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Abstract

It is well-known that an N -parameter d-dimensional Brownian
sheet has no k-multiple points when (k − 1)d > 2kN , and does have
such points when (k− 1)d < 2kN . We complete the study of the exis-
tence of k-multiple points by showing that in the critical cases where
(k − 1)d = 2kN , there are a.s. no k-multiple points.

Abbreviated title: Multiple points of the Brownian sheet

1 Introduction and main theorems

Let d and N be positive integers, and let B = (B1, . . . , Bd) denote an N -
parameter Brownian sheet with values in Rd, that is, B is a centered Rd-
valued Gaussian random field with continuous sample paths, defined on a
probability space (Ω,F , P ), with parameter set RN

+ and covariances

Cov(Bi(s), Bj(t)) = δi,j

N∏
`=1

(s` ∧ t`),
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where δi,j = 1 if i = j and δi,j = 0 otherwise, s, t ∈ RN
+ , s = (s1, . . . , sN) and

t = (t1, . . . , tN).
The Brownian sheet is perhaps the most studied extension to multipa-

rameter Gaussian processes of classical Brownian motion, to which it reduces
when N = 1. Khoshnevisan devotes a chapter to this process in his book [6].
The CIME Summer School lectures [1] contain a presentation of the history
of the study of this random field, and its connections to statistics, Markov
properties, level sets, stochastic partial differential equations, potential the-
ory and Malliavin calculus.

Here, we are interested in a fundamental sample path property of this
random field, namely multiple points, or self-intersections. For ω ∈ Ω and
integers k ≥ 2, a point x ∈ Rd is a k-multiple point of t 7→ B(t, ω) if there
exist distinct parameters t1, . . . , tk ∈ ]0,∞[N such that B(t1, ω) = · · · =
B(tk, ω) = x. We denote the (random, possibly empty) set of all k-multiple
points of t 7→ B(t, ω) by Mk(ω). Note that Mk+1(ω) ⊂Mk(ω).

Typically, for d small and N large, the set of k-multiple points is a.s. non-
empty, while for d large and N small, Mk is empty a.s. See [2] for the history
of this problem in the case of Brownian motion (N = 1).

When N > 1 and k ≥ 2, it was shown in [5] that k-multiple points exist
if (k − 1)d < 2kN and do not exist if (k − 1)d > 2kN . The critical case
k = 2 and d = 4N was handled in [2], where it was shown, via quantitative
estimates on the conditional distribution of a pinned Brownian sheet and a
decoupling method, that there are no double points in the critical case.

In this paper, we solve the remaining critical cases, where N > 1, k ≥ 2
and (k−1)d = 2kN . The main result of this paper is the following statement
concering the absence of k-multiple points in these critical cases.

Theorem 1.1. Fix N > 1 and k ≥ 2. If N , d and k are such that (k−1)d =
2kN , then an N-parameter d-dimensional Brownian sheet has no k-multiple
points, that is, P{Mk 6= ∅} = 0.

The proof of this theorem relies on known results for hitting probabili-
ties of the Brownian sheet, due to Khoshnevisan and Shi [7], on results for
intersections of k independent Brownian sheets, due to Peres [10], and a
decoupling idea. While [2] used quantitative estimates to obtain their decou-
pling, we will achieve our decoupling here by using Girsanov’s theorem. Our
decoupling result is the following.

2



Let T kN denote the set of parameters (t1, . . . , tk) with ti ∈ ]0,∞[N such
that no two ti and tj (i 6= j) share a common coordinate:

T kN = {(t1, . . . , tk) ∈ (]0,∞[N)k : ti` 6= tj`, for all ` = 1, . . . , N

and 1 ≤ i < j ≤ k}

(here, ti = (ti1, . . . , t
i
N), so in our notation, the coordinates ti` of ti inherit the

superscript).

Theorem 1.2. Let A ⊂ Rd be a Borel set. For all k ∈ {2, 3, . . .}, we have

P{∃(t1, . . . , tk) ∈ T kN : B(t1) = · · · = B(tk) ∈ A} > 0

if and only if

P{∃(t1, . . . , tk) ∈ T kN : W1(t
1) = · · · = Wk(t

k) ∈ A} > 0,

where W1, . . . ,Wk are independent N-parameter Brownian sheets with values
in Rd.

The proof of this theorem uses an explicit formula for the conditional
expectation B̃(t) of B(t) given the values of the sheet in a product of N − 1
complements of intervals and a single interval (see Lemma 3.2), together with
the fact that Girsanov’s theorem can be used to show that the law of the
process B(t) − B̃(t) is mutually absolutely continuous with respect to the
law of B (see Lemma 3.5).

In order to deal with the possibility of a k-multiple point arising from
parameters t1, . . . , tk that share a common coordinate, define

Hk
N(i, j; `) =

{
(t1, . . . , tk) ∈ (]0,∞[N)k : ti` = tj`

}
.

