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Abstract. Pathwise non-uniqueness is established for non-negative so-
lutions of the parabolic stochastic pde

@X

@t
=

�

2
X +Xp _W +  ; X0 � 0

where _W is a white noise,  � 0 is smooth, compactly supported and
non-trivial, and 0 < p < 1=2. We further show that any solution spends
positive time at the 0 function.

1. Introduction

Let � : R ! R be p-H�older continuous (so j�(x) � �(y)j � Kjx � yjp),
let  2 C1

c (R) (the space of C
1 functions on R with compact support), and

consider the parabolic stochastic partial di�erential equation

(1.1)
@X

@t
(t; x) =

�

2
X(t; x) + �(X(t; x)) _W (t; x) +  :

Here _W is a space-time white noise on R+ � R. If � is Lipschitz continu-
ous, pathwise uniqueness of solutions to (1.1) is classical (see, e.g., [Wal86]).
Particular cases of (1.1) for non-Lipschitz � arise in equations modeling pop-
ulations undergoing migration (leading to the Laplacian) and critical repro-
duction or resampling (leading to the white noise term). For example if

�(X) =
p
X and X � 0, we have the equation for the density of one-

dimensional super-Brownian motion with immigration  (see Section III.4 of

[P01]). If �(X) =
p
X(1�X),  = 0 and X 2 [0; 1] we get the equation for
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the density of the stepping stone model on the line [Shi88]. In both cases path-
wise uniqueness of solutions remains open while uniqueness in law is obtained
by (di�erent) duality arguments (see the above references). The duality argu-

ments are highly non-robust and fail, for example if �(x;X) =
p
f(x;X)X,

which models a critically branching population with branching rate at site
x in state X is f(x;X). This is one reason that there is interest in proving
pathwise uniqueness in (1.1) under H�older continuous conditions on �, cor-
responding to the classical results of [YW71] for one-dimensional SDE's with
H�older 1=2-continuous di�usion coe�cients.

In [MP10] pathwise uniqueness for (1.1) is proved if p > 3=4 and in
[MMP11] pathwise uniqueness and uniqueness in law are shown to fail in (1.1)
when �(X) = jXjp for 1=2 � p < 3=4. Here a non-zero solution to (1.1) is
constructed for zero initial conditions and the signed nature of the solution is
critical. In the examples cited above the solutions of interest are non-negative
and so it is natural to ask whether the results in [MP10] can be improved
if there is only one point (say u = 0) where �(u) fails to be Lipschitz, and
we are only interested in non-negative solutions. Finding weaker conditions
which imply pathwise uniqueness of non-negative solutions in this setting is a
topic of ongoing research. In this paper we give counterexamples to pathwise
uniqueness of non-negative solutions in the admittedly easier setting where
p < 1=2. Even here, however, we will �nd there are new issues which arise in
our in�nite dimensional setting. Our methods will also allow us to extend the
nonuniqueness result in [MMP11] mentioned above to 0 < p < 1=2.

We assume _W is a white noise on the �ltered probability space (
;F ;Ft; P ),
where Ft satis�es the usual hypotheses. This meansWt(�) is an Ft-Brownian
motion with variance k�k22 for each � 2 L2(R; dx) and Wt(�1) and Wt(�2)
are independent if h�1; �2i �

R
�1(x)�2(x)dx = 0. A stochastic process X :


�R+ �R! R which is Ft � previsible�Borel measurable will be called a
solution to the stochastic heat equation (1.1) with initial conditionX0 : R! R

if for each � 2 C1
c (R),

hXt; �i =hX0; �i+
Z t

0

�
Xs;

�

2
�

�
ds

+

Z t

0

Z
�(X(s; x))�(x)W (ds; dx) + th�;  i for all t � 0 a:s:

(The existence of all the integrals is of course part of the de�nition.) It is
convenient to use the space Crap(R) of rapidly decreasing continuous functions
on R as a state space for our solutions. To describe this space, for f 2 C(R)
(the continuous functions on R) let

jf j� = sup
x2R

e�jxjjf(x)j;



NON-UNIQUENESS FOR SPDE 3

and set

Crap = ff 2 C(R) : jf j� <1 8� > 0g;
Ctem = ff 2 C(R) : jf j� <1 8� < 0g:

Equip Crap with the complete metric

d(f; g) =

1X
k=1

2�k(kf � gkk ^ 1);

and Ctem is given the complete metric

dtem(f; g) =

1X
k=1

2�k(kf � gk�1=k ^ 1):

Let C+
rap be the subspace of non-negative functions in Crap, which is a Polish

space. Our primary interest is in the smaller space C+
rap resulting in stronger

non-uniqueness results.
A C+

rap-valued solution to (1.1) is a solution X such that t ! X(t; �) is in
C(R+; C

+
rap), the space of continuous C

+
rap-valued paths for all !. In general

if E is a Polish space we give C(R+; E) the topology of uniform convergence
on compact sets.

The following result is proved just as in Theorem 2.5 of [Shi94].

Theorem 1. (Weak Existence of Solutions). Assume  � 0 and the p-H�older
continuous function � satis�es �(0) = 0. If X0 2 C+

rap, there exists a �ltered

space (
;F ;Ft; P ) with a white noise _W and a C+
rap-valued solution of (1.1).

Proof. Our conditions on � imply the hypothesis on a in Theorem 2.5 of
[Shi94], however that reference assumes  (x;X) satis�es  (x;X) � cjXj.
The proof, however, extends easily to our simpler setting of  (x) � 0. �

Here is our main result on non-uniqueness. The proof is given in Section 3.
Recall that  2 C1

c (R).

Theorem 2. Consider (1.1) with �(X) = jXjp for p 2 (0; 1=2) and  � 0
with

R
 (x) dx > 0. There is a �ltered space (
;F ;Ft; P ) carrying a white

noise _W and two C+
rap-valued solutions to (1.1) with initial conditions X1

0 =

X2
0 = 0 such that P (X1 6= X2) > 0. That is, pathwise uniqueness fails for

non-negative solutions to (1.1) for �,  as above.

Remarks. 1. The state of a�airs in Theorem 2 for  = 0 but X0 non-zero
remains unresolved. We expect the solutions to still be pathwise non-unique.
The methods used to prove the above theorem do show pathwise uniqueness
and uniqueness in law fail if  = X0 = 0 and we drop the non-negativity
condition on solutions. Namely, one can construct a non-zero solution to
the resulting equation. We will not prove this as stronger results (described
above) will be shown in [MMP11] using di�erent methods.
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2. Uniqueness in law holds for non-negative solutions to (1.1) for  , � as
above and general initial condition X0 2 C+

rap but now with 1 � p � 1=2.
This may be proved as in [My98] where the case  = 0 is treated; for p = 1=2
this is of course the well-known uniqueness of super-Brownian motion with
immigration  . We do not know if uniqueness in law fails for p < 1=2. The
presence of a drift will play an important role in the proof of Theorem 2.

3. A key technique in this paper is to consider the total massMt = hXt; 1i,
and then apply Theorem 4 which, given the H�older continuity of X(t; x),
shows the brackets process [M ] to be bounded below by the integral of a
power ofM . This in turn allows one to apply comparison arguments with one
dimensional di�usions.

In Section 4 below we prove that in the corresponding stochastic ordinary
di�erential equation, although pathwise uniqueness again fails, uniqueness in
law does hold. Of course the SDE is now one-dimensional so on one hand
this is not surprising. On the other hand, the manner in which uniqueness
in law holds is a bit surprising as the SDE picks out a particular boundary
behaviour which has the solution spending positive time at 0 (see Section 4).
This leads naturally to the following property for all solutions to the SPDE
in Theorem 2.

