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Abstract

The Mallows measure on the symmetric group Sn is the probability measure such that each
permutation has probability proportional to q raised to the power of the number of inversions,
where q is a positive parameter and the number of inversions of π is equal to the number of
pairs i < j such that πi > πj . We prove a weak law of large numbers for the length of the
longest increasing subsequence for Mallows distributed random permutations, in the limit that
n→∞ and q → 1 in such a way that n(1− q) has a limit in R.
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1 Main Result

There is an extensive literature dealing with the longest increasing subsequence of a random per-
mutation. Most of these papers deal with uniform random permutations. Our goal is to study the
longest increasing subsequence under a different measure, the Mallows measure, which is motivated
by statistics [11]. We begin by defining our terms and stating the main result, and then we give
some historical perspective.

The Mallows(n, q) probability measure on permutations Sn is given by

µn,q({π}) = [Z(n, q)]−1qinv(π) , (1.1)

where inv(π) is the number of “inversions” of π,

inv(π) = #{(i, j) ∈ {1, . . . , n}2 : i < j , πi > πj} . (1.2)

The normalization is Z(n, q) =
∑
π∈Sn q

inv(π). See [6] for more background and interesting features
of the Mallows measure. The measure is related to representations of the Iwahori-Hecke algebra as
Diaconis and Ram explain. It is also related to a natural q-deformation of exchangeability which
has been recently discovered and explained by Gnedin and Olshanski [7, 8].

1This research was supported in part by U.S. National Science Foundation grant DMS-0703855.
2This research was supported in part by U.S. National Science Foundation grants DMS-0706927 and DMS-0703855.
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We are interested in the length of the longest increasing subsequence in this distribution. The
length of the longest increasing subsequence of a permutation π ∈ Sn is

`(π) = max{k ≤ n : πi1 < · · · < πik for some i1 < · · · < ik} . (1.3)

Our main result is the following.

Theorem 1.1 Suppose that (qn)∞n=1 is a sequence such that the limit β = limn→∞ n(1− qn) exists.
Then

lim
n→∞

µn,qn

({
π ∈ Sn : |n−1/2`(π)− L(β)| < ε

})
= 1 ,

for all ε > 0, where

L(β) =


2 sinh−1(

√
eβ − 1)/

√
β for β > 0,

2 for β = 0,

2 sin−1(
√

1− eβ)/
√
−β for β < 0.

(1.4)

In a recent paper [4] Borodin, Diaconis and Fulman asked about the Mallows measure, “Picking
a permutation randomly from Pθ (their notation for the Mallows measure), what is the distribution
of the cycle structure, longest increasing subsequence, . . . ?” We answer the question about the
longest increasing subsequence at the level of the weak law of large numbers.

Note that the Mallows measure for q = 1 reduces to the uniform measure on Sn:

µn,1(π) =
1

n!
,

for all π ∈ Sn. For the uniform measure, Vershik and Kerov [15] and Logan and Shepp [10] already
proved a weak law of large numbers for the length of the longest increasing subsequence. We will
use their result in our proof, so we state it here:

Proposition 1.2
lim
n→∞

µn,1{π ∈ Sn : |n−1/2`(π)− 2| > ε} = 0 , (1.5)

for all ε > 0.

The reader can find the proof of this proposition in [15] and [10]. Also, a very nice probabilistic
approach is provided by Aldous and Diaconis [2] using hydrodynamic limits. We are motivated by
their method.

For the uniform probability measure, Baik, Deift and Johansson [3] went further. In their
seminal work, they gave a complete description of the fluctuations. Their methods are intricate
and quite specific, for example relying on the combinatorial Robinson-Schensted-Knuth algorithm.
So we believe they are unlikely to apply to the Mallows measure.

The rest of the paper is devoted to the proof of Theorem 1.1. We begin by stating the key
ideas. This occupies Sections 2 through 6. Certain important technical assumptions will be stated
as lemmas. These lemmas are independent of the main argument, although the main argument
relies on the lemmas. The lemmas will be proved in Sections 7 and 8.
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2 A Boltzmann-Gibbs measure

In a previous paper [13] one of us proved the following result.

Proposition 2.1 Suppose that the sequence (qn)∞n=1 has the limit β = limn→∞ n(1 − qn). For
n ∈ N, let π(ω) ∈ Sn be a Mallows(n, qn) random permutation. For each n ∈ N, consider the
empirical measure ρ̃n(·, ω) on R2, such that

ρ̃n(A,ω) =
1

n

n∑
k=1

1

{(
k

n
,
πk(ω)

n

)
∈ A

}
,

for each Borel set A ⊆ R2. Note that ρ̃n(·, ω) is a random measure. Define the non-random measure
ρβ on R2 by the formula

dρβ(x, y) =
(β/2) sinh(β/2)1[0,1]2(x, y)(

eβ/4 cosh(β[x− y]/2)− e−β/4 cosh(β[x+ y − 1]/2)
)2 dx dy . (2.1)

Then the sequence of random measures ρ̃n(·, ω) converges in distribution to the non-random measure
ρβ, as n → ∞, where the convergence is in distribution, relative to the weak topology on Borel
probability measures.

We will reformulate Lemma 2.1, using a Boltzmann-Gibbs measure for a classical spin system.
The underlying spins take values in R2. We define a two body Hamiltonian interaction h : R2 → R
as

h(x, y) = 1{xy < 0} .

Then the n particle Hamiltonian function is Hn : (R2)n → R,

Hn((x1, y1), . . . , (xn, yn)) =
1

n− 1

n−1∑
i=1

n∑
j=i+1

h(xi − xj , yi − yj) .

One also needs an a priori measure α which is a Borel probability measure on R2. Given all this,
the Boltzmann-Gibbs measure on (R2)n with “inverse-temperature” β ∈ R is defined as µn,α,β ,

dµn,α,β((x1, y1), . . . , (xn, yn)) =
exp

(
− βHn((x1, y1), . . . , (xn, yn))

) ∏n
i=1 dα(xi, yi)

Zn(α, β)

where the normalization, known as the “partition function” is

Zn(α, β) =

∫
(R2)n

exp
(
− βHn((x1, y1), . . . , (xn, yn))

) n∏
i=1

dα(xi, yi) .

Usually in statistical physics one only considers positive temperatures, corresponding to β ≥ 0. But
we will also consider β ≤ 0, because it makes mathematical sense and is an interesting parameter
range to study.

A special situation arises when the a priori measure α is a product measure of two one-
dimensional measures without atoms. If λ and κ are Borel probability measures on R without
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atoms, then

µn,λ×κ,β

{
((x1, y1), . . . , (xn, yn)) ∈(R2)n : ∃i1 < · · · < ik ,

such that (xij − xi`)(yij − yi`) > 0 for all j 6= `
}

= µn,exp(−β/(n−1))({π ∈ Sn : `(π) ≥ k}) ,

(2.2)

for each k. This follows from the definitions. In particular, the condition for an increasing sub-
sequence of a permutation i1 < · · · < ik is that if ij < i` then we must have πij < πi` . For the
variables (x1, y1), . . . , (xn, yn) replacing the permutation, we obtain the condition listed above.

We will also use results from [5] by Deuschel and Zeitouni. They define the record length of n
points in R2 as

`((x1, y1), . . . , (xn, yn)) = max{k : ∃i1 < · · · < ik , (xij −xi`)(yij −yi`) > 0 for all j < ` } . (2.3)

Equation (2.2) says that the distribution of `((X1(ω), Y1(ω), . . . , Xn(ω), Yn(ω))) with respect to
the Boltzmann-Gibbs measure µn,λ×κ,β is equal to the distribution of `(π(ω)) with respect to the
Mallows(n, exp(−β/(n− 1))) measure µn,exp(−β/(n−1)).

Using the equivalence and Lemma 2.1, we may also deduce a weak convergence result for the
measures µn,λ×κ,β . In fact there is a special choice of measure for λ and κ, depending on β, which
makes the limit nice.