That is, Hk
N(i, j; `) is the set of (t1, . . . , tk) for which ti and tj share their

`-th coordinate.
Our next theorem states that in the critical case (k − 1)d = 2kN , there

are (with probability one) no k-multiple points arising from parameters in
Hk
N(i, j; `).

Theorem 1.3. Suppose (k − 1)d = 2kN , 1 ≤ i < j ≤ k and 1 ≤ ` ≤ N .
Then

P{∃(t1, . . . , tk) ∈ Hk
N(i, j; `) : B(t1) = · · · = B(tk)} = 0.
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This theorem is proved by using a covering argument. It requires checking
that certain finite-dimensional distributions of increments of the Brownian
sheet have a uniformly bounded density, provided the increments are taken
at points that are at least δ units apart (δ > 0): see Lemma 2.4. This uses an
explicit formula for the conditional expectation B̄(t) of B(t) given the values
of the sheet in a product of N complements of intervals (see Lemma 2.1).

The paper is structured as follows. First, in Section 2, assuming Theorems
1.2 and 1.3, we easily deduce Theorem 1.1 from the results of Khoshnevisan
and Shi [7] and Peres [10]. Then we prove Theorem 1.3 via an argument
based on Hausdorff dimension, as just mentioned. Finally, in Section 3, we
show how to use Girsanov’s theorem in order to prove Theorem 1.2.

2 Proof of Theorems 1.1 and 1.3

We first prove Theorem 1.1, assuming Theorems 1.2 and 1.3.

Proof of Theorem 1.1. Clearly,

P{Mk 6= ∅}
≤ P{∃(t1, . . . , tk) ∈ T kN : B(t1) = · · · = B(tk)}

+
k−1∑
i=1

k∑
j=i+1

N∑
`=1

P{∃(t1, . . . , tk) ∈ Hk
N(i, j; `) : B(t1) = · · · = B(tk)}.

By Theorem 1.3, the second term vanishes, and by Theorem 1.2, the first
term vanishes if and only if

P{∃(t1, . . . , tk) ∈ T kN : W1(t
1) = · · · = Wk(t

k)} = 0, (2.1)

where W1, . . . ,Wk are independent N -parameter Brownian sheets with values
in Rd. According to [7], for all sets of the form R =

∏N
`=1[s

0
` , s

1
` ] ⊂ ]0,∞[N ,

there is a finite constant C ≥ 1 such that for all nonrandom Borel sets A ⊂ Rd

contained in a fixed compact subset of Rd,

C−1 Capd−2N(A) ≤ P{∃t ∈ R : W i(t) ∈ A} ≤ C Capd−2N(A),

where Cap(·) denotes Bessel-Riesz capacity. We recall that Cap(A) is defined
as follows. Let P(K) denote the collection of all probability measures that
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are supported by the Borel set K ⊆ Rd, and define the β-dimensional capacity
of A by

Capβ(A) :=

 inf
µ∈P(K):

K⊂A is compact

Iβ(µ)

−1 ,
where inf ∅ := ∞, and Iβ(µ) is the β-dimensional energy of µ, defined as
follows for all µ ∈ P(Rd) and β ∈ R:

Iβ(µ) :=

∫∫
κβ(x− y)µ(dx)µ(dy).

In this formula, the function κβ : Rd → R+ ∪ {∞} is defined by

κβ(x) :=


‖x‖−β if β > 0,

log+(‖x‖−1) if β = 0,

1 if β < 0,

where, as usual, 1/0 :=∞ and log+(z) := 1 ∨ log(z) for all z ≥ 0.
Since d − 2N > 0 because (k − 1)d = 2kN , it follows from [10, Corol-

lary 15.4] that (2.1) is equivalent to Capk(d−2N)(Rd) = 0. According to [6,
Appendix C, Corollary 2.3.1], this is indeed the case since k(d − 2N) = d,
because we are in the critical dimension where (k − 1)d = 2kN . �

Before proving Theorem 1.3, we need some preliminary lemmas. For
U ⊂ RN

+ , we set F(U) = σ(B(t), t ∈ U).

Lemma 2.1. For ` = 1, . . . , N, fix 0 < s0` < s1` , and set

R =
N∏
`=1

[s0` , s
1
` ] and S =

N∏
`=1

]s0` , s
1
` [
c.

Let J denote the set of functions from {1, . . . , N} into {0, 1}. Then for
t ∈ R, set

B̄(t) =
∑
γ∈J

 ∏
`∈γ−1({1})

t` − s0`
s1` − s0`

 ∏
`∈γ−1({0})

s1` − t`
s1` − s0`

B(s
γ(1)
1 , . . . , s

γ(N)
N )

(2.2)
(we use the convention that a product over an empty set of indices is equal
to 1). Then B̄(t) = E(B(t) | F(S)).
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Remark 2.2. The set of corners (extreme points) of R is

C = {(sγ(1)1 , . . . , s
γ(N)
N ) : γ ∈ J },

so the sum over γ in (2.2) involves B evaluated at each corner of R.

