),
joined by a separatrix solution (x(t),y(t)), −∞ < t < ∞, with x(−∞) = 0,
x(∞) = 1. For v ≥ 2, the linearization x′lin = ylin, y′lin = vylin−xlin about (0, 0)
has distinct positive eigenvalues which merge as v ↓ 2, then split into a complex
pair for v < 2. For v ≥ 2, the separatrix corresponds to an exponentially
decaying traveling front solutions of the (nonrandom) KPP equation. For v < 2,
(0, 0) is a spiral source, the x ≥ 0 corresponding in the same way to a traveling
front solutions of (2.1). The separatrix enters the region (x,y) ∈ (0, 1)× (0,∞)
at (x,y) = (0, ε2(v)), and problem (2.1)-(2.3) is now seen to be equivalent to
computing the inverse function v(ε2).

Proposition 2.1. Let vcom = vcom(ε2) be the solution of (2.1)-(2.3). There
exist ε0 > 0 such that for |ε| < ε0,

2− π2

(| log ε2| − 3 log | log ε2| − logα(| log ε2|−3)− 2)2
≤ vcom ≤ 2− π2

(| log ε2|+ 3)2
.

(2.6)
If α(a) = a then ε0 can be taken to be e−8.

First we give the heuristic idea of the proof. It is not hard to see that v(ε2)
is monotone decreasing in ε with v ↓ 2 as ε2 ↓ 0. The linearization about (0, 0)
has explicit solution

xlin(t) = ε2δ̂−1/2 exp{(1− δ
2 ) t} sin(δ̂1/2t) (2.7)

where
δ = 2− v. (2.8)

and δ̂ = δ − δ2

4 . Let Θ be the smallest t > 0 with

xlin(Θ) = 1. (2.9)

Note that Θ ∼ | log ε2|. Pretending the linearization is meaningful globally, one
would want

x′lin(Θ) = 0. (2.10)

(2.9) and (2.10) become, with C1 = 1, C2 = (1− δ
2 ),

ε2δ̂−1/2 exp{(1− δ
2 ) Θ} sin(δ̂1/2Θ) = C1 (2.11)

ε2 exp{(1− δ
2 ) Θ}(− cos(δ̂1/2Θ)) = C2.

(2.11) gives a nonlinear equation for δ in terms of ε from which it is simple to
obtain estimates like (2.6). The only difference in the rigorous proof is that we
will use sub- and super-solutions to get (2.11), but with slightly worse C1 and
C2.

Proof of Proposition 2.1. First of all note that v = vcom depends monotonically
on f : If f1(u) ≤ f2(u) for all u then the corresponding v(f1) ≤ v(f2).
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Upper bound. Consider (2.1)-(2.3) with f replaced by

f̄(u) =
{
u if u ∈ [0, 1]
2− u if u > 1. (2.12)

The corresponding v = vcom is larger as f̄ ≥ f . Call δ = 2 − v and assume
momentarily that δ < 0.2. The solution to

x′′ = vx′ − f̄(x), (2.13)

can be computed explicitly. For t ≤ Θ = inf{t > 0 : x(Θ) = 1}, x (t) = xlin(t)
from (2.7). Now we consider the phase plane (x,x′). One checks that the
linearization around the saddle (x,x′) = (2, 0) has stable direction ($, 1) and
unstable direction (λ, 1) where,

$(δ) = 1− δ

2
− (2− δ̂)1/2, λ = 1− δ

2
+ (2− δ̂)1/2. (2.14)

A separatrix solution (x,x′) joins (0, ε2) to (2, 0). It must coincide with the
stable line y = $x − 2$ in the region x > 1, because the equation is linear
there. So in order for (x(Θ),x′(Θ)) to lie on the separatrix we must have

x′lin(Θ) = $xlin(Θ)− 2$, (2.15)

which is equivalent to (2.11), with C1 = 1 and C2 = −$.
Lower bound. Let α = α(| log ε2|−3) from (1.32) and a = 1− 2| log ε2|−3 and

define

f̃(u) =
{
au if u ≤ α/2
a(α

2 − u) if u > α/2. (2.16)

Consider the problem (2.1)-(2.3) with f replaced by f̃ . The corresponding
v = v(f̃) is smaller than vcom because f̃ ≤ f , Call δ = 2 − v. From the upper
bound we know that for sufficiently small ε2, δ̂ = δ − δ2

4 > 0, in which case the
solution of

x′′ − vx′ + f̃(x) = 0 (2.17)

with x(0) = 0 and x′(0) = ε2 is x(t) = xlin(t) from (2.7) for t ≤ Θ when
xlin(Θ) = α/2. In order to lie on the separatrix joining the unstable fixed point
(x,x′) = (0, ε2) to the saddle point (α, 0), we must have (x(Θ),x′(Θ)) on the
stable line y = (1 −

√
2− a)(x − α). This gives (2.11) with C1 = α/2 and

C2 = (
√

2− a− 1− δ
2 )α/2.

Proof of (2.6). Assume ε0 is sufficiently small that δ < 1 and. Dividing the
two equations in (2.11) gives − tan(δ̂1/2Θ) = δ̂1/2(C1/C2). Let Θ = δ̂−1/2π−β.
Since 4√

2π
x ≤ tanx ≤

√
2x if x ≤ π/4 the solution has 0 ≤ C1/(

√
2C2) ≤ β ≤

π/4. Now the second equation of (2.11) gives,

δ̂ (1− δ
2 )
−2 = π2(| log ε2|+ logC2 + | log cos(δ̂1/2β)|+ β)−2 (2.18)

To get a lower bound on vcom = 2−δ, drop the non-negative terms | log cos(δ̂1/2β)|
and β from the right hand side and note that δ ≤ δ̂ (1− δ

2 )
−2 and logC2 =
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log{(
√

2− a − 1)α/2} ≥ −| logα| − 3 log | log ε2| − 2 log 2. To get an upper
bound, note first that if ε0 is sufficiently small, then from the lower bound we
have just described, δ̂ ≤ 1. Since β ≤ π/4, we then have | log cos(δ̂1/2β)| ≤ 1.
Also logC2 = log(

√
2− δ̂ − 1 − δ/2) < 0. Finally, if we take ε0 sufficiently

small, then the lower bound we just proved gives δ < 10| log ε2|−2 so that
δ̂(1− δ

2 )−2 ≥ δ(1 + 10| log ε2|−2)−1 and then (2.18) gives

δ ≥ π2(| log ε2|+ 2)−2 − 100| log ε2|−4 (2.19)

which gives (2.6) for ε0 small enough.

2.2 Upper bound

Consider u satisfying (1.1) with initial data

u(0, x) = F̄ (x) (2.20)

where %̄(t, x) = F̄ (x− vt) is a traveling front solution of{
∂t%̄ = ∂2

x%̄+ f̄(%̄), x < vt,
%̄(t, x) = 0, x ≥ vt, (2.21)

with f̄ as in (2.12),
v = vcom(ε2) + | log ε|−3 (2.22)

and
−F̄ ′(0) = ε2 = γε2 (2.23)

with 0 < γ << 1 to be chosen.
F̄ is a modified version of a traveling front from the comparison problem

(2.1)-(2.3), with a larger f̄ > f , a slightly larger speed, and lying slightly above
the separatrix connecting (0, 0) to (2, 0). There is some convenience in using
f̄ instead of f . It is convex. Also, some things are explicitly computable. For
example,

F̄ (x) =


0, x ≥ 0;
xlin(−x), −Θ ≤ x < 0;
κλe−λ(Θ+x) + 2− (1 + κ)e−$(Θ+x), x < −Θ,

(2.24)

where κ = κ(ε2) is chosen such that F and F ′ are continuous at x = −Θ and
xlin and Θ are defined in (2.7)-(2.10). Keep in mind that these all depend on
ε though the dependence is not written explicitly. One can check that κ '
(1 − 2−1/2)| log ε2|−2. Note also that the modification of the speed in (2.22) is
smaller than the O( log | log ε|

| log ε|3 ) error terms in the main result, Theorem 1.1.
Fix a positive integer T and an L > 0 and consider the hitting time

ξ = inf{t ∈ [0, T ] : u(t, x) ≥ F̄ (x− vt− L) for some x ∈ R} (2.25)

12



We run u up to time ξ, and then restart with new initial data

F̄ (x− vξ − L), (2.26)

a shift of L from the original comparison front. By the strong Markov property
and the comparison theorem (Proposition 3.1), we obtain an upper bound ū
on the original solution of (1.1) with initial data F̄ . Repeating the process, we
inductively define a sequence of stopping times ξi+1 ∈ [ξi, ξi +T ], and an upper
bound ū for all time on the solution u with initial data F̄ (x). ū satisfies (1.1)
on (ξi, ξi+1) with initial data u(ξi, x) = F̄ (x− vξi − Li).

Suppose we can show that

P (ξ < T ) < 1/2. (2.27)

By the law of large numbers, the speedup of the front of ū over that of u is by a
factor L/E[ξ]. But from (2.27), E[ξ] ≥ T/2. We obtain in this way, using (2.6),
(2.22) an upper bound on v̄ε defined in (1.30),

v̄ε ≤ v + 2T−1L

≤ 2− π2
(
log ε−2 + 3

)−2
+ | log ε|−3 + 2T−1L. (2.28)

If we choose
T−1L ≤ | log ε|−3 (2.29)

we obtain the upper bound (1.34) for initial data bounded above by F̄ .
There is a tradeoff between T and L. Large L in principle makes (2.27)

easier, because F̄ (x − vt − L) is increasing in L. But then (2.29) forces us to
choose T large, and it becomes harder to control u on the long time interval to
obtain (2.27).