Theorem 3. Assume � and  are as in Theorem 2. Let X be any C+
rap-valued

solution to (1.1) with X0 = 0. ThenZ t

0

1(X(s; x) � 0 8x) ds > 0 for all t > 0 a:s:

The proof will be given in Section 5 below. Let

b = h ; 1i > 0:

We note that the above result fails for p = 1=2 since in that case Yt = 4hXt; 1i
is a Bessel squared process of parameter 4b satisfying an ordinary sde of the
form

dYt = 2
p
YtdBt + 4bdt:

Such solutions spend zero time at 0 (see for example, the analysis in Section
V.48 of [RW].)

Finally we state the non-uniqueness result which complements that in
[MMP11] in the much easier regime of p < 1=2. The solutions here will
be signed.

Theorem 4. If 0 < p < 1=2 there is a Crap-valued solution X to

(1.2)
@X

@t
(t; x) =

�X

2
(t; x) + jX(t; x)jp _W; X(0) � 0;

so that P (X 6� 0) > 0. In particular uniqueness in law and pathwise unique-
ness fail in (1.2).
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Although the construction in [MMP11] for 1=2 � p < 3=4 is more delicate,
it is a bit awkward to extend the reasoning to p < 1=2 and so we prefer
to present the result here. The proof of Theorem 4 is simpler than that of
Theorem 2 in that we can focus on a single process rather than a pair of
solutions. The two proofs are similar in that approximate solutions are found
by an excursion construction and the key ingredient required for the SPDE
setting is Theorem 5 below. Hence we only give a brief sketch of the proof of
Theorem 4 at the end of Section 3.

2. A Real Analysis Lemma

Theorem 5. If 0 < �; � < 1 and C > 0, there is a constant K5(�;C) > 0
such that if f : R! R+ satis�es

(2.1) jf(x)� f(y)j � Cjx� yj� ;
then Z

f� dx � K5

�Z
f dx

�(��+1)=(�+1)
:

Proof. First we use a scaling argument to reduce to the caseZ
f(x)dx = 1

for which we would have to proveZ
f� � K4:

Indeed, if we take b > 0 and let

g(x) = b��f(bx)

then
jg(x)� g(y)j = b�� jf(bx)� f(by)j � Cjx� yj�

by the conditions of Theorem 5. Then setting y = bx, we getZ
g(x)dx =

Z
b��f(bx)dx = b�(�+1)

Z
f(y)dy = 1

provided

b =

�Z
f(y)dy

� 1
�+1

:

So g satis�es the conditions of Theorem 5 with
R
g = 1, and if we could show

that Z
g�(x)dx � K4

it would follow, substituting for b, thatZ
f�(x)dx = b��+1

Z
g�(x)dx � K4

�Z
f(x)dx

���+1
�+1



6 K. BURDZY, C. MUELLER, AND E.A. PERKINS

as required.
Now we concentrate on proving

R
f� � K4 assuming that

R
f = 1 and

assuming the H�older condition (2.1) on f . Let M = supx f(x), and note the
conclusion is obvious if M = 1 so assume it is �nite. If M < 1, then since
0 < � < 1, we have Z

f�(x)dx �
Z
f(x)dx = 1:

On the other hand, if M � 1, then the H�older condition on f implies that
f � 1

2 on an interval I whose length is bounded below by a constant L > 0
depending only on C; �. So in this case, too, we concludeZ

f�(x)dx � L

2�
� L

2
;

and Theorem 5 is proved. �

3. Proof of Theorem 2

If  2 C1
c (R),  � 0, b =

R
 dx > 0 and 0 < p < 1=2, we want to construct

distinct solutions X;Y to

(3.1)
@X

@t
(t; x) =

�X

2
(t; x) + (X(t; x))p _W (t; x) +  (x); X � 0; X0 = 0:

Let Ck
b denote the space of bounded C

k functions on R with bounded jth order
partials for all j � k, and set Cb = C0

b . The standard Brownian semigroup is
denoted by (Pt; t � 0) and pt(�) is the Brownian density.

Here is an overview of the proof. We will proceed by constructing ap-
proximate solutions (X"; Y ") to (3.1) and then let (X;Y ) be an appropri-
ate weak limit point of (X"n ; Y "n). These approximate solutions will satisfy
X" � Y " � 0 and Y " � X" � 0, respectively, on alternating excursions away
from 0 by M = hX"; 1i _ hY "; 1i. M will equal 2b" at the e�ective start of
each excursion. We then calculate an upper bound on the probability that
M will hit 1 on a given excursion (see (3.43) below) and a lower bound on
�D" = jhX"; 1i � hY "; 1ij hitting an appropriate x0 2 (0; 1) during each ex-
cursion (see (3.58) below). Theorem 5 is used in the proof of the �rst bound
(see (3.36) below). These bounds will then show there is positive probability
(independent of ") of �D" hitting x0 before M hits 1. The result follows by
taking weak limits as "n # 0. The use of Theorem 5 will mean the above
upper bound is valid only up to a stopping time V "

k which will be large with
high probability. This necessitates a \padding out" of the above excursions
after this stopping time, and this technical step unfortunately complicates the
construction.

Fix " > 0 and de�ne (X"; Y "), D" = jX" � Y "j, the white noise _W and
a sequence of stopping times inductively on j as follows. Let T "0 = 0, U"

j =
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T "j + ", and assume X"
T "2j

= Y "
T "2j

� 0 on fT "2j < 1g. Assuming fT "2j < 1g,
on [T "2j ; U

"
2j ] de�ne

(3.2) Y "(t; x) � 0; and D"(t; �) = X"(t; �) = 2

Z t�T "2j

0

Ps (�)ds 2 C+
rap:

That is,

(3.3)
@X"

@t
=

�

2
X" + 2 for T "2j � t � U"

2j :

Next let t ! (Y "
U"
2j+t

; D"
U"
2j+t

) in C(R+; C
+
rap)

2 solve the following SPDE

for t � U"
2j ,

@Y "

@t
=

�

2
Y " +  + (Y ")p _W; Y "

U"
2j
� 0;(3.4)

@D"

@t
=

�

2
D" + [(Y " +D")p � (Y ")p] _W;D"

U"
2j
(x) = 2

Z "

0

Ps (x)ds:

The existence of such a solution on some �ltered space carrying a white noise
follows as in Theorem 2.5 of [Shi94]. To be careful here one has to construct an
appropriate conditional probability given FU"

2j
and so inductively construct

our white noise along with (Y "; D"). Set X"
t = Y "

t +D"
t for U

"
2j � t � T "2j+1,

where
T "2j+1 = infft � U"

2j : hX"
t ; 1i = 0g (inf ; =1);

and also restrict the above de�nition of (Y "; D") to [U"
2j ; T

"
2j+1]. Therefore on

[U"
2j ; T

"
2j+1],

@Y "

@t
=

�

2
Y " +  + (Y ")p _W; Y "

U"
2j
� 0;

@X"

@t
=

�

2
X" +  + (X")p _W; X"

U"
2j
(x) = 2

Z "

0

Ps (x)ds;(3.5)

D" = jX" � Y "j = X" � Y " � 0;

X"; Y " are continuous and C+
rap-valued:

Note that X"
T "2j+1

= Y "
T "2j+1

= 0. The precise meaning of the above formulas

for @Y "=@t and @X"=@t is that equality holds after multiplying by � 2 C1
c

and integrating over R and over any time interval in [U"
2j ; T

"
2j+1].

