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ABSTRACT. In his celebrated proof of Szemerédi’s theorem that a set of integers of positive
density contains arbitrarily long arithmetic progressions, W. T. Gowers introduced a certain
sequence of norms ‖ · ‖U 2[N ] ≤ ‖ · ‖U 3[N ] ≤ . . . on the space of complex-valued functions on
the set [N ]. An important question regarding these norms concerns for which functions
they are ‘large’ in a certain sense.

This question has been answered fairly completely by B. Green, T. Tao and T. Ziegler in
terms of certain algebraic functions called nilsequences. In this work we show that more
explicit functions called bracket polynomials have ‘large’ Gowers norm. Specifically, for a
fairly large class of bracket polynomials, called constant-free bracket polynomials, we show
that if φ is a bracket polynomial of degree k −1 on [N ] then the function f : n 7→ e(φ(n))
has Gowers U k [N ]-norm uniformly bounded away from zero.

We establish this result by first reducing it to a certain recurrence property of sets of
constant-free bracket polynomials. Specifically, we show that if θ1, . . . ,θr are constant-free
bracket polynomials then their values, modulo 1, are all close to zero on at least some
constant proportion of the points 1, . . . , N .

The proof of this statement relies on two deep results from the literature. The first is
work of V. Bergelson and A. Leibman showing that an arbitrary bracket polynomial can be
expressed in terms of a so-called polynomial sequence on a nilmanifold. The second is a
theorem of B. Green and T. Tao describing the quantitative distribution properties of such
polynomial sequences.

In the special cases of the bracket polynomials φk−1(n) = αk−1n{αk−2n{. . . {α1n} . . .}},
with k ≤ 5, we give elementary alternative proofs of the fact that ‖φk−1‖U k [N ] is ‘large’,
without reference to nilmanifolds. Here we write {x} for the fractional part of x, chosen to
lie in (−1/2,1/2].

1. INTRODUCTION

A remarkable theorem of E. Szemerédi [13] states that, for σ > 0, k ∈ N and N Àk,σ 1,
every subset of [N ] of cardinality at least σN contains a k-term arithmetic progression.
The first good bounds in this theorem were obtained in the celebrated proof of Szemerédi’s
theorem by W. T. Gowers [3].

A key observation in Gowers’s work was that arithmetic progressions in a finite abelian
group G can be detected using certain norms ‖ · ‖U 2(G) ≤ ‖ · ‖U 3(G) ≤ . . . on the space of
complex-valued functions on G . In general, the U k (G)-norm is helpful in detecting arith-
metic progressions of length k +1 in the group G , and this has led these norms to become
one of the major tools in additive combinatorics. Gowers called them uniformity norms;
they are now often called Gowers uniformity norms, or simply Gowers norms.
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Given a finite abelian group G , the Gowers norms ‖ · ‖U k (G) are defined as follows. First,
define the multiplicative derivative of a function f : G →C by

∆∗
h f (x) := f (x +h) f (x),

and abbreviate

∆∗
h1,...,hk

f (x) :=∆∗
h1

. . .∆∗
hk

f (x).

Then for each integer k ≥ 2 define the Gowers U k (G)-norm by

‖ f ‖U k (G) := (Ex,h1,...,hk∈G∆
∗
h1,...,hk

f (x))1/2k
.

It can be shown that ‖ · ‖U k (G) is indeed a norm, but we will not need this fact and so we
omit its proof.

Szemerédi’s theorem, of course, concerns arithmetic progressions in Z or, more pre-
cisely, in [N ] := {1, . . . , N }, neither of which is a finite group. However, it is also possible to
define the Gowers norm of a function f : [N ] →C, and this can then be applied in finding
arithmetic progressions inside [N ]. The following definition is reproduced from [10, §1].

Definition 1.1 (Gowers U k [N ]-norm). Given an integer N > 0 fix some other integer Ñ ≥
2k N . Define a function f̃ : Z/ÑZ→ C by f̃ (x) = f (x) for x ∈ [N ] and f̃ (x) = 0 otherwise.
Then ‖ f ‖U k [N ] is defined by

(1) ‖ f ‖U k [N ] := ‖ f̃ ‖U k (Z/ÑZ)/‖1[N ]‖U k (Z/ÑZ).

Here, and throughout the present work, if X is a set then 1X denotes the indicator function
of X .

As is remarked in [10, §1], it is easy to see that the quantity (1) is independent of the
choice of Ñ ≥ 2k N , and so ‖ ·‖U k [N ] is well defined.

Denote by D the unit disc {z ∈C : |z| ≤ 1}. It turns out that when applying Gowers norms
to finding arithmetic progressions in [N ] it is useful to have a classification of functions
f : [N ] →D satisfying

(2) ‖ f ‖U k [N ] ≥ δ.

A function satisfying (2) for a given δ is generally said to be non-uniform; a classification
of such functions is the content of so-called inverse conjectures and inverse theorems for
the Gowers norms.

It is easy to see that ‖ f ‖U k [N ] is bounded above by 1 for every function f : [N ] →D, and
also that this bound is attained by the function 1[N ]. In fact, there is a very natural broader
class of functions attaining this upper bound, which we now describe. Given a function
φ : [N ] →Rwe denote the discrete derivatives of φ by

∆hφ(n) :=φ(n +h)−φ(n),

and abbreviate

∆h1,...,hnφ :=∆h1 . . .∆hnφ.

Adopting the standard convention that e(x) := exp(2πi x), we have

(3) ∆∗
he(φ(x)) = e(∆hφ(x)).
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When φ is a polynomial of degree k − 1, this implies in particular that every term in the
sum

(4)
∑

n,h1,...,hk+1

∆∗
h1,...,hk+1

e(φ(n))

is equal to 1, and so if f : [N ] → D is the function defined by setting f (n) := e(φ(n)) then
the Gowers norm ‖ f ‖U k [N ] is equal to 1.

There are more exotic examples of functions f : [N ] → D satisfying (2). B. Green, T.
Tao and T. Ziegler [10, Proposition 1.4] show that certain algebraic functions called nilse-
quences, which we define shortly, are non-uniform. Indeed, they demonstrate the stronger
fact that any function that correlates with a nilsequence in a certain sense is non-uniform.

In order to define a nilsequence we must first recall that an s-step nilmanifold is the
quotient G/Γ of an s-step nilpotent Lie group G by a discrete cocompact subgroup Γ. For
example, if G is the Heisenberg group  1 R R

0 1 R

0 0 1


and Γ is the discrete subgroup  1 Z Z

0 1 Z

0 0 1


then it is straightforward to check that G/Γ has a fundamental domain in G defined by

(5)

 1 (−1/2,1/2] (−1/2,1/2]
0 1 (−1/2,1/2]
0 0 1

 ;

see, for example, [7, §1]. The subgroup Γ is therefore cocompact, and so G/Γ is a 2-step
nilmanifold, called the Heisenberg nilmanifold.

Throughout this paper, when we write that G/Γ is a nilmanifold we assume that G is a
connected, simply connected nilpotent Lie group.

A sequence yn is said to be an s-step nilsequence if there exists an s-step nilmanifold
G/Γ, elements g , x ∈G and a continuous function F : G/Γ→C such that

yn = F (g n xΓ).

It turns out that this exhausts all the possibilities for non-uniform functions. Indeed,
a remarkable inverse theorem for the Gowers norms, also due to Green, Tao and Ziegler
[11], states, roughly, that if f : [N ] → D satisfies (2) then f correlates with a (k − 1)-step
nilsequence. We refer the reader to [11] for a precise formulation.

Thus we have a comprehensive, if not particularly explicit, classification of all the Gow-
ers non-uniform functions f : [N ] →D. It is noted in [11, §1], however, that more explicit
formulations of the inverse conjectures for the Gowers norms are also possible. In the case
of a cyclic group Z/NZ of prime order, for example, [4, Theorem 10.9] gives a particularly
concrete inverse theorem for the Gowers U 3-norm.

In order to describe that result we require some notation. Here, and throughout this
work, we denote by {x} the fractional part of x ∈R, chosen to lie in (−1/2,1/2], and denote
by [x] the integer part [x] := x−{x}. Let N be a prime and let k ≥ 0. Then [4, Theorem 10.9]
says, roughly, that a function f :Z/NZ→D satisfies ‖ f ‖U 3(Z/NZ) ≥ δ if and only if there are
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ξ1,ξ2 ∈ �Z/NZ and a real number α such that f correlates with the function f ′ :Z/NZ→D

defined by

f ′(x) := e(α{ξ1 · x}{ξ2 · x}).

Again, we refer the reader to [4] for a precise statement.
The function x 7→ α{ξ1 · x}{ξ2 · x} is an example of a so-called bracket polynomial on

Z/NZ. It is also possible to define bracket polynomials on the set [N ], where N is now
an arbitrary positive integer. Essentially these are functions like φ : n 7→ 2n{

p
2n2}+n3

that are constructed from genuine polynomials using the operations +, ·, {·}; we give a pre-
cise definition in Section 2, and in particular clarify the notion of the degree of a bracket
polynomial.

It turns out that bracket polynomials on [N ] arise quite naturally from sequences on
nilmanifolds. To see this in the case of the bracket polynomial {αn[βn]}, for example, let
g (n) be the sequence in the Heisenberg group given by

g (n) =
 1 −αn 0

0 1 βn
0 0 1

 .

It is straightforward to check that the image of g (n) in the fundamental domain (5) is the
element  1 {−αn} {αn[βn]}

0 1 {βn}
0 0 1

 ,

in which {αn[βn]} appears quite prominently as the upper-right entry. This in fact turns
out to be a general phenomenon. Bergelson and Leibman [1] show that an arbitrary brac-
ket polynomial can be expressed in terms of a nilmanifold in similar fashion. See Theorem
6.3 for more details.

Given the role played by bracket polynomials on Z/NZ in the inverse theory for the
U 3(Z/NZ)-norms, as well as the link between bracket polynomials and sequences on nil-
manifolds due to Bergelson–Leibman and the link between sequences on nilmanifolds
and Gowers norms due to Green–Tao–Ziegler, it is natural to ask what role bracket poly-
nomials on [N ] play in the inverse theory for the U k [N ] norms. The aim of this paper is to
explore this role.