For more general initial data, satisfying only
∫∞
0
u0(x)dx < ∞, we can use

the fact that at any time t > 0, r(t) < ∞ a.s. This is proved in the special
case σ2(u) = u in [MP92], but it is well-known that the method can be adapted
without too much work to cover the present situation. We do not give details
here. This means that we can bound u(t, ·) by a shift of F̄ , and obtain the upper
bound (1.34) as before.

This reduces the upper bound to (2.27). The main idea to prove (2.27) is to
split the solution u(t, x) of (1.1) with initial data F̄ into

u = v + w (2.30)

where v(t, x) is the mass which does not cross x = vt;{
∂tv = ∂2

xv + f(v) + εσ(v)Ẇ1, x < vt,
v(t, x) = 0, x ≥ vt,

(2.31)

with v(0, x) = F̄ (x), and w ≥ 0 is the rest. Ẇ1 will be another space-time white
noise. As usual, the SPDE is interpreted in the mild sense;

v(t, x) =
∫
Gv(0, y, t, x)F̄ (y)dy +

∫ ∫ t

0

Gv(s, y, t, x)f(v(s, y))dsdy

+ε
∫ ∫ t

0

Gv(s, y, t, x)σ(v(s, y))W1(dsdy) (2.32)

13



where Gv(s, y, t, x) is the sub-probability density for a Brownian motion with
generator ∂2

x, starting at y at time s, to end at x at time t > s never having
entered the region {z ≥ vu} for times s ≤ u ≤ t. In Proposition 3.1 in Section 3
it is shown that we can find a probability space on which such a splitting holds.

We expect the solution v(t, x) of (2.31) to remain close to the solution %(t, x)
of the deterministic comparison equation (2.1) with the same initial data F̄ (x).
Because it is a subsolution of (2.21) we have %(t, x) ≤ F̄ (x − vt). If L is large
enough, we can therefore expect v not to hit F̄ (x− vt− L) for some time.

The key point now is that if F ′(0) << ε2 then w is so negligible that u = v+w
does not hit F̄ (x−vt−L) for some time either. To prove this, we need a better
way to represent w. One can also view the Dirichlet boundary condition in
(2.31) as a removal of mass. Let A(t) be the mass which is removed at the
boundary x = vs in (2.31) during the time interval 0 ≤ s ≤ t. Then we have
another representation for v satisfying (2.31) or (2.32):

∂tv = ∂2
xv + f(v) + εσ(v)Ẇ1 − δx−vtȦ. (2.33)

We would like to write an equation for w, with a new white noise Ẇ2,
independent of Ẇ1. If Ẇ1 and Ẇ2 are independent white noises, then

σ1Ẇ1 + σ2Ẇ2 =
√
σ2

1 + σ2
2 Ẇ (2.34)

where Ẇ is a white noise. Hence the equation for w should read,

∂tw = ∂2
xw + f(v + w)− f(v) + εσ̃Ẇ2 + δx−vtȦ, (2.35)

with initial data w(0, x) ≡ 0, where

σ̃(t, x, w) =
√
σ2(v(t, x) + w)− σ2(v(t, x)). (2.36)

But this is only reasonable as long as σ2(v(t, x) + w) − σ2(v(t, x)) remains
non-negative. In Proposition 3.1 of Section 3, it is shown that there exists a
probability space on which there are white noises W1 and W2 for which (2.35)
holds, up to a stopping time

τ = inf{t ≥ 0 : ∃x, σ̃(t, x, w(t, x)) = 0, w(t, x) 6= 0}, (2.37)

after which the desired noise coefficient σ̃ might cease to make sense.
By the comparison theorem, and since f(v + w) − f(v) ≤ ‖f‖Lipw, up to

time τ we have u− v = w ≤ w̄ almost surely, where

∂tw̄ = ∂2
xw̄ + ‖f‖Lipw̄ + εσ̃(w̄)Ẇ2 + δ{x=vt}Ȧ. (2.38)

As long as
σ̃2(w̄) ≥ a∗w̄, (2.39)

this is basically a superprocess with an injection of mass at {x = vt}. The
critical input of mass in such an equation is easily calculated to be O(ε2). In

14



other words, if the rate of mass entering is o(ε2), then it is being killed by the
noise in time O(1) with very high probability. And it suffices to show just that
the expected incoming mass E[A(t+ 1)−A(t)] is o(ε2).

To get such a bound, note that by comparison v ≤ v̄, the solution of

∂tv̄ = ∂2
xv̄ + f̄(v̄) + εσ(v̄)Ẇ , x ≤ vt (2.40)

with v̄ = 0 for x ≥ vt. Take expectation in (2.40) and use the concavity of f̄ to
see that E[v] is a subsolution of (2.21). In particular,

E[v(t, x)] ≤ F̄ (x− vt). (2.41)

This can be translated into a bound on the expected rate of incoming mass A(t)
as follows. Taking expectation in (2.33),

E [A(t+ 1)−A(t)] =
∫
q(t, y, t, t+ 1)E[vt(y)]dy (2.42)

+
∫ ∫ t+1

t

q(s, y, s, t+ 1)E[f(v(s, y))]dsdy

where q(s, y, u, t) = Ps,y(∃r ∈ (u, t] : Br ≥ vr) for a Brownian motion Br with
generator ∂2

x. Using E[f(v)] ≤ E[f̄(v)] ≤ f̄(E[v]) ≤ f̄(ρ̄), and that v0(y) =
F̄ (y), we see that

E [A(t+ 1)−A(t)] ≤
∫
q(t, y, t, t+ 1)F̄ (y − vt)dy (2.43)

+
∫ ∫ t+1

t

q(s, y, s, t+ 1)f̄(F̄ (y − vs))dsdy.

Now F̄ (x − vt) is a traveling front solution of (2.1) with f̄ instead of f . The
rate of mass removal at the boundary is proportional to the slope ε2 at the
boundary, and hence there is a C(2.44) <∞ such that,

E [A(t+ 1)−A(t)] ≤ C(2.44)ε
2. (2.44)

The only difficulty is maintaining (2.39). By (1.5) it holds as long as v+w̄ ≤
u∗. What we will do is obtain an a priori estimate that v ≤ u∗/2 in a strip
vt −M ≤ x ≤ vt. This is reasonable since we know that v is close to ρ, which
is of O(ε2) there. If

M = M(u∗) (2.45)

is chosen sufficiently large, we can then iteratively show that w̄ ≤ u∗/2, and
furthermore that it does not support the complement of a strip vt−1 ≤ x ≤ vt+1
around our proposed front. This then provides us with sufficient noise to show
that w is negligible there as well.

To fix γ and T , let us explain very briefly the iterative procedure. Take T
to be an integer and divide up the time interval [0, T ] into intervals of length
1. The mass arriving in [n, n+ 1) and evolving according to (2.38), is bounded
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by (2.44). It dies before time n + 2 with probability at least 1 − c0γ where
c0 = c0(a∗, ‖f‖Lip). So this happens for every n = 0, 1, 2, . . . , T − 1, with
probability at least

1− c0γT. (2.46)

In order to have the probability in (2.46) greater than 3
4 , we thus take

γ =
1
4
c−1
0 T−1. (2.47)

To fix all our constants we note that if

L = | log ε|+ log | log ε| (2.48)

then we have
F (x− L) ≥ F (x) + 3λe−λx. (2.49)

By (2.29) we need
T = b| log ε|4c. (2.50)

We have explained how the upper bound is a consequence of the following lem-
mas.

Lemma 2.2. Let v be the solution of (2.31) with initial data (2.24). Let %
be the solution of (2.21) with the same initial data. Let γ, L, T,M be as in
(2.45)-(2.50). Then

P
(
∃t ∈ [0, T ] : v(t, x) > %̄(t, x) + 3λe−λ(x−vt) for some x ∈ R

)
≤ 1/16.

(2.51)

Lemma 2.3. Under the same conditions as in Lemma 2.2,

P (∃t ∈ [0, T ] : v(t, x) > u∗/2 for some x ∈ (vt−M, vt)) ≤ 1/8. (2.52)

Lemma 2.4. Under the same conditions as in Lemma 2.2, let w̄ be the solution
of (2.38) where A is defined in (2.33)

P
(
∃t ∈ [0, T ] : sup

x∈[vt−1,vt+1]c
w̄(t, x) > 0 or sup

x∈[vt−1,vt+1]

w̄(t, x) ≥ u∗/2
)
≤ 1/4.

(2.53)

2.3 Lower bound

The proof of the lower bound uses a more standard method; comparison to
oriented percolation [BraDurr88]. Similar arguments were used by Conlon and
Doering [CD04] to prove their lower bound. The improvement here comes from
the use of the special comparison front from (2.17) and refined large deviation
estimates.

