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Abstract

We prove strong uniqueness for a parabolic SPDE involving both
the solution v(t, x) and its derivative ∂xv(t, x). The familiar Yamada-
Watanabe method for proving strong uniqueness might encounter some
difficulties here. In fact, the Yamada-Watanabe method is essentially one
dimensional, and in our case there are two unknown functions, v and ∂xv.
However, Pardoux and Peng’s method of backward doubly stochastic dif-
ferential equations, when used with the Yamada-Watanabe method, gives
a short proof of strong uniqueness.

1 Introduction

In this paper we prove strong uniqueness for the following stochastic partial
differential equation (SPDE) dv(t, x) =

1

2
∂xxv(t, x)dt+ g(v(t, x), ∂xv(t, x))dF (t, x) ,

v(0, x) = v0(x) .
(1)

Our motivation was to generalize the equation dv(t, x) = 1
2∂xxvdt + L∂xvdB.

We leave the question of existence open. Here x ∈ R. Let (Ω,F ,Ft, P ) be
a complete filtered probability space. We seek a unique non-anticipating so-
lution v(t, x) = v(ω, t, x) : Ω × [0,∞) × R → R such that with probability
1, v(t, x), ∂xv(t, x) are jointly continuous. For ease of notation, we often sim-
ply write v instead of v(t, x). Here we assume that F (t, x) = F (ω, t, x) is a
mean-zero Gaussian random field with the covariance function

E [F (t, x1)F (s, x2)] = min(t, s)σ(|x1 − x2|) (2)

such that F has nuclear covariance with respect to x. So we can write

F (t, x) =

∞∑
n=1

en(x)B(n)(t) (3)
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where B(n)(t) are independent Browninan motions. We understand (1) as an
SDE in L2, which fits into the framework described in Da Prato and Zabczyk [1].
The readers can consult that reference for more details about this formulation.

Next we give some history and motivation for this problem. Itô had already
proved strong uniqueness for stochastic differential equations (SDE) equipped
with Lipschitz coefficients. In [2], Yamada and Watanabe dealt with such equa-
tions as dX = a(X)dB under the assumption that a(·) is Hölder of order 1/2.
Their method was designed for problems in which X takes values in R1, or has
rotational symmetry which allows us to reduce to one-dimensional case. Even
with these limitations, their method is still one of the few tools available for
proving strong uniqueness for stochastic equations with coefficients which are
non-Lipschitz; the reader can consult Bass, Burdzy, and Chen [3] for a list of
known techniques.

In the case of SPDEs, Viot [4] extended Yamada and Watanabe’s method
to deal with equations such as

dv = ∂xxvdt+ g(v)dB (4)

where g is Hölder of order 1/2, and B is a Brownian motion which does not
depend on x. In [5], Mytnik, Perkins and Sturm used Viot’s idea to analyze the
same equation with B being Gaussian noise that is white in time and colored
in space. In a later and more difficult paper, Mytnik and Perkins [6] solved the
long-standing problem of proving strong uniqueness for

∂tv = ∂xxv + g(v)Ẇ (5)

with one-dimensional spatial variable, Ẇ = Ẇ (t, x) is the space-time white
noise, and g is Hölder continuous of order greater than 3/4.

For the case when g(v) = v1/2, the problem is even more challenging and
interesting. In this setting, the equation (5) describes the superprocess (or some-
time called Dawson-Watanabe process), which has been an object of intense in-
terests by many probabilists (see Dawson [7] and Perkins [8]). If we allow signed
solutions, Mueller, Mytnik and Perkins [9] showed that nonuniqueness can hold
if g(v) = vα and 0 < α < 3/4. But strong uniqueness among nonnegative so-
lutions remains open, and is considered as one of the main unsolved problems
on superprocesses. Recently Dawson and Li [10] gave an alternative framework
for studying the superprocesses in the strong sense. Xiong [11] followed their
framework, and built up a connection between the SPDE and the backward
doubly stochastic differential equations (BDSDE) based on Pardoux and Peng’s
method [12]. By analyzing the corresponding BDSDE instead, Xiong was able
to verify strong uniqueness for nonnegative solutions of (5) when g(v) = v1/2.