Now assume T "2j+1 < 1 and construct (X"; Y ") and D" = jX" � Y "j =
Y " �X" as above but with the roles of X and Y reversed. This means that
on [T "2j+1; U

"
2j+1] = [T "2j+1; T

"
2j+1 + "],

(3.6) D"(t; �) = Y "(t; �) = 2

Z t�T "2j+1

0

Ps (�) ds 2 C+
rap(R) and X

"(t; �) � 0;

and so

(3.7)
@Y "

@t
=

�

2
Y " + 2 ;
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and on [U"
2j+1; T

"
2j+2],

@X"

@t
=

�

2
X" +  + (X")p _W; X"

U"
2j+1

� 0; X" � 0;

@Y "

@t
=

�

2
Y " +  + (Y ")p _W; Y "

U"
2j+1

= 2

Z "

0

Ps (x) ds; Y
" � 0;(3.8)

D" = jX" � Y "j = Y " �X" � 0

X"; Y " are continuous and C+
rap-valued:

Here, as before, we have

T "2j+2 = infft � U"
2j+1 : hY "

t ; 1i = 0g:

Clearly X"
T "2j+2

= Y "
T "2j+2

� 0 on fT "2j+2 < 1g and T "j " 1 and so our

inductive construction of (X"; Y ") is complete. It is also clear from the con-
struction that if Xj(t) = X"

(T "
j
+t)^T "

j+1
and similarly for Yj , then we may

assume

P ((X2j ; Y2j ; T
"
2j+1 � T "2j) 2 �jFT "2j )(3.9)

= P ((X0; Y0; T
"
1 ) 2 �) a.s. on fT "2j <1g;

and

P ((Y2j+1; X2j+1; T
"
2j+2 � T "2j+1) 2 �jFT "2j+1)(3.10)

= P ((X0; Y0; T
"
1 ) 2 �) a.s. on fT "2j+1 <1g:

De�ne J" =
S1
j=1[U

"
j�1; T

"
j ],

A"
1(t; x) =

1X
j=0

(�1)j
Z t

0

1[T "
j
;U"

j
](s) (x)ds;

and A"
2(t; x) = �A"

1(t; x). Combine (3.3), (3.5), (3.8) and the fact that on
[T "2j+1; U

"
2j+1] we have X

"
t = 0 = �

2 X
"
t +  �  to see that for a test function

� 2 C1
c (R),

hX"
t ; �i = hA"

1(t); �i+
Z t

0

�
hX"

s ;
�

2
�i+ h ; �i

�
ds(3.11)

+

Z t

0

Z
1J"(s)�(x)X

"(s; x)pdW (s; x);

X"
� 2 C(R+; C+

rap):
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Similar reasoning gives

hY "
t ; �i = hA"

2(t); �i+
Z t

0

�
hY "

s ;
�

2
�i+ h ; �i

�
ds(3.12)

+

Z t

0

Z
1J"(s)�(x)Y

"(s; x)pdW (s; x);

Y "
� 2 C(R+; C+

rap):

Since U"
j = T "j +", the alternating summation in the de�nition of A

"
1 implies

that

(3.13) sup
t
jA"

i (t; x)j � " (x):

It follows from (3.2) and (3.6) (recall that b =
R
 (x)dx) that

X"(t; x)1Jc" (t) � 2

Z "

0

Ps (x) ds � 4"1=2b:

Therefore for any T > 0 and � as above

(3.14) E
�hZ T

0

Z
1Jc" (s)(X

"(s; x))p�(x) dW (s; x)
i2�

� (4"1=2b)2pTk�k22:

By identifying the white noise _W with associated Brownian sheet, we may
view W as a stochastic process with sample paths in C(R+; Ctem(R)). Using
bounds in Section 6 of [Shi94] (see especially the pth moment bounds in the
proofs of Theorems 2.2 and 2.5 there) it is straightforward to verify that for
"n # 0, f(X"n ; Y "n ;W ) : n 2 Ng is tight in C(R+; (C

+
rap)

2 � Ctem). Some of
the required bounds are in fact derived in the proof of Lemma 6 below. By
(3.13), (3.14) and their analogues for Y ", one sees from (3.11) and (3.12) that
for any limit point (X;Y;W ), X and Y are C+

rap-valued solutions of (3.1) with

respect to the common _W . It remains to show that X and Y are distinct.
We know X"(t; �) and Y "(t; �) will be locally H�older continuous of index

1=4 but it will be convenient to have a slightly stronger statement. We note
parenthetically that any other index of H�older continuity for X"(t; �) and
Y "(t; �) would yield the same range for p in Theorem 2, provided that the
index were less than 1=2. Let

V "
k = inffs � 0 : 9x; x0 2 R such that

jX"(s; x)�X"(s; x0)j+ jY "(s; x)� Y "(s; x0)j > kjx� x0j1=4g:
We will show in Lemma 6 that limk!1 sup0<"�1 P (V

"
k � M) = 0 for any

M 2 N.
Note that on [T "2j ; U

"
2j ], Y

" = 0 and

jX"(t; x)�X"(t; x0)j = 2
���Z pt�T "2j (z)( (z+x)� (z+x0))dz

��� � 2k 0k1jx�x0j:
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This implies that on the above interval for all real x; x0,

jX"(t; x)�X"(t; x0)j+ jY "(t; x)� Y "(t; x0)j � 4(k 0k1 _ k k1)jx� x0j1=4;

where the inequality holds trivially for jx � x0j > 1 since the left side is at
most 4k k1. By symmetry it also holds on [T "2j+1; U

"
2j+1]. We may assume

k � 4(k 0k1 _ k k1) and so the above implies

(3.15) V "
k 2

1[
j=0

(U"
j ; T

"
j+1] [ f1g:

We �x a value of k which will be chosen su�ciently large below. We will now
enlarge our probability space to include a pair of processes ( �X"

t ;
�Y "
t ) which will

equal (hX"
t ; 1i; hY "

t ; 1i) up to time V "
k and then switch to a pair of approximate

solutions to a convenient SDE. Set p0 = p+2
5 2 (0; 12 ) and K(k) = K5(1=4; k)

where K5 is as in Theorem 5. We may assume our (
;F ;Ft; P ) carries a
standard Ft-Brownian motion (Bs : s � V "

k ), independent of (X
"; Y ";W ).

To de�ne a lawQ0 on C(R;R
2
+)�[0;1], �rst construct a solution ( ~Y "; ~D"; B)

of

~Y "
t = b

Z t

0

1(" < s) ds+

Z t

0

1(" < s)( ~Y "
s )

p0
p
K(k) dBs; ~Y " � 0;

(3.16)

~D"
t = 2b(t ^ ") +

Z t

0

1(" < s)[( ~Y "
s + ~D"

s)
p0 � ( ~Y "

s )
p0 ]
p
K(k) dBs; ~D" � 0:

Such a weak solution may again be found by approximation by solutions of
Lipschitz SDE's as in Theorems 2.5 and 2.6 of [Shi94] for the more complicated

stochastic pde setting. Set ~X" = ~Y " + ~D" and ~T "1 = infft : ~X"
t = 0g � ", and

de�ne

Q0(A) = P (( ~X"
�^ ~T "1

; ~Y "
�^ ~T "1

; ~T "1 ) 2 A):(3.17)
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Next we enlarge our space to include ( �X"; �Y ") so that for �nite t � �T "1
(this time is de�ned below),

�Y "
t = hY "

t^V "
k
; 1i+ b(t� V "

k )
+(3.18)

+

Z t

0

1(s > V "
k )(

�Y "
s )

p0
p
K(k) dBs; �Y " � 0;

�D"
t = hD"

t^V "
k
; 1i(3.19)

+

Z t

0

1(s > V "
k )[(

�D"
s +

�Y "
s )

p0 � ( �Y "
s )

p0 ]
p
K(k) dBs; �D" � 0;

�X"
t =

�Y "
t + �D"

t = hX"
t^V "

k
; 1i+ b(t� V "

k )
+(3.20)

+

Z t

0

1(s > V "
k )(

�X"
s )
p0
p
K(k) dBs;

�T "1 = infft � 0 : �X"
t = 0g � 1:(3.21)

Note that if V "
k � T "1 , then

�X"
t = hX"

t ; 1i for t � T "1 and so �T "1 = T "1 .
Therefore, �T "1 ^ V "

k � T "1 . We conclude that �X"
t^V "

k
= �Y "

t^V "
k
+ �D"

t^V "
k
for

t � �T "1 , thus proving (3.20).
To carry out the above construction �rst build ( �Y "

V "
k
+t;

�D"
V "
k
+t; BV "

k
+t �

BV "
k
) by approximation by solutions to SDE's with Lipschitz coe�cients as

in Theorem 2.5 of [Shi94]. This and a measurable selection argument (see
Section 12.2 of [SV]) allows us to build the appropriate regular conditional
probability

Q0hY "
V "
k
;1i;hD"

V "
k
;1i(�)

� P ((( �Y "
V "
k
+t;

�D"
V "
k
+t; B(V

"
k + t)�B(V "

k )); t � 0) 2 �jX"; Y ";W );

where fQ0
y;d : y; d � 0g is a measurable family of laws on C(R+;R

2
+ � R).