For v, L > 0 let Gv,L(s, y, t, x) be the sub-probability density in x at time
t for a Brownian motion Bu, s ≤ u ≤ t with generator ∂2

x, starting at Bs = y,
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killed if it enters the region |z| ≥ vu+L, s ≤ u ≤ t. If %(t, x) is a given function,
let

(G%)(t, x) =
∫ ∫ t

0

G2
v,L(s, y, t, x)%(s, y)dsdy (2.54)

Note that this makes sense since we are in one dimension. The lower bound is
based on the following simple lemma about the deterministic equation. Let

f(u) =
{

(1− | log ε|−3)u if u ≤ α/2
(1− | log ε|−3)(α

2 − u) if u > α/2. (2.55)

From the definition (1.32) of α, we have

f(u) ≤ f(u) whenever f(u) ≥ 0. (2.56)

Let
ε2 = γε2 (2.57)

with 1 << γ and v = vcom(ε) as in (2.1) - (2.3).

Lemma 2.5. There exist ε0 > 0, C(2.59) < ∞, 0 < L ≤ | log ε|, and %
0
(x)

supported on [−L,L] with 0 ≤ %
0
(x) ≤ α(| log ε2|−3) such that if ε < ε0, γ ≥

C(2.59)| log ε|10 and r > 1, the solution %(t, x) on 0 ≤ t ≤ 1 of{
∂t% = ∂2

x%+ f(%), |x| < L+ vt
%(t, x) = 0, |x| ≥ L+ vt, (2.58)

with %(0, x) = %
0
(x), and f as in (2.55), satisfies, for v′ = v + | log ε|−3,

%(1, x)− rε
√
G%(1, x) ≥ %

0
(x− v′) x ∈ [v′ − L, v′ + L]. (2.59)

Proof. We follow the notation and construction from the proof of the lower
bound of Proposition 2.1. Let α, a, x and Θ all be as in the proof of the lower
bound of Proposition 2.1. We claim that (2.59) holds with L = Θ and

%
0
(x) =

{
x(L− |x|) 0 ≤ |x| < L,
0 |x| ≥ L.

(2.60)

To prove this, note that the solution %(t, x) of (2.58) satisfies %(t, x) ≤ q̄(t, x) =
et| log ε|−3

min{x(L+ vt−x),x(L)} since %
0
(x) ≤ x(L−x), x ∈ R, and q̄(t, x) is

a supersolution of (2.58), and %(t, x) ≥ q(t, x) where

q(t, x) =

 et| log ε|−3
x(L+ vt− |x|) vt ≤ |x| < L+ vt

et| log ε|−3
x(L) |x| ≤ vt

0 |x| ≥ vt+ L

(2.61)

since q(t, x) is a subsolution of (2.58) with the same initial data. So

%(1, x)− %
0
(x− v′) ≥ q(1, x)− %

0
(x− v′) (2.62)

≥
{

xlin(L+ v − |x|)− xlin(L+ v′ − |x|) |x| ∈ (v, v′ + L],
(e| log ε|−3 − 1)xlin(L) |x| ≤ v,
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Here we used that x(t) = xlin(t) for t ≤ L. For |x| ∈ (v, v′+L] we now use that
if δ < 1/2 then x′lin ≥ ε2e

1
2 (L+v−|x|) there and v − v′ = | log ε|−3 to get a lower

bound. For |x| ≥ v we use e| log ε|−3 − 1 ≥ | log ε|−3 and xlin(L) = α/2. This
gives

%(1, x)−%
0
(x−v′) ≥

{
| log ε|−3ε2e

1
2 (1− δ

2 )(L+v−|x|) |x| ∈ (v, v′ + L],
| log ε|−3α/2 |x| ≤ v,

(2.63)

From the explicit form of xlin, and using Gv,L ≤ G, as long as exp{| log ε|−3} ≤ 2
and δ < 1,

(Gq̄)(1, x) ≤ 2
∫ 1

0

∫ vs

−∞

e−
(y−x)2

2(1−s)

4π(1− s)
min{ε2δ−1/2evs−y+L, α/2}dsdy

≤ min{4ε2δ−1/2e−(x−L−v), α}. (2.64)

Hence one can check that %(1, x)− %
0
(x− v′) ≥ rε

√
Gq̄ as long as

r ≤ min{6γ1/2| log ε|−7/2, ε−1| log ε|−3
√
α(| log ε|−3)/2}. (2.65)

Since Gq̄ ≥ G% we are done.

From the comparison theorem (Proposition 3.1), we can construct a proba-
bility space on which the solution of{

∂tu = ∂2
xu+ f(u) + εσ(u)Ẇ , |x| < L+ vt

u(t, x) = 0, |x| ≥ L+ vt.
(2.66)

gives an almost sure lower bound for the solution of (1.1) with the same initial
data.

Suppose we start (2.66) with %
0
(x) from Lemma 2.5. The idea is that the

solution u will stay close to % up to time 1. To see how close, let us make a very
rough argument. Since f has Lipschitz constant 1 one expects that for times of
O(1), |u(t, x)− %(t, x)| is controlled by something like ε|ZL,v(t, x)| where

ZL,v(t, x) =
∫ ∫ t

0

et−sGv,L(s, y, t, x)σ(u(s, y))W (dsdy). (2.67)

The actual bound is somewhat more complicated, but it amounts to the same
thing. Recall that σ2(u) ≤ u. By concavity of f , E[u] ≤ %. So

E[Z2
L,v(1, x)] ≤ eG%(1, x). (2.68)

Things are tight in the region close to the front {x = vt+L} where % = O(ε2).
Here G%(1, x) = O(ε2) as well. Hence the fluctuations of u − % are of order
εε = γε2 there. This is the reasoning behing (2.59). The key point of the
following refined large deviation estimate is that it shows that the fluctuations
near the front are of O(γε2) instead of the O(ε) one would obtain naively.
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Lemma 2.6. Let %, L be as in Lemma 2.5. There exists C(2.69) <∞ such that
for all 0 < r < ε−1,

P
(
∃x : u(1, x) ≤ %(1, x)− rε

√
G%(1, x)

)
≤ 4L exp{−C−1

(2.69)r
2}. (2.69)

Note the factor L on the right hand side is because the large deviations are
done on space intervals of size 1, and then summed over the width of %(1, x). If
we take

r2 = C(2.69)[| log ε|3 + 2 log | log ε|+ log 4], (2.70)

the right hand side is less than | log ε|−1e−| log ε|3 . We conclude that if we start
(2.66) with %

0
(x), then

P (u(1, x) ≥ %
0
(x− v), x ∈ R) ≥ 1− | log ε|−1e−| log ε|3 . (2.71)

Now we can ask for this to happen T = | log ε| times, to obtain

P (u(T, x) ≥ %
0
(x− vT ), x ∈ R) ≥ 1− e−| log ε|3 def= p. (2.72)

By symmetry we also have

P (u(T, x) ≥ %
0
(x+ vT ), x ∈ R) ≥ p. (2.73)

This allows us to compare the system to a 2-dependent oriented percolation.
Let L = {(m,n) ∈ Z2 : m+ n is even, m ≥ 0}. Let L̂ denote the set of directed
bonds (m,n) → (m + 1, n + 1) or (m,n) → (m + 1, n − 1). Let Xb, b ∈ L̂ be
random variables taking values in {0, 1}. Assume that for all b ∈ L̂,

P (Xb = 1) ≥ p. (2.74)

Also assume that Xb and Xb′ are independent if the lattice distance between b
to b′ is strictly larger than 2. If m1 < m2 then we say (m1, n1) → (m2, n2) if
they are joined by a sequence of directed bonds bi ∈ L̂ with Xbi = 1. Let S
denote the subset of (m,n) ∈ L such that (0, x) → (m,n) for some x < 0.

Lemma 2.7. Suppose that
p > 1− e−10. (2.75)

Then, with probability 1, for all but finitely many m,

Nm
def= max{n : (m,n) ∈ S} ≥ (1− 10| log(1− p)|−1)m (2.76)

Proof. Using the standard contour counting argument one obtains

P (Nm < m(1− δ)) ≤
∑

n≥mδ 42n+m(1− p)n/2. (2.77)

(see [CD04], Lemma 3.6, for a complete proof of (2.77). The only difference is
the exponent n/2 on the (1 − p) which comes from the 2-dependence.) Take
δ = 10| log(1− p)|−1. If we assume (2.75) then it is not hard to check that the
right hand side is less than 2e−M and the result follows from Borel-Cantelli.
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Remark. (2.76) is very far from optimal: It is known (see [D], [GP]) that for
p close to 1, the speed of oriented percolation, limm→∞

Nm

m = 1−O(1− p). If
one uses the stronger result, one can check for the case (1.9), (1.10), the main
result holds with ε0 = e−11.

