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ON UNIQUENESS AND BLOWUP PROPERTIES FOR

A CLASS OF SECOND ORDER SDES

ALEJANDRO GOMEZ, JONG JUN LEE, CARL MUELLER, EYAL NEUMAN,
AND MICHAEL SALINS

Abstract. As the first step for approaching the uniqueness and
blowup properties of the solutions of the stochastic wave equa-
tions with multiplicative noise, we analyze the conditions for the
uniqueness and blowup properties of the solution (Xt, Yt) of the
equations dXt = Ytdt, dYt = |Xt|αdBt, (X0, Y0) = (x0, y0). In
particular, we prove that solutions are nonunique if 0 < α < 1 and
(x0, y0) = (0, 0) and unique if 1/2 < α < 1 and (x0, y0) 6= (0, 0).
We also show that blowup in finite time holds if α > 1 and
(x0, y0) 6= (0, 0).

1. Introduction and Main Results

The basic uniqueness theory for ordinary differential equations (ODE)
has been well understood for a long time. If F (u) is a Lipschitz con-
tinuous function, then

u̇(t) = F (u), u(0) = u0

has a unique solution valid for all time t ≥ 0. Furthermore, the Lips-
chitz condition on the coefficients cannot be weakened to Hölder con-
tinuity with index less than 1.
The situation for stochastic differential equations (SDE) is very dif-

ferent. The classical Yamada-Watanabe theory of strong uniqueness
[YW71] states that if f(x) is a locally Hölder continuous function of
index 1/2 with at most linear growth, then

dX = f(X)dW, X0 = x0

has a unique strong solution valid for all time t ≥ 0. The Hölder
continuity condition cannot be weakened to indices below 1/2. Besides
the Hölder 1/2 condition, another notable difference from the ODE case
is that the Yamada-Watanabe uniqueness result for SDE is essentially
a one-dimensional result. That is, much less is known for vector-valued

2010 Mathematics Subject Classification. Primary, 60H10; Secondary, 60H15.
Key words and phrases. uniqueness, blowup, stochastic differential equations,

wave equation, white noise, stochastic partial differential equations.
1

http://arxiv.org/abs/1702.07419v1


2 GOMEZ, LEE, MUELLER, NEUMAN, AND SALINS

SDE, whereas the above statement for ODE is still true in the case of
vector-valued solutions.
The basic conditions for uniqueness of partial differential equations

(PDE) are the same as for ODE: coefficients must be Lipschitz contin-
uous. But the corresponding results for stochastic partial differential
equations (SPDE) have only appeared recently. These results are re-
stricted to the stochastic heat equation,

∂tu = ∆u+ f(u)Ẇ(1.1)

u(0, x) = u0(x).

Here x ∈ R, Ẇ = Ẇ (t, x) is two-parameter white noise, and f is
Hölder continuous with index γ. In this case, strong uniqueness holds
for γ > 3/4 [MP11], but fails for γ < 3/4 [MMP14]. One can also
replace white noise by colored noise, which may allow x to take values
in Rd for d > 1, and may change the critical value of γ.
The counterexample in [MMP14] which proved nonuniqueness for

γ < 3/4 involved the equation

∂tu = ∆u+ |u|γẆ
u(0, x) = 0.

In fact, the case of γ = 1/2 is the well-studied case of super-Brownian
motion, also called the Dawson-Watanabe process, see [Daw93], [Per02].
Other types of SPDE than the stochastic heat equations are still

unexplored with regard to uniqueness, except for the standard fact that
uniqueness holds with Lipschitz coefficients. For example, there is no
information about the critical Hölder continuity of f(u) for uniqueness
of the stochastic wave equation:

∂2
t u = ∆u+ f(u)Ẇ(1.2)

u(0, x) = u0(x), ∂tu(0, x) = u1(x).

Here again x ∈ R and Ẇ = Ẇ (t, x) is two-parameter white noise.
In order to shed light on uniqueness for the stochastic wave equation,

we propose studying the corresponding SDE Ẍ = f(X)Ḃ. By making
this equation into a system of first order equations, we arrive at the
equations

dX = Y dt

dY = |X|αdB(1.3)

(X0, Y0) = (x0, y0).

Here B = Bt is a standard Brownian motion, and we use the subscripts
Xt or Yt to indicate dependence on time, rather thanX(t) or Y (t). Here
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we focus on the coefficient f(x) = |x|α because this function had special
importance in the stochastic heat equation, and it is a prototype of a
function which is Hölder continuous of order α.
Now we are ready to present our main results. In our first theorem,

we show that when α > 1/2 and the initial condition is nonzero, strong
uniqueness holds for the solutions of (1.3) up to the hitting time of the
origin.