This then allows us to construct ( �X"; �Y "; �D") as above on an enlargement
of our original space which we still denote (
;F ;Ft; P ). We also may now
prescribe another measurable family of laws fQy;x : (y; x) 2 C(R+;R

2
+)g on

C(R+;R
2
+)� [0;1] such that for each Borel A, w.p. 1,

QhX"
�^V "

k
;1i;hY "

�^V "
k
;1i(A) = P (( �X"

�^ �T "1 ;
�Y "
�^ �T "1 ;

�T "1 ) 2 AjX"; Y ";W ):(3.22)

De�ne

Q1(A) = P (( �X"
�^ �T "1 ;

�Y "
�^ �T "1 ;

�T "1 ) 2 A) = E
�
QhX"

�^V "
k
;1i;hY "

�^V "
k
;1i(A)

�
:(3.23)

Next, inductively de�ne ( �X"
t ;
�Y "
t ), t 2 [ �T "j ;

�T "j+1], and f �T "j g in a manner
reminiscent of that for (X"; Y "), and consistent with the above construction
for j = 0 (set �T "0 = 0). Assume the construction up to �T "2j is such that

(3.24) �X"
�T "2j

= �Y "
�T "2j

= 0 on f �T "2j <1g;
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and

(3.25) �T "2j = T "2j on fV "
k >

�T "2jg:
De�ne

(3.26) �Xj(t) = �X"
( �T "

j
+t)^ �T "

j+1
;

and similarly de�ne �Yj . On f �T "2j < V "
k g set

P (( �X2j ; �Y2j ; �T
"
2j+1 � �T "2j) 2 �jF �T "2j

_ �(X"; Y ";W ))(3.27)

= QhX"
(T"
2j

+�)^V "
k
;1i;hY "

(T"
2j

+�)^V "
k
;1i(�):

On f1 > �T "2j � V "
k g set

(3.28) P (( �X2j ; �Y2j ; �T
"
2j+1 � �T "2j) 2 �jF �T "2j

_ �(X"; Y ";W )) = Q0(�):
These de�nitions imply �T "2j+1 = infft > �T "2j : �X"

t = 0g and that on our

enlarged probability space, conditional on F �T "2j
and on fV "

k > �T "2jg, (3.18)-
(3.20) hold for t 2 [ �T "2j ;

�T "2j+1], while on f1 > �T "2j � V "
k g, for t 2 [ �T "2j ;

�T "2j+1],
(3.16), (3.17) and (3.28) give

�Y "
t = b

Z t

0

1( �T "2j + " < s) ds

+

Z t

0

1( �T "2j + " < s)( �Y "
s )

p0
p
K(k) dB(s); �Y " � 0;

�D"
t = 2b

�
(t� �T "2j) ^ "

�(3.29)

+

Z t

0

1( �T "2j + " < s)
�
( �Y "

s + �D"
s)
p0 � ( �Y "

s )
p0
�p

K(k) dBs; �D" � 0;

�X"
t = 2b

�
(t� �T "2j) ^ "

�
+ b

Z t

0

1( �T "2j + " < s) ds

+

Z t

0

1( �T "2j + " < s)( �X"
s )
p0
p
K(k) dB(s):

Now assume �T "2j+1 < 1 and construct ( �X"
t ;
�Y "
t ) and

�D"
t = j �X"

t � �Y "
t j for

t 2 [ �T "2j+1;
�T "2j+2] as above but with the roles of �X and �Y reversed. This

means that on f �T "2j+1 < V "
k g,

P (( �Y2j+1; �X2j+1; �T
"
2j+2 � �T "2j+1) 2 �jF �T "2j+1

_ �(X"; Y ";W ))(3.30)

= QhY "
(T"
2j+1

+�)^V "
k
;1i;hX"

(T"
2j+1

+�)^V "
k
;1i(�);

and on f1 > �T "2j+1 � V "
k g, the above conditional probability is again Q0.

The apparent lack of symmetry in the de�nitions arises because we have also
reversed the roles ofX" and Y " on [ �T "2j+1;

�T "2j+2]. The above de�nition implies
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that �D"
t =

�Y "
t � �X"

t � 0 on [ �T "2j+1;
�T "2j+2],

�T "2j+2 = infft > �T "2j+1 :
�Y "
t = 0g,

and �X"( �T "2j+2) =
�Y "( �T "2j+2) = 0 on f �T "2j+2 <1g.

It follows from (3.18), (3.20) (now with t 2 [ �T "2j ;
�T "2j+1]) and (3.25) that on

fV "
k > �T "2j+1g we have �T "2j+1 = T "2j+1. Symmetric reasoning shows that on

fV "
k > �T "2j+2g, �T "2j+2 = T "2j+2. We have veri�ed (3.24) and (3.25) for j + 1.

Since �T "j+1 � �T "j � " (by (3.18),(3.20) and (3.29)), �T "j " 1 and our inductive
de�nition is complete.

The reasoning above to show �T "2j+1 = T "2j+1 on fV "
k > �T "2j+1g and the

obvious induction also shows that

�X"
t^V "

k
= hX"

t^V "
k
; 1i; �Y "

t^V "
k
= hY "

t^V "
k
; 1i;(3.31)

�D"
t^V "

k
= jhX"

t^V "
k
; 1i � hY "

t^V "
k
; 1ij 8t � 0 a.s.

The following consequence of the above construction will be important for
us:

P
�
( �X2j ; �Y2j ; �T

"
2j+1 � �T "2j) 2 ���F �T "2j

�
= Q1(�) a.s. on f �T "2j < V "

k g;(3.32)

P
�
( �Y2j+1; �X2j+1; �T

"
2j+2 � �T2j+1) 2 ���F �T "2j+1

�
= Q1(�) a.s. on f �T "2j+1 < V "

k g;
and

P
�
( �X2j ; �Y2j ; �T

"
2j+1 � �T "2j) 2 ���F �T "2j

�
= Q0(�) a.s. on fV "

k � �T "2jg;(3.33)

P
�
( �Y2j+1; �X2j+1; �T

"
2j+2 � �T "2j+1) 2 ���F �T "2j+1

�
= Q0(�) a.s. on fV "

k � �T "2j+1g:
Consider, for example, the �rst equality in (3.32). By (3.27) we have for a

Borel set B and A 2 F �T "2j
, A � fV "

k >
�T "2jg,

P
�f( �X2j ; �Y2j ; �T

"
2j+1 � �T "2j) 2 Bg \A

�
= E

�
QhX"

(T"
2j

+�)^V "
k
;1i;hY "

(T"
2j

+�)^V "
k
;1i(B)1A

�
= E

�
E
�
QhX"

(T"
2j

+�)^V "
k
;1i;hY "

(T"
2j

+�)^V "
k
;1i(B)

���FT "2j^V "
k

�
1A

�
:(3.34)

In the last line we used the fact that V "
k > �T "2j = T "2j on A to see that

A 2 FT "2j^V "
k
. Formula (3.31) shows that our construction of ( �X"; �Y ") has

not increased the information in FT "2j^V "
k
so we may use (3.9). Applying (3.9)

and the fact that V "
k = T "2j +V

"
k � �T "2j on fV "

k > T "2jg, where (�t) are the shift
operators for (X"; Y "), we conclude from (3.34) that the far left-hand side of
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(3.34) equals

E
�
QhX"

�^V "
k
;1i;hY "

�^V "
k
;1i(B)

�
1A) = E

�
Q1(B)1A

�
;

by (3.23). This gives the �rst equality in (3.32) and the second inequality
holds by a symmetric argument. The proof of (3.33) is easier.