Proof of the lower bound. Start (1.1) with initial data u0 in Cexp satisfying
(1.6). Without loss of generality, x0 = 0. As long as θ > α we have u0(x) ≥∑0

n=−∞ %
0
(x − nT ). We say X(m,n)→(m+1,n±1) = 1 if u(mT, x + nT ), u((m +

1)T, x+(n±1)T ) ≥ %
0
(x). Recall r(t) = sup{x ∈ R : u(t, x) > 0}. If Nm ≥ am,

then r(mT ) ≥ amT , and furthermore, r(t) ≥ (am−1)t−L, (m−1)T ≤ t ≤ mT .
Hence from Lemma 2.7 we get a lower bound

vε ≥ v(ε2)− 10| log(1− p)|−1 = v(ε2)− 10| log ε|−3. (2.78)

3 Comparison

We now state precisely the comparison theorem we are using. Let U denote the
set

U = {(t, x) ∈ [0, T ]×R : x ≤ vt} (3.1)

for some v > 0

Proposition 3.1. Assume (1.7), (1.8).
1. Suppose that g(t, u) ≤ f(u) are Lipschitz functions, u ∈ R, t ≥ 0 and

initial data v0(x) ≤ u0(x), x ∈ R are given. There exists a probability space
(Ω,F , P ) on which there are white noises Ẇ , Ẇ1, a solution u to (1.1); a solu-
tion v to {

∂tv = ∂2
xv + g(v) + εσ(v)Ẇ1, (t, x) ∈ U,

v(t, x) = 0, (t, x) 6∈ U, (3.2)

with v(0, x) = v0(x), and satisfying

u(t, x) ≥ v(t, x), x ∈ R, t > 0. (3.3)

2. Fix possibly random F0-measurable u0 ∈ Ĉ. Suppose that g(u) is the Lipschitz
function and there is also another initial data ū0 = v0 ∈ Cexp such that

u0(·) ≤ ū0(·), a.s.,

and ū0(x) = 0 for all x ≥ 0. Then there exists a probability space (Ω,F , P )
on which white noises Ẇ , ˙̄W, Ẇ1, Ẇ2 and a vector of processes (u, ū, v, w̄) are
defined and satisfy the following properties:

(i) u is a solution to (1.1);
(ii) ū is a solution to (1.1) in Cexp starting at ū0 with W̄ replacing W ;
(iii) v is a solution to (3.2) in Cexp starting at v0 = ū0 where U is of the

form (3.1);
(iv) Ẇ2 is a space-time white noise independent of Ẇ1;
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(v) Up to time

τ = inf{t ≥ 0 : ∃x, σ2
w(t, x) =: σ2(ū)− σ2(v) = 0, ū(t, x) 6= v(t, x)}, (3.4)

ū− v ≤ w̄ and u ≤ ū a.s., (3.5)

where
∂tw̄ = ∂2

xw̄ + w̄ + εσwẆ2 + δx−vcomtȦ, (3.6)

and

A(t) = −
∫

(v(t, x)−v(0, x))dx+
∫ ∫ t

0

g(v(s, x))dsdx+ε
∫ ∫ t

0

σ(v(s, x))W1(dsdx).

Proof. 1. Assume first that σ is globally Lipschitz. Then the proof goes essen-
tially along the lines of Theorem 3.1 of [MP92]. One approximates the solutions
by lattice versions as in (1.15), for which the ordering is elementary. Then one
shows the ordering is preserved in the limit. Because one has strong uniqueness
it means the solution of the SPDE’s are ordered in the desired way. Now sup-
pose we do not have the strong uniqueness. We construct a sequence of Lipshitz
σ(n) converging unifomly to σ and consider the sequence of solutions u(n), v(n)

corresponding to σ(n). It is a standard to check that the sequence is tight and
any weak limit point satisfies our equations. Since comparison is satisfied for
each n it also holds in the limit.

2. There exists a probability space with a noise Ẇ and a pair of independent
noises Ẇ1 and Ẇ2 such that u solves (1.1), v solves (3.2) and w̃ solves

∂tw̃ = ∂2
xw̃ + f(w̃ + v)− f(v) + σ̃wẆ2 + δx−κtȦ, (3.7)

where σ̃2
w = |σ2(v + w̃)− σ2(v)|, w̃ is non-negative and

u ≤ v + w̃. (3.8)

The construction of such a tripple (u, v, w̃) is fairly straightforward. One con-
structs a sequence of approximations to (1.1), (3.2) and (3.7) for which the
ordering correspondent to (3.8) is elementary. Then one takes a limit to get
solutions to (1.1), (3.2) and (3.7) and shows that ordering is preserved in the
limit. By this way one gets that the the unique weak solution u to (1.1) is
bounded from the above by v + w̃ where v, w̃ are some solutions to (3.2) and
(3.7) respectively with independent white noises Ẇ1, Ẇ2.

Define

ũ = v + w̃, t ≤ τ1 (3.9)
∂tũ = ∂2

xũ+ f(ũ) + εσ(ũ)Ẇ , t ≥ τ1, (3.10)

where τ1 is defined similarly to τ :

τ1 = inf{t ≥ 0 : ∃x, σ̃2
w(t, x) = 0, (v + w̃)(t, x) 6= v(t, x)}.
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It is easy to see that ũ is a solution to the equation which ū is supposed to
solve, and hence we can set ū = ũ and τ1 = τ . To show that ū and v indeed
belong to Cexp one can use for example the methods of proof of Theorem 1.2
from [MPS06]. Now let us construct w̄ satisfying (3.6) such that

w̃ ≤ w̄, on t ≤ τ.

Let w be a solution to

∂tw = ∂2
xw + (w + w̃)− (f(w̃ + v)− f(v)), t ≤ τ. (3.11)

As the drift term is non-negative we get that w is non-negative. Now define
w̄ = w + w̃ and it is easy to check that it satisfies (3.6) and we are done.

4 Large deviations

We now present a fairly standard type of large deviation result which covers the
estimates we need both in the upper and lower bounds. We need some notation.
Let g(s, y, t, x) and η(x, y) be deterministic, and

Γb,T = {(t, x) : t ∈ [0, T ], x− vt ∈ [b− 1, b]}. (4.1)

For (t, x) and (t′, x′) in Γb,T let

d((t, x), (t′, x′)) = |x′ − x|+ |t′ − t|1/2. (4.2)

Define

B(g, η, b) = sup
(t,x),(t′,x′)∈Γb,T
d((t,x),(t′,x′))≤1

∫ ∫∞
0

[g(s, y, t′, x′)− g(s, y, t, x)]2η(s, y)dsdy
d((t, x), (t′, x′))

. (4.3)

Lemma 4.1. Let g(s, y, t, x), η(s, y), Γb,T and B(g, η, b) be as above and σ(t, x)
nonanticipating with

|σ(t, x)|2 ≤ η(t, x), (t, x) ∈ [0, T ]×R (4.4)

almost surely, and define

Z(t, x) =
∫ ∫ t

0

g(s, y, t, x)σ(s, y)W (dsdy). (4.5)

There exist C(4.6), C(4.7) <∞ such that if T ≥ 1 and

` ≥ C(4.6)TB1/2 (4.6)

Then, with Φ(d) =
√
d(1 + | log2 d|),

P

(
sup

(t,x),(t′,x′)∈Γb,T

|Z(t′, x′)− Z(t, x)|
Φ(d((t, x), (t′, x′)))

≥ `

)
≤ 4T exp

{
−C−1

(4.7)`
2T−2B−1

}
.

(4.7)
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Proof. Let Gn be the vertices of an affine lattice with edges En parallel to the
boundaries of Γb,T and with edge lengths 2−n in the (1, 0) direction and with
vertical component 2−2n in the (1, v) direction. Let G = ∪∞n=0Gn and E =
∪∞n=0En.

Given (t, x), (t′, x′) ∈ G with

min(d((t, x), (t′, x′)), 1) ∈ (2−n0 , 2−(n0−1)] (4.8)

there exists a path between them using edges from E , which uses only edges
from En with n ≥ n0, and uses at most T edges from any given En.

For e = (p, q) ∈ En, write Ze := Z(p)− Z(q) and de = d(p, q). By standard
Itô calculus,

E[exp{γZe}] ≤ exp{1
2
γ2deB}. (4.9)

Let an = (10
√

2T )−1(n+ 1)1/22−n/2 and

Ae = {Ze ≤ an`}. (4.10)

By Chebyshev’s inequality

P (Ac
e) ≤ exp{1

2
γ2deB − γan`}. (4.11)

Optimising the inequality over γ gives

P (Ac
e) ≤ exp{−1

2
`2a2

nd
−1
e B−1}. (4.12)

Let A =
⋂∞

n=0

⋂
e∈En

Ae. On A,

|Z(t′, x′)− Z(t, x)| ≤ T`

∞∑
n=n0

an (4.13)

≤ `(n0 + 1)1/22−n0/2 (4.14)
≤ `Φ(d((t, x), (t′, x′))). (4.15)

Here we use the fact that for n0 ≥ 0,
∑∞

n=n0+1 n
1/22−n/2 ≤ 10(n0+1)1/22−n0/2.

Now we have

P (Ac) ≤
∞∑

n=0

∑
e∈En

P (Ac
e) ≤

∞∑
n=0

|En|P (Ac
e). (4.16)

It is simple to check that |En| ≤ 2T23n and de ≤ 2−n+2. From (4.12) then,

P (Ac) ≤ 2Te−2−10`2T−2B−1
(1− e3 log 2−2−10`2T−2B−1

) (4.17)

which gives (4.7) as long as (4.6) holds. Since Z(s, y) is continuous, it is enough
to check the bound on dyadics, and hence this completes the proof.
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In order to apply Lemma we need a bound on (4.3). This is provided by the
next lemma. The lemma will only be applied with the λ defined in (2.14), but
it is true for other λ satisfying (4.20).

