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Abstract

We study the asymptotics of the even moments of solutions to a
stochastic wave equation with linear multiplicative noise. Our main
theorem states that these moments grow more quickly than one might
expect. This phenomenon is well-known for parabolic stochastic par-
tial differential equations, under the name of intermittency. Our re-
sults seem to be the first example of this phenomenon for hyperbolic
equations.
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1 Introduction

This paper studies intermittency properties of the solution to the follow-
ing (semi-)linear stochastic wave equation in spatial dimension d = 3, with
random potential Ḟ :

∂2

∂t2
u(t, x) = ∆u(t, x) + u(t, x)Ḟ (t, x), (1.1)

u(0, x) ≡ v0,
∂

∂t
u(0, x) ≡ ṽ0,

where t ∈ R+, x ∈ R3, ∆ denotes the Laplacian on R3 and v0, ṽ0 ∈ R and
v0, ṽ0 > 0. The process Ḟ is the formal derivative of a Gaussian random field,
white in time and correlated in space, whose covariance function formally
satisfies

E
[
Ḟ (t, x)Ḟ (s, y)

]
= δ0(t− s)f(x− y).

In this equation, δ(·) denotes the Dirac delta function, and f : Rd → R+ is
continuous on Rd, satisfying certain standard conditions that are specified in
Section 2.

Next we summarize the concept of intermittency. This idea arose in
physics, and different authors give it different meanings. Physicists say that
a system is intermittent if its solution is dominated by a few large peaks. On
the mathematical side Zeldovich, Molchanov, and coauthors [13], [16], [17],
[11] formulated the following definition and developed the idea in the context
of linear parabolic s.p.d.e’s. For x ∈ Rd and n ∈ N, we define the upper and
lower (moment) Lyapunov exponents of u(t, x) to be

λ̄n = lim supt→∞
logE[|u(t, x)|n]

t
,

λn = lim inft→∞
logE[|u(t, x)|n]

t
.

In principle, the upper and lower Lyapunov exponents depend on x, but
because our initial functions v0 and ṽ0 are constant and the random potential
Ḟ is spatially homogeneous, it turns out that there is no dependence on x. In
case the upper and lower Lyapunov exponents agree, we write the common
value as λn and call it the n-th (moment) Lyapunov exponent.
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The reader can easily deduce from Jensen’s or Hölder’s inequalities that
if the Lyapunov exponents exist, then

λ1 ≤
λ2

2
≤ λ3

3
≤ · · · (1.2)

We know that equality holds in Jensen’s or Hölder’s inequalities if and only
if the random variable involved is constant. Intermittency should mean that
as a function of x, u(t, x) is far from constant and consists of “high peaks
and low valleys.” From this informal reasoning, we are led to say that the
solution u(t, x) is intermittent if

λ1 <
λ2

2
<
λ3

3
< · · · (1.3)

The fact that these inequalities do imply the existence of high peaks is es-
tablished by Cranston and Molchanov [3] in the case of the stochastic heat
equation.

We do not establish the existence of Lyapunov exponents and therefore
intermittency for u(t, x) in the sense of (1.3). However, we prove strict in-
equalities in the sense of (1.3) for the upper and lower Lyapunov exponents of
even order. This suggests that some form of the intermittency phenomenon
is present in our hyperbolic s.p.d.e. (1.1).

One motivation for studying (1.1) is its similarity to the parabolic An-
derson model studied in [1] and in many subsequent papers (see for instance
[3, 4, 9, 10, 14]). Another comes from the following idea. The right hand side
of the wave equation usually represents elastic forces (the Laplacian term)
plus a forcing term, according to Newton’s law which states that the acceler-
ation ∂2u/∂t2 equals the force. We can easily imagine that the force might be
random, and the strength of the randomness could depend on the solution u.
This would lead to a term of the form h(u(t, x))Ḟ (t, x) for some function h.
If we use a linear approximation, h(u) ≈ h0u, we are left with the equation
(1.1).

For the hyperbolic equation (1.1), one would expect the intermittency
property (1.3) to translate into a different sample path behavior than the
“high-peak” picture that is valid for the stochastic heat equation. Indeed, the
heat equation has monotonicity properties of solutions that are not present
in the wave equation. For the wave equation, one would rather expect inter-
mittency to translate into very large oscillations of the sample paths. Making
this picture precise is a research project.
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The main results of this paper are stated in Theorems 3.2 and 4.1, and the
reader can look ahead to see the assumptions. Here, we give the implications
of those theorems for the upper and lower Lyapunov exponents.

