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1 Introduction

The basic ideas about differential equations taking values on manifolds are well known.

Usually one localizes to a coordinate patch, and studies the differential equation using local

coordinates. If the manifold structure is smooth, then this procedure yields a new differential

equation on Euclidean space, and one can use existing theory.

However, there are two cases which may cause trouble: the manifold may not be smooth,

or the equation may have stochastic terms which lead to singularities. We will not say

much about the stochastic case, although it was the motivation for this work. The reader

can consult Funaki [Fun83], where the author studies the heat equation with additive noise

taking values on a manifold. He requires the noise to be very smooth in x, excluding the

interesting case of white noise. For the white noise case, the problem is still unsolved.

Turning to the deterministic case, there has been some work about PDE on nonsmooth

manifolds. For example, Eells and Fuglede [EF01] deal with harmonic maps between Rie-

mannian polyhedra. For the most part, though, not much is known about this situation,

and the reasons are not hard to discover. Traditional PDE theory completely relies on linear

techniques. For example, u + v makes no sense if u, v take values in a manifold, and for the

same reason we cannot integrate manifold-valued functions or define Sobolev spaces like Lp

or W k
p in the usual way. This is why one sets up coordinate patches which have a linear
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structure.

As for a physical application, the stochastic heat equation with solutions taking values in

R
3 is one of the main models used in polymer science, see Doi and Edwards, [DE88]. Thus,

we can think of u(t, x) as the position of an elastic string at time t and at length x along the

string. In some situations the string might be confined to a region or surface, so we are led

to consider the heat equation taking values on a manifold.

This paper has a modest goal. We consider a very simple nonsmooth manifold, the

union of rays emanating from the origin, and consider the heat equation taking values in

this space. We find a sequence of discrete approximations, and show sequential compactness

using the Arzela-Ascoli theorem. Our main tool is a probabilistic representation of solutions.

Unfortunately, we do not prove uniqueness, but our guess is that there is a unique limit for

such sequences. It would also be nice to define our equation in the generalized sense, so we

could say that our limit point satisfies the equation. These questions are unsolved at the

moment.

This paper is organized in the following way. In section 2 we set up our heat equation

and present our notation. In section 3 we consider discrete approximations and suggest a

tool for sequential compactness. After giving some estimates in section 4, we prove our main

theorem in section 5, which states that our sequence of discrete approximations is sequentially

compact.

Here are some general references. For the heat equation and other PDE, see Evans

[Eva98]. For probability, random walks and martingales, see Durrett [Dur96]. Finally, we

list some commonly known notation.

N : the set of natural numbers.

Z : the set of integers.

R : the set of real numbers.

R+ : the set of nonnegative numbers.

EX : the mathematical expectation of a random variable X.

x ∧ y : the minimum of {x, y}.
1A : indicator or characteristic function on event set A.

N(µ, σ2) : normal distribution with mean µ and variance σ2.
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2 Notation

We wish to consider solutions u(t, x) with t > 0 and x ∈ R, to the heat equation

∂u

∂t
=

1

2

∂2u

∂x2
(2.1)

taking values in a tree which we define below.

For the range of u(t, x), we consider a tree T embedded in R
2. Let T be the union of a

N rays which meets at one common point (0, 0). To put it concretely, we can set

T =

N
⋃

i=1

{(r, θi) : r ≥ 0}

with a finite number N of distinct angles θi in polar coordinates.

Note that for such a tree T , we can define a metric ρ(a, b) between two points a, b ∈ T
as the length of the shortest path (geodesic) in T from a to b. In particular, the triangle

inequality holds:

ρ(a, b) ≤ ρ(a, c) + ρ(c, b)

for any a, b, c ∈ T . Note that there is a unique such geodesic joining a and b, and a unique

midpoint along the geodesic. We denote this midpoint as

a ⊙ b

and we use this key notion throughout the paper.

3 The discrete heat equations

Let us consider u0 : R → T which serves as our initial condition.

Given a positive integer n we define a grid Tn on [0,∞) with spacing 1
n , and a grid Rn

on R with spacing 1√
n
. i.e.

Tn =

{

ti =
i

n
∈ [0,∞) : i ∈ N ∪ {0}

}

Rn =

{

xj =
j√
n
∈ R : j ∈ Z

}

.