Theorem 1. If α > 1/2 and (x0, y0) 6= (0, 0), then (1.3) has a unique
solution in the strong sense, up to the time τ at which the solution
(Xt, Yt) first takes the value (0, 0).

In the next theorem, we prove that when α > 1/2, the unique strong
solution of (1.3) from Theorem 1 never reaches the origin.

Theorem 2. If α > 1/2 and (x0, y0) 6= (0, 0), then the unique strong
solution (Xt, Yt) to (1.3) never reaches the origin. That is, the time τ
defined in Theorem 1 is infinite almost surely.

In our next result, we prove the nonuniqueness for the solutions of
(1.3) initiated at the origin.

Theorem 3. If 0 < α < 1 and (x0, y0) = (0, 0), then both strong and
weak uniqueness fail for (1.3).

A few remarks are in order.
Remarks:

(1) The proof of Theorem 1 builds on the Yamada-Watanabe ar-
gument, as do the vast majority of strong uniqueness proofs for
SDE, which go beyond the case of Lipschitz coefficients.

(2) The proofs of Theorems 2 and 3 rely on a time-change argument.
The proofs of Theorems 2 and 3 rely on a time-change argument,
and the idea is inspired by Girsanovs nonuniqueness example
for SDE (see e.g. Example 1.22 in Chapter 1.3 of [CE05]).

(3) Note that the coefficient |x|α is Lipschitz continuous except in
a neighborhood of x = 0.

Now we turn our attention to the question of blowup in finite time. In
the case of stochastic heat equation (1.1), the critical Hölder continuity
index γ of f is 3/2. If γ > 3/2, then the solution blows up in finite
time with positive probability (see [MS93],[Mue00]). For γ < 3/2, the
solution does not blow up almost surely [Mue91]. It is still unknown
what happens when γ = 3/2.
The blowup property of the stochastic wave equation appears to be

more difficult to analyze. It is still not known what conditions on f
give finite time blowup of the solution of (1.2) (see [MR14]). Sufficient
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conditions for the divergence of the expected L2 norm of the solutions
in finite time were derived by Chow in [Cho09]. This result however
is insufficient to establish the almost sure blowup of the solutions to
(1.2).
We study the solution of (1.3) as the first step for approaching the

stochastic wave equation.
The finite time blowup of the solutions of the first order stochastic

differential equations can be checked by the Feller test for explosions
(for example, see [IM74]); however, there is not a simple way to check
in the case of higher order equations. It is well-known that the solution
of (1.3) doesn’t blow up if the coefficients have at most linear growth
(that is α ≤ 1). In the next theorem, we prove that when α > 1, the
solution of (1.3) blows up in finite time with probability one. Before
stating the theorem, we define some stopping times.
For any solution (Xt, Yt) of (1.3), let

σX
L := inf{t > 0 : |Xt| ≥ L}

and
σX := lim

L→∞
σX
L .

σY can be defined analogously. Then, the following theorem holds.

Theorem 4. Assume that α > 1 and (x0, y0) 6= (0, 0). Then, the
solution of (1.3) satisfies

σX = σY < ∞
almost surely. Moreover, |(Xt, Yt)|ℓ∞ → ∞ as t → σX , where |(x, y)|ℓ∞ =
|x| ∨ |y| is the ℓ∞ norm.

We now give some remarks.
Remarks:

(1) The result of Theorem 4 is derived by showing that the blowup
property of the solutions of (1.3) follows from the transience
property of a simplified time changed system. By proving that
the inverse time change transforms infinite time to a finite time,
we establish the finite time blowup property.

(2) From the proof of Theorem 4 it follows that |Xt| and |Yt| will
fluctuate up and down as t → σX and won’t converge to any
number in R ∪ {∞}. However, due to the correlation between
them, |Xt| ∨ |Yt| → ∞ as t → σX (see Remark 1 in Section 5).

Structure of the paper. The rest of this paper is dedicated to the
proofs of Theorems 1–4. In Section 2, we prove Theorem 1. Section 3
is devoted to the proof of Theorem 3. In Sections 4 and 5, we prove
Theorems 2 and 4 respectively.
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2. Proof of Theorem 1

Let (X i
t , Y

i
t ) : i = 1, 2 be two solutions to (1.3) starting from (x0, y0) 6=

(0, 0) and τ be the first time t that either (X1
t , Y

1
t ) or (X

2
t , Y

2
t ) hits the

origin. Let τn for a natural number n be the first time t at which either

|(X1
t , Y

1
t )|ℓ∞ ∧ |(X2

t , Y
2
t )|ℓ∞ ≤ 2−n

or

|(X1
t , Y

1
t )|ℓ∞ ∨ |(X2

t , Y
2
t )|ℓ∞ ≥ 2n.