Theorem 1.1. There exist constants C1, C2 > 0 such that the following
holds. Firstly, for n ∈ N, under the assumptions of Theorem 3.2,

λ̄n

n
≤ C1n

1/3.

Secondly, for n ∈ N even, under the assumptions of Theorem 4.1,

λn

n
≥ C2n

1/3.

In other words, a kind of intermittency holds for the even Lyapunov
exponents, in the sense that when divided by n, the even upper and lower
exponents grow like n1/3, and equality must fail infinitely many times in
(1.2).

In order to prove this theorem, it is first necessary to give a rigorous
meaning to the s.p.d.e. (1.1). For this, we use the extension of Walsh’s
martingale measure stochastic integral developed by the first author in [5],
and the associated integral formulation of (1.1). The second key ingredient is
a formula for the moments of the solution to (1.1), analogous to the Feynman-
Kac formula. Indeed, for the parabolic s.p.d.e. considered in [1], this formula
plays a central role. For the stochastic wave equation (1.1), the authors,
together with R. Tribe, have developed a more general Feynman-Kac-type
formula that leads to an expression for the moments of u(t, x) (see [7]). These
formulas are recalled in Section 2 and used in Sections 3 and 4.

Remark 1.2. Our methods should also apply to the one- and two-dimensional
wave equations, for which the fundamental solutions are nonnegative func-
tions S(t, x) with

∫
S(t, x)dx = t. However, they will not apply directly to

the stochastic wave equation in dimensions d ≥ 4, in which the fundamen-
tal solution is a Schwarz distribution which is not a signed measure. Some
results on moments of the solution to the stochastic wave equation in high
dimensions are contained in [2].
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2 Existence, uniqueness and moments of the

solution

We begin by giving a formal definition of the Gaussian noise Ḟ . Let D(Rd+1)
be the space of Schwartz test functions (see [12]). On a given probability
space (Ω,F , P ), we define a Gaussian process F = (F (ϕ), ϕ ∈ D(Rd+1))
with mean zero and covariance functional

E
[
F (ϕ)F (ψ)

]
=

∫
R+

dt

∫
Rd

dx

∫
Rd

dy ϕ(t, x) f(x− y)ψ(t, y).

Since this is a covariance, it is well-known [12, Schwartz, Chap. VII, Théorème
XVII] that f must be symmetric and be the Fourier transform of a non-
negative tempered measure µ on Rd, termed the spectral measure : f = Fµ.
In this case, F extends to a worthy martingale measure M = (Mt(B), t ≥
0, B ∈ Bb(Rd)) in the sense of [15], with covariation measure Q defined by

Q([0, t]× A×B) = 〈M(A),M(B)〉t = t

∫
Rd

dx

∫
Rd

dy 1A(x)f(x− y)1B(y),

and dominating measure K = Q (see [6, 5]). By construction, t 7→Mt(B) is
a continuous martingale and

F (ϕ) =

∫
R+×Rd

ϕ(t, x)M(dt, dx),

where the stochastic integral is as defined in [15].
For d = 3, the fundamental solution of the wave equation is the measure

defined by

S(t) =
1

4πt
σt, (2.1)

for any t > 0, where σt denotes the uniform surface measure (with total mass
4πt2) on the sphere B(0, t) of radius t. In particular,

S(t,R3) = t. (2.2)

Hence, in the mild formulation of equation (1.1), Walsh’s classical stochastic
integration theory developed in [15] does not apply. In this paper, we use
the extension of the stochastic integral developed in Dalang [5].
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2.1 Existence and uniqueness

The following assumption is needed (see [5, Theorem 11 and Example 6]) for
equation (1.1) to have a solution.
Assumption A. The spectral measure µ of the Gaussian process F satisfies∫

R3

µ(dξ)

1 + ‖ξ‖2
<∞.

We term a solution to (1.1) a jointly measurable and adapted process
(u(t, x), (t, x) ∈ R+ × R3) that satisfies the stochastic integral equation

u(t, x) = w(t, x) +

∫ t

0

∫
Rd

S(t− s, x− y)u(s, y)F (ds, dy), (2.3)

where w(t, x) is the solution to the homogeneous (and deterministic) wave
equation(

∂2

∂t2
−∆

)
w(t, x) = 0, w(0, x) ≡ v0,

∂

∂t
w(0, x) ≡ ṽ0. (2.4)

In particular,
w(t, x) = v0 + tṽ0 (2.5)

so w does not depend on x.
The following proposition is proved in [5].