Our first, and principal, theorem states that a fairly large class of bracket polynomials
φ give rise to non-uniform functions e(φ). This is the class of constant-free bracket poly-
nomials. These are defined precisely in Section 2, but essentially a bracket polynomial is
said to be constant free if it is constructed from genuine polynomials using the operations
+, ·, { · }, and each of the genuine polynomials used in this construction has zero constant
term. Thus, for example, the bracket polynomial {αn{βn}}+γn2 is constant free, but the
bracket polynomial αn{βn +γ} is not.

We show, then, that if φ is a constant-free bracket polynomial of degree at most k − 1
then the quantity ‖e(φ)‖U k [N ] must be bounded away from zero. The bound obtained is
uniform in N . It does depend on the bracket polynomial being considered, but only on its
‘shape’; we make this precise in Section 2 using the notion of a bracket form, but essentially
this means, for example, that the bound obtained for the bracket polynomial {αn{βn}} is
uniform across all choices of α and β.
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Theorem 1.2 (Bracket polynomials are non-uniform; rough statement). Let φ be a con-
stant-free bracket polynomial of degree at most k −1. Then there is some δ, depending only
on the ‘shape’ of φ, such that

‖e(φ)‖U k [N ] ≥ δ.

See Theorem 2.8 for a more precise statement. The ‘constant-free’ condition results
from our use of Theorem 4.10; see also Remark 4.11.

At its simplest level, our proof of Theorem 1.2 rests on a preliminary result stating that
bracket polynomials have a rather suggestive property called being locally polynomial.

Definition 1.3 (Locally polynomial). Let φ : [N ] →R be a function and let B ⊂ [N ]. Then φ
is said to be locally polynomial of degree k −1 on B if whenever n ∈ [N ] and h ∈ [−N , N ]k

satisfy n +ω ·h ∈ B for all ω ∈ {0,1}k we have ∆h1,...,hkφ(n) = 0.

Indeed, we show in Section 3 that every bracket polynomial φ on [N ] is locally polyno-
mial on some ‘large’ set Bφ ⊂ [N ]. The relevance of this to the study of Gowers norms lies
in the identity (3). Just as this identity implied that the terms in the sum (4) were all equal
to 1 when φ was a genuine polynomial, if φ is locally polynomial on a suitably large set
then this suggests some bias towards 1 in the terms of the sum (4). This in turn suggests
that ‖e(φ)‖U k [N ] should be bounded away from zero.

Unfortunately, it is not clear that one can proceed directly from the property of being
locally polynomial to the property of having large Gowers norm, and so the results of Sec-
tion 3 alone are not sufficient to prove Theorem 1.2. In Section 4, however, we show that a
slightly stronger property, which we call being strongly locally polynomial, is sufficient to
imply that a bracket polynomial is non-uniform.

It turns out that a certain recurrence property of bracket polynomials is sufficient to
imply the property of being strongly locally polynomial, and hence to imply that a bracket
polynomial is non-uniform. This is the principal motivation for our second theorem.

Theorem 1.4 (Recurrence of bracket polynomials; rough statement). Let θ1, . . . ,θr be con-
stant-free bracket polynomials and let δ > 0. Then there are some ε > 0 depending only on
the ‘shapes’ of the θi , and N0 > 0 depending on the ‘shapes’ of the θi and on δ, such that
whenever N ≥ N0 the proportion of n ∈ [N ] for which {θi (n)} ∈ (−δ,δ) is at least ε.

See Theorem 4.10 for a precise statement. We show in Section 4 that this is sufficient to
imply Theorem 1.2; it is potentially also of interest in its own right.

Remark 1.5. We show by example in Remark 4.11 that the constant-free condition is neces-
sary in Theorem 1.4. Theorem 1.2, on the other hand, could conceivably remain true in the
absence of that condition.

In Section 6, we appeal to the work of Bergelson–Leibman showing that bracket polyno-
mials can be expressed in terms of certain sequences on nilmanifolds, as well as to work of
B. Green and T. Tao describing the distribution properties of such sequences, to establish
Theorem 1.4, or rather the more precise Theorem 4.10.

The appeal to the results of Bergelson–Leibman and Green–Tao in the proof of Theorem
1.2 renders the argument far from elementary. It is interesting to see for which bracket
polynomials one can use elementary methods to establish Theorem 1.2. In Sections 7
and 8 we consider this problem in the model setting of the bracket polynomials φk−1(n)
defined by αk−1n{αk−2n{. . . {α1n} . . .}}. Theorem 1.2 of course instantly tells us that

‖e(φk−1)‖U k [N ] Àk 1;
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in Sections 7 and 8 we arrive at this statement in the cases k ≤ 5 by entirely elementary
methods.

2. BRACKET POLYNOMIALS ON [N ]

In this section we give formal definitions of some of the concepts we discussed in the in-
troduction. In particular, we define bracket polynomials on [N ] precisely. The definitions
of bracket polynomials are essentially already contained in the literature; see, for example,
[1, 1.11-1.12]. Nonetheless, we give them in full detail here, in part so as to set notation,
but also in order to introduce the related concept of a bracket form. The latter is necessary
in order to make precise what we mean by ‘shape’ in Theorem 1.2.

Definition 2.1 (Bracket polynomials on [N ]). Bracket polynomials on [N ] are functions
from [N ] to R defined recursively as follows.

• A genuine polynomial φ of degree k is also a bracket polynomial of degree at most k.
• If φ : [N ] → R is a bracket polynomial of degree at most k then the functions −φ :

[N ] → R, defined by (−φ)(n) := −(φ(n)), and {φ} : [N ] → R, defined by {φ}(n) :=
{φ(n)}, are also bracket polynomials of degree at most k.

• If φ1,φ2 : [N ] → R are bracket polynomials of degree at most k1,k2, respectively,
then the function φ1 ·φ2 : [N ] → R defined by φ1 ·φ2(n) := φ1(n)φ2(n) is a bracket
polynomial of degree at most k1 +k2, and the function φ1 +φ2 : [N ] → R defined by
φ1 +φ2(n) :=φ1(n)+φ2(n) is a bracket polynomial of degree at most max{k1,k2}.

If in this definition we restrict the genuine polynomials to those with zero constant term, the
resulting functions are said to be constant-free bracket polynomials. Those bracket polyno-
mials that do not use the + operation are called elementary.

Remark 2.2. It will almost always be the case that we will be interested only in the value
of a bracket polynomial modulo 1, and so we might easily and naturally define bracket
polynomials to be functions into R/Z. However, certain statements and proofs are slightly
cleaner if we view them as functions into R and then project to R/Z only when it comes to
the final application.

In order to make the statement of Theorem 1.2 precise, we need some way of defining
what we mean by the ‘shape’ of a bracket polynomial. To that end, we first develop a def-
inition that formalises this concept for genuine polynomials. The basic idea is to say that
two polynomials φ1 and φ2 have the same ‘shape’ if there is some ‘polynomial’ in n with
coefficients taken from the list of symbols α1,α2, . . . such that both φ1 and φ2 can be ob-
tained by replacing each symbol αi by a real number. Thus, for example, the polynomials
3n2 and πn2 would have the same ‘shape’ because they can each be realised by replacing
the symbol α1 in the ‘polynomial’ α1n2 by a real number. We shall call α1n2 a polynomial
form and call 3n2 and πn2 realisations of the polynomial form α1n2.

In fact, the definition of a polynomial form will need to be slightly more complicated
than is suggested by the preceding paragraph. This is because in Appendix B it will be
convenient for the set of polynomial forms to form a ring.

Definition 2.3 (Ring of polynomial forms). Let α1,α2, . . . be a countably infinite list of sym-
bols; we shall call this list an alphabet. Define a monomial form in these symbols to be
a string of the form +αi1 · · ·αit nk or −αi1 · · ·αit nk , with i1 ≤ . . . ≤ it and k ≥ 0 an integer.
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Define k to be the degree of such a monomial form. If k 6= 0 then we additionally say that
+αi1 · · ·αit nk and −αi1 · · ·αit nk are constant-free monomial forms of degree k.

Now suppose that Φ1, . . . ,Φr is a finite list of monomial forms of degree at most k. Then
the string Φ1 + . . .+Φr is said to be a polynomial form of degree at most k. If the Φi are all
constant free then the string Φ1 + . . .+Φr is also said to be constant free.

We make the set of polynomial forms into a ring by defining multiplication on the set of
monomial forms, and then extending it (uniquely) to the set of polynomial forms by requir-
ing it to be distributive over addition. Specifically, we formally define multiplication on the
symbols + and − by setting (+·+) = (−·−) =+ and (+·−) = (−·+) =−, and then if each of
ε,ε′ represents either + or − we define the product of the monomial forms εαi1 · · ·αit nk and
ε′αi ′1 · · ·αi ′t ′ n

k ′
to be

εαi1 · · ·αit nk ·ε′αi ′1 · · ·αi ′t ′ n
k ′ = (ε ·ε′)α j1 · · ·α jt+t ′ n

k+k ′
,

where the α j1 , . . . ,α jt+t ′ are precisely the αi1 , . . . ,αit ,αi ′1 , . . . ,αi ′
t ′

, only permuted so that jl ≤
jl ′ whenever l < l ′.

From now on we drop the + from the polynomial form +αi1 · · ·αit nk and write simply
αi1 · · ·αit nk .

Thus, for example, the strings −α1n and −α2n3 are polynomial forms, and their product
is α1α2n4.

Definition 2.4 (Realisation of a polynomial form). Suppose that Φ is a polynomial form
featuring the symbols α1, . . . ,αm , and for each i = 1, . . . ,m let ai be a real number. Then the
polynomial obtained by replacing each instance of αi in Φ with the real number ai is said
to be a realisation of the polynomial form Φ.

Thus, for example, the stringΦ=α1n+α2n2−α1α2n3 is a polynomial form of degree at
most 3, and the polynomial 2n +3n2 −6n3 is a realisation of Φ.

To convert this into a definition valid for bracket polynomials, let us make the following
slightly more abstract version of Definition 2.1.

Definition 2.5 (Bracket expressions). Let A be a set. Then the bracket expressions in the el-
ements of A are certain strings of elements of a and the symbols +,−, ·, {, }, defined recursively
as follows.

• If a ∈ A then the string a is a bracket expression in the elements of A.
• If b is a bracket expression in the elements of A then the strings −b and {b} are also a

bracket expression in the elements of A.
• If b1,b2 are bracket expression in the elements of A then the strings b1 ·b2 and b1+b2

are bracket expressions in the elements of A.

Remark 2.6. Definition 2.5 is similar in spirit to that found in [1, §6.3].

Definition 2.7 (Bracket forms). Let A be the set of polynomial forms in the alphabet

α1,α2, . . . .