Proof of Lemma 2.1. Since the components of B are independent, we may
and will assume in this proof that d = 1. In this case, since we are working
with Gaussian random variables, it suffices to prove that for each s ∈ S,

E(B̄(t)B(s)) = E(B(t)B(s)). (2.3)

The right-hand side of (2.3) is equal to
∏N

`=1(t` ∧ s`), so we compute the
left-hand side of (2.3). Clearly,

E(B̄(t)B(s)) =
∑
γ∈J

 ∏
`∈γ−1({1})

t` − s0`
s1` − s0`

 ∏
`∈γ−1({0})

s1` − t`
s1` − s0`

 N∏
`=1

(s
γ(`)
` ∧ s`)

=
N∏
`=1

[
(s1` ∧ s`)

t` − s0`
s1` − s0`

+ (s0` ∧ s`)
s1` − t`
s1` − s0`

]
.

Therefore, (2.3) will be proved if we show that for each ` ∈ {1, . . . , N},

t` ∧ s` = (s1` ∧ s`)
t` − s0`
s1` − s0`

+ (s0` ∧ s`)
s1` − t`
s1` − s0`

. (2.4)

There are two cases to distinguish:

Case 1. s` ≤ s0` . In this case, sk` ∧ s` = s` for k ∈ {0, 1} and t`∧ s` = s`, since
s0` ≤ t` ≤ s1` , so the right-hand side of (2.4) is equal to

s`
t` − s0`
s1` − s0`

+ s`
s1` − t`
s1` − s0`

= s`,

which is also the left-hand side of (2.4).

Case 2. s` ≥ s1` . In this case, sk` ∧ s` = sk` for k ∈ {0, 1} and t` ∧ s` = t`, so
the right-hand side of (2.4) is equal to

s1`
t` − s0`
s1` − s0`

+ s0`
s1` − t`
s1` − s0`

= t`,
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and which is also the left-hand side of (2.4).

This completes the proof of Lemma 2.1. �

Remark 2.3. We note that the right-hand side of (2.2) is in fact a convex
combination of the values of B at the corners of R, since each coefficient is
non-negative and

∑
γ∈J

 ∏
`∈γ−1({1})

t` − s0`
s1` − s0`

 ∏
`∈γ−1({0})

s1` − t`
s1` − s0`


=

N∏
`=1

[
t` − s0`
s1` − s0`

+
s1` − t`
s1` − s0`

]
= 1.

Lemma 2.4. Fix δ > 0 (small), K ∈ N (positive and large), and k ∈ N,
k ≥ 2.

(a) There is C > 0 such that for all t1, . . . , tk such that ‖ti − tj‖ ≥ δ,
for all i 6= j with i, j ∈ {1, . . . , k}, and K ≥ ti` ≥ δ, for all ` = 1, . . . , N and
i ∈ {1, . . . , k}, the random vector (B(t1), . . . B(tk)) has a joint probability
density function that is bounded by C.

(b) For the same choices of t1, . . . , tk, the (Rd)
k−1

-valued random vector

(B(t1)−B(t2), B(t2)−B(t3), . . . B(tk−1)−B(tk))

has a bounded probability density function (with bound depending only on δ,
K and k, as well as d and N).

Proof. Since the B1, . . . , Bd are independent Brownian sheets, we may and
will assume in this proof that d = 1.

We first deduce (b) from (a). Let

Y = (B(t1)−B(t2), . . . , B(tk−1)−B(tk), B(tk)).

Then Y is obtained from (B(t1), . . . , B(tk)) by applying an invertible linear

transformation from (Rd)
k

into (Rd)
k
. Therefore, by (a), Y has a bounded

joint probability density function. It follows that the probability density
function of (B(t1)−B(t2), . . . , B(tk−1)−B(tk)), which is a marginal density
of Y , is bounded by the same constant. This proves (b).
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We now prove (a). Set

n = inf

{
n ∈ N : 2−n <

δ

3
√
N

}
,

and consider a dyadic grid in RN
+ with edges of length 2−n. We let Gδ,K denote

the set of such grid points with all coordinates ≤ K.
By construction, each closed box in this grid contains at most one of the

ti, and we denote by Ri the box containing ti. Suppose that

Ri =
N∏
`=1

[si,0` , s
i,1
` ], and set Si =

N∏
`=1

]si,0` , s
i,1
` [c.

Because of our choice of n, the set Ci of corners of Ri is distinct from Cj when
i 6= j.

Define
Y i = E(B(ti)|F(Si)), i = 1, . . . , k.

ThenB(ti)−Y i is orthogonal to Yi, and for j 6= i, since Y j is a linear combina-
tion of values of B at elements of Si (because Cj∩Ci = ∅), B(ti)−Y i is orthog-
onal to Y j. Letting Y = (Y 1, . . . , Y k) and Z = (B(t1)−Y 1, . . . , B(tk)−Y k),
we see that the Gaussian vectors Y and Z are independent, and

(B(t1), . . . , B(tk)) = Y + Z.

