Restricted convolution inequalities, multilinear operators and applications. Clarification and errata.

Dan-Andrei Geba, Allan Greenleaf, Alex Iosevich, Eyvindur Palsson and Eric Sawyer

Pagination and numbering refer to the published version, Math. Res. Let. 20 (2013), no. 4, 675-694.

1. Clarification

It would have been helpful to explain the exponents in the main theorem, Thm. 1.3, by means of scaling. Observe how both sides of a possible more general estimate,

$$
\left\|\left.(F * G)\right|_{H}\right\|_{L^{r}(H)} \leq\|F\|_{\Lambda_{s, p}^{H}\left(\mathbb{R}^{n}\right)} \cdot\|G\|_{\Lambda_{t, q}^{H}\left(\mathbb{R}^{n}\right)},
$$

transform under dilations:
(i) Dilating by $0<\delta<\infty$ in the H directions and not in the H^{\perp} directions, the LHS of (1.4') scales by $\delta^{-\frac{k}{r^{\prime}}}$, while the RHS scales by $\delta^{-\frac{k}{p}} \cdot \delta^{-\frac{k}{q}}$, so that (1.4') holding uniformly in δ implies that

$$
\frac{1}{r^{\prime}}=\frac{1}{p}+\frac{1}{q}
$$

i.e., $\frac{1}{p}+\frac{1}{q}+\frac{1}{r}=1$, as in Thm. 1.3.
(ii) Similarly, dilating by $0<\epsilon<\infty$ in the H^{\perp} directions and not in the H directions scales the LHS by $\epsilon^{-(n-k)}$ and the RHS by $\epsilon^{-\frac{n-k}{s}} \cdot \epsilon^{-\frac{n-k}{t}}$, so that (1.4') holding uniformly in ϵ implies that

$$
1=\frac{1}{s}+\frac{1}{t}
$$

i.e., s, t are dual exponents. Thm. 1.3 only covers the case $s=t=2$.

[^0]
2. Corrections

There are also a number of typographical errors which might cause confusion.

1. p. 678 , in (1.10) in Cor. 1.7, the spaces are incorrect due to a transcription error. p and q should have been $\frac{p}{2}, \frac{q}{2}$, resp., so that the inequality should have been

$$
\begin{equation*}
\left\|\left.\widehat{F}\right|_{H}\right\|_{L^{r}(H)} \lesssim\left\|F \circ \rho_{H}\right\|_{L_{u}^{\frac{p}{2}} L_{v}^{1}}^{\frac{1}{2}} .\left\|F \circ \rho_{H}\right\|_{L_{u}^{\frac{q}{2}} L_{v}^{1}}^{\frac{1}{2}}, \quad p, q, r \geq 2, \frac{1}{p}+\frac{1}{q}+\frac{1}{r}=1 \tag{1.10}
\end{equation*}
$$

The estimate (1.11) is correct as stated, but (replacing p by $p / 2$), is perhaps more elegantly expressed as

$$
\begin{equation*}
\left\|\left.\widehat{F}\right|_{H}\right\|_{L^{p^{\prime}}(H)} \lesssim\left\|F \circ \rho_{H}\right\|_{L_{u}^{p} L_{v}^{1}}, \quad 1 \leq p \leq 2 \tag{1.11}
\end{equation*}
$$

We thank Mike Christ for pointing these out.
2. p. 680 , proof of Thm. 1.3 , just above $\S \S 2.2$, should read

Interpolation then gives (1.4) for $q=2, \frac{1}{p}+\frac{1}{r}=\frac{1}{2}, p, r \geq 2 \ldots$ also holds for $p=2, \frac{1}{q}+\frac{1}{r}=\frac{1}{2}, q, r \geq 2 \ldots$
3. p. 684 , proof of Cor. 3.5: should be
\ldots (3.2) holds with $\gamma=\frac{m d-1}{2}-\frac{(m-1) d}{2}=\frac{d-1}{2}$, using \ldots
There is also an example which is incorrect and should be removed:
4. p. 685 , Cor. 3.6: For the measure on the product of spheres, B_{ν} is just the pointwise product of the spherical averages on \mathbb{R}^{d} of each of the f_{j}. One can't beat simply applying Strichartz' $L^{\frac{d+1}{d}} \rightarrow L^{d+1}$ estimate for the spherical mean operator for each of these, followed by Hölder.

Department of Mathematics, University of Rochester, Rochester, NY 14627
E-mail address: dangeba@math.rochester.edu
E-mail address: allan@math.rochester.edu
E-mail address: iosevich@math.rochester.edu
Department of Mathematics and Statistics, Williams College, Williamstown, MA 01267
E-mail address: eap2@williams.edu
Department of Mathematics and Statistics, McMaster University, Hamilton, On L8S 4K1
E-mail address: sawyer@mcmaster.ca

[^0]: The first three authors were supported by NSF grants DMS-0747656, DMS-0853892 and DMS-1045404, resp. 2010 Mathematics Subject Classification: Primary 44A35; Secondary 42B25, 35B45 .