Proposition 2.1. Fix T > 0. If Assumption A holds, then (2.3) has a
unique square-integrable solution (u(t, x), (t, x) ∈ R+ × R3). Moreover, this
solution is L2-continuous and for all T > 0 and p ≥ 0,

sup
0≤t≤T

sup
x∈R3

E[|u(t, x)|p] <∞.

Hölder continuity of (u(t, x)) is studied in [8].
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2.2 The probabilistic representation of second moments

Following [7], we give a kind of Feynman-Kac formula for the second moments
of our solutions. Instead of Brownian motion, our underlying process moves
with speed 1 and changes directions at random times.

Let X̃t = tΘ0, where Θ0 is chosen according to the uniform probability
measure on ∂B(0, 1). In particular, t 7→ X̃t is uniform motion in the randomly
chosen direction Θ0, with starting point X0 to be specified.

Let Θ̃i, i = 1, 2, . . . be i.i.d. copies of Θ0, and let X̃(i) = (X̃
(i)
t , t ≥ 0), i ≥

1, be defined by X̃
(i)
t = tΘ̃i, so that they are i.i.d. copies of (X̃t, t ≥ 0). Let

(N(t), t ≥ 0) be a rate 1 Poisson process independent of the (X̃(i)). Let
0 < τ1 < τ2 < · · · be the jump times of (N(t)) and set τ0 ≡ 0. Define a
process X = (Xt, t ≥ 0) as follows :

Xt = X0 + X̃
(1)
t , for 0 ≤ t ≤ τ1,

and for i ≥ 1,

Xt = Xτi
+ X̃

(i+1)
t−τi

, for τi < t ≤ τi+1.

We use Px to denote a probability under which, in addition, X0 = x with
probability one. Informally, the process X follows X̃(1) during the interval
[0, τ1], then follows X̃(2) started at Xτ1 during [τ1, τ2], then X̃(3) started at
Xτ2 during [τ2, τ3], etc.

Using two independent i.i.d. families (X̃
(i,1)
· , i ≥ 1) and (X̃

(i,2)
· , i ≥ 1),

construct, as for X above, two processes X1 = (X1
t , t ≥ 0) and X2 =

(X2
t , t ≥ 0) which renew themselves at the same set of jump times τi of

the process N , and which start, under Px1,x2 , at x1 and x2 respectively.
Expectation relative to Px1,x2 is denoted Ex1,x2 [·].

Taking (2.2) into account, the following result is proved in [7, Theorem
4.3].

Theorem 2.2. Let u(t, x) be the solution of (2.3) given in Proposition 2.1.
Then

E[u(t, x)u(t, y)] = etEx,y

[
w
(
t− τN(t), X

1
τN(t)

)
w
(
t− τN(t), X

2
τN(t)

)
×

N(t)∏
i=1

(
(τi − τi−1)

2f
(
X1

τi
−X2

τi

)) ]
(where, on {N(t) = 0}, the product is defined to take the value 1).
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2.3 Moments of order n

Theorem 2.2 extends to higher moments as follows. Let Pn denote the set of
unordered pairs from Ln = {1, . . . , n} and for ρ ∈ Pn, we write ρ = {ρ1, ρ2},
with ρ1 < ρ2. Note that card (Pn) = n(n − 1)/2. Let (N·(ρ), ρ ∈ Pn) be
independent rate 1 Poisson processes. For A ⊆ Pn, let Nt(A) =

∑
ρ∈ANt(ρ).

This defines a Poisson random measure such that for fixed A, (Nt(A), t ≥ 0)
is a Poisson process with intensity card(A). Let σ1 < σ2 < · · · be the jump
times of (Nt(Pn), t ≥ 0), and let Ri = {Ri

1, R
i
2} be the pair corresponding

to time σi.
For ` ∈ Ln, let P(`) ⊆ Pn be the set of pairs that contain `, so that

card(P(`)) = n−1. Let τ `
1 < τ `

2 < · · · be the jump times of (Nt(P(`)), t ≥ 0).
We write Nt(`) instead of Nt(P(`)). Note that∑

ρ∈Pn

Nt(ρ) = Nt(Pn) =
1

2

∑
`∈Ln

Nt(`). (2.6)

We now define the motion process needed. For ` ∈ Ln and i ≥ 0, let
(X̃

`,(i)
t , t ≥ 0) be i.i.d. copies of the uniform motion process (X̃t) defined in

Section 2.2. Set

X`
t =


X`

0 + X̃
`,(1)
t , 0 ≤ t ≤ τ `

1 ,

X`
τ`
i
+ X̃

`,(i+1)

t−τ`
i
, τ `

i < t < τ `
i+1.