For each β ∈ R \ {0} define
L(β) = [(1− e−β)/β]1/2 ,

and define L(0) = 1. Define the Borel probability λβ on R by the formula

dλβ(x) =
L(β)1[0,L(β)](x)

1− βL(β)x
dx ,

for β 6= 0, and dλ0(x) = 1[0,1](x) dx. Also define a measure σβ on R2 by the formula

dσβ(x, y) =
1[0,L(β)]2(x, y)

(1− βxy)2
dx dy .

Both the x and y marginals of σβ are equal to the one-dimensional measure λβ . Using this, the
next lemma follows from Lemma 2.1 and the strong law of large numbers. In fact, the strong law
implies that an empirical measure arising from i.i.d. samples always converges in distribution to
the underlying measure, relative to the weak topology on measures.

Lemma 2.2 For n ∈ N, let ((Xn,1(ω), Yn,k(ω)), . . . , (Xn,n(ω), Yn,n(ω))) be distributed according
to the Boltzmann-Gibbs measure µn,λβ×λβ ,β, where we used the special a priori measure just con-
structed. Define the random empirical measure σ̃n(·, ω) on R2, such that

σ̃n(A,ω) :=
1

n

n∑
i=1

1{(Xn,i(ω), Yn,i(ω)) ∈ A} ,

for each Borel measurable set A ⊆ R2. Then the sequence of random measures (σ̃n(·, ω))∞n=1

converges in distribution to the non-random measure σβ, in the limit n→∞, where the convergence
in distribution is relative to the topology of weak convergence of Borel probability measures.
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We could have also chosen a different a priori measure to obtain convergence to the same
measure ρβ from Lemma 2.1. But we find the new measure σβ to be a nicer parametrization.
We may re-parametrize the measures like this by changing the a priori measure. The ability to
re-parametrize the measures will also be useful later.

3 Deuschel and Zeitouni’s record lengths

In [5], Deuschel and Zeitouni proved the following result. We thank Janko Gravner for bringing
this result to our attention.

Theorem 3.1 (Deuschel and Zeitouni, 1995) Suppose that u is a density on the box [a1, a2]×
[b1, b2], i.e., dα(x, y) = u(x, y) dx dy is a probability measure on the box [a1, a2] × [b1, b2]. Also
suppose that u is differentiable in (a1, a2) × (b1, b2) and the derivative is continuous up to the
boundary. Finally, suppose there exists a constant c > 0 such that

u(x, y) ≥ c ,

for all (x, y) ∈ [a1, a2]× [b1, b2]. Let (U1, V1), (U2, V2), . . . be i.i.d., α-distributed random vectors in
[a1, a2]× [b1, b2]. Then the rescaled random record lengths,

n−1/2`((U1, V1), . . . , (Un, Vn)) , (3.1)

converge in distribution to a non-random number J ∗(u) defined as follows. Let C1
↗([a1, a2]×[b1, b2])

be the set of all C1 curves from (a1, b1) to (a2, b2) whose tangent line has positive (and finite) slope
at all points. For γ ∈ C1

↗([a1, a2]× [b1, b2]) and any C1 parametrization (x(t), y(t)), define

J (u, γ) = 2

∫
γ

√
u(x(t), y(t))x′(t) y′(t) dt . (3.2)

This is parametrization independent. Then

J ∗(u) = sup
γ∈C1↗([a1,a2]×[b1,b2])

J (u, γ) .

This is Theorem 2 in Deuschel and Zeitouni’s paper. The fact that J (u, γ) is parametrization
independent is useful.

We generalize their definition of J (u, γ) a bit, attempting to mimic the definition of entropy
made by Robinson and Ruelle in [12]. This is useful for establishing continuity properties of J and
it allows us to drop the assumption that u is differentiable.

Given a box [a1, a2]× [b1, b2], we define Πn([a1, a2]× [b1, b2]) to be the set of all (n+ 1)-tuples
P = ((x0, y0), . . . , (xn, yn)) ∈ (R2)n+1 satisfying

a1 = x0 ≤ · · · ≤ xn = a2 and b1 = y0 ≤ · · · ≤ yn = b2 .

We define

J̃ (u,P) = 2

n−1∑
k=0

(∫ xk+1

xk

∫ yk+1

yk

u(x, y) dx dy

)1/2

. (3.3)
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For later reference, we note the following continuity property of J̃ (u,P) as a function of u for a
fixed P. Suppose that u and v are nonnegative functions in C([a1, a2]× [b1, b2]). Using the simple
fact that |a− b| ≤

√
|a2 − b2|, for all a, b ≥ 0, we see that

|J̃ (u,P)− J̃ (v,P)| ≤ 2

n−1∑
k=0

(∫ xk+1

xk

∫ yk+1

yk

|u(x, y)− v(x, y)| dx dy
)1/2

.

We define ‖u‖ to be the supremum norm. Using this and the Cauchy inequality,

|J̃ (u,P)− J̃ (v,P)| ≤ 2‖u− v‖1/2
n−1∑
k=0

√
(xk+1 − xk)(yk+1 − yk)

≤ ‖u− v‖1/2
n−1∑
k=0

(xk+1 − xk + yk+1 − yk)

= ‖u− v‖1/2 (a2 − a1 + b2 − b1) .

(3.4)

Now we state a technical lemma.

Lemma 3.2 Let B↗([a1, a2]×[b1, b2]) be the set of all connected sets Υ ⊂ [a1, a2]×[b1, b2] containing
(a1, b1) and (a2, b2), and having the property that (x1−x2)(y1−y2) ≥ 0 for all (x1, y1), (x2, y2) ∈ Υ.
Define Πn(Υ) to be the set of all P = ((x0, y0), . . . , (xn, yn)) in Πn such that (xk, yk) ∈ Υ for each
k, and let Π(Υ) =

⋃∞
n=1 Πn(Υ). Finally, define

J̃ (u,Υ) = lim
ε→0

inf

{
J̃ (u,P) : P ∈

∞⋃
n=1

Πn(Υ) , ‖P‖ < ε

}
.

Then J̃ (u, ·) is an upper semi-continuous function of B↗([a1, a2]× [b1, b2]), endowed with the Haus-
dorff metric.

If Υ is the range of a curve γ ∈ C1
↗([a1, a2] × [b1, b2]), then J̃ (u,Υ) = J (u, γ) because for each

partition P ∈ Π(Υ), the quantity J̃ (u,P) just gives a Riemann sum approximation to the integral
in J (u, γ).

Now, let us denote the density of σβ as

uβ(x, y) =
1[0,L(β)]2](x, y)

(1− βxy)2
. (3.5)

Then we may prove the following variational calculation.

Lemma 3.3 For any Υ ∈ B↗([0, L(β)]2),

J̃ (uβ ,Υ) ≤
∫ L(β)

0

2

1− βt2
dt = L(β) .

Let us quickly verify the lemma in the special case β = 0. We have set L(0) = 1 and we know that
u0 is identically 1 on the rectangle [0, 1]2. By equation (3.4), we know that

J̃ (u0,P) ≤ 2 ,
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by comparing u = u0 with v = 0. That means that J̃ (u0,Υ) ≤ 2 for every choice of Υ. It is
easy to see that taking Υ = {(t, t) : 0 ≤ t ≤ 1}, which is the graph of the straight line curve γ
parametrized by x(t) = y(t) = t for 0 ≤ t ≤ 1,

J̃ (u0,Υ) = J (u0, γ) = 2

∫ 1

0

√
u0(x(t), y(t))x′(t)y′(t) dt = 2 .

Therefore, using Deuschel and Zeitouni’s theorem, this shows that the straight line is the optimal
path for the case of a constant density on a square.

This lemma in general is proved using basic inequalities, as above, combined with the fact
that J (u, γ) is parametrization independent, which allows us to reparametrize time for any curve
(x(t), y(t)). As with the other lemmas, we prove this in Section 7 at the end of the paper.