Since the coefficients of (1.3) have at most linear growth, we have
|(X1

t , Y
1
t )|ℓ∞ ∨ |(X2

t , Y
2
t )|ℓ∞ < ∞ almost surely. As a result,

(2.1) lim
n→∞

τn = τ.

Note that it is possible that τ = ∞.
We will show uniqueness up to time τn for each fixed n. Let (X i,n

t , Y i,n
t )

be the processes after stopping the noise at time τn, that is

dX i,n
t = Y i,n

t dt

dY i,n
t = |X i,n

t |α1[0,τn](t)dBt(2.2)

X i,n
0 = x0, Y i,n

0 = y0.

So, Y i,n
t is constant for t ≥ τn. We claim that for each i = 1,2, there

is at most one time t > τn at which X i,n
t = 0. Indeed, if Y i,n

τn = 0,

then X i,n
t is constant for t ≥ τn and this constant cannot be 0 because

|(X i,n
τn , Y

i,n
τn )|ℓ∞ 6= 0. In this case, there is no time t ≥ τn at which

X i,n
t = 0. But if Y i,n

t is a nonzero constant for t ≥ τn, then X i,n
t is

a nonconstant affine function of t for t ≥ τn, and so equals 0 at most
once for t ≥ τn.
We will also define stopping times σi

1 < σi
2 < · · · as the successive

times t at which X i,n
t = 0. We claim that with probability 1, there are

only finitely many such times. The preceding argument shows that for
i fixed, there is at most one value of k for which σi

k > τn. For t < τn,

since |(X i,n
t , Y i,n

t )|ℓ∞ > 2−n, we see that once X i,n
t = 0, it cannot again

hit 0 before time τn without first achieving the level X i,n
t = 2−n. To

see this, first assume that when X i,n
t = 0, we have Y i,n

t > 0. The case
Y i,n
t < 0 is similar and will be omitted. As long as t < τn, we have

|Y i,n
t | < 2n and so X i,n

t has bounded velocity. At first, X i,n
t has positive

velocity. If X i,n
t is ever to reach 0 again, its velocity must change sign,

that is, Y i,n
t must reach 0. But by the lower bound on |(X i,n

t , Y i,n
t )|ℓ∞, if

Y i,n
t = 0, we have X i,n

t > 2−n and since the velocity of X i,n
t is bounded
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by 2n, it follows that X i,n
t takes at least time 2−2n to reach level 2−n.

Thus, the number of σi
k’s is almost surely bounded.

For simplicity, define σi
0 = 0. Also, if σi

k is the last of these stopping
times, define σi

k+m = σi
k for m > 0.

We moreover define

σ̃i
k = σi

k ∧ τn, k = 0, 1, · · · , i = 1, 2.

From (2.2), it follows that in order to prove Theorem 1, it is enough to
show the pathwise uniqueness for the solutions of (2.2) for any n ≥ 1.
We have shown that the sequence of stopping times σ̃i

1 < σ̃i
2 < · · ·

is a.s. finite for i = 1, 2, therefore the following lemma is the last
ingredient in the proof of Theorem 1.

Lemma 1. Assume that (X1,n
t , Y 1,n

t ) = (X2,n
t , Y 2,n

t ) for t ≤ σ̃1
k a.s., and

therefore σ̃1
k = σ̃2

k a.s. Then (X1,n
t , Y 1,n

t ) = (X2,n
t , Y 2,n

t ) for t ≤ σ̃1
k+1

a.s., and σ̃1
k+1 = σ̃2

k+1 a.s.

Proof. We prove the lemma for k = 0, that is σ̃1
0 = 0. The proof

for other values of k is identical. Furthermore, since (1.3) is invariant
under the map (X, Y ) → (−X,−Y ), we may restrict ourselves to the
case

y0 > 0.

Recall that |x|α is a Lipschitz continuous function except in a neigh-
borhood of x = 0. Hence it is enough to prove the uniqueness of the
solutions to (2.2) starting at X i,n

0 = 0 up to the first time that either
one of |X i,n

t |’s hits level 2−n. Therefore, we can restrict time t to the
interval [0, η], where η is the first time t < τn at which

|X1,n
t ∨X2,n

t | = 2−n.

If there is no such time, then η = 0. Since |X1,n| and |X2,n| lie in
[0, 2−n], it follows from the definition of τn that

Y i,n
t ≥ 2−n,

for i = 1, 2, and therefore X i,n
t ’s are increasing for t ∈ [0, η]. Recall

that Y is the velocity of X . Since X i,n
0 = 0, we have

(2.3) X i,n
t ≥ 2−nt,

for i = 1, 2 and t ∈ [0, η]. It also follows that

η ≤ 1.

Note that

X i,n
t =

∫ t

0

∫ s

0

|X i,n
r |α1[0,τn](r)dBrds
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and

X1,n
t −X2,n

t =

∫ t

0

∫ s

0

(

|X1,n
r |α − |X2,n

r |α
)

1[0,τn](r)dBrds.