Using properties of convolution, we see that it suffices to show that the joint
probability density function of Y is bounded (uniformly over the (t1, . . . , tk)).

Since Y is a Gaussian random vector, let M be its variance-covariance
matrix. It suffices to show that

detM > c > 0, (2.5)

where c depends only on δ, K and k, as well as d and N .
Consider the random vector (B(r), r ∈ Gδ,K). Observe that this random

vector can be obtained by applying an invertible linear transformation, from
R((2nK)N ) into itself (recall that d = 1), to the random vector (W (R), R a
box in the grid), which has i.i.d. components, each with variance (2−n)

N
> 0.

Therefore, (B(r), r ∈ Gδ,K) has a bounded density, where the bound depends
only on δ and K (and d and N). This implies that (B(t), t ∈ Ci, i = 1, . . . , k)
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has a joint probability density function that is bounded, since it is a marginal
density of (B(r), r ∈ Gδ,K).

Let M̃ be the variance-covariance matrix of the Gaussian random vector
(B(t), t ∈ Ci, i = 1, . . . , k). Then by the above, there is c > 0 such that
det M̃ > C. In particular, there is c0 > 0 such that

λTM̃λ ≥ c0‖λ‖2, for all λ ∈ Rk2N .

Note that c0 depends only on (δ,K, k, d,N).
Let µ ∈ Rk. Then

µTMµ = Var

(
k∑
i=1

µiY
i

)

= Var

(
k∑
i=1

µi
∑

si,j∈Ci
ai,jB(si,j)

)

≥ c0

k∑
i=1

∑
si,j∈Ci

µ2
i a

2
i,j,

where the ai,j are the coefficients obtained in formula (2.2) of Lemma 2.1.
According to Remark 2.3,

∑
si,j∈Ci ai,j = 1 and ai,j ≥ 0, therefore, there is

α > 0 such that
∑

si,j∈Ci a
2
i,j > α. We conclude that

µTMµ ≥ c0 α
k∑
i=1

µ2
i ,

and this implies that det M > c1 > 0, where c1 depends only on
(δ,K, k, d,N). In turn, this proves (2.5) and completes the proof of (a) in
Lemma 2.4. �

Proof of Theorem 1.3. It suffices to prove the theorem in the case where
i = 1, j = 2 and ` = 1. Therefore, we write Hk

N instead of Hk
N(1, 2; 1).

For δ > 0, set

Hk
N(δ) = {(t1, . . . , tk) ∈ Hk

N : ti` ≥ δ, ‖ti − tj‖ ≥ δ,

for all i 6= j, ` = 1, . . . , N, i, j ∈ {1, . . . , k}}.
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Since Hk
N = ∪∞n=1Hk

N

(
1
n

)
, it suffices to prove that for fixed δ > 0,

P{∃(t1, . . . , tk) ∈ Hk
N(δ) : B(t1) = · · · = B(tk)} = 0.

Consider the random field indexed by (]0,∞[N)k with values in (Rd)
k−1

defined by

X(t1, . . . , tk) = (B(t1)−B(t2), B(t2)−B(t3), . . . , B(tk−1)−B(tk)).

Then
B(t1) = · · · = B(tk) ⇐⇒ X(t1, . . . , tk) = 0,

so parameters which give rise to a k-multiple point of B are k-tuples at which

X hits 0 (∈ (Rd)
k−1

). Therefore, it will suffice to show that

P{∃(t1, . . . , tk) ∈ Hk
N(δ) : X(t1, . . . , tk) = 0} = 0. (2.6)

Let D(K) = Hk
N(δ)∩ ([0, K]N)

k
. Since Hk

N is a vector space of dimension
kN − 1, there is C > 0 such that for all large n ≥ 1, we can cover D(K) by

C(22n)
kN−1

dyadic boxes in (RN)k with edges of length 2−2n. Let Dn be the
set of boxes in such a covering, and for D ∈ Dn, let tn(D) be the corner of
D for which all coordinates are smallest possible.

For (t1, . . . , tk) ∈ D, let p(t1,...,tk)(z1, . . . , zk−1) be the value of the joint

probability density function of X(t1, . . . , tk) at (z1, . . . , zk−1) ∈ (Rd)
k−1

. By
Lemma 2.4, there is C < +∞ such that

p(t1,...,tk)(z1, . . . , zk−1) ≤ C. (2.7)

Let B(0, n2−n) denote the ball in (Rd)
k−1

centered at 0 with radius n2−n. By
(2.7),

P{X(t1, . . . , tk) ∈ B(0, n2−n)} ≤ C(n2−n)
d(k−1)

. (2.8)

In order to prove (2.6), it suffices to prove (2.6) with Hk
N(δ) replaced by
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D(K). So we compute

P{∃(t1, . . . , tk) ∈ D(K) : X(t1, . . . , tk) = 0}
≤ P{∃(t1, . . . , tk) ∈ D(K) : X(t1, . . . , tk) ∈ B(0, 2−n)}

≤
∑
D∈Dn

P{∃(t1, . . . , tk) ∈ D : X(t1, . . . , tk) ∈ B(0, 2−n)}

≤
∑
D∈Dn

P
(
{X(tn(D)) ∈ B(0, n2−n)}

∪
{

sup
t∈D
‖X(t)−X(tn(D))‖ ≥ (n− 1)2n

})
.