Then the bracket forms in the same alphabet are certain bracket expressions in the elements
of A defined recursively as follows.

• A polynomial form of degree at most k is also a bracket form of degree at most k.
• If Φ is a bracket form of degree at most k then the expressions −Φ and {Φ} are also

bracket forms of degree at most k.
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• If Φ1,Φ2 are bracket forms of degree at most k1,k2, respectively, then the expression
Φ1 ·Φ2 is a bracket form of degree at most k1 +k2, and the expression Φ1 +Φ2 is a
bracket polynomial of degree at most max{k1,k2}.

If the polynomial forms appearing in this recursive construction of a bracket form are all
constant free, then the resulting bracket form is also said to be constant free.

Now suppose that Φ is a bracket form featuring the symbols α1, . . . ,αm , and for each i =
1, . . . ,m let ai be a real number. Then the bracket polynomial obtained by replacing each
instance of αi in Φ with the real number ai is said to be a realisation of the bracket form Φ.

Thus, for example, the string Φ = {α1n{α2n}} is a constant-free bracket form of degree
at most 2, and the bracket polynomials {

p
2n{

p
3n}} and {πn{ 2

7 n}} are realisations of Φ.
We are now in a position to state a more precise version of Theorem 1.2.

Theorem 2.8 (Bracket polynomials are non-uniform; precise statement). Let Φ be a con-
stant-free bracket form of degree at most k −1. Then for every realisation φ of Φ we have

‖e(φ)‖U k [N ] ÀΦ 1.

When considering a bracket polynomial such as φ : n 7→ n{αn{βn}{γn}} it will be use-
ful to have a way of referring to the simpler ‘bracketed’ components, in this case {βn},
{γn} and {αn{βn}{γn}}, from which φ is built up. We shall therefore call {βn}, {γn} and
{αn{βn}{γn}} the bracket components of φ. In general, we shall use the following defini-
tion, which is similar, though not identical, to that found in [1, §8].

Definition 2.9 (Bracket components of a bracket polynomial). The set C (φ) of bracket
components of a bracket polynomial φ will be a set of bracket polynomials defined recur-
sively as follows.

• If φ is a genuine polynomial then C (φ) =∅.
• If φ=−ν for some bracket polynomial ν then C (φ) =C (ν).
• If φ= {ν} for some bracket polynomial ν then C (φ) =C (ν)∪ {ν}.1

• Ifφ= ν1 ·ν2 or ν1+ν2 for some bracket polynomials ν1,ν2 then C (φ) =C (ν1)∪C (ν2).

The set C (Φ) of bracket components of a bracket form Φ will be a set of bracket forms de-
fined analogously, as follows.

• If Φ is a polynomial form then C (Φ) =∅.
• If Φ=−Θ for some bracket form Θ then C (Φ) =C (Θ).
• If Φ= {Θ} for some bracket form Θ then C (Φ) =C (Θ)∪ {Θ}.
• If Φ=Θ1 ·Θ2 or Θ1 +Θ2 for some bracket forms Θ1,Θ2 then C (Φ) =C (Θ1)∪C (Θ2).

3. BRACKET POLYNOMIALS ARE LOCALLY POLYNOMIAL

We discussed in the introduction the relevance to the Gowers norms of the property of
being locally polynomial. The aim of this section is to show that bracket polynomials have
this property.

Proposition 3.1 (A bracket polynomial is locally polynomial on a set of positive density).
Letφ : [N ] 7→R be a bracket polynomial of degree at most k with |C (φ)| ≤ c. Then there exists
a set B ⊂ [N ] of cardinality Ωk,c (N ) on which φ is locally polynomial of degree at most k.

1Note that {ν} here is the singleton containing ν, not the fractional part of ν.
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The proof of this is straightforward, but will motivate much of what comes later. Before
we embark on the main body of the proof, let us record the following trivial, but repeatedly
useful, properties of fractional parts.

Lemma 3.2. Let x, y ∈R/Z and let δ< 1/2, and suppose that {x} and {y} both lie in a subin-
terval I ⊂ (−1/2,1/2] of width δ. Then

(i) {x}− {y} = {x − y}, and this quantity lies in the interval (−δ,δ);
(ii) if I is centred on 0 then we may additionally conclude that {x}+ {y} = {x + y} and

that this quantity also lies in the interval (−δ,δ).

The proof of Proposition 3.1 is essentially in two parts. In the first (more substantial)
part of the argument we identify a collection of sets on which φ is locally polynomial.

Proposition 3.3. Suppose thatφ : [N ] →R is a bracket polynomial of degree at most k. Then
there exists a parameter δÀk 1 such that if for each ν ∈C (φ) we have an interval Jν of width
at most δ inside (−1/2,1/2] then φ is locally polynomial of degree k on the set

{n ∈ [N ] : {ν(n)} ∈ Jν for all ν ∈C (φ)}.

The second part of the proof of Proposition 3.1 is a simple pigeonholing argument,
which we present as a lemma for ease of later reference, showing that at least one set of
the form given by Propopsition 3.3 must have cardinality Ωk,c (N ).

Lemma 3.4. Let I be an interval in R, let A ⊂ N be a finite set and let g1, . . . , gl : A → I be
functions. Let δ1, . . . ,δl < |I |. Then there exist subintervals J1, . . . , Jl ⊂ I of widths δ1, . . . ,δl ,
respectively, such that

|{n ∈ A : gi (n) ∈ Ji for i = 1, . . . , l }|Àl
δ1 · · ·δl |A|

|I |l .

Proof. This is essentially contained in the first part of the proof of [14, Lemma 4.20]. For
each i = 1, . . . , l we divide I into d|I |/δi e subintervals: b|I |/δi c of length δi , and at most one,
the remainder, of length less than δi .

Taking all products of these subintervals inside I l , we divide I l into
∏l

i=1d|I |/δi e boxes
of side lengths at most δ1, . . . ,δl . By the pigeonhole principle, one of these boxes must
contain the images of at least

(6)
|A|∏l

i=1d|I |/δi e
elements of A under the map

(g1, . . . , gl ) : A → I l .

Now (6) is certainly at least
δ1 · · ·δl |A|

2l |I |l ,

and so the lemma is proved. �

Proposition 3.3 follows more or less immediately from the following results, the proofs
of which occupy the remainder of this section.

Lemma 3.5. Let B ⊂ N, let ν : N→ R, and suppose that {ν}(B) is contained within an in-
terval J ⊂ (−1/2,1/2] of width δ < 1/2. Then ∆h{ν}(n) = {∆hν}(n) for every n ∈ B ∩ (B −h).
Furthermore, if ν is locally polynomial of degree at most k on B and δ< 2−k then {ν} is also
locally polynomial of degree at most k on B.
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Lemma 3.6. Let B ⊂ N and let ν1,ν2 : N→ R be functions. Suppose that ν1,ν2 are locally
polynomial of degree at most k1,k2, respectively, on B. Then ν1 +ν2 is locally polynomial of
degree at most max{k1,k2} on B and ν1 ·ν2 is locally polynomial of degree at most k1+k2 on
B.

Proof of Lemma 3.5. By Lemma 3.2 (i) we have

∆h{ν}(n) = {ν(n +h)}− {ν(n)}

= {ν(n +h)−ν(n)}

= {∆hν(n)},

which was the first conclusion of the lemma. If δ < 2−k then Lemma 3.2 (i) also implies
that the image of {∆hν} is contained within the interval (−2−k ,2−k ], and by induction we
may therefore assume that {∆hν} is locally polynomial of degree k −1 on B ∩ (B −h), and
hence conclude that {ν} is locally polynomial of degree k on B . �

Proof of Lemma 3.6. The assertion about ν1 +ν2 is immediate from the linearity of ∆h . To
prove the assertion about ν1 ·ν2, note that

∆h(ν1 ·ν2)(n) = ν1(n +h)ν2(n +h)−ν1(n)ν2(n)

= (∆hν1(n)+ν1(n))(∆hν2(n)+ν2(n))−ν1(n)ν2(n)

=∆hν1(n)∆hν2(n)+∆hν1(n)ν2(n)+ν1(n)∆hν2(n),

and so ∆h(ν1 ·ν2) =∆hν1 ·∆hν2 +∆hν1 ·ν2 +ν1 ·∆hν2. By induction each of these terms is
locally polynomial of degree at most k1 +k2 −1 on B ∩ (B −h), and so ∆h(ν1 ·ν2) is locally
polynomial of degree at most k1 +k2 −1 on B ∩ (B −h) by the first part of the lemma. �

4. STRONGLY LOCALLY POLYNOMIAL FUNCTIONS

Let φ : [N ] → R be a function and define f : [N ] → C by f (n) := e(φ(n)). In this section
we develop a criterion for f to have a positive Gowers U k -norm. Given a set B ⊂ [N ] of
cardinality Ω(N ) on which φ is locally polynomial of degree k −1 it is straightforward to
check that ‖1B · f ‖U k [N ] Àk 1. Indeed, given that

‖1B · f ‖U k [N ] Àk En∈[N ],h∈[−N ,N ]k

(
e(∆h1,...,hkφ(n))

∏
ω∈{0,1}k 1B (n +ω ·h)

)
= En∈[N ],h∈[−N ,N ]k

(∏
ω∈{0,1}k 1B (n +ω ·h)

)
=Pn∈[N ],h∈[−N ,N ]k (n +ω ·h ∈ B for all ω ∈ {0,1}k ),

it is an immediate consequence of the following lemma.

Lemma 4.1. Suppose B ⊂ [N ] satisfies |B | ≥σN and for j = 0,1,2, . . . write

B j := {(n,h) ∈ [N ]× [−N , N ] j : n +ω ·h ∈ B for all ω ∈ {0,1} j }.

Then |B j |À j ,σ N j+1.

Proof. The claim is trivial for the case j = 0, and so we may proceed by induction, assum-
ing that

(7) |B j−1|À j ,σ N j .
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For each h ∈ [−N , N ] j−1 write C (h) := {n ∈ [N ] : n +ω ·h ∈ B for all ω ∈ {0,1} j−1} and set
r (h) := |C (h)|; thus

(8) |B j−1| =
∑

h∈[−N ,N ] j−1

r (h).