In particular, at time σi, the two processes X
Ri

1
· and X

Ri
2

· change directions,
while the other motions do not. For an illustration of these motions, see [7,
Section 5].

It will be useful to defineX`
t for certain t < 0. For given (t1, x1), . . . , (tn, xn),

under the measure P(t1,x1),...,(tn,xn), we set

X`
t = X̃

`,(0)
t+t`

for −t` ≤ t ≤ 0.

Finally we set τ `
0 = −t`. Taking (2.2) into account, the following theorem is

established in [7, Theorem 5.1].
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Theorem 2.3. The n-th product moments are given by

E[u(t, x1) · · ·u(t, xn)] (2.7)

= etn(n−1)/2E(0,x1),...,(0,xn)

Nt(Pn)∏
i=1

f(XRi
1

σi
−XRi

2
σi

)

×
∏
`∈Ln

Nt(`)∏
i=1

(τ `
i − τ `

i−1) ·
∏
`∈Ln

w(t− τ `
Nt(`), X

`
τNt(`)

)

 .
3 Upper bounds on the moments

In this section, we shall work under the following assumption.

Assumption B. The covariance function f is bounded (hence uniformly
continuous and attains its maximum at 0). We let α = f(0).

Note that under Assumption B, the spectral measure µ satisfies f(0) =
µ(R3) <∞, and so Assumption A is also satisfied.

3.1 Second moments

In this subsection, we show that t 7→ E[(u(t, x))2] grows at most at an
exponential rate. The method is specific to the second moment, and is much
simpler that what will be needed for higher moments, which are dealt with
in the next section.

Proposition 3.1. Under Assumption B, there is C < ∞ such that for all
t ∈ R+ and x, y ∈ R3,

|E[u(t, x)u(t, y)]| ≤ C(v0 + tṽ0)
2 exp(t(2α)1/3). (3.1)

Proof. By Theorem 2.2, (2.5) and Assumption B,

|E[u(t, x)u(t, y)]| ≤ (v0 + tṽ0)
2 et h(t),

where

h(t) = Ex,y

N(t)∏
i=1

(α(τi − τi−1)
2)

 .
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Using the strong Markov property at the first jump time τ1 of N(t) and
letting F1 = σ(τ1, X

1
τ1
, X2

τ1
), we see that

h(t) = E
[
1{N(t)=0}

]
+ E

1{N(t)>0} (α τ 2
1 )E

N(t)∏
i=2

(α(τi − τi−1)
2)

∣∣∣∣F1


= e−t + α

∫ t

0

s2 h(t− s) e−s ds

= e−t + α

∫ t

0

(t− s)2 h(s) e−(t−s) ds.

Letting g(t) = et h(t), we see that

g(t) = 1 + α

∫ t

0

(t− s)2 g(s) ds.

Therefore, g(0) = 1 and

g′(t) = 2α

∫ t

0

(t− s) g(s) ds.

It follows that g′(0) = 0 and

g′′(t) = 2α

∫ t

0

g(s) ds.

Therefore, g′′(0) = 0 and
g′′′(t) = 2α g(t).

The general solution of this ordinary differential equation is

g(t) = c1e
t(2α)1/3

+ c2e
−t(2α)1/3/2 sin

(
(2α)1/3

√
3

2
t

)

+ c3e
−t(2α)1/3/2 cos

(
(2α)1/3

√
3

2
t

)
,

and c1, c2 and C3 are determined by the initial conditions g(0) = 1, g′(0) = 0
and g′′(0) = 0. Therefore, (3.1) holds. �
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3.2 Higher moments

In this section, we obtain upper bounds on higher moments and, in particular,
establish the following theorem.

Theorem 3.2. Under Assumption B, there exists a universal constant C <
∞ such that for all n ≥ 2, t ∈ R+ and x ∈ R3,

|E[un(t, x)]| ≤ C(|v0|+ t|ṽ0|)n exp(Cα1/3n4/3t).