Next, we define a grid Ln containing every other point of Tn × Rn.

Ln =

{(

i

n
,

j√
n

)

∈ Tn × Rn : i + j is even

}
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We define the discrete heat equation on Ln. We are interested in finding the solution un =

un(ti, xj), (ti, xj) ∈ Ln, satisfying

un(ti+1, xj) = un(ti, xj+1) ⊙ un(ti, xj−1) (3.1)

un(0, xj) = u0(xj).

This is our discrete approximation for a given n. Equation (3.1) is just the analogue of the

discrete approximation to the heat equation taking values in R:

∂v

∂t
=

1

2

∂2v

∂x2
(3.2)

v(0, x) = v0(x).

Indeed, for (ti, xj) ∈ Ln we could approximate (3.2) by the Euler method :

[

vn(ti+1, xj) − vn(ti, xj)
]

1
n

=
1

2

[

vn(ti, xj+1) − 2vn(ti, xj) + vn(ti, xj−1)
]

(

1√
n

)2

vn(0, xj) = v0(xj). (3.3)

which reduces to (3.1) with vn in place of un.

The equation (3.1) allows us to find the solution un(ti, xj) by induction on time ti. To

define un(t, x) for all t ≥ 0, x ∈ R, we use linear interpolation as follows. First fix ti and

define u(ti, x) for x ∈ R by linear interpolation. Next, fix x ∈ R and define u(t, x) for t ≥ 0

by linear interpolation.

We conjecture that un, n = 1, 2, . . . are good approximations to the solution satisfying

(2.1) in a natural sense. So, our question is how to show that the approximations are reliable.

Let {Xi : i = 0, 1, 2, . . .} be a simple random walk on the space grid Rn with X0 at a

given grid point. This means that the step size of the walk is 1√
n
, and the time between

steps is 1
n . Using this random walk, we can give a probabilistic solution to (3.3) as follows:

vn(ti, xj) = Exj [v0(Xi)] =
∑

yk∈Rn

v0(yk)P (Xi = yk), (3.4)

where Exj means the expectation given X0 = xj . One can use this expression for showing

sequential compactness of {vn}. Our goal is to carry over this reasoning to the heat equation

with values in T . However, T is not a linear space, so the summation in (3.4) is not well-

defined in T and we suffer from this difficulty. However, if we use coupling, a probabilistic
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tool whose motivation comes from the random walk, and keep track of the entire history of

the random walks, then we can overcome the difficulty.

4 Preliminary estimates

For this section, fix n. We will consider two simple random walks X
(i)
· , i = 1, 2 taking values

in Rn. Thus, each random walk has steps of size 1√
n

and time between steps 1
n . We assume

that X
(i)
0 = xi with (0, xi) ∈ Ln for i = 1, 2. We note that with probability 1, (tk,X

(i)
k ) ∈ Ln

for i, j = 1, 2 and k = 0, 1, . . ..

We are interested in two simple random walks which are coupled; we will use the coupling

later in Section 5. Recall that a coupling of the random walks is a realization of X
(i)
· , i = 1, 2

on a single probability space such that the marginal distribution of each walk X
(i)
· is the same

as before.

Suppose the random walks X
(i)
· are coupled in such a way that for a fixed k we have X

(1)
k =

X
(2)
k with high probability. Then it seems reasonable that Ex1 [v0(X

(1)
k )] and Ex2[v0(X

(2)
k )]

should be close. Since this kind of coupling is easier if x1 and x2 are close, we might use

coupling to show that solutions v(t, x) of (3.2), which are given by (3.4) are regular in x.

This reasoning has been used before, see Cranston [Cra91], for example. Such regularity

helps to prove sequential compactness of solutions.

Lemma 4.1. There is a coupling of the random walks X
(i)
· , i = 1, 2 and a constant C > 0

not depending on n such that for all k ∈ N we have

P
(

X
(1)
k 6= X

(2)
k

)

≤
[

C
(n

k

)1/2
|x1 − x2|

]

∧ 1.

Proof. 1. Let h = |x1−x2|/2. Translating if necessary, we may assume that x1 = h, x2 = −h.