Our purpose is to illustrate the usefulness of BDSDE in proving strong
uniqueness for SPDE by studying a case in which Yamada and Watanabe’s
method alone could face difficulties. As mentioned above, (1) involves both v
and ∂xv as unknown functions, causing difficulties for the one-dimensional na-
ture of the Yamada-Watanabe argument. Mytnik, Perkins, and Sturm faced
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similar difficulties in [5] and [6]. They overcame them by an intricate argu-
ment based on studying the region where v1 − v2 is small, where v1, v2 are two
solutions. If ∂xv1 − ∂xv2 is large, then this region must be small. See [6] for
details. We could conceivably apply this reasoning, but the argument using
BDSDE seems much simpler. Lastly, proving uniqueness using BDSDE is not
well known, so this paper may illustrate the method without involving a large
number of technical difficulties.

2 BDSDE and uniqueness

First we state our assumptions on g.

Assumption 2.1 We assume that there exist constants K, L > 0 such that

|g(y1, z1)− g(y2, z2)| ≤ Kρ(|y1 − y2|)(1 + |z1|+ |z2|) + L|z1 − z2|. (6)

where the function ρ satisfies ∫ 1

0

1

ρ2(u)
du =∞. (7)

For existence, we would need to assume, in addition to the condition (2) on
F , that |g2(·, ·)σ(·)| ≤ ε for some constant ε > 0. It is well known that the
SPDE

dv(t, x) =
1

2
∂xxv(t, x)dt+ L∂xv(t, x)dB(t)

is not well posed unless the constant L is sufficiently small, where B(t) is a
one-dimensional Brownian motion. This observation is important for existence,
but we do not use it to study uniqueness.

We also assume that F has covariance

E [F (t, x)F (s, y)] = δ(t− s)R(x− y)

and that |R(z)| ≤ K for some constant K.
To obtain strong uniqueness for (1), we first consider the corresponding

BDSDE. As in Xiong [11], we define

ut(x) = vT−t(x), and H(x, t) = F (x, T − t).

Then H is a Gaussian noise in [0, T ]× R which is white in time and colored in
space. From (2) we have:

E[H(x, dt)H(y, dt)] = σ(x− y)dt.

The backward version of (1) is then

du =
1

2
∆u+ g(u,∇u)H(·, d̂t)/dt, uT = v0 (8)
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where d̂ denotes the backward derivative (cf. Xiong [13]), that is, in the Riemann
sum approximating the stochastic integral, we take the right end-points instead
of the left ones.

With the backward version of the equation, we then follow the ideas in [12]
and [11], and construct the following BDSDE of (Y t,xs , Zt,xs ):

Y t,xs = v0(Xt,x
T ) +

∫ T

s

g(Y t,xr , Zt,xr )H(Xt,x
r , d̂r)−

∫ T

s

Zt,xr dBr , (9)

where Xt,x is given by

Xt,x
s = x+Bt −Bs, s ≥ t ,

with t, s fixed and Bt the standard Brownian motion. The correspondence
between (8) and (9) is given by the following theorem.

Theorem 2.1 If u is a solution to (8), then

Y t,xs = us(X
t,x
s ) and Zt,xs = ∂us(X

t,x
s )

is a pair of solutions to the BDSDE (9), where ∂ denotes the partial derivative
with respect to the space variable. As a consequence, we have ut(x) = Y t,xt .

Proof: We want to show:

us(X
t,x
s ) = v0(Xt,x

T ) +

∫ t

s

g(Y t,xr , Zt,xr )H(d̂r,Xt,x
r )−

∫ t

s

∂ur(X
t,x
r )dBr, (10)

We will construct an approximation to u that is smooth enough, we will work
with this approximation to show that it satisfies a similar equation to (10) and
finally we show that each term converges to the corresponding term. For any
δ > 0, let

uδt (x) = Tδut(x), ∀ x ∈ R,

where Tδ is the Brownian semigroup. Namely,

Tδf(x) =

∫
R
pδ(x− ξ)f(ξ)dξ and pδ(x) =

1√
2πδ

exp

(
−x

2

2δ

)
.