We now use (2.8) to bound this by

22n(kN−1)
(
C(n2−n)

d(k−1)
+ P

{
sup
t∈D
‖X(t)−X(tn(D))‖ ≥ (n− 1)2−n

})
.

We will show below that

lim
n→+∞

22n(kN−1)P

{
sup
t∈D
‖X(t)−X(tn(D))‖ ≥ (n− 1)2−n

}
= 0, (2.9)

so it remains to examine the term nd(k−1)(2−n)
d(k−1)−2kN+2

. Since we are in
the critical case, 2kN = (k − 1)d, so the exponent of 2−n is equal to 2, and
therefore

nd(k−1)(2−n)
d(k−1)−2kN+2

= nd(k−1)2−2n → 0

as n → +∞. This will prove (2.8) and complete the proof of Theorem 1.3
once we establish (2.9)), to which to now turn.

We can write D = D1×· · ·×Dk, where each Di is a box in RN with edges
of length 2−2n, and we can write tn(D) = (t1n(D1), . . . , t

k
n(Dk)). Clearly,

‖X(t)−X(tn(D))‖ ≤ 2
k∑
i=1

‖B(ti)−B(tin(Di))‖,

so it suffices to prove that for each i ∈ {1, . . . , k} and n sufficiently large,
there are constants C <∞ and c > 0 such that

P

{
sup
ti∈Di

‖B(ti)−B(tin(Di))‖ ≥
(n− 1)2−n

2k

}
≤ Ce−c

2(n−1)2 . (2.10)
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In order to simplify the notation, we assume that Di = [1, 1 + 2−2n]N , so
tin(Di) = (1, . . . , 1), and we write ti = (ti1, . . . , t

i
N). We use the decomposition

of the Brownian sheet presented in [4, Proof of Theorem (1,1)], to write

B(ti)−B(tin(Di)) =
N∑
m=1

∑
1≤`1<···<`m≤N

W`1,...,`m(ti`1 − 1, . . . , ti`m − 1),

where the W`1,...,`m are mutually independent Brownian sheets. There are
2N − 1 terms in this decomposition, so, using the scaling property of the
Brownian sheet [11, Chapter 1], we see that

P

{
sup
ti∈Di

‖B(ti)−B(tin(Di))‖ ≥
(n− 1)2−n

2k

}

≤
N∑
m=1

∑
1≤`1<···<`m≤N

P

{
sup

t∈[0,1]m
W`1,...,`m(t) ≥ (n− 1)2(m−1)n

2k2N

}
.

Using [9, Lemma 1.2], we see that the largest probability in this sum is
obtained when m = 1, and in this case it is bounded by 4NP{Z ≥ c(n− 1)},
where Z is a standard normal random variable and c = 2−N−1/k. Therefore,

P

{
sup
ti∈Di

‖B(ti)−B(tin(Di))‖ ≥
(n− 1)2−n

2k

}
≤ 8Ne−c

2(n−1)2 ,

which proves (2.10) and completes the proof of Theorem 1.3. �

3 Proof of Theorem 1.2

The main ingredient in the proof of Theorem 1.2 is the following result.

Theorem 3.1. Let W1, . . . ,Wk be independent Brownian sheets. Fix M > 0
and let RM denote the set of k-tuples of boxes (R1, . . . , Rk), where each

box Ri is contained in [M−1,M ]
N

and for each coordinate axis, the pro-
jections of the Ri onto this coordinate axis are pairwise disjoint. Then, for
all (R1, . . . , Rk) ∈ RM , the random vectors

(B|R1 , . . . , B|Rk
) and (W1|R1 , . . . ,Wk|Rk

)

(with values in (C(R1,Rd)× · · · ×C(Rk,Rd))) have mutually absolutely con-
tinuous probability distributions.
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Before proving Theorem 3.1, we show that it readily implies Theorem 1.2.

Proof of Theorem 1.2. Let A ⊂ Rd be a Borel set. Fix M > 0 and set
T kN (M) = T kN ∩ [M−1,M ]

N
. Then T kN = ∪∞M=1T kN (M). Therefore,

P{∃(t1, . . . , tk) ∈ T kN : B(t1) = · · · = B(tk) ∈ A} = 0 (3.1)

is equivalent to

∀M ∈ N∗, P{∃(t1, . . . , tk) ∈ T kN (M) : B(t1) = · · · = B(tk) ∈ A} = 0,

and this in turn is equivalent to

∀M ∈ N∗, ∀(R1, . . . , Rk) ∈ RM , (3.2)

P{∃(t1, . . . , tk) ∈ R1 × · · · ×Rk : B(t1) = · · · = B(tk) ∈ A} = 0.