4 Coupling to IID point processes

Now, suppose that β is fixed, and consider a triangular array of random vectors in R2,

((Xn,k, Yn,k) : n ∈ N , 1 ≤ k ≤ n), ,

where for each n ∈ N, the random variables (Xn,1, Yn,1), . . . , (Xn,n, Yn,n) are distributed according
to the Boltzmann-Gibbs measure µn,λβ×λβ ,β . We know that

µn,exp(−β/(n−1)){`(π) = k} = P{`((Xn,1, Yn,1), . . . , (Xn,n, Yn,n)) = k} ,

for each k. We also know that the empirical measure associated to ((Xn,1, Yn,1), . . . , (Xn,n, Yn,n))
converges to the special measure σβ . It is natural to try to apply Deuschel and Zeitouni’s Theorem
3.1, even though the points (Xn,1, Yn,1), . . . , (Xn,n, Yn,n) are not i.i.d., a requirement for the random
variables (U1, V1), . . . , (Un, Vn) of their theorem.

It is useful to generalize our perspective slightly. Let us suppose that λ and κ are general
Borel probability measures on R without atoms, and let us consider a triangular array of random
vectors in R2: ((Xn,k, Yn,k) : n ∈ N , 1 ≤ k ≤ n), where for each n ∈ N, the random variables
(Xn,1(ω), Yn,1(ω)), . . . , (Xn,n(ω), Yn,n(ω)) are distributed according to the Boltzmann-Gibbs mea-
sure µn,λ×κ,β . Let us define the random non-normalized, integer valued Borel measure ξn(·, ω) on
R2, by

ξn(A,ω) =

n∑
i=1

1{(Xn,i(ω), Yn,i(ω)) ∈ A} , (4.1)

This is a random point process.
A general point process is a random, locally finite, nonnegative integer valued measure. We will

restrict attention to finite point processes. Therefore, let X denote the set of all Borel measures
ξ on R2 such that ξ(A) ∈ {0, 1, . . . } for each Borel measurable set A ⊆ R2. Then, almost surely,
ξn(·, ω) is in X . In fact ξn(R2, ω) is a.s. just n. For a general random point process, the total
number of points may be random.

Definition 4.1 Let νn,λ×κ,β be the Borel probability measure on X describing the distribution of
the random element ξn(·, ω) ∈ X defined in (4.1), where (Xn,1(ω), Yn,1(ω)), . . . , (Xn,n(ω), Yn,n(ω))
are distributed according to the Boltzmann-Gibbs measure µn,λ×κ,β.
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Given a measure ξ ∈ X , we extend the definition of the record length to

`(ξ) = max{k : ∃(x1, y1), . . . , (xk, yk) ∈ R2 such that

ξ({(x1, y1), . . . , (xk, yk)}) ≥ k and (xi − xj)(yi − yj) ≥ 0 for all i, j} .
(4.2)

With this definition,

`(ξn(·, ω)) = `((Xn,1(ω), Yn,1(ω)), . . . , (Xn,n(ω), Yn,n(ω))) , (4.3)

almost surely.
There is a natural order on measures. If µ, ν are two measures on R2, then let us say µ ≤ ν if

µ(A) ≤ ν(A), for each Borel set A ⊆ R2. The function ` is monotone non-decreasing in the sense
that if ξ, ζ are two measures in X then ξ ≤ ζ ⇒ `(ξ) ≤ `(ζ).

Lemma 4.2 Suppose that λ and κ each have no atoms. Then for each n ∈ N, the following holds.

(a) There exists a pair of random point processes ηn, ξn, defined on the same probability space,
such that ηn ≤ ξn, a.s., and satisfying these conditions: ξn has distribution νn,λ×κ,β; there are
i.i.d., Bernoulli-p random variables K1, . . . ,Kn, for p = exp(−|β|), and i.i.d., λ×κ-distributed

points (U1, V1), . . . , (UK1+···+Kn , VK1+···+Kn), such that ηn(A) =
∑K1+···+Kn
i=1 1{(Ui, Vi) ∈ A}.

(b) There exists a pair of random point processes ξn, ζn, defined on the same probability space,
such that ξn ≤ ζn, a.s., and satisfying these conditions: ξn has distribution νn,λ×κ,β; there are
i.i.d., geometric-p random variables N1, . . . , Nn, for p = exp(−|β|), and i.i.d., λ×κ-distributed

points (U1, V1), . . . , (UN1+···+Nn , VN1+···+Nn), such that ζn(A) =
∑N1+···+Nn
i=1 1{(Ui, Vi) ∈ A}.

We may combine this lemma with the weak law of large numbers and the Vershik and Kerov,
Logan and Shepp theorem, to conclude the following:

Corollary 4.3 Suppose that (qn)∞n=1 is a sequence such that limn→∞ n(1− qn) = β ∈ R. Then,

lim
n→∞

µn,qn{π ∈ Sn : n−1/2`(π) ∈ (2e−|β|/2 − ε, 2e|β|/2 + ε)} = 1 ,

for each ε > 0.

Let us quickly prove this corollary, conditional on previously stated lemmas whose proofs will
appear later.

Proof of Corollary 4.3: Let βn be defined so that exp(−βn/(n − 1)) = qn. Let π ∈ Sn be
a random permutation, distributed according to µn,qn , and let ((Xn,1, Yn,1), . . . , (Xn,n, Yn,n)) be
distributed according to µn,λ×κ,βn . We have the equality in distribution of the random variables

`((Xn,1, Yn,1), . . . , (Xn,n, Yn,n))
D
= `(π) ,

as we noted in Section 2, before. Note limn→∞ n(1− qn) = β, implies that limn→∞ βn = β.
For a fixed n, we apply Lemma 4.2, but with β replaced by βn, to conclude that there are random

point processes ηn(·, ω), ξn(·, ω) ∈ X defined on the same probability space Ω, and separately, there
are random point processes ξn(·, ω), ζn(·, ω) ∈ X , defined on the same probability space, satisfying
the conclusions of that lemma but with β replaced by βn. By (4.3), we know that

`(π)
D
= `(ξ) .
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By monotonicity of `, and Lemma 4.2 we know that for each k

P{`(η) ≥ k} ≤ P{`(ξ) ≥ k} and P{`(ξ) ≥ k} ≤ P{`(ζ) ≥ k} . (4.4)

Using equations (2.2) and (4.3), this implies that for each ε > 0

µn,qn{π ∈ Sn : n−1/2`(π) ≤ 2e|β|/2 + ε} ≥ P{n−1/2`(ζ) ≤ 2e|β|/2 + ε} ,
µn,qn{π ∈ Sn : n−1/2`(π) ≥ 2e−|β|/2 − ε} ≥ P{n−1/2`(η) ≥ 2e−|β|/2 − ε} .

Since the (Ui, Vi)’s end at i = K1 + · · · + Kn or i = N1 + · · · + Nn in the two cases, let us also
define new i.i.d., λ × κ-distributed points (Ui, Vi) for all greater values of i. We assume these are
independent of everything else. Then all (Ui, Vi) are i.i.d., λ×κ distributed. So, for any non-random
number m ∈ N, the induced permutation πm ∈ Sm, corresponding to ((U1, V1), . . . , (Um, Vm)) is
uniformly distributed.

The random integers K1, . . . ,Kn and N1, . . . , Nn from Lemma 4.2 are not independent of
(U1, V1), (U2, V2), . . . . But, for instance, for any deterministic number m, conditioning on the event
{ω ∈ Ω : K1(ω) + · · ·+Kn(ω) ≤ m}, we have that

`(ζ) ≤ `
(
(U1, V1), . . . , (Um, Vm)

)
,

by using monotonicity of ` again. Therefore, for each n ∈ N, and for any non-random number
M+
n ∈ N, we may bound

P{n−1/2`(ζ) ≤ 2e|β|/2 + ε} ≥ µM+
n ,1
{π ∈ SM+

n
: n−1/2`(π) ≤ 2e|β|/2 + ε}

−P({ω ∈ Ω : K1(ω) + · · ·+Kn(ω) > M+
n }) .

Similarly, for any non-random number M−n , we may bound

P{n−1/2`(ζ) ≥ 2e−|β|/2 − ε} ≥ µM−n ,1{π ∈ SM−n : n−1/2`(π) ≥ 2e−|β|/2 − ε}
−P({ω ∈ Ω : N1(ω) + · · ·+Nn(ω) < M−n }) .