Construct X
(1)
· on some probability space (Ω,F , P ) in the usual way. Let τ be the first time

k that X
(1)
k = 0. Define X

(2)
· as follows:

X
(2)
k =

{

−X
(1)
k if k < τ

X
(1)
k if k ≥ τ

so with probability 1, that two walks meet eventually. This coupling is well known, and the

reader can easily verify that X
(2)
· has the correct marginal distribution.
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2. If x1 = x2, then X
(1)
· is identical with X

(2)
· and our claim holds trivially. Hence, let us

assume x1 6= x2. Since we assumed that (0, xi) ∈ Ln for i = 1, 2, we note that |x1−x2| ≥ 2√
n
,

or h
√

n ≥ 1. We use this fact to get (4.2) below from the previous line.

Using the reflection principle in the usual way, (see Feller [Fel68], Chapter III) we get

P
(

X
(1)
k 6= X

(2)
k

)

= P (τ > k)

= 1 − P

(

inf
0≤i≤k

X
(1)
i ≤ 0

)

= 1 − P
(

X
(1)
k ≤ 0

)

− P
(

X
(1)
k < 0

)

≤ P
(
∣

∣

∣
X

(1)
k − X

(1)
0

∣

∣

∣
≤ h

)

(4.1)

Heuristically, one can easily finish the proof using the normal approximation, but we will

give a rigorous argument using Stirling’s approximation. We assume that k = 2m is even,

leaving the odd case to the reader. Let Sk be the simple random walk with steps of size 1

starting at S0 = 0. Note that the probability function pi = P (Sk = i) is even. pi is zero at

every other site i, and where it is nonzero it is radially nonincreasing. Therefore,

P
(∣

∣

∣
X

(1)
k − X

(1)
0

∣

∣

∣
≤ h

)

= P
(

|S2m| ≤ h
√

n
)

≤ (2h
√

n + 1)P (S2m = 0)

≤ 3h
√

nP (S2m = 0). (4.2)

Next, Stirling’s formula (see, for instance, (7.3.4) in p.211 of [Chu79]) gives us the following

:

P (S2m = 0) =

(

2m

m

)

2−2m

≤ e
1

12·2m

e
1

12(m+1/2)
·2
·
√

2π2m e−2m(2m)2m

(√
2πm e−mmm

)2 · 2−2m

= exp

[

1

24

1
2 − 3m

m(m + 1
2)

]

· (πm)−1/2

≤
√

2

m
,

and so

P (Sk = 0) ≤ 1√
k
. (4.3)
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We can finish the proof of Lemma 4.1 by putting together (4.1), (4.2), (4.3), remembering

that h = |x1 − x2|/2, and choosing C ≥ 3
2 .

Now we state a lemma about midpoints in T .

Lemma 4.2. Let x1, x2, y2, y2 ∈ T . Then

ρ (x1 ⊙ x2, y1 ⊙ y2) ≤
ρ(x1, y1)

2
+

ρ(x2, y2)

2
. (4.4)

Proof. There are several cases by the locations of x1, x2, y1, y2 in rays.

1. If x1, x2, y1, y2 lie on just 1 or 2 rays, then (4.4) follows from the triangle inequality

on R+ or R.

2. Suppose that x1, x2, y1, y2 lie on 3 rays and they do not lie on just 1 or 2 rays. Then

one ray must contain 2 points, and the other 2 rays contain 1 point each. By symmetry, we

can reduce to two situations. Let us denote three rays of T by Ri, i = 1, 2, 3.

Case 1. Suppose that x1, x2 lie on a common ray R3, y1 lies on ray R1, and y2 lies on

ray R2. Let y′1 ∈ R2 be the same distance from the origin as y1. Then ρ(x1, y1) = ρ(x1, y
′
1).

However, it is easily seen that

ρ (0, y1 ⊙ y2) ≤ ρ
(

0, y′1 ⊙ y2

)

and that

ρ (x1 ⊙ x2, y1 ⊙ y2) = ρ (x1 ⊙ x2, 0) + ρ (0, y1 ⊙ y2)

Thus, since x1, x2, y
′
1, y2 lie on 2 rays, we conclude that

ρ (x1 ⊙ x2, y1 ⊙ y2) = ρ (x1 ⊙ x2, 0) + ρ (0, y1 ⊙ y2)

≤ ρ (x1 ⊙ x2, 0) + ρ
(

0, y′1 ⊙ y2

)

= ρ
(

x1 ⊙ x2, y
′
1 ⊙ y2

)

≤ ρ(x1, y
′
1)

2
+

ρ(x2, y2)

2

=
ρ(x1, y1)

2
+

ρ(x2, y2)

2

Case 2. Suppose that x1, y1 lie on a common ray R3, x2 lies on ray R1, and y2 lies on

ray R2.