Similarly, the property

P{∃(t1, . . . , tk) ∈ T kN : W1(t
1) = · · · = Wk(t

k) ∈ A} = 0 (3.3)

is equivalent to

∀M ∈ N∗,∀(R1, . . . , Rk) ∈ RM : (3.4)

P{∃(t1, . . . , tk) ∈ R1 × · · · ×Rk : W1(t
1) = · · · = Wk(t

k) ∈ A} = 0.

According to Theorem 3.1, properties (3.2) and (3.4) are equivalent, and
therefore (3.1) and (3.3) are also equivalent. This proves Theorem 1.2. �

For Theorem 3.1, we will need a variant of Lemma 2.1.

Lemma 3.2. For ` = 1, . . . , N, fix 0 < s0` < s1` and set

R =
N∏
`=1

[s0` , s
1
` ] and S =

(
N−1∏
`=1

]s0` , s
1
` [
c

)
× [0, s0N ].

Let JN denote the set of functions from {1, . . . , N − 1} into {0, 1} and set

CN =
{(
s
γ(1)
1 , s

γ(2)
2 , . . . , s

γ(N−1)
N , s0N

)
: γ ∈ JN

}
.
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For t ∈ R, set

B̃(t) =
∑
γ∈JN

 ∏
`∈γ−1({1})

t` − s0`
s1` − s0`

 ∏
`∈γ−1({0})

s1` − t`
s1` − s0`


×B

(
s
γ(1)
1 , . . . , s

γ(N−1)
N−1 , s0N

)
.

Then B̃(t) = E(B(t) | F(S)).

Remark 3.3. CN is the set of corners of R with the smallest of the two
possible N-th coordinates, and SN is in the “past” of R if we define the
“past” using the (partial) order s ≤N t if and only if sN ≤ tN .

Proof of Lemma 3.2. Since the components of B are independent, we may
and will assume in this proof that d = 1. In this case, as in the proof of
Lemma 2.1, it suffices to prove that for each s ∈ S,

E(B̃N(t)B(s) = E(B(t)B(s)). (3.5)

The right-hand side of (3.5) is equal to sN
∏N−1

`=1 (t` ∧ s`), so we compute the
left-hand side of (3.5). Clearly,

E(B̃(t)B(s)) = sN
∑
γ∈JN

 ∏
`∈γ−1({1})

t` − s0`
s1` − s0`

 ∏
`∈γ−1({0})

s1` − t`
s1` − s0`

 (s
γ(`)
` ∧ s`)

= sN

N−1∏
`=1

[
(s1` ∧ s`)

t` − s0`
s1` − s0`

+ (s0` ∧ s`)
s1` − t`
s1` − s0`

]
,

so (3.5) will be proved if we check that for each ` ∈ {1, . . . , N − 1},

t` ∧ s` = (s1` ∧ s`)
t` − s0`
s1` − s0`

+ (s0` − s`)
s1` − t`
s1` − s0`

.

But this is simply equality (2.4), and the proof of Lemma 3.2 is complete. �

We will need the following form of Girsanov’s theorem for the Brownian
sheet, which is essentially the version given in [8, Proposition 1.6]. Fix M >
0. Define the one-parameter filtration G = (Gu, u ∈ [0,M ]) by

Gu = σ
{
B(t1, . . . , tN−1, v) : (t1, . . . , tN−1) ∈ RN−1

+ , v ∈ [0, u]
}

(3.6)
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(the filtration is completed and made right-continuous). Let (Z(s), s ∈
RN−1

+ × [0,M ]) be a (jointly measurable) Rd-valued random field that is
adapted to G, that is, for all s ∈ RN−1

+ × [0,M ], Z(s) is GsN -measurable.
Suppose that

E

(∫
RN−1
+ ×[0,M ]

‖Z(s)‖2 ds

)
< +∞. (3.7)

For u ∈ [0,M ], define

Lu = exp

(∫
RN−1
+ ×[0,u]

Z(s) · dB(s)− 1

2

∫
RN−1
+ ×[0,u]

‖Z(s)‖2 ds

)
,

where “·” denotes the Euclidean inner product and, for each component, the
stochastic integral

∫
Zi(s) dBi(s) is defined in the sense of [11], with the N -

th coordinate playing the role of the time variable and the other coordinates
playing the role of the spatial variables.