By the Cauchy-Schwarz inequality and Ito’s isometry, we get

E
[

(

X1,n
t −X2,n

t

)2
]

≤ tE

∫ t

0

(
∫ s

0

(

|X1,n
r |α − |X2,n

r |α
)

1[0,τn](r)dBr

)2

ds

= tE

∫ t

0

∫ s

0

(

|X1,n
r |α − |X2,n

r |α
)2
1[0,τn](r)drds

≤ tE

∫ t

0

∫ t

0

(

|X1,n
r |α − |X2,n

r |α
)2
drds

≤ t2E

∫ t

0

(

|X1,n
r |α − |X2,n

r |α
)2
dr.

Now the mean value theorem gives, for 0 < a < b, that for some
c ∈ (a, b) we have

bα − aα = αcα−1(b− a) ≤ αaα−1(b− a).

Thus for t ∈ [0, η], using the lower bound on X i,n
t in (2.3), we get

∣

∣

∣
|X1,n

r |α − |X2,n
r |α

∣

∣

∣
≤ α(2−nr)α−1

∣

∣

∣
|X1,n

r | − |X2,n
r |
∣

∣

∣
.

Now let

Dt := E
[

(

|X1,n
r | − |X2,n

r |
)2
]

.

Since η ≤ 1, we get for every t ∈ [0, η],

(2.4) Dt ≤ Cn

∫ t

0

r2α−2Drdr

for some constant Cn depending on n. Since α > 1/2, we have 2α−2 >
−1 and therefore r2α−2 is integrable on r ∈ [0, η]. Since D0 = 0,
Gronwall’s lemma implies that Dt = 0 for all t ∈ [0, η]. This ends the
proof of Lemma 1, and also the proof of Theorem 1. �

3. Proof of Theorem 3

Since the solution is starting at (x0, y0) = (0, 0), we see that (Xt, Yt) ≡
(0, 0) is a solution to (1.3). Our goal is to exhibit another solution, but
this will be a weak solution. To gain information about strong unique-
ness, we recall the following lemma of Yamada and Watanabe (see
V.17, Theorem 17.1 of Rogers and Williams [RW87]).
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Lemma 2 (Yamada and Watanabe). Let σ and b be previsible path
functionals, and consider the SDE:

(3.1) dXt = σ(t, X·)dBt + b(t, X·)dt.

Then this SDE is exact if and only if the following two conditions hold:

(1) The SDE (3.1) has a weak solution,
(2) The SDE (3.1) has the pathwise uniqueness property.

Uniqueness in law then holds for (3.1).

Rogers and Williams define exact in V.9, Definition 9.4, but it is not
important for our purposes. Here, X, b ∈ Rn and σσT takes values in
the space of nonnegative definite n× n matrices.
We already have a weak solution to (1.3), namely (Xt, Yt) ≡ (0, 0).

So, if we can exhibit a weak solution which is nonzero, then by Lemma
2, pathwise uniqueness must fail.
Now we construct a nonzero weak solution to (1.3). Since

Yt =

∫ t

0

|Xs|αdBs

is a one-dimensional stochastic integral, it follows that Yt is a time-
changed Brownian motion. In particular, if we define

(3.2) T (t) :=

∫ t

0

|Xs|2αds,

then

B̃t := YT−1(t)

is a standard Brownian motion as long as

(3.3) T−1(t) = inf{s ≥ 0 : T (s) > t}
is well-defined.

We also define

X̃t := XT−1(t)(3.4)

Ỹt := YT−1(t) = B̃t.

Then, by the chain rule and the inverse function differentiation rule,

dX̃t = Ỹt|X̃t|−2αdt,

with the same initial conditions as before. Thus,

|X̃t|2αdX̃t = Ỹtdt.
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Let

(3.5) h(x) :=
1

2α + 1
|x|2α+1sgn(x)

and observe that

(3.6) dh(x) = |x|2αdx.
Since we are assuming that α > 0, it follows that dh(0) = 0 and (3.6)
holds for x = 0. It is easy to check that (3.6) also holds when x > 0
and x < 0.
Let

(3.7) Ṽt := h(X̃t).

Then from (3.4), we have

(3.8)
dṼt = Ỹtdt

dỸt = dB̃t

and therefore

(3.9) h(XT−1(t)) = h(X̃t) = Ṽt =

∫ t

0

B̃sds.

Note that for any t > 0, we have

P
(

X̃t 6= 0
)

= P
(

Ṽt 6= 0
)

= 1.

So, in order to prove that X can escape from 0, it is enough to show
that T−1(t) < ∞ for some t > 0, with positive probability.