Now note simply that B j = {(n, (h1, . . . ,h j−1,m − n)) : (h1, . . . ,h j−1) ∈ [−N , N ] j−1;m,n ∈
C (h)}, and so |B j | = ∑

h∈[−N ,N ] j−1 r (h)2, which is at least Ω j

((∑
h∈[−N ,N ] j−1 r (h)

)2 /N j−1
)

by Jensen’s inequality. By (8) this is at least Ω j (|B j−1|2/N j−1), which in turn is at least
Ω j ,σ(N j+1) by (7). �

Our task, then, if we wish to prove that f is non-uniform, is to remove the 1B from the
expression ‖1B · f ‖U k [N ] Àk 1. However, if we are to make use of the local behaviour of φ
on B then the set B will have to play at least some role.

The key to reconciling this is the following.

Lemma 4.2. Let φ : [N ] → R be a function and define f : [N ] → C by f (n) := e(φ(n)). Then
for every set B ⊂ [N ] we have

(9) ‖ f ‖U k [N ] Àk
∣∣En∈[N ],h∈[−N ,N ]k

(
e(∆h1,...,hkφ(n))

∏
ω∈{0,1}k \{0} 1B (n +ω ·h)

)∣∣ .

Proof. Given a finite abelian group G and functions gω : G → C indexed by ω ∈ {0,1}k , the
Gowers inner product 〈gω〉U k (G) is defined by

〈gω〉U k (G) := Ex∈G ,h∈Gk
∏
ω∈{0,1}k C |ω|gω(x +ω ·h).

Here we denote by C the operation of complex conjugation, and by |ω| the number of
entries of ω that are equal to 1. The Gowers–Cauchy–Schwarz inequality [14, (11.6)] states
that

|〈gω〉U k (G)| ≤
∏

ω∈{0,1}k

‖gω‖U k (G).

Since ‖1B · f ‖U k [N ] ≤ 1, setting g0 = f and gω = 1B · f in this inequality, with G = Z/ÑZ as
in Definition 1.1, yields the desired result. �

In order to conclude that f is non-uniform it will therefore be sufficient to find a set B
for which we are able to place a lower bound on the right-hand side of (9). In this context
it is natural to employ a slightly stronger notion than that of being locally polynomial.

Definition 4.3 (Strongly locally polynomial). Let φ : [N ] →R be a function and let B ⊂ [N ].
Then φ is said to be strongly locally polynomial of degree k − 1 on B if whenever n ∈ [N ]
and h ∈ [−N , N ]k satisfy n +ω ·h ∈ B for all ω ∈ {0,1}k \{0} we have ∆h1,...,hkφ(n) = 0.

Example 4.4. Suppose that φ(n) =αn{βn}. Then φ is strongly locally quadratic on the set

B := {n ∈ [N ] : {βn} ∈ (−1/16,1/16)}.

Indeed, suppose that n ∈ [N ] and h ∈ [−N , N ]3 satisfy n +ω ·h ∈ B for all ω ∈ {0,1}3\(0,0,0).
Then Lemma 3.2 implies that {βn} ∈ (−1/4,1/4), and so for each ω ∈ {0,1}3 (including ω =
(0,0,0)) the point n +ω ·h lies in

B ′ := {n ∈ [N ] : {βn} ∈ (−1/4,1/4)}.

Moreover, φ is locally quadratic on B ′ by Lemmas 3.5 and 3.6, and so ∆h1,h2,h3φ(n) = 0.

The reason for making this definition is the following result.
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Proposition 4.5. Let φ : [N ] → R be a function and define f : [N ] → C by f (n) := e(φ(n)).
Suppose that φ is strongly locally polynomial of degree k −1 on a set B ⊂ [N ] of cardinality
σN . Then ‖ f ‖U k [N ] Àk,σ 1.

Proof. This is a straightforward combination of Lemmas 4.1 and 4.2. �

In light of Proposition 4.5, if we wish to prove that ‖ f ‖U k+1[N ] À 1 then it is sufficient to
find a set B ⊂ [N ] satisfying |B | À N on which φ is strongly locally polynomial of degree
at most k. Unfortunately, we are not able just to take B to be an arbitrary set of the form
given by Proposition 3.3, as the following example illustrates.

Example 4.6. Suppose thatφ(n) =α{ 1
10 n}. Then Lemmas 3.5 and 3.6 imply thatφ is locally

linear on the set
B = {n ∈ [N ] : { 1

10 n} ∈ (1/4,1/2]}.

However, if n = 6 and h1 = h2 = −1 then n +h1, n +h2 and n +h1 +h2 all lie in B, but
∆h1,h2φ(n) =−α. Hence φ is not strongly locally linear on B.

Nonetheless, provided the intervals Jν appearing in the definition of a set of the form
given by Proposition 3.3 are sufficiently small and are sufficiently far from the bound-
ary of (−1/2,1/2], the problem exposed by Example 4.6 will not occur. Before we express
this precisely, let us establish some notation. For functions ν1, . . . ,νr : [N ] → R and sets
S1, . . . ,Sr ⊂ (−1/2,1/2] define the set

B r
N (ν1, . . . ,νr ;S1, . . . ,Sr ) := {n ∈ [N ] : {νi (n)} ∈ Si for all i }.

We typically abuse notation slightly and write BN instead of B r
N . For ε< 1/2 we write Iε for

the interval (−ε,ε).

Lemma 4.7. Let k ≥ 1 be an integer and set ck := 2−k (2k +1)−1. Suppose that φ : [N ] → R

is a bracket polynomial of degree at most k with bracket components ν1, . . . ,νm . Suppose
further that

(10) δ≤ ck

and that

(11) ε≥ kδ,

and that J1, . . . , Jm are intervals of width at most δ inside I 1
2−ε.

Then there is a set B ⊂ [N ] on which φ is locally polynomial of degree at most k and
such that if n ∈ [N ], h ∈ [−N , N ]k+1 and n +ω ·h ∈ BN (ν1, . . . ,νm ; J1, . . . , Jm) for every ω ∈
{0,1}k+1\{0} then n +ω · h ∈ B for every ω ∈ {0,1}k+1. In particular, φ is strongly locally
polynomial of degree at most k on the set BN (ν1, . . . ,νm ; J1, . . . , Jm).

Before we prove Lemma 4.7, let us note that in combination with Proposition 4.5 it im-
mediately implies the following result.

Proposition 4.8. Let k ≥ 1 be an integer and let ck be as in Lemma 4.7. Suppose that φ :
[N ] → R is a bracket polynomial of degree at most k with bracket components ν1, . . . ,νm .
Suppose further that δ ≤ ck and that ε ≥ kδ, and that J1, . . . , Jm are intervals of width at
most δ inside I 1

2−ε such that

|BN (ν1, . . . ,νm ; J1, . . . , Jm)| ≥σN .

Then, defining f : [N ] →C by f (n) := e(φ(n)), we have ‖ f ‖U k+1[N ] Àk,σ 1.
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Proof of Lemma 4.7. The lemma is trivial for genuine polynomials with B = [N ], and so we
may assume that we are in one of three cases:

Case 1. φ= {θ} with θ of degree at most k.
Case 2. φ= θ1 +θ2 with θi of degree at most ki and k1,k2 ≤ k.
Case 3. φ= θ1 ·θ2 with θi of degree at most ki and k1 +k2 ≤ k.

We proceed by induction on the number of operations required to construct φ. There-
fore, in case 1 we may assume that there exists a set B0 ⊂ [N ] on which θ is locally polyno-
mial; in cases 2 and 3 we may assume that there exist a set B1 ⊂ [N ] on which θ1 is locally
polynomial and a set B2 ⊂ [N ] on which θ2 is locally polynomial; and in each case we may
assume that n+ω·h ∈ Bi for everyω ∈ {0,1}k+1 whenever n+ω·h ∈ BN (ν1, . . . ,νm ; J1, . . . , Jm)
for every ω 6= 0.

In case 1 we may assume that φ = νm = {θ}. Suppose that n + ω · h ∈
BN (ν1, . . . ,νm ; J1, . . . , Jm) for every ω 6= 0. Then ∆hθ(n) = 0 by the inductive hypotheses,
and so repeated application of Lemma 3.2 implies that {θ(n)} ∈ J ′m := Jm + (−kδ,kδ). The
inequality (11) then implies that J ′m ⊂ (−1/2,1/2], whilst (10) and the definition of ck imply
that |J ′m | ≤ 2−k . Lemma 3.5 therefore implies that we may take B = B0 ∩BN (θ; J ′m).

In cases 2 and 3 we may simply take B = B1 ∩B2 by Lemma 3.6. �

In the event that the bracket components νi appearing in Proposition 4.8 are linear it is
elementary to show that there exist intervals Ji satisfying the hypotheses of that proposi-
tion, with σ depending only on k and m. Indeed, one can even insist that the intervals Ji

be centred at zero, as follows.

Lemma 4.9 (Sets of linear bracket polynomials are strongly recurrent). Let α1, . . . ,αr ∈ R,
let δ> 0 and let νi (n) := {αi n}. Then

|BN (ν1, . . . ,νr ; Iδ, . . . , Iδ)|Àr,δ N .

Proof. A pigeonholing argument similar to that used in [14, Lemma 4.20] gives points
ξ1, . . . ,ξr ∈ R and a subset A ⊂ [N ] satisfying |A| Àr,δ N such that whenever n ∈ A we have
‖α j n −ξ j‖R/Z < δ/2 for every j = 1, . . . ,r .

Following [14, Lemma 4.20], note that if ‖α j n − ξ j‖R/Z < δ/2 and ‖α j n′− ξ j‖R/Z < δ/2
for every j = 1, . . . ,r then by the triangle inequality we have ‖α j (n −n′)‖R/Z < δ for every
j = 1, . . . ,r . Therefore, writing m for the maximum element of A, the set (m − A)\{0} is
contained in BN (ν1, . . . ,νr ; Iδ, . . . , Iδ), and so

|BN (ν1, . . . ,νr ; Iδ, . . . , Iδ)| ≥ |m − A|−1 Àr,δ N .

�

Combined with Proposition 4.8, this immediately implies Theorem 2.8 in the case that
every bracket component of Φ is linear. To conclude Theorem 2.8 in general, we require
the following generalisation of Lemma 4.9.

Theorem 4.10 (Recurrence of bracket polynomials; precise statement). Let Θ1, . . . ,Θr be
constant-free bracket forms and suppose that θ1, . . . ,θr are realisations of Θ1, . . . ,Θr , respec-
tively. Let δ> 0. Then, provided N is sufficiently large in terms of Θ1, . . . ,Θr and δ, we have

|BN (θ1, . . . ,θr ; Iδ, . . . , Iδ)|ÀΘ1,...,Θr ,δ N .
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Remark 4.11. The restriction here to constant-free bracket forms is necessary. For example,
in the case r = 1, if Θ1 were the bracket form {1/2+αn} then for c ¿ N−1 the realisation
{1/2+ cn} of Θ1 would not satisfy the theorem.