It is well-known that for any t ≥ 0 and δ > 0, uδt (·) ∈ C∞. Applying Tδ to both
sides of (8), we get

uδt (x) = Tδv0(x)+

∫
R

∫ T

t

pδ(x−ξ)g(ur(ξ), ∂ur(ξ))H(d̂r, ξ)dξ+

∫ T

t

1

2
∂ξξu

δ
r(ξ)dξ.

(11)
Let s = t0 < t1 < · · · < tn = T be a partition of [s, T ]. Then using a

telescoping sum and Itô’s formula on the y variable for uδti(y) (note that uδti is
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independent of Xt,x
r and Br), and the SPDE (11) with x = Xt,x

ti+1
, we have:

uδs(X
t,x
s )− Tδv0(Xt,x

T )

= uδs(X
t,x
s )− uδT (Xt,x

T )

=

n−1∑
i=0

(
uδti(X

t,x
ti )− uδti(X

t,x
ti+1

)
)

+

n−1∑
i=0

(
uδti(X

t,x
ti+1

)− uδti+1
(Xt,x

ti+1
)
)

= −
n−1∑
i=0

∫ ti+1

ti

1

2
∂2uδti(X

t,x
r )dr −

n−1∑
i=0

∫ ti+1

ti

∂uδti(X
t,x
r )dBr

+

n−1∑
i=0

∫ ti+1

ti

1

2
∂2uδr(X

t,x
ti+1

)dr

+

n−1∑
i=0

∫
R

∫ ti+1

ti

pδ(X
t,x
ti+1
− ξ)g(ur(ξ), ∂ur(ξ))H(d̂r, ξ)dξ,

Note that if the mesh size of the partition goes to 0 we have:

i)

n−1∑
i=0

∫ ti+1

ti

1

2
∂2uδti(X

t,x
r )dr →

∫ T

s

1

2
∂2uδr(X

t,x
r )dr

ii)

n−1∑
i=0

∫ ti+1

ti

∂uδti(X
t,x
r )dBr →

∫ T

s

∂uδr(X
t,x
r )dBr

iii)

n−1∑
i=0

∫ ti+1

ti

1

2
∂2uδr(X

t,x
ti+1

)dr →
∫ T

s

1

2
∂2uδr(X

t,x
r )dr

iv)

n−1∑
i=0

∫
R

∫ ti+1

ti

pδ(X
t,x
ti+1
− ξ)g(ur(ξ), ∂ur(ξ))H(d̂r, ξ)dξ

→
∫
R

∫ T

s

pδ(X
t,x
r − ξ)g(ur(ξ), ur(ξ))H(d̂r, ξ)dξ,

i) and ii) follow because ∂2uδ· (x) and ∂uδ· (x) are continuous, iii) because uδt (·) ∈
C∞ and Xt,x

· is continuous, and iv) follow because the Browninan semigroup
has a strong decay in the space variable and Xt,x

· is continuous. Therefore the
terms i) and iii) cancel each other and we obtain:

uδs(X
t,x
s )− Tδv0(Xt,x

T ) (12)

= −
∫ T

s

∂uδr(X
t,x
r )dBr +

∫
R

∫ T

s

pδ(X
t,x
r − ξ)g(ur(ξ), ∂ur(ξ))H(d̂r, ξ)dξ.

Finally we show that each term converges when we take δ → 0 to the corre-
sponding terms in (10). We show the calculations for the last term, noting that
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for s > t,

E
∣∣∣∣ ∫

R

∫ T

s

pδ(X
t,x
r − ξ)g(ur(ξ), ∂ur(ξ))H(d̂r, ξ)dξ

−
∫ T

s

g(ur(X
t,x
r ), ∂ur(X

t,x
r ))H(d̂r,Xt,x

r )

∣∣∣∣2
= E

∫ T

s

∫
R

∫
R
pδ(X

t,x
r − ξ)pδ(Xt,x

r − ζ)g(ur(ξ), ∂ur(ξ))

×g(ur(ζ), ∂ur(ζ))σ(|ξ − ζ|)dξdζdr

−2E
∫ T

s

∫
R
pδ(X

t,x
r − ξ)g(ur(ξ), ∂ur(ξ))

×g(ur(X
t,x
r ), ∂ur(X

t,x
r ))σ(|Xt,x

r − ξ|)dξdr

+E
∫ T

s

(g(ur(X
t,x
r ), ∂ur(X

t,x
r ))2σ(0)dr

→ 0.