First suppose that either x1 ⊙ x2 or y1 ⊙ y2 lie on R3. By changing the labeling, we may

assume x1⊙x2 lies on R3. Let y′2 ∈ R1 be the same distance from the origin as y2. Replacing
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y2 by y′2, we see that the left side of (4.4) has not changed, but the right side has become

smaller, and all 4 points lie on just 2 rays. Thus, (4.4) follows from the triangle inequality

on R.

Secondly, suppose that neither x1 ⊙ x2 nor y1 ⊙ y2 lie on R3. Thus, x1 ⊙ x2 ∈ R1 and

y1 ⊙ y2 ∈ R2. Also, suppose without loss of generality that x1 lies closer to the origin than

y1. One can see that moving y1 to position x1 changes ρ (0, y1 ⊙ y2) and ρ(x1,y1)
2 by the same

amount. Hence, we have

ρ (x1 ⊙ x2, y1 ⊙ y2) −
ρ(x1, y1)

2
= ρ (0, x1 ⊙ x2) + ρ (0, y1 ⊙ y2) −

ρ(x1, y1)

2

= ρ (0, x1 ⊙ x2) + ρ (0, x1 ⊙ y2)

≤ ρ(0, x2)

2
+

ρ(0, y2)

2

=
ρ(x2, y2)

2
.

3. Finally, let’s assume that x1, x2, y1, y2 lie on 4 rays and none of them shares the same

ray with others. In this case, we clearly see

ρ (x1 ⊙ x2, y1 ⊙ y2) ≤ ρ (x1, 0) ∧ ρ (x2, 0) + ρ (y1, 0) ∧ ρ (y2, 0)

≤ ρ (x1, 0) + ρ (x2, 0)

2
+

ρ (y1, 0) + ρ (y2, 0)

2

=
ρ (x1, 0) + ρ (y1, 0)

2
+

ρ (x2, 0) + ρ (y2, 0)

2

=
ρ(x1, y1)

2
+

ρ(x2, y2)

2
.

This finishes the proof of Lemma 4.2.

5 Sequential compactness

Here we prove our main theorem which indicates that the process of our discrete approxi-

mations is stable. In the theorem, our condition on u0 is certainly not the weakest possible

(see Assumption 5.2), but it yields a simple proof.

First, we need some definitions and an assumption on u0. Since ρ is a metric on T , we

can speak of uniform continuity and equicontinuity for functions taking values in T .

Definition 5.1. If a positive function ζ is defined on positive real numbers (0,∞) and

satisfies limh→0+ ζ(h) = 0, then we write ζ ∈ M0.
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Assumption 5.2. We assume that u0 is uniformly continuous with a modulus function κ.

That is, κ ∈ M0 is monotone increasing and for all x, y ∈ R we have

ρ(u0(x), u0(y)) ≤ κ(|x − y|). (5.1)

We also assume that the growth of κ is no faster than linear:

κ(h) ≤ N0 + N1h (5.2)

for some absolute constants N0, N1 > 0.

We state our main theorem.

Theorem 5.3. Let u0 : R → T satisfy Assumption 5.2. Then the collection of solutions

{un : n = 1, 2, . . .} to (3.1) is sequentially compact in the topology of uniform convergence

on compact subsets of [0,∞) × R.

According to the Arzela-Ascoli theorem for the functions taking values on a metric space,

need only show that on each compact subset of K ⊂ [0,∞)× R, the family {un} is equicon-

tinuous. In fact, we will show that for any K of the form K = [0, a] × [−b, b]

ρ

(

un(t, x), un(s, y)

)

≤ ζ(|(t, x) − (s, y)|), (t, x), (s, y) ∈ K (5.3)

for a function ζ ∈ M0 not depending on n.

The following two lemmas are the main ingredients in the proof of Theorem 5.3.