Lemma 4.2. Let

g(s, y, t, x) = ea(t−s)1(0 ≤ s ≤ t)Gv(s, y, t, x) (4.18)

and
η(s, y) ≤ (1 + |y − vs|) exp{λ|y − vs|}. (4.19)

Then, there exists C(4.21) < ∞ such that for any b < 0 (i) if T ≤ 1 and a ≤ 1,
or (ii) if T > 1 and

vλ− λ2

2
≥ 2a, (4.20)

B from (4.3) satisfies
B ≤ C(4.21)(1 + |b|)eλ|b|. (4.21)

The same also holds in case (i) if Gv is replaced by Gv,L.

Proof. The only statement that is not elementary is (ii). We have to estimate∫ ∫ ∞

0

[g(s, y, t+ h, x+ z)− g(s, y, t, x)]2(1 + |y − vs|) exp{λ|y − vs|}dsdy

≤ C(1 + |b|)eλ|b|[z + h1/2] (4.22)

for t ∈ [0, T ], x− vt ∈ [b− 1, b], with g(s, y, t, x) in (4.18). First of all, note that
we can express Gv in terms of G0, which in turn can be written explicitly in
terms of the heat kernel G (see (1.13)) using reflection;

Gv(s, y, t, x) = e−
v
2 ((x−vt)−(y−vs))− v2

4 (t−s)G0(s, y − vs, t, x− vt), (4.23)

G0(s, y, t, x) = G(s, y, t, x)−G(s, y, t,−x), x, y < 0. (4.24)

After change of variables, the left hand side of (4.22) becomes, with x′ = x− vt
and γ = z − vh,∫

y≤0

∫ (
10≤s≤t+he

− v
2 (x′−y+γ)−α(t−s+h)G0(s, y, t+ h, x′ + γ)

−10≤s≤te
− v

2 (x′−y)−α(t−s)G0(s, y, t, x′)
)2

(1 + |y|)eλ|y|dsdy.(4.25)

with α = v2

4 − a. Estimating the two pieces of the right hand side of (4.24) by
using that the square of the sum is bounded by twice the sum of the squares we
see that (4.25) is bounded by the sum over ι = ±1 of∫

y≤0

∫ (
1−h≤s≤t

exp{−v
2 (x′ − y + γ)− α(s+ h)− (x′−ιy+γ)2

4(s+h) }
√
s+ h

− 10≤s≤t

exp{−v
2 (x′ − y)− αs− (x′−ιy)2

4s }
√
s

)2

(1 + |y|)e−λy dsdy

4π
.(4.26)
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Note that we have also changed variables t− s 7→ s. Changing y 7→ y + x′ and
rearranging a little this becomes (A1 + A0|x′|)e−λx′ where Ai is (4π)−1 times
the sum over ι = ±1 of∫∫

e−2αs+(v−λ)y(1+ι|y|)
(
1−h≤s≤t

γ′e−
(y+(1−ι)x−ιγ)2

4(s+h)

√
s+ h

−10≤s≤t
e−

(y+(1−ι)x)2

4s

√
s

)2

dsdy

(4.27)
with γ′ = exp{vγ

2 − αh}. Consider the ι = +1 term. We estimate

(
1−h≤s≤t

γ′e−
(y−γ)2

4(s+h)

√
s+ h

− 10≤s≤t
e−

y2

4s

√
s

)2

≤ 3 · 10≤s≤t

(e− (y−γ)2

4(s+h)

√
s+ h

− e−
y2

4s

√
s

)2

+3 · 1−h≤s≤0
γ′2e−

(y−γ)2

2(s+h)

s+ h
+ 3 · 10≤s≤t

(γ′ − 1)2e−
(y−γ)2

2(s+h)

s+ h
. (4.28)

There are also three analogous terms corresponding to ι = −1. All six terms are
estimated by explicit computation. Since it is very tedious, we present only the
worst case which is the first term on the right hand side of (4.28) with ι = 1.
Call β = v − λ.

Lemma 4.3. For h, γ ∈ (0, 1), α, β ∈ (0, 3) and

q = 2α− β2 > 0, (4.29)

there exists a C(4.30) <∞ such that for all t > 0,

∫ t

0

∫
e−2αs+βy(1+|y|)

e− (y−γ)2

4(s+h)

√
s+ h

− e−
y2

4s

√
s

2

dyds ≤ C(4.30)[|γ|+|h|1/2] (4.30)

Proof. The left hand side is bounded by a constant multiple of I1 + I2 + I3(γ2−
h) + I3(h) + I4 where

I1 =
∫ t

h

∫
e−2αs+βy(1 + |y|)

e− y2

4(s+h)

√
s

− e−
y2

4s

√
s

2

dyds

I2 =
∫ t

h

∫
e−2αs+βy(1 + |y|)

e− y2

4(s+h)

√
s+ h

− e−
y2

4(s+h)

√
s

2

dyds

I3(a) =
∫ |a|

0

∫
e−2αs+βy(1 + |y|)

e− y2

2(s+h)

s+ h
+
e−

(y−γ)2

2s

s

 dyds

I4 =
∫ t

0∨(γ2−h)

∫
e−2αs+βy (1 + |y|)

s+ h

(
e−

(y−γ)2

4(s+h) − e−
y2

4(s+h)

)2

dyds

25



In the proof C will denote any finite constant, possibly depending on α, β and
q. Its value will change from line to line.

Estimation of I1 ≤ Ch1/2. By the mean value theorem, there exists θ ∈ [0, 1]
such that

I1 =
1
16
h2

∫ t

h

∫
e−2αs+βy(1 + |y|)s−1e−

y2

2(s+θh) y4(s+ θh)−4dyds. (4.31)

Since we are integrating over s ∈ [h, t], we have s ≤ s+ θh ≤ 2s and therefore

I1 ≤ Ch2

∫ t

h

∫
e−2αs+βye−

y2

4s (y4 + |y|5)s−5dyds

= Ch2

∫ t

h

e−qss−5

∫
e−

1
4s (y−2sβ)2(y4 + |y|5)dyds.

Recall that |a+ b|n ≤ 2n−1(|a|n + |b|n). Thus y4 = ((2s)
1
2 z + 2sβ)4 ≤ 25z4s2 +

27s4β4, |y|5 = |(2s) 1
2 z+2sβ|5 ≤ 2

13
2 z5s

5
2 +29s5β5. After the change of variables

change variables to z = (y − 2sβ)/
√

2s and integrating we can bound the last
term by

Ch2

∫ t

h

e−qs
(
s−

5
2 + s−2 + s−

1
2β4 + s

1
2β5
)
ds (4.32)

where C is a universal constant. Since s > h in the region of integration and
h ≤ 1, this is bounded above by

Ch2

∫ t

h

e−qs
(
h−

1
2 s−2 + s−2 + h−

1
2β4 + h

1
2β5
)
ds (4.33)

The estimate then follows from
∫ t

h
e−qss−2ds ≤

∫ 1

h
s−2ds+

∫ t

1
e−qsds ≤ 1

h +q−1.
Estimation of I2 ≤ Ch

1
2 . By the mean value theorem, there exists θ ∈ [0, 1]

such that

I2 =
1
4
h2

∫ t

h

∫
e−2αs+βy(1 + |y|)e−

y2

2(s+h) (s+ θh)−3dyds

≤ Ch2

∫ t

h

∫
e−2αs+βy(1 + |y|)e−

y2

2(2s) s−3dyds

= Ch2

∫ t

h

e−qss−
5
2 (π

1
2 + 2s

1
2 + 2π

1
2 sβ)ds

The estimate then follows from
∫ t

h
e−qss−

5
2 (1+s

1
2 +s)ds ≤

∫∞
h

(
s−

5
2 + s−2 + s−

3
2

)
ds ≤

Ch−
3
2 .

Estimation of I3(γ2−h)+I3(h) ≤ C[h
1
2 +γ]. This just uses

∫
(1+|y|)e−

(y−a)2

2r dy ≤∫
(1 + a+ |y − a|)e−

(y−a)2

2r dy ≤ C((1 + a)r
1
2 + r) and 4α− β2 > 0.

Estimation of I4 ≤ Cγ. First we change variables to r = s + h, with h
constant, and use the fact that 2αr ≥ 0 and t <∞ to see that

I4 ≤ e2αh

∫ ∞

h∨γ2

∫
I(r, y)dydr (4.34)
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where

I(r, y) = r−1(1 + |y|)
(
e−

(y−γ−br)2

4r e
γβ
2 e

β2r
4 − e−

(y−βr)2

4r e
β2r
4

)2

≤ 2e−(2α+ β2

2 )rr−1(1 + |y|)e−
(y−γ−βr)2

2r

(
e

γβ
2 − 1

)2

(4.35)

+2e−(2α+ β2

2 )rr−1(1 + |y|)
(
e−

(y−γ−βr)2

4r − e−
(y−βr)2

4r

)2

=: I1(r, y) + I2(r, y)

We have (e
γβ
2 − 1)2 ≤ Cγ2 and furthermore

∫
(1 + |y|)e−

(y−γ−βr)2

2r dy ≤
∫

(1 +

γ + βr + |y − γ − βr|)e−
(y−γ−βr)2

2r dy ≤ C[r1/2(1 + γ + βr) + r] so,∫ ∞

0

∫
I1(r, y)dydr ≤ Cγ2. (4.36)

Similarly we bound
∫
I2(r, y)dy by

2
∫
e−(2α+ β2

2 )rr−1(1+βr+
γ

2
+|y−βr− γ

2
|)(e−

(y−γ−βr)2

4r −e−
(y−βr)2

4r )2dy. (4.37)

We need two standard estimates: For r > 0,∫
(e−

(y−γ)2

4r − e−
y2

4r )2dy ≤ Cr−
1
2 γ2 (4.38)∫

|y − γ

2
|(e−

(y−γ)2

4r − e−
y2

4r )2dy ≤ C(r
1
2 γ + γ2) (4.39)

Changing variables in (4.37) to z = y − βr and using (4.38), (4.39) we have∫ ∞

γ2

∫
I2(r, y)dydr ≤ Cγ (4.40)

which gives the required estimate for I4 and completes the proof of the lemma.