Since uδs → us, Tδv0 → v0 and ∇uδr → ∇ur as δ → 0, the convergence of the
other terms of (12) can be proved as in [11]. (9) follows from (12) by taking
δ → 0.

Next, under Assumption (7) we prove the uniqueness for the solution to the
BDSDE (9). Suppose that {ak} is a decreasing sequence such that we have∫ ak−1

ak

1

ρ2(u)
du = k (13)

which is possible by Condition (7). We construct a function φk such that the
following conditions hold

i) φ′k(u) =


0 0 ≤ u < ak

between 0 and 1 ak < u < ak−1

1 ak−1 ≤ u
(14)

ii) φ′′k(u) =


0 0 ≤ u < ak

between 0 and
2

k
ρ−2(u) ak < u < ak−1

0 ak−1 ≤ u

(15)

Then we have that φk(·) converges to | · |, but for every k it is two times
differentiable and therefore we can apply Itô’s formula.

Theorem 2.2 If Assumption (7) holds with L < σ(0)−1, then (9) has at most
one solution.

Proof: Suppose that (9) has two solutions (Y is , Z
i
s), i = 1, 2. Then,

Y 1
s − Y 2

s =

∫ T

s

(
g(Y 1

r , Z
1
r )− g(Y 2

r , Z
2
r )
)
H(d̂r,Xr)−

∫ T

s

(
Z1
r − Z2

r

)
dBr.
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By the extended Itô’s formula, we have

φk(Y 1
s − Y 2

s ) =

∫ T

s

φ′k(Y 1
r − Y 2

r )
(
g(Y 1

r , Z
1
r )− g(Y 2

r , Z
2
r )
)
H(d̂r,Xr)

−
∫ T

s

φ′k(Y 1
r − Y 2

r )
(
Z1
r − Z2

r

)
dBr

+

∫ T

s

1

2
φ′′k(Y 1

r − Y 2
r )
(
g(Y 1

r , Z
1
r )− g(Y 2

r , Z
2
r )
)2
σ(0)dr

−
∫ T

s

1

2
φ′′k(Y 1

r − Y 2
r )
(
Z1
r − Z2

r

)2
dr.

Taking expectation, it follows from (6) that

Eφk(Y 1
s − Y 2

s ) = E
∫ T

s

1

2
φ′′k(Y 1

r − Y 2
r )
(
g(Y 1

r , Z
1
r )− g(Y 2

r , Z
2
r )
)2
σ(0)dr

−E
∫ T

s

1

2
φ′′k(Y 1

r − Y 2
r )
(
Z1
r − Z2

r

)2
dr

≤ E
∫ T

s

Kσ(0)

2
φ′′k(Y 1

r − Y 2
r )ρ(|Y 1

r − Y 2
r |)2

(
1 + |Z1

r |2 + |Z2
r |2
)
dr

−E
∫ T

s

1

2
φ′′k(Y 1

r − Y 2
r )(1− L′σ(0))

(
Z1
r − Z2

r

)2
dr

≤ Kσ(0)

2
k−1

∫ T

s

E
(
|Z1
r |2 + |Z2

r |2
)
dr,

where L′ > L is a constant such that L′σ(0) < 1. Taking k →∞, we then get

E|Y 1
s − Y 2

s | = 0.

This implies the strong uniqueness of the BDSDE (9), and therefore the SPDE
(8).

Remark 2.3 The condition (7) is satisfied by the function

g(y, z) = (|y|α ∧ 1)z

for α ∈ [1/2, 1] if σ(0) < 1.
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