Lemma 5.4. For given K = [0, a] × [−b, b] with a, b > 0 there exists a function ζ1 ∈ M0

which does not depend on n, t and satisfying

ρ

(

un(t, x), un(t, y)

)

≤ ζ1(|x − y|), (t, x), (t, y) ∈ K

Remark 5.5. The reader can check that the proof of Lemma 5.4 even works with K of the

form [0, a] × R.

Proof. 1. Fix t = tI ∈ Tn
⋂

[0, a] and x, y ∈ Rn
⋂

[−b, b]. We are using the two random

walks X
(i)
· defined on a Probability space (Ω,F , P ) from Lemma 4.1 such that

X
(1)
0 = x, X

(2)
0 = y.
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Let

Mk = ρ
(

un(tI − tk,X
(1)
k ), un(tI − tk,X

(2)
k )
)

, k = 0, . . . , I

and let Fk be the σ-field generated by {X(1)
m ,X

(2)
m : m ≤ k}. We claim that (Mk,Fk) is a

submartingale.

Fix an event set A which belongs to the partition of Ω which generates Fk. Naturally,

X
(1)
k ,X

(2)
k , and, hence, Mk are constants on A. Let X

(1)
k = α,X

(2)
k = β,Mk = γ on A.

Case 1: α = β.

In this case X
(1)
k+1 −X

(1)
k = X

(2)
k+1 −X

(2)
k on A by the construction of X

(2)
· . The set A can

be divided into A+ and A− according to the value of X
(1)
k+1 − X

(1)
k :

A+ = A
⋂

{X(1)
k+1 − X

(1)
k =

1√
n
} A− = A

⋂

{X(1)
k+1 − X

(1)
k = − 1√

n
}.

It is easy to see that the conditional probabilities P (A+|A), P (A−|A) are 1
2 .

By our discrete heat equation (3.1), on A we have

Mk = γ = ρ

(

un

(

tI − tk+1, α +
1√
n

)

⊙ un

(

tI − tk+1, α − 1√
n

)

,

un

(

tI − tk+1, β +
1√
n

)

⊙ un

(

tI − tk+1, β − 1√
n

))

(5.4)

for k = 0, . . . , I − 1 and by Lemma 4.2,

γ ≤ 1

2
ρ

(

un

(

tI − tk+1, α +
1√
n

)

, un

(

tI − tk+1, β +
1√
n

))

+
1

2
ρ

(

un

(

tI − tk+1, α − 1√
n

)

, un

(

tI − tk+1, β − 1√
n

))

.

This implies

Mk ≤ E [Mk+1IA+ ]

P (A)
+

E [Mk+1IA− ]

P (A)

= E [Mk|Fk]

on A.

Case 2: α 6= β.

This case is similar to the previous case. The differences are the followings. This time

we have X
(1)
k+1 − X

(1)
k = −(X

(2)
k+1 − X

(2)
k ) on A and we use

γ ≤ 1

2
ρ

(

un

(

tI − tk+1, α +
1√
n

)

, un

(

tI − tk+1, β − 1√
n

))

+
1

2
ρ

(

un

(

tI − tk+1, α − 1√
n

)

, un

(

tI − tk+1, β +
1√
n

))
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which again follows (5.4) and Lemma 4.2 with commutativity of ⊙. The rest for reaching

the inequality (5.10) is essentially the same.

Since we chose arbitrary A in the partition, (Mk,Fk) is, indeed, a submartingale. It

follows that

M0 ≤ E [MI ] .

2. Therefore, for t = tI ∈ Tn
⋂

[0, a] and x, y ∈ Rn
⋂

[−b, b],

ρ

(

un(t, x), un(t, y)

)

≤ E

[

ρ

(

u0(X
(1)
I ), u0(X

(2)
I )

)]

≤ ρ
(

u0(x), u0(y)
)

+ E

[

ρ

(

u0(X
(1)
I ), u0(x))

)

1{X(1)
I 6=X

(2)
I }

]

+E

[

ρ

(

u0(y), u0(X
(2)
I )

)

1{X(1)
I 6=X

(2)
I }

]

= (I) + (II) + (III)

by the triangle inequality. Let h = |x − y|. First note that by (5.1),

(I) ≤ κ(h).