We choose δ such that 0 < δ < ε, and then we take sequences M+
n = bn(e−|β| + δ)c and N−n =

dn(e|β|−δ)e. SinceK1,K2, . . . are i.i.d., Bernoulli random variables with mean e−|β|, andN1, N2, . . .
are i.i.d., geometric random variables with mean e|β|, we may appeal to the weak law of large
numbers to deduce

lim
n→∞

P({ω ∈ Ω : K1(ω)+· · ·+Kn(ω) > M+
n }) = lim

n→∞
P({ω ∈ Ω : N1(ω)+· · ·+Nn(ω) < M−n }) = 0 .

Finally, by Proposition 1.2, we know that

lim inf
n→∞

µM+
n ,1
{π ∈ SM+

n
: n−1/2`(π) ≤ 2e|β|/2 + ε}

≥ lim inf
n→∞

µM+
n ,1

{
π ∈ SM+

n
: (M+

n )−1/2`(π) ≤ 2
e|β|/2 + ε

e|β|/2 + δ

}
= 1 ,

and

lim inf
n→∞

µM−n ,1{π ∈ SM−n : n−1/2`(π) ≥ 2e−|β|/2 − ε}

≥ lim inf
n→∞

µM−n ,1

{
π ∈ SM−n : (M−n )−1/2`(π) ≥ 2

e−|β|/2 − ε
e−|β|/2 − δ

}
= 1 .

9
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The bounds in Corollary 4.3 are useful for small values of |β|. For larger values of β, they are
useful when combined with the following easy lemma:

Lemma 4.4 Suppose λ and κ have no atoms, and let the random point process ξ ∈ X be distributed
according to νn,λ×κ,β. Suppose that R = [a1, a2] × [b1, b2] is any rectangle. Let ξ � R denote the
restriction of ξ to this rectangle: i.e., (ξ � R)(A) = ξ(A∩R). Note that this is still a random point
process in X but one with a random total mass between 0 and n. Then, for any m ∈ {1, . . . , n},
and any k ∈ {1, . . . ,m}, we have

P({`(ξ � R) = k} | {ξ(R) = m}) = µm,q{π ∈ Sm : `(π) = k} , (4.5)

for q = exp(−β/(m− 1)).

In order to use this lemma, we introduce an idea we call “paths of boxes.”

5 Paths of boxes

We now introduce a method to derive Deuschel and Zeitouni’s Theorem 3.1 for our point process.
For each n we decompose the unit square [0, 1]2 into n2 sub-boxes

Rn(i, j) =

[
i− 1

n
,
i

n

]
×
[
j − 1

n
,
j

n

]
.

We consider a basic path to be a sequence (i1, j1), . . . , (i2n−1, j2n−1) such that (i1, j1) = (1, 1),
(i2n−1, j2n−1) = (n, n) and (ik+1 − ik, jk+1 − jk) equals (1, 0) or (0, 1) for each k = 1, . . . , 2n − 2.

In this case the basic path of boxes is the union
⋃2n−1
k=1 Rn(ik, jk). Note that

(ik+1 − ik, jk+1 − jk) = (1, 0) ⇒ Rn(ik, jk) ∩Rn(ik+1, jk+1) = {ik/n} × [(jk − 1)/n, jk/n] ,

(ik+1 − ik, jk+1 − jk) = (0, 1) ⇒ Rn(ik, jk) ∩Rn(ik+1, jk+1) = [(ik − 1)/n, ik/n] ∩ {jk/n} .

Now we consider a refined notion of path. We are motivated by the fact that Deuschel and
Zeitouni’s J (u, γ) function does depend on the derivative of γ. To get reasonable error bounds we
must allow for a choice of slope for each segment of the path. So, given m ∈ N and n ∈ {2, 3, . . . },
we consider a set of “refined” paths Πn,m to be the set of all sequences

Γ := ((i1, j1), r1, (i2, j2), r2, (i3, j3), r3, . . . , (i2n−2, j2n−2), r2n−2, (i2n−1, j2n−1)) ,

where ((i1, j1), (i2, j2), . . . , (i2n−1, j2n−1) is a basic path, as described in the last paragraph, and
r1, r2, . . . , r2n−2 are integers in {1, . . . ,m} satisfying the additional condition: if ik = ik+1 = ik+2

or if jk = jk+1 = jk+2 then rk+1 ≥ rk, for each k = 1, . . . , 2n− 3. We now explain the importance
of this condition.

Suppose that Rn(ik, jk)∩Rn(ik+1, jk+1) = {ik/n}× [(jk−1)/n, jk/n]. Then we decompose this
interval into m subintervals

I(2)
n,m(ik; jk, jk+1; r) =

{
ik
n

}
×
[
jk − 1

n
+
r − 1

mn
,
jk − 1

n
+

r

m

]
.
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Similarly, if Rn(ik, jk) ∩Rn(ik+1, jk+1) = [(ik − 1)/n, ik/n]× {jk/n}, then we define

I(1)
n,m(ik, ik+1; jk; r) =

[
ik − 1

n
+
r − 1

m
,
ik − 1

n
+

r

mn

]
×
{
jk
n

}
.

In either case, the choice of rk is which subinterval the “path” passes through in going from

Rn(ik, jk) to Rn(ik+1, jk+1). We define Ik to be I
(2)
n,m(ik; jk, jk+1; rk) or I

(1)
n,m(ik, ik+1; jk; rk) de-

pending on which case it is. We also define (xk, yk) to be the center of the interval, either

(xk, yk) =

(
ik
n
,
jk − 1

n
+
r − (1/2)

mn

)
or (xk, yk) =

(
ik − 1

n
+
r − (1/2)

mn
,
jk
n

)
.

The additional condition that we require for a refined path just guarantees that xk+1 ≥ xk and
yk+1 ≥ yk for each k.

We also define (ak, bk) ∈ R2 and (ck, dk) ∈ R2 to be the endpoints of the interval Ik. With
these definitions, we may state our main result for paths of boxes.

Lemma 5.1 Suppose that Γ ∈ Πn,m is a refined path. Also suppose that ξ ∈ X is a point process
with support in [0, 1]2, such that no point lies on any line {(x, y) : x = i/n} for i ∈ Z or any line
{(x, y) : y = j/n} for j ∈ Z. Then

`(ξ) ≥
2n−1∑
k=1

`(ξ � [xk−1, xk]× [yk−1, yk]) ,

where we define (x0, y0) = (0, 0) and (x2n−1, y2n−1) = (1, 1). Also,

`(ξ) ≤ max
Γ∈Πn,m

2n−1∑
k=1

`(ξ � [ak−1, ck]× [bk−1, dk]) ,

where we define (a0, b0) = (0, 0) and (c2n−1, d2n−1) = (1, 1).

We will prove this lemma in Section 8, after we have proved the other lemmas, since it requires
several steps.

Another useful lemma follows:

Lemma 5.2 Suppose that u : [0, 1]2 → R is a probability density which is also continuous. Then,

max
Υ∈B↗([0,1]2)

J̃ (u,Υ) = 2 lim
N→∞

lim
m→∞

max
Γ∈Πn,m

2N−1∑
k=1

(∫ xk

xk−1

∫ yk

yk−1

u(x, y) dx dy

)1/2

.

We will prove this simple lemma in Section 7. With these preliminaries done, we may now
complete the proof of the theorem.

6 Completion of the Proof

Suppose that β ∈ R is fixed. At first we will consider a fixed sequence qn = exp(−β/(n − 1)),
which does satisfy n(1 − qn) → β as n → ∞. Define the triangular array of random vectors
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in R2: ((Xn,k, Yn,k) : n ∈ N , 1 ≤ k ≤ n), where for each n ∈ N, the random variables
(Xn,1, Yn,1), . . . , (Xn,n, Yn,n) are distributed according to the Boltzmann-Gibbs measure µn,λ×κ,β .
Let ξn ∈ X be the random point process such that

ξn(A) =

n∑
k=1

1{(Xn,k, Yn,k) ∈ A} ,

for each Borel measurable set A ⊆ R2. As we have noted before, we then have

µn,qn{π ∈ Sn : `(π) = k} = P{`((Xn,1, Yn,1), . . . , (Xn,n, Yn,n)) = k}
= P{`(ξn) = k} ,

for each k.
Now suppose that m,N ∈ N are fixed. We consider “refined” paths in ΠN,m. By Lemma 5.1,

which applies by first rescaling the unit square [0, 1]2 to [0, L(β)]2,

`(ξn) ≥ max
Γ∈ΠN,m

2N−1∑
k=1

`(ξn � [L(β)xk−1, L(β)xk]× [L(β)yk−1, L(β)yk]) . (6.1)

The only difference is that we use the square [0, L(β)]2 in place of [0, 1]2. Also,

`(ξn) ≤ max
Γ∈ΠN,m

2N−1∑
k=1

`(ξn � [L(β)ak−1, L(β)ck]× [L(β)bk−1, L(β)dk]) . (6.2)

Now suppose that Γ ∈ ΠN,m is fixed. Also consider a fixed sub-rectangle of Γ,

Rk = [L(β)xk−1, L(β)xk]× [L(β)yk−1, L(β)yk] .