The main technical effort is contained in the following lemma, which uses
the notation of Section 2.3.

Lemma 3.3. There is a universal constant C <∞ such that for all n ≥ 2,
t ∈ R+ and x ∈ R3,

etn(n−1)/2E(0,x),...,(0,x)

∏
`∈Ln

Nt(`)∏
i=1

(
α

1
2 (τ `

i − τ `
i−1)
) ≤ C exp(Cα1/3n4/3t).

Assuming this lemma for the moment, we prove Theorem 3.2.

Proof of Theorem 3.2. We use Theorem 2.3 with x1 = · · · = xn = x.
S(τ `

i − τ `
i−1,R3) = τ `

i − τ `
i−1. From (2.7), Assumption B and (2.5), we find

that

|E[un(t, x)]| ≤ (|v0|+t|ṽ0|)n etn(n−1)/2 E(0,x),...,(0,x)

αNt(Pn)
∏
`∈Ln

Nt(`)∏
i=1

(τ `
i − τ `

i−1)

 .
Use (2.6) to rewrite this as

(|v0|+ t|ṽ0|)netn(n−1)/2E(0,x),...,(0,x) [Zn,t] ,

where

Zn,t =
∏
`∈Ln

Nt(`)∏
i=1

(
α

1
2 (τ `

i − τ `
i−1)
)
, (3.2)

then apply Lemma 3.3 to conclude the proof of Theorem 3.2. �
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Proof of Lemma 3.3. First, we recall the arithmetic-geometric inequality,
namely, for positive numbers a1, . . . , ak,(

k∏
`=1

a`

)1/k

≤
∑k

`=1 a`

k
. (3.3)

Let Zn,t be as in (3.2) and set

νn =

(
n

2

)
=
n(n− 1)

2
, (3.4)

so that Nt(Pn) is a Poisson random variable with parameter tνn. For k ∈ N,
given that Nt(Pn) = k, the number of factors in the product that defines Zn,t

is 2k, by (2.6), so by (3.3),

E(0,x),...,(0,x) [Zn,t | Nt(Pn) = k] ≤

 1

2k

∑
`∈Ln

Nt(`)∑
i=1

(
α

1
2 (τ `

i − τ `
i−1)
)2k

≤

(
α

1
2nt

2k

)2k

.

Therefore,

E(0,x),...,(0,x)

[
Zn,t1{Nt(Pn)=k}

]
≤

(
α

1
2nt

2k

)2k

P{Nt(Pn) = k}

=

(
α

1
2nt

2k

)2k

e−νnt (νnt)
k

k!
.

Using Stirling’s approximation k! '
√

2πkke−k
√
k, we get, for k ≥ k0, where
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k0 > 1 is a universal constant, that

k! (2k)2k ≥
√

2π

2
kke−k

√
k (2k)2k

≥
√

2π

2
k3k22ke−k

√
k

=

√
2π

2
√

3

(
e2k3−3k22k

) (
(3k)3ke−3k

√
3k
)

≥ c0

(
e2k22k

33k

)
(3k)!

= c0ζ
3k (3k)!,

where c0 = 1
4
√

3
and ζ is a universal positive constant. It follows that for

k ≥ k0,

E(0,x),...,(0,x)

[
Zn,t1{Nt(Pn)=k}

]
≤ e−νnt

c0 (3k)!

(
ζ−12−1/3α1/3n4/3t

)3k

and

etn(n−1)/2E(0,x),...,(0,x)[Zn,t] ≤ 1 +

k0−1∑
k=1

(α1/3n4/3t)3k

k! (2k)2k

+
1

c0

∞∑
k=0

1

(3k)!

(
ζ−12−1/3α1/3n4/3t

)3k

≤ C exp
(
Cα1/3n4/3t

)
,

provided the universal constant C is chosen large enough. This proves Lemma
3.3. �

4 Lower bounds on the moments

In this section, we will work under the following assumption.

Assumption C. The covariance function f has the following property: there
exist δ > 0 and α0 > 0 such that for ‖x‖ < 2δ, f(x) ≥ α0.
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Figure 1: A projection of the cone C(x, y).

Theorem 4.1. Under Assumptions A and C, there exists a universal con-
stant c > 0 such that for all even n ∈ N, x ∈ R3 and t > 0,

E(un(t, x)) ≥ (v0 + tṽ0)
n exp(cα

1/3
0 n4/3t).