Next, since (II) and (III) are similar, we will only estimate (II). Again by (5.1),

(II) ≤ E
[

κ(|X(1)
I − x|)1{X(1)

I 6=X
(2)
I }

]

=: (IIb).

Recall that our coupling estimate in Lemma 4.1 implies that

P
(

X
(1)
I 6= X

(2)
I

)

≤
[

Ct−1/2|x − y|
]

∧ 1. (5.5)

Roughly speaking, if t = tI is small, then κ(|X(1)
I − x|) will be small. If t is not small

then we can use (5.5). Choose a constant γ ∈ (0, 1).

Case 1: t ≤ h2−2γ = |x − y|2−2γ .

We have

(IIb) = E
[

κ(|X(1)
I − x|)1{X(1)

I 6=X
(2)
I }

]

≤ E
[

κ(|X(1)
I − x|)

]

≤ ξ(h)

with ξ ∈ M0. To show that the final line holds with ξ not depending on n, we prove the

following : For any constant α ∈ (0, 1
2)

E
[

κ(|X(1)
I − x|)

]

≤ κ(t
1
2
−α) + N0t

2α + N1t
1/2 =: δ(t) (5.6)
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holds where the constants N0, N1 come from the linear growth condition of κ. We recall that

the walk X
(1)
· is designed after the choice of n and x. We note that X

(1)
· −x doesn’t depend

on x and δ(·) itself in (5.6) works for all n. We observe

E
[

κ(|X(1)
I − x|)

]

=
∑

−tn≤j≤tn

κ

( |j|√
n

)

P

(

X
(1)
I − x =

j√
n

)

=
∑

|j|<t1/2−α
√

n

κ

( |j|√
n

)

P

(

Stn√
tn

=
j√
tn

)

+
∑

|j|≥t1/2−α
√

n

κ

( |j|√
n

)

P

(

Stn√
tn

=
j√
tn

)

= σ1 + σ2,

where S· is a simple random walk with the step size 1. Obviously, σ1 ≤ κ(t
1
2
−α). Meanwhile,

we have

σ2 ≤ N0P

(
∣

∣

∣

∣

Stn√
tn

∣

∣

∣

∣

≥ 1

tα

)

+ N1

√
tE

∣

∣

∣

∣

Stn√
tn

∣

∣

∣

∣

≤ N0t
2α · E

∣

∣

∣

∣

Stn√
tn

∣

∣

∣

∣

2

+ N1

√
t ·
(

E

∣

∣

∣

∣

Stn√
tn

∣

∣

∣

∣

2
)1/2

≤ N0t
2α + N1

√
t

since the variance of Stn√
tn

is 1. Hence, (5.6) holds. We set ξ(h) = δ(h2−2γ ) in the situation

t ≤ h2−2γ .

Case 2: t ≥ h2−2γ = |x − y|2−2γ .

Using (5.2), we find

(IIb) ≤ E
[(

N0 + N1

∣

∣

∣
X

(1)
t − x

∣

∣

∣

)

1{X(1)
t 6=X

(2)
t }

]

(5.7)

= N0P
(

X
(1)
t 6= X

(2)
t

)

+ N1E
[
∣

∣

∣
X

(1)
t − x

∣

∣

∣
1{X(1)

t 6=X
(2)
t }

]

Now (5.5) states that

P
(

X
(1)
t 6= X

(2)
t

)

≤ Ct−1/2|x − y|. (5.8)

Using the Cauchy-Schwarz inequality and redefining C if necessary, we get

E
[
∣

∣

∣
X

(1)
t − x

∣

∣

∣
1{X(1)

t 6=X
(2)
t }

]

≤
(

E
∣

∣

∣
X

(1)
t − x

∣

∣

∣

2
)1/2

P
(

X
(1)
t 6= X

(2)
t

)1/2

= Ct1/2
(

t−1/2|x − y|
)1/2

. (5.9)

12



Putting together (5.7), (5.8), and (5.9), we conclude that

(IIb) ≤ C

[

t−1/2|x − y| +
(

t−1/2|x − y|
)1/2

]

≤ C
(

hγ + hγ/2
)

where C may depend on a, the bound of K in time direction, but it does not depend on

n, x, y.

3. We note that in our continuity argument it is enough to consider un on (t, x) ∈
(Tn × Rn)

⋂

K since we construct un outside of Tn×Rn by linear interpolation. We conclude

that there exists a function ζ1 satisfying our claim.