By Lemma 2.2, we know that the random variables ξn(Rk)/n converge in probability to the non-
random limit σβ(Rk), as n → ∞. Moreover, conditioning on the total number of points in the
sub-rectangle ξn(Rk), Lemma 4.4 tells us that

P({`(ξn � Rk) = •} | {ξn(Rk) = r}) = µr,qn{π ∈ Sr : `(π) = •} .

Note that the sequence of random variables ξn(Rk)(1− qn) converges in probability to βσβ(Rk) as
n→∞, because

ξn(Rk)(1− qn) = n(1− qn)
ξn(Rk)

n
,

and n(1− qn)→ β as n→∞. Therefore, using Corollary 4.3, this implies for each ε > 0

lim
n→∞

P
{
ξn(Rk)−1/2`(ξn � R) ∈ (2e−βσβ(Rk)/2 − ε, 2eβσβ(Rk)/2 + ε)

}
= 1 .

Since we have a limit in probability for ξn(Rk)/n, we may then conclude for each ε > 0 that

lim
n→∞

P
{
n−1/2`(ξn � Rk) ∈ (2[σβ(Rk)]1/2e−βσβ(Rk)/2 − ε, 2[σβ(Rk)]1/2eβσβ(Rk)/2 + ε)

)
= 1 .

This is true for each sub-rectangle Rk comprising Γ, and Γ is in ΠN,m. But there are only
finitely many sub-rectangles in Γ, and there are only finitely many possible choices of a refined path
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of boxes Γ ∈ ΠN,m, for N and m fixed. Combining this with (6.1) implies that for any ε > 0 we
have

lim
n→∞

P

{
n−1/2`(ξn) ≥ max

Γ∈Πm,n

2N−1∑
k=1

2[σβ(Rk)]1/2e−βσβ(Rk)/2 − ε

}
= 1 . (6.3)

By exactly similar arguments and (6.2) we may also conclude that for each ε > 0

lim
n→∞

P

{
n−1/2`(ξn) ≤ max

Γ∈Πm,n

2N−1∑
k=1

2[σβ(R∗k)]1/2eβσβ(R∗k)/2 + ε

}
= 1 , (6.4)

where we define
R∗k = [L(β)ak−1, L(β)ck], [L(β)bk−1, L(β)dk] ,

for each k = 1, . . . , 2N − 1.
We apply Lemma 5.2 to uβ . For N fixed, taking the limit m → ∞, the area of the symmetric

differences of the boxesR∗k andRk converges to zero, uniformly in Γ ∈ ΠN,m for each k = 1, . . . , 2N−
1. Since σβ has a density, the same is true replacing area by σβ-measure. Moreover, exp(−βσβ(Rk))
and exp(βσβ(R∗k)) converge to 1 uniformly as N →∞. Therefore,

lim
N→∞

lim
m→∞

max
Γ∈Πm,n

2N−1∑
k=1

2[σβ(Rk)]1/2e−βσβ(Rk)/2

= lim
N→∞

lim
m→∞

max
Γ∈Πm,n

2N−1∑
k=1

2[σβ(R∗k)]1/2e−βσβ(R∗k)/2

= max
Υ∈B↗([0,L(β)]2)

J̃ (uβ ,Υ) .

(6.5)

Combined with (6.3) and (6.4), this implies that for each ε > 0,

lim
n→∞

P

{∣∣∣∣n−1/2`(ξn)− max
Υ∈B↗([0,L(β)]2

J̃ (uβ ,Υ)

∣∣∣∣ < ε

}
= 1 .

Finally, we use Lemma 3.3 to conclude that

max
Υ∈B↗([0,L(β)]2)

J̃ (uβ ,Υ) ≤ L(β) .

But taking Υ = {(t, t) : t ∈ [0, L(β)]}, which is the graph of the straight line curve γ ∈
C1
↗([0, L(β)]2), gives

J̃ (uβ ,Υ) = J (uβ , γ) = 2

∫ L(β)

0

1

1− βt2
dt .

This integral gives L(β).
Thus, the proof is completed, for the special choice of (qn) equal to (exp(−β/(n− 1))). Because

the answer is continuous in β, if we consider any sequence (qn) satisfying n(1 − qn) → β, then we
get the same answer. All that is left is to prove all the lemmas.
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7 Proofs of Lemmas 3.2, 3.3, 4.4 and 5.2

We now prove the lemmas, in an order which is not necessarily the same as the order they were
stated. This facilitates using arguments from one proof for the next one.

Proof of Lemma 3.2. Define

J̃ε(u,Υ) = inf{J̃ (u,P) : P ∈ Π(Υ) , ‖P‖ < ε}

for each ε > 0. We first show that this function is upper semi-continuous.
Let Πn denote Πn([a1, a2]×[b1, b2]). We remind the reader that this is the set of all (n+1)-tuples

P = ((x0, y0), . . . , (xn, yn)) ∈ (R2)n+1 such that a1 = x0 ≤ · · · ≤ xn = an and b1 = y0 ≤ · · · ≤
yn = b2. For each P ∈ Πn, we have

J̃ (u,P) =

n−1∑
k=0

(∫ xk+1

xk

∫ yk+1

yk

u(x, y) dx dy

)1/2

.

Since u is continuous, the mapping J̃ (u, ·) : Πn → R is continuous when Πn has its usual topology
as a subset of (R2)n+1.

Consider a fixed path Υ ∈ B↗([a1, a2] × [b1, b2]) and a partition P ∈ Π(Υ) such that ‖P‖ <
ε. Note that there is some n such that P ∈ Πn(Υ). Suppose that (Υ(k))∞k=1 is a sequence in
B↗([a1, a2] × [b1, b2]) converging to Υ in the Hausdorff metric. Then for each point (x, y) ∈ Υ,
there is a sequence of points (x(k), y(k)) ∈ Υ(k) converging to (x, y). Therefore, we may choose a
sequence of partitions P(k) ∈ Πn(Υ(k)) converging to P in Πn. By the continuity mentioned above,

lim
k→∞

J̃ (u,P(k))→ J̃ (u,P) .

Also, ‖P(k)‖ converges to ‖P‖ which is less than ε. So, for large enough k, we have ‖P(k)‖ < ε, and
hence

J̃ (u,P(k)) ≥ J̃ε(u,Υ(k)) ,

since the right hand side is the infimum. Therefore, we see that

lim sup
k→∞

J̃ε(u,Υ(k)) ≤ J̃ (u,P) .

Since this is true for all P ∈ Π(Υ) with ‖P‖ < ε, taking the infimum we obtain

lim sup
k→∞

J̃ε(u,Υ(k)) ≤ J̃ε(u,Υ) .

Since this is true for every Υ ∈ B↗([a1, a2]× [b1, b2]) and every sequence (Υ(k)) converging to Υ in

the Hausdorff metric, this proves that J̃ε(u, ·) is upper semi-continuous on B↗([a1, a2]× [b1, b2]). �

Proof of Lemma 5.2: The proof of this lemma is also used in the proof of Lemma 3.3. This
is the reason it appears first.

Recall the definition of the basic boxes for i, j ∈ {1, . . . , N},

RN (i, j) =

[
i− 1

N
,
i

N

]
×
[
j − 1

N
,
j

N

]
.