This gives us a lemma which controls the large deviations on a long time
interval.

Lemma 4.4. Let

Z(t, x) =
∫ ∫ t

0

e−(t−s)Gv(s, y, t, x)σ(s, y)W (dsdy) (4.41)

where σ is nonanticipating. Assume

σ2(t, x) ≤ F̄ (x− vt) + 3e−λ(x−vt). (4.42)
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Then for T be as in (2.50),

P (∃(t, x) ∈ [0, T ]×R, x ≤ vt : Z(t, x) ≥ ε−1e−λ(x−vt)) ≤ 1/16 (4.43)

and with M as in (2.45),

P
(

sup
0≤t≤T, vt−M≤x≤vt

|Z(t, x)| ≥ ε−1u∗/160
)
≤ 1/32 (4.44)

Proof. The left hand side of (4.43) is bounded by

∞∑
n=0

P (∃(t, x) ∈ Γ−n,T : Z(t, x) ≥ ε−1eλn) (4.45)

where Γ−n,T is defined in (4.1). Applying Lemma 4.1 for each n with

` = ε−1eλn/2
√
T log T (4.46)

using t′ = 0 and Φ ≤ 2
√
T log T and (4.21), we obtain that (4.45) is bounded

by

4| log ε|4
∞∑

n=0

exp{−A(n+ 1)−1eλn} (4.47)

with A = ε−2C−1
(4.47)| log ε|−12| log log ε−1|−1 as long as

` = ε−1eλn/2
√
T log T ≥ C(4.6)TB1/2 (4.48)

From (2.14), λ− 1 ≥ 1 if δ > 0.2. Hence (n+ 1)−1eλn ≥ n+ 1 for all n ≥ 0 and
(4.47) is bounded above by

4| log ε|4
∞∑

n=0

exp{−A(n+ 1)} ≤ 8| log ε|4e−A (4.49)

as long as A ≥ log 2 which bounded by 1/16 for ε ≤ ε0.

5 Proof of Lemma 2.2

Recall that v and % are the solution of (2.31) and (2.1) with initial data F̄ as in
(2.24). γ, L, T,M are as in (2.47), (2.48), (2.29).

Lemma 2.2 is basically a result about how the stochastic perturbation of a
partial differential equation (2.31) stays close to its deterministic version. Such
theorems are fairly standard, but we need to stay close on a fairly long time
interval [0, T ] where T = O(| log ε|4) as required by (2.46). First of all, let v̄ be
the solution of {

∂tv̄ = ∂2
xv̄ + f̄(v̄) + εσ(v̄)Ẇ1, x < vt,

v̄(t, x) = 0, x ≥ vt,
(5.1)
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with v̄(0, x) = F̄ (x) with v̄ ≥ v by the comparison theorem, and let %̄ be the
solution of (2.21). It suffices to show that

P
(
∃t ∈ [0, T ] : v̄(t, x) > %̄(t, x) + 3λe−λ(x−vt) for some x ∈ R

)
≤ 1/16. (5.2)

We have

∂t(v̄ − %̄) = ∂2
x(v̄ − %̄) + f̄(v̄)− f̄(%̄) + εσ(v̄)Ẇ1 x < vt (5.3)

and v̄ − %̄ = 0 on x ≥ vt and t = 0. One easily checks that

f̄(v̄)− f̄(%̄) ≤ 2− (v̄ − %̄). (5.4)

Using the same ideas as in the proof of Proposition 3.1 we will show now that

v̄ − %̄ ≤ y (5.5)

with y a solution of
∂ty = ∂2

xy + 2− y + εσ(v)Ẇ1. (5.6)

on x ≤ vt, and y = 0 otherwise. To prove this define w̃ to be the solution to

∂tw̃ = ∂2
xw̃ + 2− (v̄ − %̄)− (f̄(v̄)− f̄(%̄))− w̃.

on x ≤ vt, and w̃ = 0 otherwise. Note that by (5.4), 2−(v̄−%̄)−(f̄(v̄)−f̄(%̄)) ≥ 0
and hence w̃ ≥ 0. Now define

y = v̄ − %̄+ w̃,

and by trivial calculations we get that y satisfies (5.6) and since w̃ ≥ 0, (5.5)
follows.

Using the integrating factor et we obtain

v̄(t, x)− %̄(t, x) ≤ εZ(t, x) + 2 (5.7)

where, with Gv(s, y, t, x) as in (2.32),

Z(t, x) =
∫ ∫ t

0

e−(t−s)Gv(s, y, t, x)σ(s, y)W1(dsdy) (5.8)

So it suffices to show that

P (∃(t, x) ∈ [0, T ]×R, x ≤ vt : Z(t, x) ≥ ε−1e−λ(x−vt)) ≤ 1/16. (5.9)

Note that when we do this we can assume without loss of generality that

σ2(t, x) ≤ %̄(t, x) + 3e−λ(x−vt). (5.10)

For if ṽ is a solution of (3.2) with σ2(ṽ(t, x)) replaced by

σ̃2(ṽ, t, x) = min
(
σ2(ṽ(t, x)), %(t, x) + 3e−λ(x−vt)

)
then v̄ = ṽ up to time

τ̂ = inf{t ≥ 0 : v̄(t, x) ≥ %(t, x) + 3e−λ(x−vt) for some x ∈ R}

and hence it suffices to prove (5.9) under (5.10). The result now follows from
Lemma 4.4.
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6 Proof of Lemma 2.3

i. of Lemma 6.1 is actually an upgrade of Lemma 2.2 which is a bit stronger
than Lemma 2.3. ii. is similar to i. It is needed in Section 8 to control the
maximum of w. Recall F̄ from (2.24) and define

F (x) =

 0, x ≥ 0,
u∗/40, x ∈ (−M, 0],
F̄ (x) + 3λe−λx, x ≤ −M,

(6.1)

Lemma 6.1. i. Let v be the solution of (2.31) with initial data (2.24). Let
% be the solution of (2.21) with the same initial data. Let γ, L, T,M be as in
(2.45)-(2.50). Then

P (∃t ∈ [0, T ] : v(t, x) > F (x− vt) for some x ∈ R) ≤ 1/8. (6.2)

ii. Suppose that u satisfies 0 ≤ u(0, x) ≤ F (x) from (6.1) and

∂tu ≤ ∂2
xu+ u+ εσ(t, x)Ẇ (6.3)

with
σ(t, x)2 ≤ 3F̄ (x− vt− L). (6.4)

Suppose M , γ are as in (2.45), (2.47). Then there is a C(6.5) <∞ such that

P
(

sup
0≤t≤3, −1≤x−vt≤1

u(t, x) > u∗/10
)
≤ C(6.5)γ (6.5)

Let us make a few remarks before we start the proof of the lemma. Note that
part (i) of the lemma is only stronger than Lemma 2.2 in the region x − vt ∈
(−M, 0] where %̄(t, x)+3λe−λ(x−vt) ∼ 3. We need this to be able to control σ2(v)
from below in the regions where v is small, that is in the region x−vt ∈ (−M, 0].
If we will show that with high probability v is small in that region, then we will
be able to use (1.5) to control σ2(v) from below there. Another remark deals
with coefficient 3 in (6.4). This coefficient appears in (8.15) after which we use
Lemma 6.1.

Proof. i. Note also that by the same argument as that at (5.10) we can assume
that

σ2(v(t, x)) ≤ F (x− vt). (6.6)

Let N be the vertices of an affine lattice in

Γ = {(t, x) : 0 ≤ t ≤ T, vt−M ≤ x ≤ vt}

with edge length aε between nearest neighbour vertices. From (2.41) we have
that for (x, t) ∈ Γ and therefore for p ∈ N ,

E [v(p)] ≤ % ≤ ε2MeM . (6.7)
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By Markov’s inequality,

P (v(p) > u∗/40) ≤ 40MeMε2/u∗. (6.8)

We can estimate

P

(
sup
p∈N

v(p) > u∗/40
)
≤
∑
p∈N

P (v(p) > u∗/40) (6.9)

and since |Γ| ≤ 2MTε−2a−2, if a ≥ 80M1/2eM/2(u∗)−1/2 then

P

(
sup
p∈N

v(p) > u∗/40
)
≤ 1/32. (6.10)

Hence to prove the lemma it suffices to show that if a ≤ C−1
(6.18)ε

−1u∗ then

P

 sup
(t,x),(t′,x′)∈Γ

|x′−x|+|t′−t|≤aε

|v(t′, x′)− v(t, x)| ≥ u∗/40

 ≤ 1/16. (6.11)

Divide Γ into T intervals of length 1, Γi = Γ∩{i ≤ t ≤ i+1}. On {i ≤ t ≤ i+1},
v is the solution to

v(t, x) =
∫
Gv(i, y, t, x)v(i, y)dy +

∫ ∫ t

i

Gv(s, y, t, x)f(v(s, y))dsdy + εZ(t, x).