We prove Theorem 4.10 in Section 6.
Compared to Lemma 4.9, the proof of which was very straightforward, Theorem 4.10

appears to be rather deep, in that our proof makes use of two major results from the lit-
erature. The first is work of Bergelson and Leibman [1] that allows us to express a bracket
polynomial in terms of a so-called polynomial sequence on a nilmanifold. The second is
a difficult theorem of Green and Tao [7] describing the distribution of such polynomial
sequences.

Of course, it may well be that there is an elementary proof of Theorem 4.10, or at least of
some variant of it that is still strong enough to imply Theorem 2.8. In Sections 7 and 8 we
give elementary arguments establishing weak versions of Theorem 4.10 that are sufficient
to prove Theorem 2.8 in certain simple cases.

5. BASES AND COORDINATES ON NILMANIFOLDS

Our aim now is to prove Theorem 4.10. As we remarked at the end of the last section, the
proof makes use of results of Bergelson and Leibman [1] that allow us to express a bracket
polynomial in terms of a so-called polynomial sequence on a nilmanifold, and results of
Green and Tao [7] that describe the behaviour of such a sequence.

Even just to state these results requires a fair amount of background and notation con-
cerning nilmanifolds, which we introduce in this section. This allows us to state the results
of Bergelson–Leibman and Green–Tao in the next section, where we also prove Theorem
4.10.

At this point let us recall our convention, which applies throughout this paper, that
when we write that G/Γ is a nilmanifold we assume that G is a connected and simply
connected nilpotent Lie group. This is consistent with a standing assumption in [7], for
example.

We start this section by introducing Mal’cev bases and coordinates on nilmanifolds.
These are standard concepts in the study of nilpotent Lie groups and nilmanifolds, and
are well documented in the literature; the reader may consult [2], for example, for more
detailed background.

Definition 5.1 (Mal’cev basis of a nilpotent Lie algebra [2, §1.1.13]). Let g be an m-dimen-
sional nilpotent Lie algebra, and let X = {X1, . . . , Xm} be a basis for g over R. Then X is said
to be a Mal’cev basis for g if for each j = 0, . . . ,m the subspace h j spanned by the vectors
X j+1, . . . , Xm is a Lie algebra ideal in g.

In the event that g is the Lie algebra of a connected, simply connected nilpotent Lie group
G, we sometimes say that X is a Mal’cev basis for G.

Remark 5.2. It follows from [2, Theorem 1.1.13] that every nilpotent Lie algebra admits a
Mal’cev basis. We will not need this general fact in this paper, however, since we deal only
with explicit bases that can easily be verified to be Mal’cev bases.

We can use a Mal’cev basis for a connected, simply connected nilpotent Lie group G to
place a coordinate system on G , using the following result.
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Proposition 5.3. Let G be a connected, simply connected, m-dimensional nilpotent Lie
group with Lie algebra g. Then for every g ∈ G there is a unique m-tuple (t1, . . . , tm) ∈ Rm

such that

(12) g = exp(t1X1) · · ·exp(tm Xm).

Proof. It follows from [2, Theorem 1.2.1 (a)] and [2, Proposition 1.2.7 (c)] that every ele-
ment in expg can be expressed uniquely in the form (12), and from [2, Theorem 1.2.1 (a)]
that expg=G . �

This allows us to make the following definition.

Definition 5.4 (Mal’cev coordinates). Let G be a connected, simply connected, m-dimen-
sional nilpotent Lie group with Lie algebra g, and let g ∈ G. Then we call the ti appearing
in the expression (12) the Mal’cev coordinates of g . We define the Mal’cev coordinate map
ψ=ψX : G →Rm by

ψ(g ) := (t1, . . . , tr ).

Definition 5.5 (Mal’cev basis for a nilmanifold). Let G/Γ be an m-dimensional nilmani-
fold. Then a Mal’cev basis X for G is said to be compatible with Γ if Γ consists precisely of
those elements whose Mal’cev coordinates are all integers. We also indicate this by saying
simply that X is a Mal’cev basis for G/Γ.

In the event that X is a Mal’cev basis for G/Γ, for each g ∈ G there is a unique z ∈ Γ
for which the coordinates of g z all lie in (−1/2,1/2]; see, for example, [7, Lemma A.14].
In this case, we call the coordinates of g z the nilmanifold coordinates of g , and define the
nilmanifold coordinate map χ=χX : G → (−1/2,1/2]m by

χ(g ) :=ψ(g z).

These definitions are somewhat technical, so at this point the reader may find it instruc-
tive to consider the following example.

Example 5.6. Let G/Γ be the Heisenberg nilmanifold. Let

X1 = log
(

1 0 0
0 1 1
0 0 1

)
X2 = log

(
1 1 0
0 1 0
0 0 1

)
X3 = log

(
1 0 1
0 1 0
0 0 1

)
and let X = {X1, X2, X3}. It is straightforward to check that(1 x z

0 1 y
0 0 1

)
= exp(y X1)exp(x X2)exp(z X3),

and so X is a Mal’cev basis for G/Γ and its Mal’cev coordinate map ψX satisfies

ψX

((1 x z
0 1 y
0 0 1

))
= (y, x, z).

On the other hand, if we change the order of X1, X2, X3, setting

Y1 = X2 Y2 = X1 Y3 = X3

and setting Y = {Y1,Y2,Y3}, then we have(1 x z
0 1 y
0 0 1

)
= exp(xY1)exp(yY2)exp((z −x y)Y3).

Thus Y is also a Mal’cev basis for G/Γ, but the Mal’cev coordinate map ψY satisfies

ψY

((1 x z
0 1 y
0 0 1

))
= (x, y, z −x y).
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In particular, note that changing the order of the basis elements does not simply change the
order of the Mal’cev coordinates.

For the purposes of this paper we will need to consider slightly more specific Mal’cev
bases than those we have defined so far.

Definition 5.7 (Filtration of a nilpotent group). Let G be a nilpotent group. A filtration G•
of G is a sequence of closed connected subgroups

G =G0 =G1 ⊃G2 ⊃ ·· · ⊃Gd ⊃Gd+1 = {1}

with the property that [Gi ,G j ] ⊂ Gi+ j for all integers i , j ≥ 0. We define the degree of G• to
be the minimal integer d such that Gd+1 = {1}.

For example, the lower central series is a filtration with degree equal to the nilpotency
class of the group.

Definition 5.8 (Mal’cev basis adapted to a filtration [7, Definition 2.1]). Let G/Γ be an m-
dimensional nilmanifold and let G• be a filtration for G. A Mal’cev basis X = {X1, . . . , Xm}
for G/Γ is said to be adapted to G• if for each i = 1, . . . ,d we have Gi = exphm−dimGi . Here
h j = Span{X j+1, . . . , Xm} as in Definition 5.1.

Remark 5.9. According to a result of Mal’cev [12], every nilmanifold admits a Mal’cev basis
adapted to the lower central series. It is easy to check that the Mal’cev bases for the Heisen-
berg group that we considered in Example 5.6 are both Mal’cev bases adapted to the lower
central series.

We close this section by introducing some higher-step variants of the Heisenberg nil-
manifold, and some Mal’cev bases for them. We denote by Tp the group of (p +1)× (p +1)
real upper-triangular matrices with every diagonal element equal to 1; thus, for example,
T2 is the Heisenberg group. Define Zp to be the subgroup of Tp consisting of those ma-
trices having only integer entries. The quotient Tp /Zp is then a p-step nilmanifold. We
define a Mal’cev basis for Tp /Zp as follows.

Definition 5.10 (Standard basis for an upper-triangular nilmanifold). Let p ∈N, and let U
be the set of all elements of Tp that have one non-diagonal entry equal to 1, and every other
non-diagonal entry equal to zero. Now for i = 1, . . . , p define Ui to be the set of elements
of U in which the unique non-diagonal non-zero entry is at a distance i from the main
diagonal; more precisely, if the unique non-diagonal non-zero entry of A ∈ U is the ( j ,k)
entry then A belongs to Uk− j . Note, therefore, that U is the union of the Ui , and that for
each l = 1, . . . , p + 1 and each i = 1, . . . , p the set Ui contains at most one element with a
non-diagonal non-zero entry in row l .

Then we define the standard basis Xp for Tp /Zp to consist of the elements of U , ordered
such that if i < j then every element of Ui appears before every element of U j , and such
that if j < k then an element of Ui whose non-diagonal non-zero entry lies in row j appears
before any element of Ui whose non-diagonal non-zero entry lies in row k.

More generally, let r ∈ N, and for each i = 1, . . . , p and each j = 1, . . . ,r define the subset
Ui , j of the direct product T r

p to be the set

{(A1, . . . , Ar ) ∈ T r
p : A j ∈Ui ; Ak = 1 for all k 6= j }.

Then we define the standard basis Xp,r for T r
p /Z r

p to consist of those elements belonging to
the union of the Ui , j , ordered such that if i < i ′ and j , j ′ are arbitrary then every element of
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Ui , j appears before every element of Ui ′, j ′ ; such that if j < j ′ and i is arbitrary then every
element of Ui , j appears before every element of Ui , j ′ ; and such that if A,B ∈ Ui and A ap-
pears before B in the basis Xp then the element (1, . . . ,1, A,1, . . . ,1) of Ui , j appears before the
element (1, . . . ,1,B ,1, . . . ,1) of Ui , j in Xp,r .

Thus, for example, the standard basis for T 2
2 consists of the elements((

1 1 0
0 1 0
0 0 1

)
,
(

1 0 0
0 1 0
0 0 1

))
,((

1 0 0
0 1 1
0 0 1

)
,
(

1 0 0
0 1 0
0 0 1

))
,((

1 0 0
0 1 0
0 0 1

)
,
(

1 1 0
0 1 0
0 0 1

))
,((

1 0 0
0 1 0
0 0 1

)
,
(

1 0 0
0 1 1
0 0 1

))
,((

1 0 1
0 1 0
0 0 1

)
,
(

1 0 0
0 1 0
0 0 1

))
,((

1 0 0
0 1 0
0 0 1

)
,
(

1 0 1
0 1 0
0 0 1

))
,

in that order.

Remark 5.11. It is straightforward to check that the standard basis for Tp /Zp is indeed a
Mal’cev basis, adapted to the lower central series [1, §5].