Lemma 5.6. There exists a function ζ2 ∈ M0 which does not depend on n, x and satisfies

ρ

(

un(t, x), un(s, x))

)

≤ ζ2(|t − s|), t, s ≥ 0, x ∈ R.

Proof. 1. Translating if necessary, we may assume that s = 0, x = 0.

2. Fix tI ∈ Tn and consider a random walk X· with X0 = 0 as in the beginning of the

section 4. We denote the probability space by (Ω,F , P ). Let

Zk = ρ(un(t − tk,Xk), u(0, 0)), k = 0, . . . , I

and let Fk be the σ-field generated by {Xm : m ≤ k}. We claim that (Zk,Fk) is a sub-

martingale. As in the discussion of the submartingale Mk, fix an event set A which belongs

to the partition of Ω which generates Fk. Let Xk = α,Zk = γ on A and define

A+ = A
⋂

{Xk+1 − Xk =
1√
n
} A− = A

⋂

{Xk+1 − Xk = − 1√
n
},

where we note that the conditional probabilities P (A+|A), P (A−|A) are 1
2 . On A we have

Zk = γ = ρ

(

un

(

tI − tk+1, α +
1√
n

)

⊙ un

(

tI − tk+1, α − 1√
n

)

,

un (0, 0) ⊙ un (0, 0)

)

for k = 0, . . . , I − 1 and by Lemma 4.2,

γ ≤ 1

2
ρ

(

un

(

tI − tk+1, α +
1√
n

)

, un (0, 0)

)

+
1

2
ρ

(

un

(

tI − tk+1, α − 1√
n

)

, un (0, 0)

)

13



which implies

Zk ≤ E [Zk+1IA+ ]

P (A)
+

E [Zk+1IA− ]

P (A)

= E [Zk|Fk]

on A. Since we chose arbitrary A in the partition, (Zk,Fk) is a submartingale and we have

Z0 ≤ E [ZI ] .

3. Hence, for t = tI ∈ Tn we get

ρ

(

un(t, 0), un(0, 0)

)

≤ E

[

ρ

(

u0(XI), u0(0)

)]

≤ E [κ(XI)]

≤ δ(t),

with δ(·) in the proof of Lemma 5.4. The choice of ζ2 is easy and Lemma is proved.

We are ready to prove Theorem 5.3.

Proof of Theorem 5.3. We continue with the comment following the statement of Theorem

5.3. Observing

ρ

(

un(t, x), un(s, y)

)

≤ ρ

(

un(t, x), un(t, y)

)

+ ρ

(

un(t, y), un(s, y)

)

and using Lemmas 5.4 and 5.6, we have (5.3) with ζ = ζ1 + ζ2. Theorem 5.3 follows.

Acknowledgement The beginning of this paper came from discussions authors had near

the nice espresso machine in the 8th floor of Hylan building, University of Rochester during

the second author’s stay.

References

[Cra91] Michael Cranston. Gradient estimates on manifolds using coupling. J. Funct. Anal.,

99(1):110–124, 1991.

[Chu79] Kai Lai Chung. Elementary probability theory with stochastic processes. Third edi-

tion. Undergraduate Texts in Mathematics. Springer-Verlag, New York-Heidelberg,

1979.

14



[DE88] M. Doi and S.F. Edwards. The theory of polymer dynamics, volume 73 of The

international series of monographs in physics. Oxford University Press, Oxford,

1988.

[Dur96] Richard Durrett. Probability: theory and examples. Duxbury Press, Belmont, CA,

second edition, 1996.

[EF01] J. Eells and B. Fuglede. Harmonic maps between Riemannian polyhedra, volume

142 of Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge,

2001. With a preface by M. Gromov.

[Eva98] Lawrence C. Evans. Partial differential equations, volume 19 of Graduate Studies in

Mathematics. American Mathematical Society, Providence, RI, 1998.

[Fel68] William Feller. An introduction to probability theory and its applications. Vol. I.

Third edition. John Wiley & Sons Inc., New York, 1968.

[Fun83] Tadahisa Funaki. Random motion of strings and related stochastic evolution equa-

tions. Nagoya Math. J., 89:129–193, 1983.

15