(6.12)
where

Z(t, x) =
∫ ∫ t

i

Gv(s, y, t, x)σ(v, s, y)W1(dsdy). (6.13)

From (6.6), assuming t′ ≥ t,

|v(t′, x′)− v(t, x)| ≤ Ω1 + Ω2 + Ω3 + ε|Z(t′, x′)|+ ε|Z(t, x)|. (6.14)

where

Ω1 = 3
∫
|Gv(i, y, t′, x′)−Gv(i, y, t, x)|e−λ(y−vi)dy, (6.15)

Ω2 = 3
∫ ∫ t1

i

|Gv(s, y, t′, x′)−Gv(s, y, t, x)|e−λ(y−vs)dsdy, (6.16)

Ω3 = 3
∫ ∫ t′

t

Gv(s, y, t′, x′)e−λ(y−vs)dsdy. (6.17)

So the result follows from (4.44) and the elementary fact that there exists c <∞
such that if |t− t′|+ |x− x′| ≤ cu∗, λ, v ∈ [1, 2] then

Ω1 + Ω2 + Ω3 ≤ u∗/80. (6.18)
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ii. From (6.3),

u(t, x) ≤ et

∫
G(0, y, t, x)F (y)dy + εetZ(t, x) (6.19)

where

Z(t, x) =
∫ ∫ t

0

e−sG(s, y, t, x)σ(s, y)W (dsdy) (6.20)

From the definition of F it is clear that we can choose M so that for all 0 ≤ t ≤ 3
and −1 ≤ x− vt ≤ 1, ∫

etG(0, y, t, x)F (y)dy < u∗/20. (6.21)

so the result follows from the following large deviation estimate whose proof is
elementary as it only has to hold on time intervals of order 1: There exists a
C(6.5) <∞ such that for γ is as in (2.47),

P
(

sup
0≤t≤3, −1≤x−vt≤1

εet|Z(t, x)| > u∗/20
)
≤ C(6.5)γ. (6.22)

7 The critical mass

The following elementary computation identifies the critical mass for survival.

Lemma 7.1. Let Ẇ be a white noise and w(t, x) be a positive solution of

∂tw = ∂2
xw + bw + ϑ

√
wẆ , w(0, x) = w0 (7.1)

where ϑ is adapted with ϑ ≥ ϑ0 for some nonrandom ϑ0 > 0. Then

P (w(t) ≡ 0) ≥ 1− ebtϑ−2
0 t−1E[

∫
w0(x)dx] (7.2)

Proof. By considering w̃ = e−btw we can assume without loss of generality that
b = 0. If

∂tφ = ∂2
xφ− ϑ2

0φ
2 (7.3)

then

exp{−
∫
φ(t− s, x), w(s, x)dx〉} (7.4)

is a supermartingale in the s variable on [0, t]. The solution of (7.3) with
φ(0, x) = n is φ(t, x) = (ϑ2

0t+ n−1)−1 and hence

E[exp{−n
∫
w(t, x)dx} | F0] = exp{−(ϑ2

0t+ n−1)−1
∫
w(0, x)dx}. (7.5)

Taking n→∞ we get

P (
∫
w(t, x)dx = 0) = E[exp{−ϑ−2

0 t−1
∫
w(0, x)dx}] (7.6)

and the lemma follows from e−x ≥ 1− x.
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The next lemma is needed to control the support of such a w in short time
intervals, in terms of the immigration. Note that we will only have to have
reasonable control, and the actual scale are not critical here, as it is in the
previous lemma.

Lemma 7.2. Let W be a white noise and w be a solution of

∂tw = ∂2
xw + bw + ϑ

√
wẆ + dµ, 0 ≤ t ≤ 1 (7.7)

with w(0, x) ≡ 0 and let ψ be the hitting time of (−r, r)c;

ψ = inf{t ≥ 0 : supp(w(t)) ∩ (−r, r)c 6= 0}. (7.8)

Suppose that µ is a positive adapted measure on [0, 1]×R with support in [0, 1]×
(−r/2, r/2), and ϑ is adapted and ϑ ≥ ϑ0 > 0. Then, letting M =

∫ ∫ 1

0
µ(dtdx),

P (ψ > 1) ≥ 1− 100r−2ebϑ−2
0 E[M ]. (7.9)

Proof. By considering w̃ = ϑ2
0e
−btw we can assume without loss of generality

that b = 0 and ϑ0 = 1. Furthermore, by symmetry it is enough to prove the
result when ψ is the hitting time of (−∞,−r] with a constant 50 instead of 100
on the right hand side. First let us consider the case µ(t) ∈ F0. Note that for
any δ > 0

gδ(x) = 12(x+ r + δ)−2 (7.10)

satisfies ∂2
xgδ = g2

δ/2 for x > −r − δ/2. Let

Xδ(t) = exp
{
−
∫
gδ(x)w(t, x)dx+

∫ ∫ t

0
gδ(x)µ(dsdx)

}
. (7.11)

Then Xδ(t ∧ ψ) is a submartingale. In particular,

E[Xδ(1 ∧ ψ) | F0] ≥ E[Xδ(0) | F0] = 1. (7.12)

Let us assume temporarily that µ(t) ∈ F0, 0 ≤ t ≤ 1. Since g ≥ 0, and
g ≤ 48r−2 on supp(µ) we have Mgδ

(1 ∧ ψ) ≤Mgδ
(1) ≤ 48r−2M ,

E
[
exp

{
−
∫
gδ(x)w(1 ∧ ψ, x)dx

}
| F0

]
≥ exp

{
−48r−2M

}
. (7.13)

Note that

P (ψ > 1) ≥ lim infδ→0E
[
exp

{
−
∫
gδ(x)w(1 ∧ ψ, x)dx

}
| F0

]
(7.14)

which proves the lemma when µ(t) ∈ F0.
For the general case, note first that (7.7) has the property that if w1 and w2

are two solutions with measures µ1 and µ2 and independent white noises W1

and W2, then w1 + w2 is a solution with measure µ1 + µ2.
We construct a probability space on which we have this setup with adapted

ϑ and µi(dx, dt) = µi(dx)δti
(dt). Let ψ1 and ψ2 be the corresponding hitting

times of (−∞,−r]. From (7.13) and (7.14), conditioning on Fti instead of F0

we have P (ψi > T ) ≥ exp{−48r−2Mi} for i = 1, 2 with Mi =
∫
µi(dx) and

hence P (ψ1 ∧ ψ2 > 1) ≥ E[exp{−48r−2(M1 +M2)}].
A finite induction then gives the result for µ(dtdx) =

∑N
n=0 µn(dx)δtn(dt)

with µn(dx) ∈ Ftn . We can then take limits to obtain the result for all adapted
positive measures µ.
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8 Proof of Lemma 2.4

We will solve (3.6) iteratively, on short time intervals of length 1 and show that
we can kill the mass of w on each interval separately. The reason to do this is
that the noise in (3.6), which is needed to kill the mass, is only of the correct
order near x = vt where v is relatively small. So one has to show that the
mass vanishes quickly, before the front moves ahead, and the noise is no longer
available. We will do all our bounds on the event {v(t, x) ≤ F (t − vt)} where
F is defined in (6.1). To be more precise, define

τv = inf{t ≥ 0 : v(t, x) ≥ F (x− vt) for some x ∈ R}. (8.1)

Let
ṽ(t, ·) = v(t ∧ τv , ·).

Let W2,k , k = 1, 2, . . . be a sequence of independent white noises which are
also independent of W1. We construct a sequence of processes w̄k, k = 1, 2, . . .
by solving{

∂tw̄k = ∂2
xw̄k + ‖f‖Lipw̄k + εσkẆ2,k + δx−vtȦk k − 1 < t ≤ k + 1,

w̄k(t, ·) = 0 t = k − 1,
(8.2)

and setting w̄k(t, ·) = 0 for t ∈ (k − 1, k + 1]c. Here

σ2
k = |σ2(ṽ + w̄k + w̄k−1)− σ2(ṽ + w̄k−1)| ∨ a∗w̄k (8.3)

and
Ȧk = Ȧ1k−1<t≤k (8.4)

is the creation term acting only on the first half of each time interval. To start
things going we use the convention that w̄−1 = w̄0 ≡ 0. Define stopping times

τk,1 = inf{t ∈ (k − 1, k + 1] : supp{w̄k(t)} 6⊂ (v(k − 1)− 1, vk + 1)},
τk,2 = inf{t ∈ (k − 2, k + 1] : w̄k(t, x) + w̄k−1(t, x) + ṽ(t, x) > u∗/10

for some x ∈ (v(k − 2)− 1, vk + 1)},

τk,3 =
{
∞, if w̄k(k + 1, ·) ≡ 0,
k + 1, otherwise.

with the convention that the infimum is infinite if the set is empty, and supp{w} =
{x : w(x) > 0} is the support of a non-negative function w.

Let τ = τk,i be the smallest τk,i < T , if there is one. Otherwise let τ = T .
Note that up to time τ ∧ (k + 1) we have

σ2
k = σ2(ṽ + w̄k + w̄k−1)− σ2(ṽ + w̄k−1).