Let t > 0. Then, rewriting T−1(t) using the inverse function derivative,

(3.10)

T−1(t) =

∫ t

0

d

ds
T−1(s)ds

=

∫ t

0

1

|XT−1(s)|2α
ds

=

∫ t

0

1

|X̃s|2α
ds

=

∫ t

0

∣

∣

∣

∣

h−1

(
∫ s

0

B̃rdr

)
∣

∣

∣

∣

−2α

ds

= C

∫ t

0

∣

∣

∣

∣

∫ s

0

B̃rdr

∣

∣

∣

∣

− 2α
2α+1

ds.

The following lemma, which will be proved at the end of this section,
helps us to bound the above integral.
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Lemma 3. If 0 < β < 2/3, then for any δ > 0,

Iβ(δ) = I(δ) :=

∫ δ

0

∣

∣

∣

∣

∫ t

0

Bsds

∣

∣

∣

∣

−β

ds < ∞

almost surely.

By the assumptions of Theorem 3, 0 < α < 1. Since this is equivalent
to

0 <
2α

2α + 1
<

2

3
,

thanks to Lemma 3, the integral in (3.10) is finite almost surely. This
finishes the proof of nonuniqueness. �

Proof of Lemma 3. We check that for all t > 0 and for 0 < β < 2/3,

E [I(t)] < ∞.

Let

(3.11) Jt :=

∫ t

0

Bsds.

Note that Jt is a normal random variable with mean 0. Next we com-
pute its variance.

(3.12)

Var(Jt) = E

[

(
∫ t

0

Bsds

)2
]

=

∫ t

0

∫ t

0

E [BrBs] drds

= 2

∫ t

0

∫ s

0

E [BrBs] drds

= 2

∫ t

0

∫ s

0

rdrds

= 2

∫ t

0

s2

2
ds

=
t3

3
.

Now let Z ∼ N(0, 1) be a standard normal random variable. From
(3.12), it follows that

Jt
D
= Ct3/2Z
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and so

E

[

∣

∣

∣

∣

∫ t

0

Bsds

∣

∣

∣

∣

−β
]

= Ct−3β/2E
[

|Z|−β
]

.

First, if β < 2/3 then

E
[

|Z|−β
]

= C

∫ ∞

−∞

|x|−β exp

(

−x2

2

)

dx < ∞.

Secondly,

E[I(δ)] =

∫ δ

0

E

[

∣

∣

∣

∣

∫ t

0

Bsds

∣

∣

∣

∣

−β
]

dt

= C

∫ δ

0

t−3β/2dt

< ∞
provided 3β/2 < 1, which is equivalent to β < 2/3. �

4. Proof of Theorem 2

Fix the initial point (x0, y0) 6= (0, 0), and let

Zt :=

(

Bt,

∫ t

0

Bsds

)

= (Bt, Jt).

We need to study the joint distribution of the components Bt and
∫ t

0
Bsds, which are jointly centered Gaussian. Using (3.12) and by a

simple calculation, we find that the covariance matrix of (Bt, Jt) is

Mt =

(

t t2/2
t2/2 t3/3

)

and

det(Mt) =
t4

12
.

Since (Bt, Jt) is jointly Gaussian, its joint probability density has the
following bound.

(4.1) fBt,Jt(x, y) =
exp

[

−(x, y)M−1
t (x, y)T

]

√

(2π)2t4/12
≤ 1
√

(2π)2t4/12
≤ t−2.

We define the following events

A = {Zt = (0, 0) for some t > 0}
AN = {Zt = (0, 0) for some t ∈ [1/N,N ]}
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for natural numbers N . We wish to prove that P (A) = 0, and it is
enough to prove that P (AN) = 0 for all N . From now on, let N be
fixed.
Fix 0 < δ < 1 and let k,m, n be natural numbers. We define a few

more events:

E1,n,N =

{

sup
1/N<t<N

|Bt| ≤ n

}

,

Ec
2,k,n = {|Bk2−2n | ≤ 2−n(1−δ), |Jk2−2n| ≤ 2−2n(1−δ)},

E3,n,N =
⋂

k: k2−2n∈[1/N,N ]

E2,k,n,

E4,k,n =

{

sup
t∈[k2−2n,(k+1)2−2n]

|Bt −Bk2−2n | < 2−n(1−δ)

}

,

E5,n,N =
⋂

k: k2−2n∈[1/N,N ]

E4,k,n,

E6,k,n =

{

sup
t∈[k2−2n,(k+1)2−2n]

|Jt − Jk2−2n | < 2−2n(1−δ)

}

,

E7,n,N =
⋂

k: k2−2n∈[1/N,N ]

E6,k,n.

As k varies, k2−2n is a grid of points which gets denser as n increases.
Next, note that

lim
n→∞

P (Ec
1,n,N) = 0.

