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Abstract

Pairs of consecutive integers have the same height in the Collatz problem with

surprising frequency. Garner gave a conjectural family of conditions for exactly

when this occurs. Our main result is an infinite family of counterexamples to

Garner’s conjecture.

1. Introduction

The Collatz function C is a recursively defined function on the positive integers

given by the following definition.

Ck(n) =


n, if k = 0

Ck−1(n)/2, if Ck−1(n) is even

3 ∗ Ck−1(n) + 1, if Ck−1(n) is odd.

The famed Collatz conjecture states that, under the Collatz map, every positive

integer converges to one [2]. The trajectory of a number is the path it takes to

reach one. For example, the trajectory of three is

3→ 10→ 5→ 16→ 8→ 4→ 2→ 1.

The parity vector of a number is its trajectory considered modulo two. So the parity

vector of three is

〈1, 0, 1, 0, 0, 0, 0, 1〉.

Because applying the map n 7→ 3n+1 to an odd number will always yield an even

number, it is sometimes more convenient to use the following alternate definition of
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the Collatz map, often called T in the literature.

T k(n) =


n, if k = 0

T k−1(n)/2, if T k−1(n) is even

(3 ∗ T k−1(n) + 1)/2, if T k−1(n) is odd.

With this new definition, the trajectory of three becomes

3→ 5→ 8→ 4→ 2→ 1

and its T parity vector is

〈1, 1, 0, 0, 0, 1〉.

Since the Collatz conjecture states that, for every positive integer n, there exists

a non-negative integer k such that Ck(n) = 1, it is natural to ask for the smallest

such value of k. This k is called the height of n and denoted H(n). So, for example,

the height of three is seven because it requires seven iterations of the map C for

three to reach seven. In this paper, height is used only in association with the map

C, never the map T .

It turns out that consecutive integers frequently have the same height. Garner

made a conjecture that attempts to predict, in terms of the map T and its parity

vectors, exactly which pairs have the same height [1]. He proved that his condition

is sufficient to guarantee two consecutive numbers will have the same height, but

only surmised that it is a necessary condition.

The main idea in this paper is that phrasing Garner’s conjecture in terms of

the map C reveals an easier-to-verify implication of Garner’s conjecture, namely,

that if two consecutive integers have the same height, then they must reach 4 and

5 (mod 8) at the same step of their trajectory (see Proposition 1). Because this

condition is much easier to check than the conclusion of Garner’s conjecture, we were

able to find an infinite family of pairs of consecutive integers that do not satisfy

this condition, and, hence, constitute counterexamples to Garner’s conjecture (see

Theorem 4.1).
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2. Heights of consecutive integers

Recall that the smallest non-negative k such that Ck(n) = 1 is called the height of

n and denoted H(n). The following is a graph of the height H as a function of n.
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The striking regularity in the above graph is the starting point for our studies,

but remains largely elusive. If one näıvely searches for curves of best fit to the

visible curves therein, one quickly runs into a problem. What appear to be distinct

points in the above graph are actually clusters of points, as can be seen below.

Thus, it is not entirely clear which points one ought to work with when trying to

find a curve of best fit.

This leads to the surprising observation that many consecutive integers have

the same height. This is counterintuitive because if two integers are consecutive

then they are of opposite parity, so the Collatz map initially causes one to increase

(n 7→ 3n + 1) and the other to decrease (n → n
2 ). How, then, do they reach one

in the same number of iterations? We give a sufficient congruence condition to

guarantee two consecutive numbers will have the same height, and show that an



INTEGERS: 15 (2015) 4

all-encompassing theorem like Garner conjectured in [1] is not possible. In fact, we

show the situation is much more complicated than Garner originally thought.

The first pair of consecutive integers with the same height is twelve and thir-

teen. We see that for both numbers, C3(n) = 10. Clearly, once their trajectories

coincide, they will stay together and have the same height. This happens because

twelve follows the path

12→ 6→ 3→ 10,

and thirteen follows the path

13→ 40→ 20→ 10.

Now we seek to generalize this. It turns out that twelve and thirteen merely form the

first example of a general phenomenon, namely, numbers that are 4 and 5 (mod 8)

always coincide after the third iteration. The following result agrees with what

Garner found using parity vectors [1].

Theorem 2.1. If n > 4 is congruent to 4 (mod 8), then n and n + 1 coincide at

the third iteration and, hence, have the same height.