Hence, we can find a probability space on which there are white noises W2 and
{W2,i , i = 1, 2} such that the solution w̄ of (2.38) can be represented as

w̄(t, x)1(t ≤ τ ∧ τv) =
∞∑

k=1

w̄k(t, x)1(k − 1 < t ≤ (k + 1) ∧ τ ∧ τv). (8.5)
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For each k = 1, . . . , T let

Uk = {τk,1 > k + 1} ∩ {τk,2 > k + 1} ∩ {τk,3 > k + 1} (8.6)

Recall γ from (2.47). We claim that

P (∩T
k=1Uk) ≥ 1− c0γT. (8.7)

This implies Lemma 2.4, for on ∩T
k=1Uk ∩ {τv > T},

w̄(t, x) =
∞∑

k=1

w̄k(t, x)1(k − 1 < t ≤ k + 1), t ≤ T. (8.8)

Hence the left hand side of (2.53) is bounded above by

1− P
(
∩T

k=1Uk ∩ {τv > T}
)
≤ c0γT + 1/8,

since P (τv < T ) < 1/8 by Lemma 6.1, and we are done.
The rest of the section will be devoted to verifying (8.7). Clearly it suffices

to prove that for each k = 1, . . . , T and i = 1, 2, 3,

P (τk,i ≤ k + 1) ≤ c0γ. (8.9)

By Lemma 7.1, applied to w̄k on the interval (k, k+1] where there is no creation
acting on w̄k,

P (τk,3 ≤ k + 1) ≤ C(8.10)ε
−2E[A(k)−A(k − 1)] ≤ 2C(8.10)γ, (8.10)

whereC(8.10) = e‖f‖Lip(a∗)−1. In the last inequality we used (2.44). By the same
reasoning, but using Lemma 7.2 instead of Lemma 7.1, there is a C(8.11) < ∞
such that

P (τk,1 ≤ k + 1) ≤ C(8.11)γ. (8.11)

It remains to prove (8.9) for τk,2. The rest of the proof is devoted to this. Define

uk(t) = w̄k(t, x) + w̄k−1(t, x) + ṽ(t, x), t ∈ [k − 2, k + 1]. (8.12)

Given that w̄k(k − 1, ·) = w̄k−2(k − 1, ·) = 0 there is a white noise Ẇ(k) such
that

∂tuk = ∂2
xuk + (w̄k + w̄k−1) + f(ṽ) + εσ(k)Ẇ(k) , (8.13)

where σ2
(k) = σ2

k−1 + σ2
k + σ(ṽ)2. Since f(ṽ) ≤ ṽ,

∂tuk ≤ ∂2
xuk + uk + εσ(k)Ẇ(k) . (8.14)

The inequality is meant as holding for the corresponding integral equation. Now
we claim that on {τk,1 > k + 1} ∩ {τk−1,1 > k}, we have, for t ≤ τk,2

σ2
(k)(t, x) ≤ (‖σ2‖Lip + 2)F̄ (x− vt− L). (8.15)
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For we know that there σ2(ṽ(t, x)) ≤ ṽ(t, x) ≤ F (x − vt) ≤ F̄ (x − vt −
L). Also σ2

k(t, x) ≤ ‖σ2‖Lipw̄k(t, x) ≤ ‖σ2‖Lip
u∗

10 1{(k−1,k+1]×(v(k−1)−1,vk+1)} ≤
‖σ2‖LipF̄ (x− vt− L).

Note that

P (τk,2 ≤ k+1, τk,1 > k+1, τk−1,1 > k) ≤ P
(

sup
k−2≤t≤k+1

v(k−2)−1≤x≤vk+1)

uk(t, x) > u∗/10
)
.

(8.16)
We want to estimate this with Lemma 6.1, but we need (6.4), which does not
necessarily hold. But by the argument around (5.10), in proving (6.4), we can
assume without loss of generality that (8.15) holds. In fact this is the place
where it is clear the appearance of coefficient 3 in (6.4). Hence we can apply
Lemma 6.1 to obtain

P (τk,2 ≤ k + 1, τk,1 > k + 1, τk−1,1 > k) ≤ C(6.5)γ. (8.17)

Finally,

P (τk,2 ≤ k + 1) ≤ P (τk,2 ≤ k + 1, τk,1 > k + 1, τk−1,1 > k) + P (τk−1,1 ≤ k)
+ P (τk,1 ≤ k + 1)

≤ (C(6.5) + 2C(8.11))γ,

which completes the proof of Lemma 2.4.

9 Proof of Lemma 2.6

We need a preliminary result of how a stochastic perturbation of a partial dif-
ferential equation stays close to its deterministic version. Here the interval is of
order 1, but the estimate needs to be precise.

Lemma 9.1. Suppose that u and % are solutions of

∂tu = ∂2
xu+ f(u) + σ(u)Ẇ (9.1)

and
∂t% = ∂2

x%+ f(%) (9.2)

on |x| < L + vt, 0 < t ≤ T with u(t, x) = %(t, x) = 0 on |x| ≥ L + vt, and
u(0, x) = ρ(0, x). Suppose that f is Lipschitz with constant K. Then

|u(t, x)− %(t, x)| ≤ |Z̃(t, x)|+ |Z(t, x)|. (9.3)

where

Z̃(t, x) = K

∫ ∫ t

0

eK(t−s)Gv,L(s, y, t, x)|Z(s, y)|dsdy, (9.4)

Z(t, x) =
∫ ∫ t

0

Gv,L(s, y, t, x)σ(u(s, y))W (dsdy). (9.5)
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Proof. Let D = u− %− Z. Note that D satisfies

∂tD = ∂2
xD + f(D + %+ Z)− f(%) (9.6)

on |x| < L + vt with D(t, x) = 0 on |x| ≥ L + vt and t = 0. Now |f(D + % +
v)− f(%)| ≤ K|D|+K|v|. Let D+ and D− be the solutions of

∂tD± = ∂2
xD± ±K[|D±|+ |Z|], |x| < L+ vt (9.7)

with D±(t, x) = 0 for |x| ≥ L+ vt and D±(0, x) = 0. Note that D+ is a super-
solution and D− is a subsolution of (9.6), so that D− ≤ D ≤ D+. Furthermore,
D− ≤ 0 ≤ D+, so (9.7 ) can be solved explicitly in terms of Z. We get

D±(t, x) = ±K
∫ ∫ t

0

eK(t−s)Gv,L(s, y, t, x)|Z(s, y)|dsdy. (9.8)

as desired.

Now we continue with the proof of Lemma 2.6. Define

%̂(t, x) = %(t, x) + rε
√
G%(t, x) (9.9)

h(x) = (1 + |x|) exp{(1− δ

2
)|x|} (9.10)

Proof of Lemma 2.6. Let

A =
{
ω : |u(t, x)− %(t, x)| ≤ εr

√
G%(t, x), 0 ≤ t ≤ 1, x ∈ R

}
. (9.11)

In particular, on A, we have

u(t, x) ≤ %̂(t, x), 0 ≤ t ≤ 1, x ∈ R. (9.12)

If we were to let σ̃(t, x) =
√

min{σ2(t, x), %̂(t, x)}, and ũ be the solution of
(2.66) with σ replaced by σ̃, and Ã the analogue of A with u replaced by ũ,
then P (A) = P (Ã). Hence in estimating P (A) we can assume without loss of
generality that

σ2(t, x) ≤ %̂(t, x). (9.13)

f is Lipschitz with constant 1, so by Lemma 9.1,

|u(t, x)− %(t, x)| ≤ ε|Z̃(t, x)|+ ε|Z(t, x)|, (9.14)

where Z̃(t, x) and Z(t, x) are is as in (9.4) and (9.5) with u replaced by u and
K = 1.

Now note that there exists C(9.15) <∞ such that for 0 ≤ t ≤ 1,

%̂(t, x) ≤ C(9.15)ε
2γh(x− vt+ L). (9.15)
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By Lemmas 4.1 and 4.2 with T = 1, and a = 1, and by (9.15), we have, for
some C(9.16) <∞,

P ( sup
0≤t≤1

x−vt∈[b−1,b]

|Z(t, x)| ≥ rεγ1/2
√
h(b)) ≤ 4 exp{−C−1

(9.16)r
2}. (9.16)

Furthermore there exists C(9.17) <∞ such that for 0 ≤ t ≤ 1,

ε2γh(x− vt+ L) ≤ C(9.17)G%(t, x) x ≤ vt+ L (9.17)

so summing b from 0 to L and using (9.17),

P (ε|Z(1, x)| ≤ rε
√
G%(1, x) for all x ∈ [v, v + L)) ≥ 1− 4L exp{−C−1

(9.18)r
2}.

(9.18)
Finally, it is not hard to check that there is a C(9.19) <∞ such that for 0 ≤ t ≤ 1,∫ ∫ t

0

et−sGv,L(s, y, t, x)
√
h(y + L)dsdy ≤ C(9.19)

√
h(x− vt+ L), (9.19)

and therefore we also have for some C(9.20) <∞,

P (ε|Z̃(1, x)| ≤ rε
√
G%(t, x) for all x ∈ [v, v + L)) ≥ 1− 4L exp{−C−1

(9.20)r
2},

(9.20)
which completes the proof of Lemma 2.6.
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Flour, XIV-1984, Lecture Notes in Mathematics 1180, pages 265–439,
Berlin, Heidelberg, New York, 1986. Springer-Verlag.

40