Our next goal is to show there is positive probability, independent of ", of
�D" hitting some appropriately chosen x0 2 (0; 1) before �X" or �Y " hits 1. By
(3.32) and (3.33) the excursions of �X" _ �Y " away from 0 are governed by Q0

or Q1, depending on whether or not V "
k has occurred. Therefore we need to

analyze these two laws.
Consider the more complex Q1 �rst. Use (3.11), with � = 1, in (3.20) and

the fact that V "
k > " (by (3.15)) to conclude that under Q1, �X"

t = 2b(t ^ ")
for t � " and for 0 � t � �T "1 � ",

�X"
t+" = "b+ ((t+ ") ^ V "

k )b+ b

Z t+"

0

1(s > V "
k ) ds

+

Z t+"

"

Z
1(s � V "

k )X
"(s; x)p dW (s; x)

+

Z t+"

"

1(s > V "
k )(

�X"
s )
p0
p
K(k) dBs

= 2"b+ tb+Nt;(3.35)

where N is a continuous (Ft+")�local martingale such that

hNit =
Z t+"

"

h
1(s � V "

k )

Z
X"(s; x)2pdx+ 1(s > V "

k )(
�X"
s )
2p0K(k)

i
ds

�
Z t+"

"

hNi0(s) ds:

By the de�nition of V "
k we may apply Theorem 5 with (�; �; C) = (2p; 1=4; k)

and conclude that

hNi0(s) � 1(s � V "
k )K(k)

hZ
X"(s; x) dx

i((p=2)+1)=(5=4)
(3.36)

+ 1(s > V "
k )(

�X"
s )
2p0K(k)

= K(k)( �X"
s )
2p0 ;

where (3.31) is used in the last line.
De�ne a random time change �t by

(3.37) t =

Z �t

0

hNi0(s+ ")

K(k)( �X"
s+")

2p0
ds � A(�t); t < A( �T "1 � "):
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The restriction on t ensures we are not dividing by zero in the above integrand
because �T "1 is the hitting time of 0 by �X". Clearly (3.36) implies

(3.38) � 0(t) � 1 for t < A( �T "1 � "):

For t < A( �T "1 � "), let

(3.39) X̂(t) = �X"(�t + ") = 2b"+ b�(t) + N̂(t);

where N̂t = N(�t) is continuous (F�t+")-local martingale such that

hN̂it =
Z �t+"

"

hNi0(s) ds =
Z �t

0

hNi0s+" ds = K(k)

Z t

0

X̂(r)2p
0

dr:

This follows by using the substitution s = �r and calculating the di�erential
d�(r) from (3.37). Note also that if T̂x = infft � 0 : X̂(t) = xg, then
A( �T "1 � ") = T̂0. Therefore by (3.39) we may assume there is a Brownian

motion B̂ so that

(3.40) X̂(t ^ T̂0) = 2b"+ b�(t ^ T̂0) +
Z t^T̂0

0

p
K(k)X̂(s)p

0

dB̂(s):

The scale function for a di�usion de�ned by a similar formula, but with t^ T̂0
in place of �(t ^ T̂0), is

sk(x) =

Z x

0

exp
n
� 2by1�2p

0

K(k)(1� 2p0)

o
dy:

That is, sk satis�es

(3.41)
K(k)x2p

0

2
s00k(x) + bs0k(x) = 0 on [0;1); sk(0) = 0:

By Itô's Lemma

sk(X̂(t ^ T̂0)) = sk(2b") +

Z t^T̂0

0

b� 0(u)s0k(X̂(u)) +
K(k)X̂(u)2p

0

2
s00k(X̂(u)) du

+

Z t^T̂0

0

s0k(X̂(u))dN̂(u):

(3.38) and (3.41) show that the integrand in the drift term above is non-

positive, and so sk(X̂(t^T̂0^T̂1)) is a supermartingale which therefore satis�es
E
�
sk(X̂(t ^ T̂0 ^ T̂1)

� � sk(2b"):

This implies that

Q1( �X
"
t = 1 for some t < �T "1 ) = Q1(sk(X̂(� ^ T̂1 ^ T̂0)) hits sk(1) before 0)

= lim
t!1

Q1

�
sk(X̂(t ^ T̂0 ^ T̂1))=sk(1)

�
� sk(2b")=sk(1):(3.42)
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Under Q0 add the equations in (3.16) to see that (we write �X" for ~X"),

�X"
t+" = 2b"+ bt+

Z t+"

"

( �X"
s )
p0
p
K(k) dBs; t+ " � �T "1 = infft : �X"

t = 0g:

This is equation (3.40) with t in place of �t and so the previous calculation
applies to again give us (3.42) with Q0 in place of Q1.

Under either Qi, �X"
t =

�X"
t _ �Y "

t and so we conclude

(3.43) Qi( �X
"
t _ �Y "

t hits 1 for t < �T "1 ) � sk(2b")=sk(1); i = 1; 2:

We next consider the escape probability for �D" under Q1. Let x0 2 (2b"; 1)
and

T �D(0; x0) = infft : �D"
t = 0 or x0g � �T "1 Q1 � a:s:;

the last since �D"
t =

�X"
t � �Y "

t � �X"
t for t � �T "1 under Q1. It follows from (3.2),

(3.4) and (3.19) that �D"
t = 2b(t ^ ") for t � ", and for t+ " � �T "1 we have,

�D"
t+" = 2b"+

Z t+"

"

Z
(X"(s; x)p � Y "(s; x)p)1(s � V "

k ) dW (s; x)(3.44)

+

Z t+"

"

1(s > V "
k )((

�X"
s )
p0 � ( �Y "

s )
p0)
p
K(k) dBs;

which is a non-negative local martingale in t. We have

Q1(9t < �T "1 : �D"
t � x0)

� E
�
�D"(T �D(0; x0))x

�1
0 1(T �D(0; x0) <1; �T "1 <1)

�
= E

�
�D"(T �D(0; x0) ^ �T "1 )x

�1
0

�
� E

�
�D"(T �D(0; x0))x

�1
0 1( �T "1 =1)

�
:(3.45)

The �rst term on the right-hand side is the terminal element of a bounded
martingale and so

(3.46) E
�
�D"(T �D(0; x0) ^ �T "1 )x

�1
0

�
= 2b"=x0:

It follows from (3.35) that on f �T "1 =1g,
(3.47) flim sup

t!1
�X"
t <1g � f lim

t!1
Nt = �1g;

which is a Q1-null set by the Dubins-Schwarz theorem which asserts that a
continuous martingale is a time-changed Brownian motion. Therefore

(3.48) �X"
t+" hits 0 or 1 for some t � �T "1 � "; t <1; Q1 � a:s:;

and therefore

E
�
�D"(T �D(0; x0))x

�1
0 1( �T "1 =1)

�
� Q1( �T

"
1 =1)(3.49)

� Q1( �X
"
t hits 1 for t < �T "1 )

� sk(2b")=sk(1);(3.50)

the last by (3.42).
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Since limx!0+ sk(x)=x = 1, there is an "0(k) > 0 and x0 = x0(k) 2 (0; 1),
such that

(3.51) " � "0 implies sk(2b") < 3b" and 2b" < x0 � sk(1)=6:

So for " � "0 and x0 as above we may use (3.46) and (3.49) in (3.45) and
conclude

Q1(9t 2 ["; �T "1 ) :
�D"
t � x0) � (2b"=x0)� (sk(2b")=sk(1)) > (b")=x0:

Virtually the same proof (it is actually simpler) works for Q0. Under Qi,
�D"
t = j �X"

t � �Y "
t j for t � �T "1 = infft : �X"

t _ �Y "
t = 1g and so we have proved for

x0 as above,

(3.52) Qi(9t 2 ["; �T "1 ] : j �X"
t � �Y "

t j � x0) � b"

x0
for i = 1; 2 and 0 < " � "0;

and (see (3.48) for i = 1)

(3.53) �X"
t _ �Y "

t hits 0 or 1 for t � �T "1 ; t �nite Qi � a:s:; i = 1; 2:

Let

N1 = minfj : ( �X" _ �Y ")(t+ �T "j ) hits 1 for t <
�T "j+1 � �T "j g;

and

N2 = minfj : j �X" � �Y "j(t+ �T "j ) hits x0 for t <
�T "j+1 � �T "j g:

Use (3.32), (3.33) and (3.43) to see that

P (N1 > n)

= E
�
1(N1 > n� 1)P

�
�X" _ �Y "(( �T "n�1 + �) ^ �T "n) doesn't hit 1

��F �T "
n�1

��
� P (N1 > n� 1)

�
1� sk(2b")

sk(1)

�
:

Therefore, if p1 =
sk(2b")
sk(1)

, then

(3.54) P (N1 > n) � (1� p1)
n+1:

Similar reasoning using (3.52) in place of (3.43) shows that if p2 =
b"
x0
, then

for " � "0,

(3.55) P (N2 > n) � (1� p2)
n+1:

Note that (3.51) shows that

(3.56)
p2
p1

=
b"

sk(2b")

sk(1)

x0
� 1

3

sk(1)

x0
� 2:
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If n = dp�11 e we get for " � "0

P (N2 < N1) � P (N1 > n)� P (N2 > n) � (1� p1)
n+1 � (1� p2)

n+1

� (1� p1)
n+1 � (1� 2p1)

n+1

� 1

2
(e�1 � e�2);

where the last inequality holds by decreasing "0(k), if necessary. If

�t" = infft : �X"
t _ �Y "

t � 1g;
then the above bound implies that for " � "0,

(3.57) P (sup
t��t"

j �X"
t � �Y "

t j � x0) � 1

2
(e�1 � e�2):

Now let

t" = infft : hX"
t ; 1i _ hY "

t ; 1i � 1g:
Then (3.31) shows that

if t" < V "
k ; then �t" = t" and ( �X"

t ;
�Y "
t ) = (hX"

t ; 1i; hY "
t ; 1i) for all t � t";

and so by (3.57) for " � "0,

(3.58) P (sup
t�t"

jhX"
t ; 1i � hY "

t ; 1ij � x0) � 1

2
(e�1 � e�2)� P (V "

k � t"):

Now recall we have "n # 0 so that (X"n ; Y "n ;W ) ! (X;Y;W ) weakly on
C(R+; (C

+
rap)

2 � Ctem), where X and Y are C+
rap-valued solutions of (3.1).

Arguing as in (3.47) and using Dubins-Schwarz, we see that

(3.59) lim sup
t!1

hXt; 1i = lim sup
t!1

hYt; 1i =1 a:s:

Standard weak convergence arguments now show that ft"ng are stochastically
bounded. Lemma 6 therefore shows that we may choose a �xed k su�ciently
large so that

P (V "n
k � t"n) �

1

4
(e�1 � e�2) for all n:

Using this �xed k throughout we see from (3.58) that for large enough n

P
�
sup
t�t"n

��hX"n
t ; 1i � hY "n

t ; 1i�� � x0

�
� 1

4
(e�1 � e�2):

If t0 = infft : hXt; 1i_hYt; 1i � 2g <1 a.s., by (3.59), then the above implies

P
�
sup
t�t0

��hXt; 1i � hYt; 1i
�� � x0=2

�
� 1

4
(e�1 � e�2);

and so P (X 6= Y ) � 1
4 (e

�1 � e�2). �

Lemma 6. For any M 2 N, limk!1 sup0<"�1 P (V
"
k �M) = 0.
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Proof. The proof depends on a standard argument in the spirit of Kolmogorov's
continuity lemma, so we will omit some details.

Fix the time interval [0;M ]. De�ne

V "
k (X) = inffs � 0 : 9x; x0 2 R such that

jX"(s; x)�X"(s; x0)j > kjx� x0j1=4g:
and V "

k (Y ) likewise. It su�ces to prove Lemma 6 for V "
k replaced by V "

k (X)
and V "

k (Y ) and so clearly we only need consider V "
k (X). Recall that fX"ng

is tight in C(R+; C
+
rap). So it su�ces to choose a constant K > 0 and prove

the lemma for X"(t; x)^ (Ke�jxj)1=p in place of X". Considering the integral
equation for X", and using the fact that  2 C1

c (R) we see that it is enough
to prove Lemma 6 with X" replaced by the stochastic convolution

N"(t; x) =

Z t

0

pt�s(x� y)'"(s; y)dW (s; y):

Here one can use Lemma 6.2 of [Shi94] to handle the drift terms. The term
'"(s; y) is a predictable random �eld satisfying

j'"(t; x)j � Ke�jxj

for all t 2 [0;M ], x 2 R almost surely. Since our estimates are uniform in ",
we will omit the superscript on ' and N from now on. The constants below
may depend on M and K.

Now we rely on some standard estimates which are easy to verify. We claim
that there exist constants q0;K0 such that for 0 � t � t+ � �M and x 2 R,
and for � < 1, Z �

0

Z
R

p2s(x� y)e�2pjyjdyds � K0�
1
2 e�q0jxj;(3.60)Z t

0

Z
R

[pt�s+�(x� y)� pt�s(x� y)]2e�2pjyjdyds � K0�
1
2 e�q0jxj;Z t

0

Z
R

[pt�s(x� y + �)� pt�s(x� y)]2e�2jyjdyds � K0�e
�q0jxj:

From these inequalities, it follows in a standard way that for some positive
constants q1; C0; C1, we have

P (jN(t+ �; x)�N(t; x)j � �) � C0 exp

�
�C1�

2

�
1
2

�
e�q1jxj;(3.61)

P (jN(t; x)�N(t; x+ �)j � �) � C0 exp

�
�C1�

2

�

�
e�q1jxj:

For example, if we write

M̂r =

Z r

0

Z
R

[pt�s(x� y + �)� pt�s(x� y)]'(s; y)W (dy; ds)
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then M̂r is a continuous martingale and hence a time changed Brownian mo-
tion, with time scale

E(r) =

Z r

0

Z
R

[pt�s(x� y + �)� pt�s(x� y)]2'2(s; y)dyds

�
Z r

0

Z
R

[pt�s(x� y + �)� pt�s(x� y)]2K2e�2jyjdyds:

Thus,

P (jN(t; x)�N(t; x+ �)j � �) = P (jM̂tj � �)

� P

 
sup

0�s�E(t)
jBsj � �

!

and then the reection principle for Brownian motion and the third inequality
in (3.60) (to bound E(t) for t �M) gives the second inequality in (3.61).