Theorem 3.4. (Girsanov) If (Z(s), s ∈ RN−1
+ × [0,M ]) is such that (Lu, u ∈

[0,M ]) is a martingale with respect to the filtration G, then the process
(B̃(t), t ∈ RN−1

+ × [0,M ]) defined by

B̃(t1, . . . , tN) = B(t1, . . . , tN)−
∫
[0,t1]×···×[0,tN ]

Z(s1, . . . , sN) ds1 · · · dsN

is an Rd-valued Brownian sheet under the probability measure Q, where Q is
defined by

dQ

dP
= LM .

We now fix k ≥ 2 and consider k boxes R1, . . . , Rk as in the statement of
Theorem 3.1:

Rj =
N∏
`=1

[s0j,`, s
1
j,`], j = 1, . . . , k,

where, for ` = 1, . . . , N, the intervals

[s01,`, s
1
1,`], [s02,`, s

1
2,`], . . . , [s

0
k,`, s

1
k,`]

are pairwise disjoint (that is, the projection of the Rj onto each coordinate
axis are pairwise disjoint). Without loss of generality, we assume that

s1j−1,N < s0j,N , j = 2, . . . , N
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(that is, the projections of the Rj onto the N th-coordinate axis are in in-
creasing order).

Let

R =

(
N−1∏
`=1

[s0k,`, s
1
k,`]

)
× [s1k−1,N , s

1
k,N ],

S =

(
N−1∏
`=1

]s0k,`, s
1
k,`[

c

)
× [0, s1k−1,N ].

Notice that Rk ⊂ R and for j = 1, . . . , k, Rj ⊂ S.

Lemma 3.5. Let M be as in Theorem 3.1. There is a process (B̂t, t ∈
[0,M ]N) with law mutually equivalent to the law of (Bt, t ∈ [0,M ]N) such
that

B̂(t) = B(t), for t ∈ [0,M ]N−1 × [0, s1k−1,N ]

and
B̂(t) = B(t)− E(B(t) | F(S)), for t ∈ Rk.

In particular, B̂|Rk
and

(
B|R1 , . . . , B|Rk−1

)
are independent.

Proof. We apply Lemma 3.2 to the sets R and S, yielding the process
(B̃(t), t ∈ R), such that B̃(t) = E(B(t) | F(S)), t ∈ Rk. In particular,
if we set

B̂(t) = B(t), for t ∈ [0,M ]N−1 × [0, s1k−1,N ], (3.8)

B̂(t) = B(t)− B̃(t), for t ∈ Rk, (3.9)

then B̂|Rk
and (B|R1 , . . . , B|Rk−1

) are independent, since B is a Gaussian
process. The main point of this lemma is to establish, after extending the
definition of B̂(t) to t ∈ [0,M ]N , that the law of (B̂(t), t ∈ [0,M ]N) is
mutually equivalent to the law of (B(t), t ∈ [0,M ]N).

For this, we will use Girsanov’s theorem (Theorem 3.4), by constructing
a process (Z(s)) satisfying the assumption of Theorem 3.4 and such that

B(t)−
∫
[0,t1]×···×[0,tN ]

Z(s1, . . . , sN) ds1 · · · dsN , t ∈ RN−1×[0,M ], (3.10)

agrees with B̂(t) on [0,M ]N−1 × [0, s1k−1,N ] and on Rk. Using the formula

in (3.10) to define B̂(t) for all t ∈ RN−1 × [0,M ], this immediately implies
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that the laws of (B̂(t), t ∈ [0,M ]N) and (B(t), t ∈ [0,M ]N) are mutually
equivalent.

We note that for t = (t1, . . . , tN) ∈ R,

B̃(t) = B̃(t1, . . . , tN−1, tN) = B̃(t1, . . . , tN−1, s
1
k−1,N),

so B̃(t) does not depend explicitly on the N th-coordinate of t.
We now construct Z(s). Let

U =

(
N−1∏
`=1

[0, s1k,`]

)
× [s1k−1,N , s

0
k,N ].

We set
Z(s) ≡ 0 for s /∈ U, (3.11)

and we define Z(s) for s ∈ U as follows. For t ∈ U ∪R, define

p`(t) = s0k,` ∨ t`, ` = 1, . . . , N − 1,

pN(t) = s1k−1,N , and p(t) = (p1(t), . . . , pN(t)). Now let

F (t) =


tN − s1k−1,N
s0k,N − s1k−1,N

(
N−1∏
`=1

t` ∧ s0k,`
s0k,`

)
B̃(p(t)) if t ∈ U,

0 otherwise,

(3.12)

so that F (t) is an Rd-valued multilinear interpolation of B̃(p(t)) with the
process which vanishes on the coordinate hyperplanes 1 to N −1, and on the
hyperplane RN−1 × {s1k−1,N}. In particular, for t ∈ U ,

F (t) = 0 if t1 = 0 or · · · or tN−1 = 0 or tN = s1k−1,N , (3.13)

and

F (t) =
tN − s1k−1,N
s0k,N − s1k−1,N

B̃(t1, . . . , tN−1, s
1
k−1,N) if t ∈ R. (3.14)

We note that t 7→ F (t) is piecewise C∞, and we set

Z(s1, . . . , sN) =
∂N

∂s1 · · · ∂sN
F (s1, . . . , sN).
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It is clear that Z(s) is a linear combination of the random variables

B(s
j(1)
k,1 , . . . , s

j(N−1)
k,N−1 , s

1
k−1,N) that come from Lemma 3.2. Explicit formulas

can be given, for instance, letting Ḃ denote the white noise associated to B,

Z(s) = Ḃ([s0k−1, s
1
k−1]× · · · × [s0k,N−1, s

1
k,N−1]× [0, s1k−1,N ], if s ∈ R,

but we will not need them. We note however, that (Z(s)) is adapted to the
filtration (Gu) defined in (3.6).