From (4.1) we have for all k2−2n ≥ 1/N

P (Ec
2,k,n) ≤ 4 · 2−3n(1−δ)N2,

and therefore

P (Ec
3,n,N) ≤ 4N22n · 2−3n(1−δ)N2 = 4N32−n+3δ.

To deal with E5,n,N , recall that Lévy’s modulus of continuity for
Brownian motion (see Mörters and Peres [MP10], Theorem 1.14) states
that for T > 0 fixed, we have

(4.2) lim
n→∞

sup
0<h≤2−2n

sup
0≤t≤T−h

|Bt+h −Bt|
√

2h log log(h)
= 1, a.s.,

and therefore

lim
n→∞

P (Ec
5,n,N) = 0.
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Now we deal with Jt. Note that on E1,n,N , the velocity of Jt is
bounded by n in absolute value. It follows that on E1,n,N , all of the
E6,k,n’s occur and so on E1,n,N , E7,n,N also occurs.
Observe that on E3,n,N ∩ E5,n,N ∩ E7,n,N we have (Bt, Jt) 6= 0 for

1/N < t < N . Also, by the above we have

lim
n→∞

P (E1,n,N ∩ E3,n,N ∩ E5,n,N ∩ E7,n,N) = 1.

It follows that

P
(

(Bt, Jt) 6= 0 for 1/N < t < N
)

= 1.

Since N was arbitrary, this finishes the proof of Theorem 2. �

5. Proof of Theorem 4

The proof of Theorem 4 contains two main ingredients. Recall that
in Section 3, we showed that a solution of system (1.3) with 0 < α < 1
and (x0, y0) = (0, 0) can be represented as a time change of (Bt, Jt),
where Jt was defined in (3.11). In Proposition 1, we will prove that
(Bt, Jt) is transient. In Lemma 4, we will prove that when α > 1
and (x0, y0) 6= (0, 0), the inverse time change T−1(t) in (3.3) satisfies
P (supt>0 T

−1(t) < +∞) = 1. In other words, the time change T−1(t)
changes infinite time to finite time almost surely, and this will complete
the proof of Theorem 4.

Proposition 1. Let {Bt}t≥0 be a one-dimensional Brownian motion
starting from 0. Then the spatial process {(Bt, Jt)}t≥0 is transient.

Proof. Let 0 < δ1 < δ2 < δ3 < 1/2 and 0 < δ4 < 1/2 − δ3. We define
the following events

Ac
1,n =

{

|Bn2 | ≤ n1−δ3 , |Jn2| ≤ n2+δ2
}

,

A2,N =

∞
⋂

n=N

A1,n,

A3,n =

{

sup
n2≤t≤(n+1)2

|Bt − Bn2| < n1/2+δ4

}

,

A4,N =
∞
⋂

n=N

A3,n,

A5,n =

{

sup
n2≤t≤(n+1)2

|Jt − Jn2| < n2+δ1

}

,

A6,N =

∞
⋂

n=N

A5,n.
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Note that (Bt, Jt) is transient on the set A2,N ∩ A4,N ∩ A6,N . We now
show that the probability of this set tends to 1 as N → ∞.
Using inequality (4.1), we get

P (Ac
1,n) ≤ C(n2)−2n3−δ3+δ2 = Cn−1−δ3+δ2 .

It follows from a comparison principle that

(5.1) P (Ac
2,N) ≤

∑

n≥N

P (Ac
1,n) ≤ CN−δ3+δ2 → 0,

as N → ∞, since δ2 < δ3.
A bound of the probability of the event Ac

3,n can be computed by
time change and reflection principle:

P (Ac
3,n) = P

(

sup
n2≤t≤(n+1)2

|Bt −Bn2 | ≥ n1/2+δ4

)

= P

(

sup
0≤t≤2n+1

|Bt| ≥ n1/2+δ4

)

= P

(

sup
0≤t≤1

|Bt| ≥
n1/2+δ4

√
2n+ 1

)

≤ P

(

sup
0≤t≤1

|Bt| ≥
1√
3
nδ4

)

≤ 4P

(

B1 ≥
1√
3
nδ4

)

≤ C exp

{

−2

3
n2δ4

}

.

It follows that

(5.2) P (Ac
4,N) ≤

∑

n≥N

P (Ac
3,n) → 0

as N → ∞.
By the law of iterated logarithm for Brownian motion (see e.g. The-

orem 5.1 in [MP10]), there exists N∗ > 0 such that for all n ≥ N∗,

sup
n2≤t≤(n+1)2

|Jt − Jn2 | ≤ (2n+ 1) sup
n2≤t≤(n+1)2

|Bt| ≤ n2+δ1

almost surely. It follows that

(5.3) lim
N→∞

P (A6,N) = 1.