14



Given N ∈ N, let us define u+
N and u−N so that

u+
N (x, y) =

N∑
i,j=1

max
(x′,y′)∈RN (i,j)

u(x′, y′) · 1RN (i,j)(x, y) ,

u−N (x, y) =

N∑
i,j=1

min
(x′,y′)∈RN (i,j)

u(x′, y′) · 1RN (i,j)(x, y) .

By monotonicity, J (u−N ,Υ) ≤ J (u,Υ) ≤ J (u+
N ,Υ) for every Υ ∈ B↗([0, 1]2). But since u−N and u+

N

are constant on squares, we know that the optimal Υ’s for u−N and u+
N are graphs of rectifiable curves

γ that are piecewise straight line curves on squares. This follows from the discussion immediately
following the statement of Lemma 3.3, where we verified the special case of that lemma for constant
densities. The only degrees of freedomfor such curves are the slopes of each straight line, i.e., where
they intersect the boundaries of each basic square.

For (xk, yk), (xk+1, yk+1) ∈ RN (i, j) representing two points on the boundary, such that xk−1 ≤
xk and yk−1 ≤ yk, considering γk to be the straight line joining these points,∫

γk

√
u+
N (x(t), y(t))x′(t)y′(t) dt =

√
(xk − xk−1)(yk − yk−1) max

(x,y)∈RN (i,j)

√
u(x, y) ,

with a similar formula for u−. This is a continuous function of the endpoints. We may approximate
the actual optimal piecewise straight line path by the ”refined paths” of boxes in ΠN,m if we take
the limit m→∞ with N fixed. Therefore, we find that

max
Υ∈B↗([0,1]2)

J̃ (u±N ,Υ) = lim
m→∞

max
Γ∈Πm,n

2N−1∑
k=1

(∫ xk

xk−1

∫ yk

yk−1

u±N (x, y) dx dy

)1/2

.

Note that by upper semicontinuity, for each fixed N , the limit as m→∞ of the sequence

max
Γ∈Πm,n

2N−1∑
k=1

(∫ xk

xk−1

∫ yk

yk−1

u(x, y) dx dy

)1/2

also exists, and is the supremum over m ∈ N. Therefore, we conclude that for each fixed N ∈ N,

lim
m→∞

max
Γ∈Πm,n

2N−1∑
k=1

(∫ xk

xk−1

∫ yk

yk−1

u(x, y) dx dy

)1/2

∈
[

max
Υ∈B↗([0,1]2)

J̃ (u−N ,Υ) , max
Υ∈B↗([0,1]2)

J̃ (u+
N ,Υ)

]
.

But taking N → ∞, we see that u+
N and u−N converge to u, uniformly due to the continuity of u.

Therefore, by the bound from equation (3.4), the lemma follows. �

Proof of Lemma 3.3: Suppose that x(t), y(t) is a C1 parametrization of a curve γ ∈
C1
↗([0, L(β)]2). We may consider another time parametrization x1(t) = x(f(t)) and y1(t) = y(f(t))

for a C1 function f(t) such that
x1(t)y1(t) = t2 .
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Indeed, we obtain x(f(t))y(f(t)) = t2. Setting g(t) = x(t)y(t), our assumptions on x(t) and y(t)
guarantee that g is continuous and g′(t) is strictly positive and finite for all t. We then take
f(t) = g−1(t2).

Since a change of time parametrization does not affect J (uβ , γ), we will simply assume that
x(t)y(t) = t2 is satisfied at the outset. Then we obtain

J (uβ , γ) =

∫ L(β)

0

2
√
x′(t)y′(t)

1− βt2
dt ,

due to the formula for uβ , and the fact that x(t)y(t) = t2 = L2(β) at the endpoint of γ. Now since
we have x(t)y(t) = t2, that implies that

x(t)y′(t) + y(t)x′(t) = 2t . (7.1)

We know that x′(t) and y′(t) are nonnegative. Therefore, we may use Cauchy’s inequality with ε√
x′(t)y′(t) = [x′(t)]1/2[y′(t)]1/2 ≤ ε

2
x′(t) +

1

2ε
y′(t) ,

for each ε ∈ (0,∞). Taking ε = y(t)/t we get ε−1 = t/y(t) which is x(t)/t since we chose the
parametrization that x(t)y(t) = t2. Therefore, we obtain√

x′(t)y′(t) ≤ y(t)x′(t) + x(t)y′(t)

2t
.

Taking into account our constraint (7.1), this gives√
x′(t)y′(t) ≤ 1 .

Since this is true at all t ∈ [0, L(β)] this proves the desired inequality. But this upper bound gives

the integral
∫ L(β)

0
(1− βt2)−1 dt, which equals the formula for L(β).

The argument works even if γ is only piecewise C1, with finitely many pieces. Moreover, by the
proof of Lemma 5.2, we know that the maximum over all Υ is arbitrarily well approximated by
optimizing over piecewise linear paths. So the inequality is true in general. �

Proof of Lemma 4.4: This lemma is related to an important independence property of the
Mallows measure. Gnedin and Olshanski prove this in Proposition 3.2 of [8], and they note that
Mallows also stated a version in [11]. Our lemma is slightly different so we prove it here for
completeness.

Using Definition 4.1, we can instead consider (X1, Y1), . . . , (Xn, Yn) distributed according to
µn,λ×κ,β in place of ξ distributed according to νn,λ×κ,β . Given m ≤ n, we note that, conditioning on
the positions of (Xm+1, Ym+1), . . . , (Xn, Yn), the conditional distribution of (X1, Y1), . . . , (Xm, Ym)
is the same as µm,α,β′ , where β′ = (m− 1)β/(n− 1) and where α is the random measure

dα(x, y) =
1

Z1
exp

(
− β

n− 1

n∑
i=m+1

h(x−Xi, y − Yi)

)
dλ(x) dκ(y) ,

where Z1 is a random normalization constant. By finite exchangeability of µn,λ×κ,β it does not
matter which m points we assume are in the square [a1, a2]× [b1, b2] which is why we just chose the
first m.
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If we could rewrite α as a product of two measures λ′, κ′ without atoms then we could appeal
to (2.2). By inspection α is not a product of two measures. However, if we condition on the event
that there are exactly m points in the square [a1, a2]× [b1, b2] then we can accomplish this goal. Let
use define the event A = {(Xm+1, Ym+1), . . . , (Xn, Yn) 6∈ [a1, a2] × [b1, b2]}. Then, given the event
A, we can write

1[a1,a2]×[b1,b2](x, y) dα(x, y) = dλ′(x) dκ′(y) , (7.2)

where λ′ and κ′ are random measures

dλ′(x) =
1

Z2
e−βh1(x)/(n−1) dλ(x) , dκ′(y) =

1

Z3
e−βh2(y)/(n−1) dκ(y) ,

with Z2 and Z3 normalization constants and random functions

h1(x) =

n∑
i=m+1

[1{Yi<b1}1(Xi,∞)(x) + 1{Yi>b2}1(−∞,Xi)(x)] ,

and

h2(y) =

n∑
i=m+1

[1{Xi<a1}1(Yi,∞)(y) + 1{Xi>a2}1(−∞,Yi)(x)] .

This may appear not to reproduce α exactly because it may seem that h1 and h2 double-count
some terms which are only counted once in

∑n
i=m+1 h(x−Xi, y − Yi). But this is compensated by

the normalization constants Z1 and Z2 as we now explain.
Note that for each i ∈ {m + 1, . . . , n} since (Xi, Yi) 6∈ [a1, a2] × [b1, b2] we either have Yi < b1,

Yi > b2, Xi < a1 or Xi > a2. These are not exclusive. But for instance, if Yi < b1 and Xi < a1 then
for every (x, y) ∈ [a1, a2] × [b1, b2], we have 1{Yi<b1}1(Xi,∞)(x) = 1 and 1{Xi<a1}1(Yi,∞)(y) = 1.
Therefore, these terms are constant in the functions h1(x) and h2(y): they do not depend on the
actual position of (x, y) as long as (x, y) ∈ [a1, a2] × [b1, b2]. Therefore, using the normalization
constants Z1 and Z2, this double-counting may be compensated.