Proof. Suppose n > 4 and n ≡ 4 (mod 8). Then n = 8k+4, for some k ∈ N. Then,

because 8k + 4 and 4k + 2 are even, while 2k + 1 is odd, the trajectory of n under

the map C is

8k + 4→ 4k + 2→ 2k + 1→ 6k + 4.

Because n + 1 = 8k + 5 is odd, and 24k + 16 and 12k + 8 are even, the trajectory

of n + 1 under the map C is

8k + 5→ 24k + 16→ 12k + 8→ 6k + 4.

Therefore, n and n + 1 coincide at the third iteration.

3. Garner’s conjecture

Garner wanted to generalize this to predict all possible pairs of consecutive integers

that coincide. Since he used the map T (defined in Section 1) instead of the map

C, we will do the same in this section except during the proof of Proposition 1. He

observed that whenever two consecutive integers have the same height, their parity

vectors appear to end in certain pairs of corresponding stems immediately before

coinciding. He defined a stem as a parity vector of the form

si = 〈0, 1, 1, ..., 1︸ ︷︷ ︸
i 1′s

, 0, 1〉,
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and the corresponding stem as

s′i = 〈1, 1, 1, ..., 1︸ ︷︷ ︸
i 1′s

, 0, 0〉.

LaTourette used the following definitions of a stem and a block in her senior the-

sis [3], which we adhere to here as well. In what follows, we write Tw(n) to mean

apply the sequence of steps indicated by the parity vector w to the input n using

the map T .

Definition 1. (LaTourette) A pair of parity sequences s and s′ of length k are

corresponding stems if, for any integer x, Ts(x) = Ts′(x + 1) and, for any initial

subsequences v and v′ of s and s′ of equal length, |Tv(x) − Tv′(x + 1)| 6= 1 and

Tv(x) 6= Tv′(x + 1).

Definition 2. (LaTourette) A block prefix is a pair of parity sequences b and b′,

each of length k, such that for all positive integers x, Tb(x) + 1 = Tb′(x + 1).

In his conclusion, Garner conjectured that all corresponding stems will be of the

form si and s′i listed above. LaTourette conjectured the same.

Conjecture 1. (Garner) Any pair of consecutive integers of the same height will

have parity vectors for the non-overlapping parts of their trajectories ending in si
and s′i [1].

Garner gave no bound on the length of stem involved, though, so searching for

counterexamples by computer was a lengthy task. The big innovation in this paper

is that using the map C instead of the map T yields a much simple implication of

Garner’s conjecture, which makes it possible to search for counterexamples.

Proposition 1. If n and n+ 1 have parity vectors for the non-overlapping parts of

their trajectories ending in si and s′i, and k is the smallest positive integer such that

Ck(n) = Ck(n+ 1), then Ck−3(n) ≡ 4 (mod 8) and Ck−3(n+ 1) = Ck−3(n) + 1 or

Ck−3(n + 1) ≡ 4 (mod 8) and Ck−3(n) = Ck−3(n + 1) + 1.

Proof. To see this, we must change the Garner stems to be consistent with the map

C. Converting the parity vectors simply involves inserting an extra ‘0’ after each

‘1’. So Garner’s stems in terms of the map C now look like

si = 〈0, 1, 0, 1, 0, ..., 1, 0︸ ︷︷ ︸
i 1,0′s

, 0, 1, 0〉,

and

s′i = 〈1, 0, 1, 0, 1, 0, ..., 1, 0︸ ︷︷ ︸
i 1,0′s

, 0, 0〉.
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Now we will rearrange this more strategically. We have

si = 〈0, 1, 0, 1, ..., 0, 1︸ ︷︷ ︸
i 0,1′s

, 0, 0, 1, 0〉,

and

s′i = 〈1, 0, 1, 0, ..., 1, 0︸ ︷︷ ︸
i 1,0′s

, 1, 0, 0, 0〉.

The point of these stems is that the trajectories coincide right after this vector.

Since both end with a ‘0’, they have coincided one step before the end, so we can

simply omit the last ‘0’. Now the corresponding stems are only 〈0, 0, 1〉 and 〈1, 0, 0〉,
with repeated blocks in front of them. Terras[4] proved that there is a bijection

between the set of integers modulo 2k and the set of parity vectors of length k. The

algorithm to get from a parity vector of length 3 to an integer modulo 8 is explicit,

so we can easily determine that numbers with those parity vectors are congruent to

4 and 5 (mod 8), respectively.