Now we outline a standard chaining argument, and for simplicity assume
that M = 1. Let Gn be the grid of points

Gn =

��
k

22n
;
`

2n

�
: 0 � k � 22n; ` 2 Z

�
:

The Borel-Cantelli lemma along with (3.61) now implies that for large enough
(random) K1, if n � K1 and p1; p2 are neighboring grid points in Gn, then
(3.62) jN(p1)�N(p2)j � 2�

n
4 :

Now suppose that qi = (ti; xi) with jx1�x2j � 1, and that each point qi lies in
some grid Gn. From the above, there is a path from q1 to q2 utilizing edges in
grids Gn0 , with n0 � n, each edge in the path being a nearest neighbor edge in
Gn0 , and with at most 8 edges from a given grid index n0. Let n0 be the least
grid index used in this path. We claim that for some constants C > c > 0,
such a path exists with n0 satisfying

c2�2n0 < jt1 � t2j < C2�2n0 ;

c2�n0 < jx1 � x2j < C2�n0 :

Using the triangle inequality to sum di�erences of N(t; x) over edges of the
path, we arrive at a geometric series, and conclude that

(3.63) jN(q1)�N(q2)j � C12
�n0

4 if n0 � K1:

Although we have only proved the above for grid points, such points are
dense in [0; T ] �R, and N(t; x) has a continuous version because X(t; x) is
continuous, and the drift contribution is smooth. Therefore it follows for all
points in [0; 1]� R. We have proved (3.63) for kq1 � q2k � C2�K1 where K1

is stochastically bounded uniformly in ". The required result follows. �
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Sketch of Proof of Theorem 4. We carry out an excursion construction of
an approximate solution X" to (1.2) by starting the ith excursion at (�1)i" ,
and then run each independent excursion according to a �xed law of a C+

rap-
valued solution to (1.2) with X0 = " , if i is even, and its negative if i is odd,
until the total mass hits 0. At this point a new excursion is started in the
same manner. Theorem 5 is used to time change X"

t (1) into an approximate
solution Y "(t) = X"

�"t
(1) of Girsanov's equation

(3.64) dYt = jYtjp0dBt;

with p < p0 < 1=2 and d�"(t)
dt � 1. There will be an additional term A"(t)

arising from all the excursion signed initial values up to time t but it will
converge to 0 uniformly in t due to the alternating nature of the sum. We
now proceed as in the excursion-based construction of non-zero solutions to
Girsanov's sde (3.64) to show that one of the excursions of the approximate
solutions will hit �1 before time T with probability close to 1 as T gets large,
uniformly in ". Let N" be the number of excursions of Y " until one hits �1
and let N"(T ) be the number of excursions of Y

" completed by time T . N"

is geometric with mean "�1 by optional stopping. Let Ui(") be the time to

completion of the ith excursion of Y ". Assuming
p
T"�1 2 N, we have

P (sup
s�T

jY "
s j � 1) � P (N"(T ) � N")

� P (N"(T ) �
p
T"�1)� P (N" >

p
T"�1)

� P (UpT"�1(") � T )� (1� ")
p
T"�1

:(3.65)

A key step now is to use di�usion theory to show that if Y satis�es (3.64)
(pathwise unique until it hits zero) then

(3.66) P (Yt > 0 for all t � T jY0 = 1)) � cT�1=(2(1�p)) as T !1:

If Ui(1) is the time of completion of the ith excursion of Y where the excursions
now start at �1, then scaling shows that

P (UpT"�1(") � T ) = P (UpT"�1(1) � "�(2�2p)T ):

(3.66) shows that UpT"�1(1)=(
p
T"�1)2(1�p) converges weakly as " # 0 to a

stable subordinator of index � = (2(1 � p))�1 and so for any � > 0 we may
choose T large enough so that for small enough " (by (3.65)) we have

P (sup
s�T

jY "
s j � 1) � P (UpT"�1(") � T )� (1� ")

p
T"�1

� P

�
UpT"�1(1)

(
p
T"�1)2(1�p)

� T p
�
� e�

p
T � 1� �:

The fact that (�")0(t) � 1 allows us to conclude that with probability at least
1� �, uniformly in ", the total mass of our approximate solution X"

t will hit
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�1 for some t � T . By taking a weak limit point of the X" we obtain the
required non-zero solution to (1.2). �

4. Pathwise Non-uniqueness and Uniqueness in Law for an SDE.

The stochastic di�erential equation corresponding to (3.1) would be

(4.1) Xt = X0 + bt+

Z t

0

(Xs)
p dBs; Xt � 0 8t � 0 a:s:

Here b > 0, 0 < p < 1=2, B is a standard (Ft)-Brownian motion on (
;F ;Ft; P )
and X0 is F0-measurable. A much simpler argument than that used to
prove pathwise non-uniqueness in (3.1) allows one to establish pathwise non-
uniqueness in (4.1). One only needs to apply the idea behind construction
of ( �X"

t ;
�Y "
t ) for t � V "

k . In any case the result is undoubtedly known, given
the well-known Girsanov examples (see, e.g., Section V.26 in [RW]) and so we
omit the proof.

Theorem 7. There is a �ltered probability space (
;F ;Ft; P ) carrying a
standard Ft-Brownian motion and two solutions, X1 and X2, to (4.1) with
X1
0 = X2

0 = X0 = 0 such that P (X1 6= X2) > 0.

Weak existence of solutions to (4.1) for a given initial law may be con-
structed through approximation by Lipschitz coe�cients. This is in fact how
Shiga [Shi94] constructed solutions to (1.1) and hence is the method used in
Theorem 1. As we were not able to verify whether or not uniqueness in law
holds in (3.1) it is perhaps interesting that it does hold in (4.1). That is, the
law of X is uniquely determined by the law of X0. We have not been able to
�nd this result in the literature and since the solutions to (4.1) turn out to
have a particular sticky boundary condition at 0 which was not immediately
obvious to us, we include the elementary proof here.

Theorem 8. Any solution to (4.1) is the di�usion on [0;1) with scale func-
tion

(4.2) s(x) =

Z x

0

exp
n�2bjyj1�2p

1� 2p

o
dy

(with inverse function s�1 on [0; s(1)), speed measure

(4.3) m(dx) =
dx

s0(s�1(x))2s�1(x)2p
+ b�1�0(dx) on [0; s(1));

and starting with the law of X0. In particular if T0 = infft : Xt = 0g, then

(4.4) T0 <1 implies

Z T0+"

T0

1(Xs = 0) ds > 0 8" > 0 a:s:;

and solutions to (4.1) are unique in law.
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Proof. The last statement is immediate from the �rst assertion.
To prove X is the di�usion described above, by conditioning on X0 we may

assume X0 = x0 is constant. We will show directly that X is the appropriate
scale and time change of a reecting Brownian motion. Note that s is strictly
increasing on [0;1) (in fact on the entire real line) so that s�1 is well-de�ned.
Note also that

s0(x) = exp
n�2bjxj1�2p

1� 2p

o
is of bounded variation and continuous;

and

(4.5) s00(x) =

(
�s0(x)2bx�2p if x > 0;

s0(x)2bjxj�2p if x < 0:

If LXt (x) is the semimartingale local time ofX, Meyer's generalized Itô formula
(see Section IV.45 of [RW]) shows that
(4.6)

Yt � s(Xt) = Y0 +

Z t

0

s0(Xu)X
p
u dBu + b

Z t

0

s0(Xu) du+
1

2

Z
LXt (x)ds

0(x):

Since s0 is continuous at 0,

1

2

Z
LXt (x)ds

0(x) =
1

2

Z
1(x > 0)LXt (x)ds

0(x)(4.7)

=
1

2

Z
1(x > 0)LXt (x)s

00(x)dx

= �b
Z t

0

s0(Xu)X
�2p
u X2p

u 1(Xu > 0) du (by (4.5))

= �b
Z t

0

s0(Xu)1(Xu > 0) du:

So (4.6) and s0(0) = 1 imply

(4.8) Yt = Y0 +

Z t

0

s0(Xu)X
p
u dBu + b

Z t

0

1(Xu = 0) du:

De�ne U =
R1
0
s0(Xu)

2X2p
u du and a random time change � : [0; U)! [0;1)

by

(4.9)

Z �(t)

0

s0(Xu)
2X2p

u du = t:

Clearly � is strictly increasing and is also continuous since X cannot be 0 on
any interval. If R(t) = Y (�(t)) for t < U we now show that R is a reecting
Brownian motion on [0;1), starting at Y0, where we extend the de�nition for
t � U by appending a conditionally independent reecting Brownian motion
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starting at the appropriate point. In what follows we may assume t < U as
the values of R(t) for t � U will not be relevant. We have from (4.8)

R(t) = �t + b

Z �(t)

0

1(Xu = 0) du � �t +At;

where h�it = t and so � is a Brownian motion starting at Y0. A is contin-
uous non-decreasing and supported by ft : X(�(t)) = 0g = ft : R(t) = 0g.
By uniqueness of the Skorokhod problem (see Section V.6 in [RW]) R is a
reecting Brownian motion and At = LRt (0), that is,

(4.10) b

Z �(t)

0

1(Xu = 0) du = LRt (0):

Let ��1 : [0;1)! [0; U) denote the inverse function to �. Now di�erentiate
(4.9) to see that

(4.11) if Xu > 0; then (��1)0(u) = s0(Xu)
2X2p

u :

We may use (4.10) and (4.11) to conclude that

t =

Z t

0

1(Xu > 0) du+

Z t

0

1(Xu = 0) du

=

Z t

0

1(Xu > 0)

s0(Xu)2X
2p
u

d(��1(u)) + b�1LR��1(t)(0)

=

Z ��1(t)

0

1(R(v) > 0)

s0(s�1(R(v)))2s�1(R(v))2p
dv + b�1LR��1(t)(0);

where we have set u = �(v) in the last. Therefore if m is as in (4.3), then

t =

Z
[0;1)

LR(��1(t); x)dm(x);

and
X(t) = s�1(R(��1(t)):

This identi�es X as the di�usion on [0;1) with the given scale function and
speed measure. �

Remarks. (1) One can also argue in the opposite direction. That is, given
a di�usion X with speed measure and scale function as above and a given
initial law on [0;1), one can build a Brownian motion B, perhaps on an
enlarged probability space, so that X satis�es (4.1), giving us an alternative
weak existence proof.

(2) One can construct solutions as weak limits of di�erence equations or equiv-
alently as standard parts of an in�nitesimal di�erence equation. Here one cuts
o� the martingale part when the solution overshoots into the negative half-
line and lets the positive drift with slope b bring it back to R+. The smaller
the b the longer it takes to become positive, the more time the solution will
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spend at zero and so the larger the atom of the speed measure at 0. A short
calculation shows that at p = 1=2 the overshoot reduces to �t (the time step
in the di�erence equation) and so there is no time spent at 0 in the limit. (See
Section V.48 of [RW] for the standard analysis.)

(3) It would appear that (4.1) is not a particular e�ective tool to study di�u-
sions with drift b on the positive half-line. By just extending the equation to
[0;1) we inadvertently pick out a particular case of Feller's possible boundary
behaviors at 0 among all di�usions satisfying (4.1) on (0;1). (This is cer-
tainly not a novel observation|see the comments in Section V.48 in [RW].)
Presumably things can only get worse for the stochastic pde (3.1). In the next
section we scratch the surface of this issue and show that all solutions to this
stochastic pde spend positive time in the (in�nite-dimensional) zero state.

5. Proof of Theorem 3

Let X be a solution of (3.1) and de�ne

Vk = inffs : 9x0; x such that jX(s; x)�X(s; x0)j > kjx� x0j1=4g:
As in Lemma 6 (but as there is no " it is a bit easier), limk Vk = 1 a.s. As
in Section 3, we set p0 = p+2

5 and K(k) = K5(1=4; k). If we de�ne

R(u) =

( R
X(u;x)2p dx

K(k)hX(u);1i2p0 if hX(u); 1i > 0 and u � Vk;

1 otherwise,

then by Theorem 5,

R(u) � 1 for all u � 0:

Introduce a random time change � given by

(5.1)

Z �(t)

0

R(u)1(hXu; 1i > 0) + 1(hXu; 1i = 0) du = t:

Clearly � is strictly increasing, continuous and well-de�ned for all t � 0.
Di�erentiate (5.1) to see that

� 0(t)R�(t)1(hX�(t); 1i > 0) + � 0(t)1(hX�(t); 1i = 0) = 1 for a.a. t � 0

(a.a. is with respect to Lebesgue measure), and therefore

(5.2) � 0(t) = R�1�(t)1(hX�(t); 1i > 0) + 1(hX�(t); 1i = 0) � 1 for a.a. t � 0:

Now let

Y (t) = hX(�(t)); 1i = b�(t) +M(t);
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where M is a continuous local martingale satisfying

hMit =
Z �(t)

0

Z
X(u; x)2p dx du

=

Z t

0

Z
X(�(r); x)2p dx

h
R(�(r))�11(Y (r) > 0) + 1(Y (r) = 0)

i
dr

=

Z t

0

K(k)Y 2p0

r dr for �(t) � Vk:

We have used (5.2) in the second line. If Tk = ��1(Vk) (a stopping time w.r.t
the time-changed �ltration), we may therefore assume there is a Brownian
motion B so that

Y (t ^ Tk) = b�(t ^ Tk) +
Z t^Tk

0

p
K(k)Y p0

r dBr:

If b0 = K(k)1=(2(p
0�1))b, then Ŷ (t) = K(k)1=(2(p

0�1))Y (t) satis�es

Ŷ (t ^ Tk) = b0�(t ^ Tk) +
Z t^Tk

0

Ŷ p0

r dBr:

If s(x) =
R x
0
exp
n
�2b0jyj1�2p0

1�2p0
o
dy, then an application of Meyer's generalized

Itô's formula shows that if Z(t) = s(Ŷ (t)), then for t � Tk,

Z(t) =

Z t

0

s0(Ŷr)Ŷ p0

r dBr + b0
Z t

0

s0(Ŷr)� 0(r) dr +
1

2

Z
LŶt (x)ds

0(x):

Here, as before, LŶ is the semimartingale local time of Ŷ . Now argue as in
(4.7) to see that for t � Tk,

1

2

Z
LŶt (x)ds

0(x) = �b0
Z t

0

s0(Ŷr)1(Ŷr > 0) dr:

Therefore if N(t) =
R t
0
s0(Ŷr)Ŷ p0

r dBr and

A(t) = b0
Z t

0

s0(Ŷr)(1� � 0(r))1(Ŷr > 0) dr;

then for t � Tk,

Z(t) = N(t)�A(t) + b0
Z t

0

s0(0)� 0(r)1(Ŷ (r) = 0) dr

= N(t)�A(t) + b0
Z t

0

1(Y (r) = 0) dr;(5.3)

where we used s0(0) = 1 and (5.2) in the last line. A is a non-decreasing
continuous process by (5.2), N is a continuous local martingale, and N(0) =
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A(0) = 0. Fix k and assume Vk > 0, and so Tk > 0 because Tk � Vk. If

T+ = inf
n
t :

Z t^Tk

0

1(Y (r) = 0) dr > 0
o
;

then by (5.3), Z(t ^ T+) is a continuous non-negative local supermartingale
starting at 0 and so is identically zero. This means Z(r) = 0 for r � T+ and
so the same holds for Y (r), which by the de�nition of T+ and assumption that
Tk > 0 implies that T+ = 0 a.s. Since Vk " 1 a.s. we have shown that w.p. 1Z t

0

1(hX(�(r)); 1i = 0) dr =

Z t

0

1(Y (r) = 0) dr > 0 8t > 0:

Setting �(r) = u and using (5.2) again (to show � 0(r) = 1 on fhX(�(r)); 1i =
0g for a.a. r), we see that the above impliesZ t

0

1(hXu; 1i = 0) du > 0 8t > 0 a:s:

The proof is complete. �
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