From (5.1)–(5.3) we get

lim
N→∞

P (A2,N ∩A4,N ∩A6,N ) = 1,

and the conclusion that (Bt, Jt) is transient follows. �

Remark 1. From the proof of Proposition 1, we can get a lower bound
on the growth rate of (Bt, Jt). Since the time intervals [n2, (n+1)2] are
of lengths 2n+1, the fluctuations of Bt over such intervals are of order
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n1/2+δ4 << n1−δ3 for large values of n. This assertion holds because
0 < δ3 < 1/2 and 0 < δ4 < 1/2 − δ3. So the fluctuations won’t bring
Bt to 0, if it is not already close to 0.
As for Jt, on the time intervals [n2, (n + 1)2], the fluctuations of Jt

are bounded by n2+δ1. This is of smaller order than n2+δ2 since δ1 < δ2.
Therefore, for large values of t, one of the two inequalities

|Bt| ≥ t1/2−δ3/2

|Jt| ≥ t1+δ2/2

always holds a.s., where 0 < δ2 < δ3 < 1/2.
Note that both Bt and Jt are recurrent processes which return to

0 infinitely often. However, if we consider the collection of the pro-
cesses (Bt, Jt), if one process takes a small value, the other will take a
large value, due to the correlation between them we will eventually have
|(Bt, Jt)|ℓ∞ → ∞ as t → ∞.

Proof of Theorem 4. Suppose that α > 1 and the solution (Xt, Yt) of
(1.3) started from (x0, y0) 6= (0, 0). Recall that with the definitions for

T (t) and h(x) in (3.2) and (3.5), the time-changed process (Ṽt, Ỹt) =
(h(XT−1(t)), YT−1(t)) defined in (3.8) satisfies

(5.4)
Ṽt = h(x0) + y0t+

∫ t

0

B̃sds

Ỹt = y0 + B̃t,

where B̃t is a standard one-dimensional Brownian motion.

Thanks to Proposition 1, it is true that |(Ṽt, Ỹt)|ℓ∞ → ∞ as t → ∞
almost surely. If we can show that

(5.5) P
(

lim
t→∞

T−1(t) < ∞
)

= 1,

then blowup in finite time for (Xt, Yt) will follow. For this purpose, we
state Lemma 4.

Lemma 4. Suppose (x0, y0) 6= (0, 0). If 2/3 < β < 1, then
∫∞

0
|h(x0)+

y0t+ Jt|−βdt < ∞ almost surely.

We will prove the Lemma shortly. If we assume for now that Lemma
4 is true, then from (3.10) and (5.4) we can derive that

lim
t→∞

T−1(t) =

∫ ∞

0

1

|XT−1(t)|2α
dt

=

∫ ∞

0

∣

∣

∣

∣

h(x0) + y0t+

∫ t

0

B̃sds

∣

∣

∣

∣

− 2α
2α+1

dt.
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By applying Lemma 4 for β = 2α
2α+1

, we can conclude that (5.5) is
satisfied. Recall that α > 1, so that 2/3 < β < 1, which satisfies the
condition for Lemma 4. �

For the proof of Lemma 4, we first require an alternative representa-
tion of the expectation E|X|−β, where X ∼ N (m, σ2) and 0 < β < 1.
We write the integral representation of a confluent hypergeometric
function in Lemma 5. Even though this expression is already well-
known, the authors couldn’t find a good reference for it (see [Win12]
and Ch 13 of [AS65]). So we give a direct proof of the lemma as well.

Lemma 5. Let Z be a standard N (0, 1) random variable and let m ∈ R

and σ2 > 0. Then for any 0 < β < 1,

E|m+ σZ|−β =
(2σ2)−β/2

Γ(β/2)

∫ 1

0

e−
m2u
2σ2 uβ/2−1(1− u)−β/2−1/2du.

Proof. First, we prove that if ξ is a nonnegative random variable, then
for any α such that the integral converges

(5.6) E(ξ−α) =
1

Γ(α)

∫ ∞

0

E(e−λξ)λα−1dλ.

By switching the order of integration and by a change of variables
t = λξ we get

∫ ∞

0

E(e−λξ)λα−1dλ = E

∫ ∞

0

e−ttα−1ξ−αdt = Γ(α)E(ξ−α).

Second, we prove that if Z ∼ N (0, 1), then the Laplace transform of
|m+ σZ|2 is for any λ > 0,

(5.7) Ee−λ|m+σZ|2 =
e
− λm2

1+2λσ2

√
1 + 2λσ2

.