Since we are conditioning on {(X1, Y1), . . . , (Xm, Ym) ∈ [a1, a2]× [b1, b2]} and the event A, the
conditional identity (7.2) suffices to prove the claim. �

8 Proof of Lemma 4.2:

This is the most involved lemma to prove. It follows from a coupling argument. In fact we use the
most basic type of coupling for discrete random variables, based on the total variation distance.
See the monograph [9] (Chapter 4) for a nice and elementary exposition. But we also combine this
with the fact that we have a measure which may be derived from a statistical mechanical model
of mean field type. Because the model is of mean field type, the correlations are weak and spread
out. In principle, this allows one to approximate by a mixture of i.i.d., points as one sees in de
Finetti’s theorem in probability, or the Kac-Lebowitz-Penrose limit in statistical physics. (See [1]
for a reference on the former, and the appendix of [14] for the latter.)

Given a probability measure α on R2, let θ1,α be the distribution on X associated to the random
point process

ξ1(A,ω) = 1A(X(ω), Y (ω)) ,

assuming (X(ω), Y (ω)) is α-distributed.
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Lemma 8.1 Suppose that α and α̃ are two measures on R2 such that α̃� α, and suppose that for
some p ∈ (0, 1] there are uniform bounds

p ≤ dα̃

dα
≤ p−1 .

Then the following holds.

(a) There exists a pair of random point processes η1, ξ1, defined on the same probability space,
such that η1 ≤ ξ1, a.s., and satisfying these properties: ξ1 has distribution θ1,α̃; there is an
α-distributed random point (U1, V1), and independently there is a Bernoulli-p random variable
K1, such that η1(A) = K11A(U1, V1).

(b) There exists a pair of random point processes ξ1, ζ1, defined on the same probability space,
such that ξ1 ≤ ζ1, a.s., and satisfying these properties: ξ1 has distribution θ1,α̃; there is a
sequence of i.i.d., α-distributed points (U1, V1), (U2, V2), . . . and a geometric-p random variable

N1, such that ζ1(A) =
∑N1

i=1 1A(Ui, Vi).

Proof: Let f = dα̃/dα. We follow the standard approach, for example in Section 4.2 of [9]. We
describe it here in detail, in order to be self-contained. Define g(x) = (1− p)−1[f(x)− p], which is
nonnegative by assumption, and let α̂ be the probability measure such that dα̂/dα = g. Note that
α̃ can be written as a mixture: α̃ = pα+ (1− p)α̂.

Independently of one another, let (U1, V1) ∈ R2 be α-distributed, and let (W1, Z1) ∈ R2 be
α̂-distributed. Independently of all that, also let K1 be Bernoulli-q. Then, taking

(X1, Y1) =

{
(U1, V1) if K1 = 1,

(W1, Z1) otherwise,

we see that (X1, Y1) is α̃-distributed. We let η1(A,ω) = K1(ω)1A(U1(ω), V1(ω)). If K1(ω) = 1
then (U1(ω), V1(ω)) = (X1(ω), Y1(ω)). Therefore taking ξ1(A,Ω) = 1A(X1(ω), Y1(ω)), we see that
η1(·, ω) ≤ ξ1(·, ω), a.s. This proves (a).

The proof for (b) is analogous. Let h(x) = (p−1 − 1)−1[p−1 − f(x)], which is nonnegative
by hypothesis. Let α̌ be the probability measure such that dα̌/dα = h. Then α can be written
as the mixture: α = pα̃ + (1 − p)α̌. Independently of each other, let (X1, Y1), (X2, Y2), . . . be
i.i.d., α̃ distributed random variables, and let (Z1,W1), (Z2,W2), . . . be i.i.d., α̌ distributed random
variables. Also, independently of all that, let K1,K2, . . . be i.i.d., Bernoulli-q random variables.
For each i, we define

(Ui, Vi) =

{
(Xi, Yi) if Ki = 1,

(Zi,Wi) otherwise.

Then (U1, V1), (U2, V2), . . . are i.i.d., α-distributed random variables. Let N1 = min{n : Kn = 1}.
We see that (XN1

, YN1
) = (UN1

, VN1
). So clearly 1A(XN1

, YN1
) ≤

∑N1

k=1 1A(Uk, Vk). �

Note that K1 and N1 are random variables which are dependent on (U1, V1), (U2, V2), . . . . But,
for instance, conditioning on the event {N1 ≥ i}, we do see that (Ui, Vi) is α-distributed. This is
for the usual reason, as in Doob’s optional stopping theorem: the event {N1 ≥ i} is measurable
with respect to the σ-algebra generated by K1, . . . ,Ki−1, while the point (Ui, Vi) is independent of
that σ-algebra. This will be useful when we consider n > 1, which is next.
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8.1 Resampling and Coupling for n > 1

In order to complete the proof of Lemma 4.2 we want to use Lemma 8.1. More precisely we wish
to iterate the bound for n > 1. Suppose that α̃n is a probability measure on (R2)n, and α is a
probability measure on R2. Let θn,α̃n be the distribution on X associated to the random point
process

ξn(A,ω) =

n∑
k=1

1A(Xk(ω), Yk(ω)) ,

assuming (X1(ω), Y1(ω)), . . . , (Xn(ω), Yn(ω)) are α̃n-distributed.
If α̃n was a product measure then it would be trivial to generalize Lemma 8.1 to compare it to

the product measure αn. But there is another condition which makes it equally easy to generalize.
Let F denote the Borel σ-algebra on R2. Let Fn denote the Borel σ-algebra on (R2)n. Let
Fnk denote the sub-σ-algebra of Fn generated by the maps ((x1, y1), . . . , (xn, yn)) 7→ (xj , yj) for
j ∈ {1, . . . , n} \ {k}. We suppose that there are regular conditional probability measures for each
of these sub-σ-algebras. Let us make this precise:

Definition 8.2 We say that α̃n,k : F × (R2)n → R is a regular conditional probability measure for
α̃n, relative to the sub-σ-algebra Fnk if the following three conditions are met:

1. For each ((x1, y1), . . . , (xn, yn)) ∈ (R2)n the mapping

A 7→ α̃n,k
(
A; (x1, y1), . . . , (xn, yn)

)
defines a probability measure on F .

2. For each A ∈ F , the mapping

((x1, y2), . . . , (xn, yn)) 7→ α̃n,k
(
A; (x1, y1), . . . , (xn, yn)

)
is Fn measurable.

3. The measure α̃n,k is a version of the conditional expectation Eα̃n [· | Fnk ]. In this case this
means precisely that for each A1, . . . , An ∈ F ,

Eα̃n

[
α̃n,k

(
Ak; (X1, Y1), . . . , (Xn, Yn)

) n∏
j=1
j 6=k

1Aj (Xj , Yj)

]
= α̃n(A1 × · · · ×An) .

For p ∈ (0, 1], we will say that α̃n satisfies the p-resampling condition relative to α if the following
conditions are satisfied:

• There exist regular conditional probability distributions α̃n,k relative to Fnk for k = 1, . . . , n.

• For each ((x1, y1), . . . , (xn, yn)) ∈ Rn, and for each k = 1, . . . , n,

α̃n,k(·; (x1, y1), . . . , (xn, yn)) � α .

• The following uniform bounds are satisfied for each ((x1, y1), . . . , (xn, yn)) ∈ Rn, and for each
k = 1, . . . , n:

p ≤ dα̃n,k(·; (x1, y1), . . . , (xn, yn))

dα
≤ p−1 .
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Lemma 8.3 Suppose that for some p ∈ (0, 1], the measure α̃n satisfies the p-resampling condition
relative to α. Then the following holds.

(a) There exists a pair of random point processes ηn, ξn, defined on the same probability space,
such that ηn ≤ ξn, a.s., and satisfying these properties: ξn has distribution θn,α̃n ; there
are i.i.d., α-distributed points {(Uk1 , V k1 )}nk=1, and independently there are i.i.d., Bernoulli-p
random variables K1, . . . ,Kn, such that ηn(A) =

∑n
k=1Kk1A(Uk1 , V

k
1 ).