For t = (t1, . . . , tN) ∈ RN , let

B̂(t) = B(t)−
∫
[0,t1]×···×[0,tN ]

Z(s1, . . . , sN) ds1 · · · dsN .

Then (3.8) is clearly satisfied by (3.11), and (3.9) is satisfied since for t ∈ Rk,
by (3.13) and (3.14),∫

[0,t1]×···×[0,tN ]

Z(s1, · · · , sN) ds1 · · · dsN

=

∫ t1

0

ds1 · · ·
∫ tN−1

0

dsN−1

∫ s0k,N

s1k−1,N

dsN
∂N

∂s1 · · · ∂sN
F (s1, . . . , sN)

=
s0k,N − s1k−1,N
s0k,N − s1k−1,N

B̃(t1, . . . , tN−1, s
1
k−1,N)

= B̃(p(t))

= B̃(t).

In order to complete the proof, it remains to check that the assumption
of Theorem 3.4 is satisfied, and, in particular, that the process

Lu = exp

[∫
RN−1
+ ×[0,u]

Z(s) · dB(s)− 1

2

∫
RN−1
+ ×[0,u]

‖Z(s)‖2 ds

]
, u ∈ [0,M ],

is a martingale. Since Z vanishes on RN \ U, it suffices, according to the
extension of Novikov’s criterion presented in [3, Chapter 3.5, Corollary 5.14],
to check that for n sufficiently large and ti = s1k−1,N + i

n
(s0k,N − s1k−1,N),

i = 0, . . . , n,

E

[
exp

(
1

2

∫ s1k,1

0

ds1 · · ·
∫ s1k,N−1

0

dsN−1

∫ ti

ti−1

dsN ‖Z(s)‖2
)]

< +∞.
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But this follows from the fact that the integral is bounded by

C

n
sup
j∈JN

‖(B(s
j(1)
k,1 , · · · , s

j(N−1)
k,N−1 , s

0
k−1,N))‖2,

for some constant C that depends only on Rk−1 and Rk, and this random
variable has a finite exponential moment if n is sufficiently large. The proof
of Lemma 3.5 is complete. �

Proof of Theorem 3.1. We proceed by induction on k. For k = 1, there
is nothing to prove. So assume that k ≥ 2 and that we have proved the
statement for k − 1.

We consider the two independent Brownian sheets B and Wk. We apply
Lemma 3.5 to both of these processes, producing processes B̂ and Ŵk such
that, in particular,

(1) B̂|R1 = B|R1 , . . . , B̂|Rk−1
= B|Rk−1

;

(2) B̂|Rk
and (B|R1 , . . . , B|Rk−1

) are independent;

(3) B|[0,M ]N and B̂|[0,M ]N have mutually equivalent probability laws;

(4) Ŵk|Rk
and Wk|Rk

have mutually equivalent probability laws;

(5) B̂|Rk
and Ŵk|Rk

have the same probability law.

We write L(B|R1 , . . . , B|Rk
) for the probability law of the random vector

(B|R1 , . . . , B|Rk
), and use “∼” to indicate mutually equivalent probability

laws. Then, by (3) and (1),

L(B|R1 , . . . , B|Rk
) ∼ L(B̂|R1 , . . . , B̂|Rk−1

, B̂|Rk
)

= L(B|R1 , . . . , B|Rk−1
, B̂|Rk

).

By (2) and (5), and since B and Wk are independent,

L(B|R1 , . . . , B|Rk−1
, B̂|Rk

) = L(B|R1 , . . . , B|Rk−1
, Ŵk|Rk

).

Let W1, . . . ,Wk−1 be independent Brownian sheets independent of Wk and
B. Since B and Wk are independent, we can use the induction hypothesis to
see that

L(B|R1 , . . . , B|Rk−1
, Ŵ |Rk

) ∼ L(W1|R1 , . . . ,Wk−1|Rk−1
, Ŵk|Rk

)
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By (4) and the independence of (W1, . . . ,Wk−1) and Wk, we conclude that

L(W1|R1 , . . . ,Wk−1|Rk−1
, Ŵk|Rk

) ∼ L(W1|R1 , . . . ,Wk−1|Rk−1
,Wk|Rk

),

and this proves Theorem 3.1. �
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