Remark 4.2. Without Assumption C, the inequality E[un(t, x)] ≥ (v0+tṽ0)
n

holds for all t ≥ 0 . Indeed, by (2.7),

E[un(t, x)] ≥ etn(n−1)/2E(0,x),...,(0,x)[1{Nt(Pn)=0} (v0 + tṽ0)
n] = (v0 + tṽ0)

n.

Proof of Theorem 4.1. Fix x ∈ R3. Given y ∈ R3, let C(x, y) denote the
solid cone with vertex at y whose axis passes through x and y and consisting
of those z ∈ R3 such that (y− z) · (y−x) ≥ cos(π

4
)‖y− z‖ ‖y−x‖. Let δ > 0

be as in Assumption C. An elementary geometric argument (see Figure 1)
shows that if ‖y − x‖ ≤ δ, z ∈ C(x, y) and ‖y − z‖ ≤ δ, then ‖z − x‖ ≤ δ.

Let t > 0. Consider the event

D(t) =
n⋂

`=1

{X`
τ`
i
+ Θ̃`,(i) ∈ C(x,X`

τ`
i
), i = 1, . . . , Nt(`)}.

Informally, on the event D(t) and under P(0,x),...,(0,x), each motion process X`
·

starts at x, moves away from x to X`
τ`
1
, but then “comes back in the general

direction of x” repeatedly, since the variable Θ`,(i) falls in the cone C(x,X`
τ`
i
).

By the observation above, we note that if τ `
i+1 − τ `

i ≤ δ, for i = 1, . . . , Nt(`),

and ` = 1, . . . , n, then ‖XRi
j

σi − x‖ ≤ δ, i = 1, . . . , Nt(Pn), j = 1, 2, and, in
particular,

‖XRi
1

σi
−XRi

2
σi
‖ ≤ 2δ, P(0,x),...,(0,x)-a.s.. (4.1)

Letm = m(t) ∈ N, and set k = m
δ

n
2
. Let ` = δt

2(m+1)
, and, for j = 1, . . . , m

δ
,

let tj = jtδ
2(m+1)

and Ij = [aj, bj], where aj = tj− `/4 and bj = tj + `/4, so that
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the length of Ij is `
2

= δt
4(m+1)

and Ij and Ij+1 are separated by an interval of

length aj+1 − bj = `/2.
Let

C(k, n, t) =

m/δ⋂
j=1

Gj(n, k),

where

Gj(n, k) =
{
Nbj

(Pn)−Naj
(Pn) =

n

2

}
∩
{
Nbj

(`)−Naj
(`) = 1, ` = 1, . . . , n

}
.

Notice that on C(k, n, `), Nt(Pn) = m
δ

n
2

= k, and during each time interval Ij,
each process X`

· changes direction exactly once. In particular, on C(k, n, t),

δt

4(m+ 1)
≤ τ `

i+1 − τ `
i ≤

δt

m+ 1
, i = 0, . . . ,m, (4.2)

so τ `
i+1 − τ `

i ≤ δ if m is large enough.
Let νn be defined as in (3.4). Then, by the fact that w(s, y) = v0 + tṽ0

and the observation (4.1) above, for m (or k) large, Theorem 2.3 implies that

E(un(t, x)) ≥ (v0 + tṽ0)
n eνntE(0,x),...,(0,x)

[
1D(t)1C(k,n,t)α

Nt(Pn)
0 Z̃n,t

]
, (4.3)

where

Z̃n,t =
∏
`∈Ln

Nt(`)∏
i=1

(τ `
i − τ `

i−1).

Let γ = P{y + Θ0 ∈ C(0, y)} > 0 (which does not depend on y). The right
hand side above is bounded below by

eνntαk
0γ

2kE[Z̃n,t1C(k,n,t) | Nt(Pn) = k]P{Nt(Pn) = k}

= (v0 + tṽ0)
n (α0γ

2νnt)
k

k!
E[Z̃n,t1C(k,n,t) | Nt(Pn) = k].

By (4.2),

E[Z̃n,t1C(k,n,t) | Nt(Pn) = k] ≥
(

δt

4(m+ 1)

)2k

P (C(k, n, t) | Nt(Pn) = k)

≥
(
ctn

k

)2k

P (C(k, n, t) | Nt(Pn) = k), (4.4)

15



where c = 1
8
.