The definition of a Mal’cev basis X of a nilpotent Lie algebra g requires that the vector
subspaces h j are Lie algebra ideals, which is to say that

[g,h j ] ⊂ h j ( j = 0, . . . ,m −1).

If X is a Mal’cev basis for a nilmanifold adapted to a filtration, however, then it obeys the
stronger property that

(13) [g,h j ] ⊂ h j+1 ( j = 0, . . . ,m −1);

here, we adopt the convention that hm = {0}. In [7], (13) is called the nesting property. The
nesting property turns out to be an important technical condition for various results from
[7, Appendix A] that we use repeatedly in this paper. However, when we apply these results
it is not always the case that we are applying them to a Mal’cev basis adapted to a filtration.
It is therefore useful to introduce the following definition.

Definition 5.12 (Nested Mal’cev basis). Let g be an m-dimensional nilpotent Lie algebra.
A Mal’cev basis for g that satisfies (13) is called a nested Mal’cev basis.

We close this section by defining what it means for a basis for g to be rational in a quan-
titative sense, which is an essential concept for understanding the results of Green and Tao
that we present in the next section.

Definition 5.13 (Quantitative rationality). The height of a rational number x is defined
to be max{|a|, |b|} if x = a/b in reduced form. If Y , X1, . . . , Xr ∈ Rm then we say that Y is
a Q-rational combination of the Xi if there are rationals qi of height at most Q such that
Y = q1X1 + . . .+qr Xr .
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Definition 5.14 (Rationality of a basis). Let g be a nilpotent Lie algebra with basis X =
{X1, . . . , Xm}. We say that X is Q-rational if the structure constants ci j k appearing in the
relations

[Xi , X j ] =∑
k

ci j k Xk

are all rational of height at most Q.

6. POLYNOMIAL SEQUENCES ON NILMANIFOLDS

In this section we introduce results of Bergelson and Leibman [1] and Green and Tao
[7] that allow us to prove Theorem 4.10. We start by describing the work of Bergelson and
Leibman.

Recall from the introduction that the bracket polynomial {αn[βn]} arises naturally from
the sequence

(14) g (n) =
 1 −αn 0

0 1 βn
0 0 1


in the Heisenberg nilmanifold. Remarkably, Bergelson and Leibman show that every brac-
ket polynomial arises in a similar way.

Definition 6.1 (Polynomial mappings and polynomial forms). A map ρ :Z→ T r
p is said to

be a polynomial mapping of degree at most k if there are polynomialsφi , j ,l of degree at most
k such that for each n ∈Z the (i , j )-entry of the matrix ρl (n) is given by φi , j ,l (n). If the φi , j ,l

all have zero constant term then ρ is said to be a constant-free polynomial mapping.
Now letΦi , j ,l be polynomial forms of degree at most k in the sense of Definition 2.3. Then

the r -tuple P = (P1, . . . ,Pr ) of (p +1)× (p +1) matrices whose diagonal entries are all 1, and
such that every above-diagonal (i , j )-entry of Pl is equal to the polynomial form Φi , j ,l , is
said to be a polynomial form of degree at most k on T r

p . If everyΦi , j ,l is constant free then P
is also said to be constant free.

Finally, for each i , j , l let φi , j ,l be a realisation of Φi , j ,l . Let ρ :Z→ T r
p be the polynomial

mapping defined by setting the (i , j )-entry of ρl (n) equal to φi , j ,l (n). Then ρ is said to be a
realisation of the polynomial form P.

Remark 6.2. If the α and β appearing in (14) are taken to be elements of some alphabet (as
opposed to real numbers) then the matrix g (n) can be viewed as a polynomial form of degree
at most 1 on T2. It follows from [1, §5.8] that for every p,r the nilmanifold coordinates χ(g )
of an element g ∈ T r

p with respect to the standard basis are given by bracket expressions in
the entries of the matrices appearing in g . Thus, in particular, if P is a polynomial form on
T r

p then each coordinate χ(P )i naturally defines a bracket form.

Theorem 6.3 (Bergelson–Leibman [1]). Let Θ1, . . . ,Θr be constant-free bracket forms. Then
there exist p ≥ 1, a constant-free polynomial form P on T r

p , and a nested Mal’cev basis Y =
{Y1, . . . ,Ym} for T r

p /Z r
p such that each element Yi of Y is equal to either an element X j of

the standard basis X or its inverse −X j , and such that for every i = 1, . . . ,r we have either
{Θi } =χY (P )m−r+i or {−Θi } =χY (P )m−r+i .

Theorem 6.3 is not stated exactly in this way in Bergelson and Leibman’s paper, but
it can be read out of the work contained therein. In particular, Bergelson and Leibman
express concrete bracket polynomials in terms of concrete polynomial mappings, whereas
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Theorem 6.3 expresses bracket forms in terms of polynomial forms. The reason for this
modification is to make it clear that all implied constants appearing in our subsequent
work are uniform across all realisations of a given bracket form. In Appendix B we offer
a brief discussion of how to obtain Theorem 6.3 from the original work of Bergelson and
Leibman.

It turns out to be useful to note, as we do in Lemma 6.6 below, that polynomial map-
pings into nilmanifolds are examples of slightly more specific objects called polynomial
sequences on nilmanifolds. We define these now.

Definition 6.4 (Polynomial sequence in a nilpotent group). Let G be a nilpotent group with
a filtration G• and let g : Z→ G be a sequence. For h ∈ Z define ∂h g (n) := g (n +h)g (n)−1.
Then g is said to be a polynomial sequence with respect to the filtration G• if ∂hi . . .∂h1 g
takes values in Gi for all i ∈N and h1, . . . ,hi ∈Z.

Example 6.5. In the Heisenberg group T2, the sequence 1 α1n βn2

0 1 α2n
0 0 1


is a polynomial sequence with respect to the lower central series. In the group T3 the se-
quence 

1 α1n β1n2 γn3

0 1 α2n β2n2

0 0 1 α3n
0 0 0 1


is a polynomial sequence with respect to the lower central series. More generally, if g (n) is
a sequence inside the group Tp defined by a matrix, each of whose entries is a polynomial
in n of degree at most its distance from the main diagonal, then g is a polynomial sequence
with respect to the lower central series. We leave it to the reader to verify this fact.

The polynomial sequences given in Example 6.5 are of course also polynomial map-
pings into Tp . However, not every polynomial mapping is a polynomial sequence with
respect to the lower central series, as can be seen by considering, for example, the map-
ping (

1 αn2

0 1

)
into T1. It turns out, however, that every polynomial mapping into T r

p is a polynomial
sequence with respect to some filtration.

Lemma 6.6. Let k, p,r ∈N. Then there is a filtration G• of T r
p of degree at most Ok,p (1) with

respect to which every polynomial mapping ρ : Z→ T r
p of degree at most k is a polynomial

sequence, and such that the standard basis X for T r
p /Z r

p is a Mal’cev basis adapted to G•.

We prove Lemma 6.6 shortly, but first we note the following statement, which is a key
ingredient of Lemma 6.6.

Lemma 6.7. Let k, p,r ∈N. Then there is a some d ∈N depending only on k and p such that
if ρ is an arbitrary polynomial mapping of degree at most k into T r

p then the derivatives
∂hd+1 . . .∂h1ρ are all trivial.
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The proof of Lemma 6.7 is a straightforward exercise, but given its importance to this
paper we present it in full in Appendix C.

Proof of Lemma 6.6. Let G ′• be the lower central series of T r
p , which is a filtration of degree

p, and let d be the natural number given by Lemma 6.7. Following the procedure outlined
in the paragraphs following [7, Corollary 6.8], define a finer filtration G• of degree pd by
setting Gi = G ′

di /de. Then ρ is a polynomial sequence for the filtration G•, and so the first
conclusion of the lemma is proved.

The fact that X is a Mal’cev basis adapted to G• follows straightforwardly from the fact
(noted in Remark 5.11) that it is a Mal’cev basis adapted to G ′•, and from the fact that each
Gi is equal to some G ′

j . �

Our objective in this section is to prove Theorem 4.10, which is a recurrence result for
bracket polynomials, modulo 1. Moreover, in light of Theorem 6.3 and Lemma 6.6 the
study of bracket polynomials reduces, in a sense, to the study of polynomial sequences
on nilmanifolds. This suggests that it would be useful to understand the distribution of
such polynomial sequences. We now describe deep work of Green and Tao investigating
precisely this.

We start by defining a metric on a nilmanifold.

Definition 6.8 (Metrics on nilmanifolds). Given a nilmanifold G/Γ with a rational nested
Mal’cev basis X , we define a metric d = dG ,X on G by taking the largest metric such that
d(x, y) ≤ |ψ(x y−1)| for all x, y ∈G; here, and throughout this paper, | · | denotes the `∞-norm
on RdimG . We also define a metric d = dG/Γ,X on G/Γ by

d(xΓ, yΓ) = inf
z∈Γ

d(x, y z).

Remark 6.9. It is shown in [7, Lemma A.15] that this is a metric on G/Γ. Note that, although
the hypotheses of that lemma include the assumption that X is a Mal’cev basis adapted to
some filtration, all that is used is that the elements of Γ have integer coordinates, and that
X is rational and nested (the assumption that X is nested being necessary in order to apply
[7, Lemmas A.4 and A.5]).

This definition is rather abstract. However, we never need to calculate it explicitly, and
the only properties we require are detailed in [7, Appendix A]. The interested reader may
find a more explicit formulation of this metric in [7, Definition 2.2].

One immediate property of the metric d is that it is right invariant, in the sense that

(15) d(x, y) = d(xg , y g )

for every x, y, g ∈G . Another is that the metric d is symmetric at the identity, in the sense
that

(16) d(x,1) = d(x−1,1)

for every x ∈G .
Once we have a metric on G/Γ we are able to make the following definitions.

Definition 6.10 (Lipschitz norm). Define the Lipschitz norm ‖ · ‖Lip on the space of Lips-
chitz functions f : G/Γ→C by

‖ f ‖Lip := ‖ f ‖∞+ sup
x 6=y

| f (x)− f (y)|
d(x, y)

,
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Definition 6.11 (Equidistribution). Let G/Γ be a nilmanifold, and write µ for the unique
normalised Haar measure on G/Γ. A sequence (g (n)Γ)n∈Z is said to be equidistributed in
G/Γ if for every continuous function f : G/Γ→Cwe have

En∈Z f (g (n)Γ) =
∫

G/Γ
f dµ.