Ee−λ|m+σZ|2 =
1√
2π

∫ ∞

−∞

e−λm2−2mλσx−λσ2x2− 1
2
x2

dx

=
e−λm2

e
2λ2m2σ2

1+2λσ2

√
2π

∫ ∞

−∞

e
− 1

2
(1+2λσ2)

(

x2+ 4λmσx

1+2λσ2+
4λ2m2σ2

(1+2λσ2)2

)

dx

=
e
− λm2

1+2λσ2

√
2π

∫ ∞

−∞

e
− 1

2
(1+2λσ2)

(

x+ 2λmσ

1+2λσ2

)2

dx

=
e
− λm2

1+2λσ2

√
1 + 2λσ2

.
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Now, we are ready to prove the main result. By (5.6) and (5.7),

E|m+ σZ|−β = E
(

|m+ σZ|2
)−β/2

=
1

Γ(β/2)

∫ ∞

0

E
(

e−λ|m+σZ|2
)

λβ/2−1dλ

=
1

Γ(β/2)

∫ ∞

0

e
− λm2

1+2λσ2

√
1 + 2λσ2

λβ/2−1dλ.

We make the following change of variables

u =
2λσ2

1 + 2λσ2
.

Notice that

λ =
u

(2σ2)(1− u)

and

du =
2σ2

(1 + 2λσ2)2
dλ.

Under this change of variables we have

λβ/2−1dλ√
1 + 2λσ2

=
(1 + 2λσ2)3/2λβ/2+1/2

2σ2λ3/2
du

= (2σ2)1/2u−3/2

(

u

2σ2(1− u)

)β/2+1/2

du

= (2σ2)−β/2uβ/2−1(1− u)−β/2−1/2du.

Therefore, Lemma 5 follows. �

We are now ready to prove Lemma 4.

Proof of Lemma 4. We show that

(5.8) E

∫ ∞

0

|h(x0)+ y0t+Jt|−βdt =

∫ ∞

0

E|h(x0)+ y0t+Jt|−βdt < ∞

for 2/3 < β < 1.
Note that from equation (3.12), h(x0) + y0t+ Jt is a normal random

variable with mean h(x0) + y0t and variance t3/3. By Lemma 5, for
t > 0, we may write E|h(x0)+y0t+Jt|−β as the integral representation
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of a confluent hypergeometric function.

E|h(x0) + y0t+ Jt|−β =C1t
− 3

2
β

∫ 1

0

exp{−C2u(h(x0) + y0t)
2t−3}

× u
β

2
−1(1− u)−

β

2
− 1

2du

=C1

∫ 1

0

t−
3
2
β exp{−C2uf(t)}g(u) du.

Here, C1 and C2 are positive constants depending on β,

f(t) = (h(x0) + y0t)
2t−3,

and
g(u) = u

β

2
−1(1− u)−

β

2
− 1

2 .

First, we consider the term exp{−C2uf(t)}. Note that since (x0, y0) 6=
(0, 0), we have

lim
t→0

tf(t) > 0, lim
t→∞

t3f(t) > 0.

So, it is possible to find positive constants C3, · · · , C6 such that

exp{−C2uf(t)} ≤ C3 exp{−C4ut
−1}+ C5 exp{−C6ut

−3}
for all t > 0. So, to prove (5.8), we only need to show the convergence of
the integrals of the terms on the right, which are the cases of k(t) = t−1

and k(t) = t−3.
Let’s first consider the first term, so k(t) = t−1. Without loss of

generality, we may assume that C3 = C4 = 1. Then, we show that
∫ ∞

0

∫ 1

0

t−
3
2
β exp{−u/t}g(u) dudt =

∫ 1

0

(
∫ ∞

0

t−
3
2
β exp{−u/t} dt

)

g(u) du(5.9)

is finite.
By a change of variables v = u/t, we get for the integral with respect

to t
∫ ∞

0

t−
3
2
β exp{−u/t} dt =

∫ ∞

0

u1− 3
2
β

v2−
3
2
β
exp{−v} dv

= u1− 3
2
β

∫ ∞

0

1

v2−
3
2
β
exp{−v} dv

= Cu1− 3
2
β

for some constant C > 0. Note that the integral
∫ ∞

0

1

v2−
3
2
β
exp{−v} dv
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is finite because 2 − 3β/2 < 1, which is equivalent to β > 2/3. Now,
(5.9) becomes

C

∫ 1

0

u1− 3
2
βg(u) du = C

∫ 1

0

u−β(1− u)−
β

2
− 1

2 du.

This integral is finite if and only if −β > −1 and −β
2
− 1

2
> −1, which

are equivalent to β < 1.
We can use an analogous method for solving the problem in the case

k(t) = t−3. Then, we get the conclusion that

∫ 1

0

(
∫ ∞

0

t−
3
2
β exp{−u/t3} dt

)

g(u) du < ∞

if and only if 4
3
− 1

2
β < 1, and −β

2
− 1

2
> −1, which are equivalent to

2/3 < β < 1.
One final remark is that the interchanges of the orders of the integrals

in the proof are justified by the Fubini’s theorem after proving finiteness
of the integrals. �
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