We now estimate the conditional probability P (C(k, n, t) | Nt(Pn)). Given
Nt(Pn) = k, the jump times (σ1, . . . , σk) have the same distribution as the
order statistics of a sequence of k uniform random variables with values in
[0, t], and the pairs (R1, . . . , Rk) form a uniform random vector with val-
ues in (Pn)k, which is independent of (σ1, . . . , σk). Therefore, the (mixed
discrete/continuous) probability density function of the random vector

(σ1, . . . , σk, R
1, . . . , Rk)

is

P{σ1 ∈ dx1, . . . , σk ∈ dxk, R
1 = ρ1, . . . , Rk = ρk} =

k!

tk
dx1 · · · dxk

1

νk
n

,

if ρ1, . . . , ρk ∈ Pn and x1 < · · · < xk, and equals 0 otherwise.
The event G1(n, k) occurs if and only if a1 ≤ σ1 < · · · < σn

2
≤ b1 and

the n
2

pairs R1, . . . , R
n
2 form an ordered partition of {1, . . . , n}. Notice that

there are (
n

2, 2, . . . , 2

)
=
n!

2
n
2

such partitions, and a similar characterisation holds for the other Gj(n, k).
Therefore,

P (C(k, n, t) | Nt(Pn)) =
k!

tkνk
n

∫ b1

a1

dx1

∫ b1

x1

dx2 · · ·
∫ b1

x n
2−1

dxn
2

· · ·
∫ b m

δ

a m
δ

dxk−n
2
+1

∫ b m
δ

xk−n
2 +1

dxk−n
2
+2 · · ·

∫ b m
δ

xk−1

dxk

(
n

2, 2, . . . , 2

)m
δ

.

Each group of n
2

integrals is equal to the volume of a simplex in Rn
2 , which

is 1
(n/2)!

(`/2)
n
2 . Therefore,

P (C(k, n, t) | Nt(Pn)) =
k!

tkνk
n

(
1

(n/2)!

(
`

2

)n
2

)m
δ (

n

2, 2, . . . , 2

)m
δ

. (4.5)

We note that m
δ

= 2k
n

, and

1

(n/2)!

(
n

2, 2, . . . , 2

)
= 2−n/2 n!

(n/2)!
.
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According to Stirling’s approximation, there is n0 ∈ N such that for all
n ≥ n0,

n! ≥ nne−n
√
n and (n/2)! ≤ 6(n/2)n/2e−n/2

√
n/2.

Let

c̃ = inf
2≤n≤n0

n!

nne−n
√
n
, C̃ = sup

2≤n≤n0

(n/2)!

6(n/2)n/2e−n/2
√
n/2

.

Letting c denote the universal constant c = 1
6
∧ c̃

C̃
, we see that

1

(n/2)!

(
n

2, 2, . . . , 2

)
≥ c2−n/2 nne−n

√
n

(n/2)n/2e−n/2
√
n/2

≥
√

2ce−n/2nn/2.

Now observe from the definition of `, νn and k that

1

tkνk
n

(
`

2

)nm
2δ

=

(
δt

4(m+ 1)

2

tn(n− 1)

)k

≥
( n

8kn2

)k

=

(
1

8kn

)k

.

Therefore, we see from (4.5) that

P (C(k, n, t) | Nt(Pn)) ≥ k!
(√

2ce−n/2nn/2
)m/δ

(
1

8kn

)k

= k! (
√

2c)2k/ne−knk

(
1

8kn

)k

,

since m/δ = 2k/n. Looking back at (4.3) and (4.4), we conclude that

E(un(t, x)) ≥ (v0 + tṽ0)
n (α0γ

2νnt)
k

k!

(
ctn

k

)2k

k!
(√

2c
)2k/n

e−knk

(
1

8kn

)k

= (v0 + tṽ0)
n

(
α0γ

2n3(n− 1)t3c2
(√

2c
)2/n

e−1

k3

)k

.

There is again a universal positive constant, which we denote again by c,
such that

E(un(t, x)) ≥ (v0 + tṽ0)
n

(
α0γ

2c n4t3

k3

)k

.

Let
k = e−1/3c1/3α

1/3
0 γ2/3n4/3t,

17



to conclude that for t sufficiently large,

E(un(t, x)) ≥ (v0 + tṽ0)
n exp

(
e−1/3c1/3α

1/3
0 γ2/3n4/3t

)
.

This concludes the proof. �
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