Now let δ > 0 be a parameter and let Q ⊂ Z be an arithmetic progression of length N . A
sequence (g (n)Γ)n∈Q is said to be δ-equidistributed in G/Γ if for every Lipschitz function
f : G/Γ→Cwe have ∣∣∣∣En∈Q f (g (n)Γ)−

∫
G/Γ

f dµ

∣∣∣∣≤ δ‖ f ‖Lip.

We say that (g (n)Γ)n∈Q is totally δ-equidistributed if (g (n)Γ)n∈Q ′ is δ-equidistributed for
every subprogression Q ′ ⊂Q of length at least δN .

The key result of Green and Tao shows that every polynomial sequence g on a nilmani-
fold G/Γ has an ‘equidistributed’ component, in a certain precise sense. More specifically,
their result allows us to factor an arbitrary polynomial sequence g on a nilmanifold G/Γ
as a product εg ′γ, in which g ′ is δ-equidistributed on some subnilmanifold G ′/Γ′ of G , in
which ε is ‘almost constant’ in a certain sense, and in which γ is periodic with fairly short
period. Thus, ignoring for the moment the effects of the ‘almost constant’ sequence ε, we
see that g is roughly equidistributed on the union of a small number of translates of the
subnilmanifold G ′/Γ′.

For this to make sense, we must first define what we mean by a ‘subnilmanifold’.

Definition 6.12 (Rational subgroups and subnilmanifolds). Let G/Γ be a nilmanifold with
Mal’cev basis X = {X1, . . . , Xm}. Suppose that G ′ is a closed connected subgroup of G. We say
that G ′ is Q-rational relative to X if the Lie algebra g′ has a basis consisting of Q-rational
combinations of the Xi . In this case, the subgroup Γ′, defined to be G ′ ∩ Γ, is a discrete
cocompact subgroup of G ′, and so G ′/Γ′ is a nilmanifold. We call G ′/Γ′ a subnilmanifold of
G/Γ.

We must also define a way in which a polynomial sequence can be ‘almost constant’.

Definition 6.13 (Smooth sequences). Let M , N ≥ 1. Let G/Γ be a nilmanifold with Mal’cev
basis X , and let d be the metric on G associated to X . Let (ε(n))n∈Z be a sequence in G.
Then we say that (ε(n))n∈Z is (M , N )-smooth if

d(ε(n),1) ≤ M and d(ε(n),ε(n −1)) ≤ M/N

for all n ∈ [N ].

We can now finally state precisely the factorisation theorem of Green and Tao.

Theorem 6.14 (Green–Tao [7, Theorem 1.19]). Let M0, N > 0 and let A > 0. Let G/Γ be a
nilmanifold with a filtration G• of degree d and let X be an M0-rational Mal’cev basis for
G/Γ adapted to G•. Let g : Z→ G be a polynomial sequence such that g (0) = 1. Then there

exist an integer M with M0 ≤ M ≤ M
O A,G ,G• (1)
0 ; a rational subgroup G ′ ⊂ G; a Mal’cev basis

X ′ for G ′/Γ′ that is adapted to some filtration of G ′ and in which each element is an M-
rational combination of the elements of X ; and a decomposition g = εg ′γ into polynomial
sequences ε, g ′,γ :Z→G satisfying the following conditions:

(i) ε :Z→G is (M , N )-smooth;
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(ii) g ′ takes values in G ′ and the finite sequence (g ′(n)Γ′)n∈[N ] is totally 1/M A-equi-
distributed in G ′/Γ′ with respect to X ′;

(iii) (γ(n)Γ′)n∈Z is periodic with period at most M.
(iv) ε(0) = g ′(0) = γ(0) = 1

Remarks on the proof. The statement of [7, Theorem 1.19] is not quite the same as the
statement of Theorem 6.14, in that there is no assumption that g (0) = 1 and, correspond-
ingly, there is no conclusion that ε(0) = g ′(0) = γ(0) = 1. One sees that the former implies
the latter on inspection of the proof of [7, Theorem 1.19]. In fact, [7, Theorem 1.19] is
an instance of [7, Theorem 10.2]. This in turn is obtained by repeated application of [7,
Theorem 9.2], which establishes [7, Theorem 10.2] in a certain special case.

The first part of the proof of [7, Theorem 9.2] reduces to the case in which the polyno-
mial sequence under consideration takes value 1 at 0. Once in that case, it is straightfor-
ward to verify that the sequences ε, g ′,γ arising from the proof also take the value 1 at 0.
Indeed, the sequences ε and γ satisfy

ψ(γ(n)) = ∑
j>0

v j

(
n

j

)
and ψ(ε(n)) = ∑

j>0
v ′

j

(
n

j

)
.

Here, the v j , v ′
j are certain real numbers, the values of which are superfluous for the pur-

poses of this discussion since when n = 0 the binomial coefficients appearing in the sums
all take the value zero, and so γ(0) and ε(0) must both equal the identity. The condition
g = εg ′γ then implies that g ′(0) is also the identity, as claimed.

One could therefore simply require by definition that a polynomial sequence takes value
1 at 0, without affecting the truth of [7, Theorem 9.2]. The deduction of [7, Theorem 10.2]
would proceed in exactly the same way as in [7], but with the additional conclusion that
all polynomial sequences arising as a result would take the value 1 at 0.

The reader may also note that [7, Theorem 1.19] does not say explicitly that the Mal’cev
basis X ′ for G ′/Γ′ is adapted to a filtration of G ′. However, this apparent omission is simply
because the nomenclature of that paper is not quite the same as in this paper, in that in [7]
Mal’cev bases are, by definition, always adapted to some filtration. In fact, one sees from
the proof of [7, Theorem 10.2] that the filtration of G ′ to which X ′ is adapted is given by
G•∩G ′. �

Remark 6.15. A slightly more careful inspection of the proof of [7, Theorem 10.2] reveals
that, even in the absence of any assumption on g (0), one can conclude that ε(0) lies in the
fundamental domain of G/Γ and that γ(0) ∈ Γ, with ε(0)γ(0) = g (0). Thus, in particular, if
g (0) is the identity then so too are ε(0), g ′(0) and γ(0).

The following lemma, the proof of which we defer until Appendix A, gives an idea of
how we will use the factorisation theorem of Green and Tao to deduce recurrence results
for polynomial sequences.

Lemma 6.16. Let M ≥ 2. Let G/Γ be an m-dimensional nilmanifold with an M-rational
nested Mal’cev basis X , and let d be the metric associated to X . Let ρ ≤ 1 and x ∈ G, and
suppose that g : [N ] →G is η-equidistributed in G/Γ. Then a proportion of at least

ρm

MO(m)
− 3η

ρ

of the points (g (n)Γ)n∈[N ] lie in the ball {yΓ : d(yΓ, xΓ) ≤ ρ}.
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Lemma 6.16, of course, shows that the component g ′ of the polynomial sequence g
given by Theorem 6.14 is recurrent in a certain sense. In the context of proving Theorem
4.10, however, it is the sequence g itself that we will need to be recurrent. The following
lemma allows us to obtain recurrence of g from recurrence of g ′. Again, we defer the proof
until Appendix A.

Lemma 6.17. Let ρ ≤ 1 and σ be parameters. Let G/Γ be a nilmanifold with an M-rational
nested Mal’cev basis X , suppose that G ′ is a rational subgroup of G, and suppose that X ′ is
a nested Mal’cev basis for G ′/Γ′ in which each element is an M-rational combination of the
elements of X . Suppose that ε ∈G satisfies d(ε,1) ≤σ, and that γ ∈ Γ. Finally, suppose that
g is an element of G ′ such that d ′(gΓ′,Γ′) ≤ ρ. Then d(εgγΓ,Γ) ≤ MO(1)ρ+σ.

An immediate issue with combining Theorems 6.3 and 6.14 is that the Mal’cev basis
Y given by Theorem 6.3 is not necessarily adapted to the filtration G• given by Lemma
6.6. However, the following result shows that the coordinate system associated to Y is at
least comparable to the metric associated to the standard basis, which is a Mal’cev basis
adapted to G•.

Lemma 6.18. Let Y = {Y1, . . . ,Ym} be a nested Mal’cev basis for T r
p /Z r

p in which each ele-
ment Yi is equal to either an element X j of the standard basis X or its inverse −X j . Then
the nilmanifold coordinate system χY associated to Y , and the metric d associated to the
standard basis X = {X1, . . . , Xm}, satisfy

|χY (x)|¿p,r d(xΓ,Γ)

for every x ∈ T r
p .

The proofs of Lemmas 6.16, 6.17 and 6.18 all essentially proceed by piecing together
various results from [7, Appendix A]. We present the details in Appendix A. Modulo these
proofs, it is now a fairly straightforward matter to combine the results of this section to
prove Theorem 4.10, as follows. Recall that Proposition 4.8 and Theorem 4.10 combine to
give Theorem 2.8.

Proof of Theorem 4.10. Apply Theorem 6.3 and Lemma 6.18 to obtain a constant-free poly-
nomial form P on a nilmanifold G/Γ := T r

p /Z r
p with a nested Mal’cev basis

Y = {Y1, . . . ,Ym}

such that

(17) {±Θi (n)} =χY (P (n))m−r+i ,

and such that the nilmanifold coordinate map χY associated to Y and the metric d asso-
ciated to the standard basis X = {X1, . . . , Xm} satisfy |χY (x)| ¿p,r d(xΓ,Γ) for every x ∈G .
In fact, since p and r depend only on Θ1, . . . ,Θr we have

(18) |χY (x)|¿Θ1,...,Θr d(xΓ,Γ).

Applying Lemma 6.6, let G• be a filtration of G to which the standard basis is adapted, and
with respect to which every realisation of P is a polynomial sequence.

Let A > 0 be a constant to be chosen later but depending only on Θ1, . . . ,Θr and δ. Fix
arbitrary realisations θ1, . . . ,θr of Θ1, . . . ,Θr , respectively. Let g be a realisation of P such
that

(19) {±θi (n)} =χY (g (n))m−r+i
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for i = 1, . . . ,r ; such a realisation exists by (17). Note in particular that the fact that P is
constant free implies that g (0) = 1. Applying Theorem 6.14 with M0 = 2 therefore gives an
integer M with 2 ≤ M ¿A,G ,G• 1; a rational subgroup G ′ ⊂ G ; a Mal’cev basis X ′ for G ′/Γ′
adapted to some filtration of G ′ and in which each element is an M-rational combination
of the elements of X ; and a decomposition g = εg ′γ into polynomial sequences ε, g ′,γ :
Z→G that satisfy conditions (i), (ii), (iii) and (iv) of Theorem 6.14. In fact, since A depends
only on Θ1, . . . ,Θr and δ, and since G and G• depend only on Θ1, . . . ,Θr , we may assume
that

(20) 2 ≤ M ¿Θ1,...,Θr ,δ 1.