Let j be the point at which they coincide, so Ck(n) = Ck(n + 1) = j. Applying

C−1 to j as prescribed by both 〈0, 0, 1〉 and 〈1, 0, 0〉 yields 4j−1
3 − 1 and 4j−1

3 ,

respectively. Thus, we see that Ck−3(n+ 1) = Ck−3(n) + 1. An identical argument

yields the case where Ck−3(n + 1) ≡ 4 (mod 8), and we get Ck−3(n) = Ck−3(n +

1) + 1 in that case as well.

So, written in terms of the map C, all of Garner’s other stems are simply re-

peated blocks of ‘01’ and ‘10’ in front of the stems 〈0, 0, 1〉 and 〈1, 0, 0〉. This is the

benefit of applying the map C in this situation. It is now feasible to check if a pair

of consecutive integers is a counterexample to Garner’s conjecture. Suppose n and

n + 1 have the same height. According to Garner’s conjecture, n and n + 1 would

have T parity vectors before coinciding that end in si and s′i. By Proposition 1, this

would in turn imply that n and n + 1 have C parity vectors ending in 〈0, 0, 1〉 and

〈1, 0, 0〉. Therefore, if we find a pair of positive integers n and n+ 1 such that their

parity vectors do not end in 〈0, 0, 1〉 and 〈1, 0, 0〉, we have found a counterexample

to Garner’s conjecture.

4. A counterexample to Garner’s conjecture

We initially believed Garner’s conjecture, but have since found many counterexam-

ples. The first counterexample is the pair 3067 and 3068. The C-parity vector of

3067 before coinciding with 3068 is

〈1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1〉,



INTEGERS: 15 (2015) 7

and that of 3068 is

〈0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0〉.

By inspection, the parity vectors do not end with 〈0, 0, 1〉 and 〈1, 0, 0〉 as Garner

predicted. Thus, Garner’s conjecture is false.

A computer search found that there are 946 counterexample pairs less than a

million. For numbers less than 5 billion, 0.214% of pairs of consecutive integers of

the same height are counterexamples. By a simple argument, we can see that there

must be infinitely many counterexample pairs.

Theorem 4.1. There are infinitely many counterexamples to Garner’s conjecture.

Proof. Consider the parity vectors of 3067 and 3068 up to the point where they

coincide. We know that there will be a pair with the same parity vectors for every

integer of the form 219m + 3067 by Terras’s bijection[4]. Each of these pairs will

coincide in the same way that 3067 and 3068 do and, thus, have the same height.

Therefore, there are infinitely many counterexamples to Garner’s conjecture.

5. Conclusion

At this point, we look at those numbers that do not have the stems Garner predicted

to see why they coincide. To salvage Garner’s conjecture, we seek to expand the

list of possible stems. To see what is going on, we have no choice but to examine

the trajectories of 3067 and 3068, side by side (See Appendix A).

We can see that there are no other places within the trajectories where their

values have a difference of one. Therefore, by the current definition of a stem, the

entire parity vector of length 27 (up until they coincide at 1384) is a new stem.

However, by this logic, the next counterexample, 4088 and 4089, has a new stem

of length 30. The next pair, 6135 and 6136, has a stem of length 28. It would

be ridiculous to have only one stem (of length 3) before 3067 and to suddenly

add dozens more of varying lengths. Instead, we look for some new type of stems

within these counterexample, stems that do not start with consecutive integers. The

trajectories of all three pairs listed above coincide at 1384. In fact, they have the

same 22 elements leading up to that. Thus, it is tempting to label that beginning as

the stem. But if we look further, the consecutive integers 32743 and 32744 join that

group just 5 steps before coinciding at 1384. Therefore, the situation is much more

complicated than Garner’s stems. It would be interesting to know if there is some

pattern similar to what Garner conjectured, perhaps with a much-expanded list
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of stems, that explains every pair of consecutive numbers that converges together.

However, we have found no such simple salvage of Garner’s conjecture.

We have shown that pairs of integers of the form 8m + 4 and 8m + 5 have

coinciding trajectories after 3 steps (and therefore have the same height). We have

also shown that all pairs that obey Garner’s conjecture ultimately reduce down

to the 4 and 5 (mod 8) case before coinciding. This allowed us to find that 3067

and 3068 form the smallest of an infinite family of counterexamples to Garner’s

longstanding conjecture [1].
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6. Appendix A

This chart shows the partial trajectories of the first eight counterexample pairs to

Garner’s conjecture.
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