(b) There exists a pair of random point processes ξn, ζn, defined on the same probability space,
such that ξn ≤ ζn, a.s., and satisfying these properties: ξn has distribution θn,α̃n ; there are
i.i.d., α-distributed points {(Uki , V ki ) : k = 1, . . . , n , i = 1, 2, . . . }, and i.i.d., geometric-p

random variables N1, . . . , Nn, such that ζn(A) =
∑n
k=1

∑Nk
i=1 1A(Uki , V

k
i ).

Proof: We start with an α̃n-distributed random point ((Xk
1 , Y

k
1 ), . . . , (Xk

n, Y
k
n )). Then itera-

tively, for each k = 1, . . . , n, we update this point as follows. Conditional on

((Xk−1
1 , Y k−1

1 ), . . . , (Xk−1
n , Y k−1

n )) ,

we choose (Xk
k , Y

k
k ) randomly, according to the distribution

α̃n,k
(
·; (Xk−1

1 , Y k−1
1 ), . . . , (Xk−1

n , Y k−1
n )

)
.

We let (Xk
j , Y

k
j ) = (Xk−1

j , Y k−1
j ) for each j ∈ {1, . . . , n} \ {k}. With this resampling rule, we can

see that ((Xk
1 , Y

k
1 ), . . . , (Xk

n, Y
k
n )) is α̃n-distributed for each k. Also (Xn

k , Y
n
k ) = (Xk

k , Y
k
k ).

We apply Lemma 8.1 to each of the points (Xk, Y k), in turn. Since they all have distributions
satisfying the hypotheses of the lemma, this may be done. Note that by our choices, the various
(Uki , V

k
i )’s and Kk’s and Nk’s have distributions which are prescribed just in terms of p and α.

Their distributions do not depend on the regular conditional probability distributions, as long as
the hypotheses of the present lemma are satisfied. Therefore, they are independent of one another.
�

Given the lemma, for part (a) we let (U1, V1), . . . , (UK1+···+Kn , VK1+···+Kn) be equal to the
points (Uk1 , V

k
1 ) such that Kk = 1, suitably relabeled, but keeping the relative order. By the idea,

related to Doob’s stopping theorem, that we mentioned before, one can see that

(U1, V1), . . . , (UK1+···+Kn , VK1+···+Kn)

are i.i.d., α-distributed. We do similarly in case (b). This allows us to match up our notation with
Lemma 4.2. The only thing left is to check that “p-resampling condition” for the regular conditional
probability distributions is satisfied for Boltzmann-Gibbs distributions.

8.2 Regular conditional probability distributions for the Boltzmann-Gibbs
measure

In Lemma 4.2, we assume that ((X1, Y1), . . . , (Xn, Yn)) are distributed according to the Boltzmann-
Gibbs measure µn,λ×κ,β . Then we let νn,λ×κ,β be the distribution of the random point process ξn,
such that

ξn(A) =

n∑
k=1

1A(Xk, Yk) .
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In other words, the distribution µn,λ×κ,β corresponds to the distribution we have denoted θn,α̃n if
we let α̃n = µn,λ×κ,β . We take α = λ× κ. Now we want to verify the hypotheses of Lemma 8.3 for
p = e−|β|.

Referring back to Section 2, we see that α̃n is absolutely continuous with respect to the product
measure αn. Moreover,

dα̃n
dαn

((x1, y1), . . . , (xn, yn)) =
1

Zn(α, β)
exp

(
− βHn((x1, y1), . . . , (xn, yn))

)
.

Here the Hamiltonian is

Hn((x1, y1), . . . , (xn, yn)) =
1

n− 1

n−1∑
i=1

n∑
j=i+1

h(xi − xj , yi − yj) .

This leads us to define a conditional Hamiltonian for the single point (x, y) substituted in for (xk, yk)
in the configuration ((x1, y1), . . . , (xn, yn)):

Hn,k

(
(x, y); (x1, y1), . . . , (xn, yn)

)
=

1

n− 1

n∑
j=1
j 6=k

hn(x− xj , y − yj) .

With this, we define a measure α̃n,k
(
·; (x1, y1), . . . , (xn, yn)

)
, which is absolutely continuous with

respect to α, and such that

dα̃n,k
(
·; (x1, y1), . . . , (xn, yn)

)
dα

(x, y) =
1

Zn,k
(
α, β; (x1, y1), . . . , (xn, yn)

)e−βHn,k((x,y);(x1,y1),...,(xn,yn)) .

The normalization is

Zn,k
(
α, β; (x1, y1), . . . , (xn, yn)

)
=

∫
R2

e−βHn,k((x,y);(x1,y1),...,(xn,yn)) dα(x, y) .

To see that this is the desired regular conditional probability distribution, note that in the product

dα̃n,k
(
·; (x1, y1), . . . , (xn, yn)

)
dα

(x, y)
dα̃n
dαn

((x1, y1), . . . , (xn, yn))

we have the product of two factors:

1

Zn,k
(
α, β; (x1, y1), . . . , (xn, yn)

)e−βHn,k((x,y);(x1,y1),...,(xn,yn))

and
1

Zn(α, β)
exp

(
− βHn((x1, y1), . . . , (xn, yn))

)
.

The first factor does not depend on (xk, yk). The second factor does depend on it, but integrating
against dα(xk, yk) gives,∫

R2

e−βHn((x1,y1),...,(xn,yn))

Zn(α, β)
dα(xk, yk) =

Zn,k
(
α, β; (x1, y1), . . . , (xn, yn)

Zn(α, β)
e−βH

′
n,k((x1,y1),...,(xn,yn))
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where

H ′n,k((x1, y1), . . . , (xn, yn)) =
1

n− 1

n−1∑
i=1
i 6=k

n∑
j=i+1
j 6=k

h(xi − xj , yi − yj) ,

and we have

H ′n,k((x1, y1), . . . , (xn, yn)) +Hn,k

(
(x, y); (x1, y1), . . . , (xn, yn)

)
= Hn

(
(x1, y1), . . . , (xk−1, yk−1), (x, y), (xk+1, yk+1), . . . , (xn, yn)

)
.

Therefore, ∫
R2

dα̃n,k
(
·; (x1, y1), . . . , (xn, yn)

)
dα

(x, y)
dα̃n
dαn

((x1, y1), . . . , (xn, yn)) dα(xk, yk)

equals
dα̃n
dαn

(
(x1, y1), . . . , (xk−1, yk−1), (x, y), (xk+1, yk+1), . . . , (xn, yn)

)
.

This implies condition 3 in Definition 8.2. Conditions 1 and 2 are true because of the joint measur-
ability of the density, which just depends on the Hamiltonian.

Note that for any pair of points (x, y), (x′, y′), we have∣∣Hn,k

(
(x, y); (x1, y1), . . . , (xn, yn)

)
−Hn,k

(
(x′, y′); (x1, y1), . . . , (xn, yn)

)∣∣ ≤ 1 , (8.1)

because |h(x−xj , y− yj)−h(x′−xj , y′− yj)| is either 0 or 1 for each j, and Hn,k is a sum of n− 1
such terms, then divided by n− 1. We may write(
dα̃n,k

(
·; (x1, y1), . . . , (xn, yn)

)
dα

(x, y)

)−1

= Zn,k
(
α, β; (x1, y1), . . . , (xn, yn)

)
eβHn,k((x,y);(x1,y1),...,(xn,yn))

as an integral∫
R2

e
β
[
Hn,k

(
(x,y);(x1,y1),...,(xn,yn)

)
−Hn,k

(
(x′,y′);(x1,y1),...,(xn,yn)

)]
dα(x′, y′) .

Therefore, the inequality (8.1) implies that

e−|β| ≤

(
dα̃n,k

(
·; (x1, y1), . . . , (xn, yn)

)
dα

(x, y)

)−1

≤ e|β| .

Of course, this implies the same bounds for the reciprocal. For all (x, y) ∈ R2,

e−|β| ≤
dα̃n,k

(
·; (x1, y1), . . . , (xn, yn)

)
dα

(x, y) ≤ e|β| .

So, taking p = e−|β|, this means that the hypotheses of Lemma 8.3 are satisfied: α̃n has the
“p-resampling” property relative to the measure α. Hence, we conclude that Lemma 4.2 is true.
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