Condition (iii) states that (γ(n)Γ)n∈Z is periodic with period q , say, with q ≤ M . This last
inequality, combined with the upper bound (20) on M , implies that in order to prove the
proposition it is sufficient to show that a fraction ΩΘ1,...,Θr ,δ(1) of the points in qN∩ [N ]
belong to the set BN (θ1, . . . ,θr ; Iδ, . . . , Iδ), and so we may restrict attention to qN∩ [N ] if
we wish. Let us do so, replacing each θi by the function θ̂i defined by θ̂i (n) = θi (qn);
replacing g by the sequence ĝ defined by ĝ (n) = g (qn); and replacing N by bN /qc. Once
these replacements are made, conditions (i), (ii), (iii) and (iv) of Theorem 6.14 become the
following conditions:

(i) ε :Z→G is (M , N )-smooth;
(ii) g ′ takes values in G ′, and for any progression Q ⊂ [N ] of length at least N /M A−1 the

sequence (g ′(n)Γ′)n∈Q is 1/M A-equidistributed in G ′/Γ′ with respect to X ′;
(iii) γ takes values in Γ;
(iv) ε(0) = g ′(0) = γ(0) = 1.

Since A depends only on Θ1, . . . ,Θr and δ, the inequality (20) implies that we may restrict
attention to the subsequence [N /M A−2]. We may therefore replace N by bN /M A−2c, and
hence replace conditions (i) and (ii) by the following:

(i) d(ε(n),1) ≤ 1/M A−3 for every n ∈ [N ];
(ii) g ′ takes values in G ′, and the finite sequence (g ′(n)Γ′)n∈[N ] is 1/M A-equidistributed

in G ′/Γ′ with respect to X ′.

Let ρ ≤ 1 be a constant to be determined later. Lemma 6.16 and condition (ii) together
imply that

(21) Pn∈[N ](d ′(g ′(n)Γ′,Γ′) ≤ ρ) ≥ ρm

MO(m)
− 3

ρM A
.

Condition (i), on the other hand, combines with Lemma 6.17 to imply that whenever n ∈
[N ] and d ′(g ′(n)Γ′,Γ′) ≤ ρ we have d(ε(n)g ′(n)γ(n)Γ,Γ) ≤ MO(1)ρ+ 1/M A−3. It therefore
follows from (21) that

Pn∈[N ]
(
d(g (n)Γ,Γ) ≤ MO(1)ρ+1/M A−3)≥ ρm

MO(m)
− 3

ρM A
.

In light of (18) and the lower bound (20) on M , this in turn implies that there exists a
constant C ≥ 1 depending only on Θ1, . . . ,Θr such that

Pn∈[N ]

(
|χY (g (n))| ≤ MC

(
ρ+ 1

M A

))
≥ ρm

MC m
− 3

ρM A
.
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Setting ρ = δ/2MC therefore implies that

Pn∈[N ]

(
|χY (g (n))| ≤ δ

2
+MC−A

)
≥ δm

2m M 2C m
− 6MC−A

δ
.

Thanks to the lower bound (20) on M , by setting A sufficiently large in terms of m and C ,
which depend only on Θ1, . . . ,Θr , and δ, we may therefore conclude that

Pn∈[N ](|χY (g (n))| ≤ δ) ≥ δm

MOΘ1,...,Θr (m)
.

It follows from (19), the upper bound (20) on M and the fact that m depends only on
Θ1, . . . ,Θr that

Pn∈[N ](‖θi (n)‖R/Z ≤ δ for each i = 1, . . . ,r ) ÀΘ1,...,Θr ,δ 1,

and so the proposition is proved. �

7. WEAK RECURRENCE OF BRACKET POLYNOMIALS

If one includes the work of Bergelson–Leibman and Green–Tao that we used to prove
Theorem 4.10, the proof of Theorem 2.8 is extremely long and difficult. In this section
and Section 8 we investigate the extent to which we can prove similar results using only
elementary methods.

We concentrate our attention on an explicit model setting. Specifically, we consider the
bracket polynomials φk−1 defined by φk−1(n) = αk−1n{αk−2n{. . . {α1n} . . .}}. Theorem 2.8
instantly tells us that

(22) ‖e(φk−1)‖U k [N ] Àk 1.

Our elementary methods will allow us to prove (22) directly in the cases k ≤ 5.
For k ≤ 3 there is already nothing more to do. Indeed, the case k = 2 is trivial, whilst the

case k = 3 follows from Proposition 4.8 and Lemma 4.9. When k ≥ 4, however, φk−1 has
the non-linear bracket component {α2n{α1n}}, and so Lemma 4.9 does not apply to the
set of bracket components of φk−1. The cases k = 4,5 therefore require some more work.
We treat the case k = 4 in this section, and then prove the case k = 5 in Section 8.

Theorem 4.10 is a very general result, but it is also somewhat stronger than is strictly
necessary to prove Theorem 2.8. For that purpose it would in fact be sufficient to establish
recurrence of bracket polynomials in a weaker sense.

Definition 7.1 (Weak recurrence (modulo 1)). A set {ν1, . . . ,νm} of bracket polynomials on
[N ] will be said to be (ε,λ)-weakly recurrent (modulo 1) if

|BN (ν1, . . . ,νm ; I 1
2−ε, . . . , I 1

2−ε)| ≥λN .

Whilst the first notion of recurrence that we discussed required a positive fraction of
the values of {νi (n)} to be very close to zero, weak recurrence requires only that a positive
fraction of the values of {νi (n)} are not too close to 1/2.

An elementary weak-recurrence result for arbitrary finite sets of bracket polynomials
would give an elementary proof that bracket polynomials were non-uniform, thanks to
the following result.

Proposition 7.2. Let φ : [N ] → R be a bracket polynomial of degree at most k. Suppose
that C (φ) = {ν1, . . . ,νm} is (ε,λ)-weakly recurrent (modulo 1). Then there exist intervals
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J1, . . . , Jm ⊂ (−1/2,1/2] such that |BN (ν1, . . . ,νm ; J1, . . . , Jm)| Àk,m,ε,λ N , and such that φ is
strongly locally polynomial of degree at most k on BN (ν1, . . . ,νm ; J1, . . . , Jm).

Proof. By weak recurrence we have

|BN (ν1, . . . ,νm ; I 1
2−ε, . . . , I 1

2−ε)| ≥λN .

Let ck be the constant given by Lemma 4.7, and set δ= min{ck ,εk−1}. Applying Lemma 3.4
to ν1, . . . ,νm with A = BN (ν1, . . . ,νm ; I 1

2−ε, . . . , I 1
2−ε), with δ1 = . . . = δm = δ and I = I 1

2−ε gives

intervals J1, . . . , Jm of width δ inside I 1
2−ε such that

|BN (ν1, . . . ,νm ; J1, . . . , Jm)|Àk,m,ε,λ N ,

Lemma 4.7 then implies the desired result. �

Remark 7.3. Combining Proposition 7.2 with Proposition 4.5 shows that if f (n) := e(φ(n))
for some φ of degree at most k with (ε,λ)-weakly recurrent C (φ) = {ν1, . . . ,νm} then

‖ f ‖U k+1[N ] Àk,m,ε,λ 1.

Proving weak recurrence (modulo 1) for an arbitrary bracket polynomial without ap-
pealing to the work of Bergelson–Leibman and Green–Tao appears to be somewhat diffi-
cult. However, building on Lemma 4.9, we are at least able to make some progress in the
case that the set of bracket polynomials under consideration has at most one non-linear
member.

Proposition 7.4 (Bracket linears and their product are weakly recurrent). Let k,m,r ∈ Z
with 0 ≤ m ≤ k,r and let α0, . . . ,αr ∈ R. For i = 1, . . . ,r let νi : n 7→ {αi n} be a linear bracket
polynomial. Let φ(n) :=α0nk−m ∏m

i=1νi (n). Then for ε> 0 and ε′ ¿k,r 1 we have

|BN (φ,ν1, . . . ,νr ; I 1
2−ε′ , Iε, . . . , Iε)|Àk,r,ε N .

We in fact prove Proposition 7.4 in the following form, which easily implies Proposi-
tion 7.4 when combined with Lemma 4.9.

Proposition 7.5. Let k,m,r ∈ Z with 0 ≤ m ≤ k,r and let α0, . . . ,αr ∈ R. For i = 1, . . . ,r let
νi : n 7→ {αi n} be a linear bracket polynomial. Let φ(n) := α0nk−m ∏m

i=1νi (n). Let ε¿k 1
and δ be parameters. Then there exists a real number η ∈ (0,1), depending only on k and ε,
such that if there is some interval J ⊂ (−1/2,1/2] of width at most δ for which

|BN (φ,ν1, . . . ,νr ; J , Iε, . . . , Iε)| ≥ (1−η)|BN (ν1, . . . ,νr ; Iε, . . . , Iε)|
then

|BN (φ,ν1, . . . ,νr ; IOk (δ), IOk (ε), . . . , IOk (ε))|Àk,r,ε N .

We make use of two lemmas. We will say that a bracket polynomial is of degree exactly
k if it is of degree at most k but not of degree at most k −1.

Lemma 7.6. Supposeφ is an elementary bracket polynomial of degree exactly k with bracket
components ν1, . . . ,νm . Then there exists ĉk such that if ε≤ ĉk and n,n +h, . . . ,n +kh all lie
in BN (ν1, . . . ,νm ; Iε, . . . , Iε) we have

(∆h)kφ(n) = k !φ(h).

The proof is a simple induction and left as an exercise to the reader.
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Lemma 7.7. Let k,m,r ∈ Z with 0 ≤ m ≤ k,r and let α0, . . . ,αr ∈ R. For i = 1, . . . ,r let νi :
n 7→ {αi n} be a linear bracket polynomial. Let φ(n) := α0nk−m ∏m

i=1νi (n). Let ĉk be as in
Lemma 7.6, and let ε ≤ ĉk and δ > 0 be parameters. Suppose that n ∈ [N ] and h > 0 and
that there exists an interval J ⊂ (−1/2,1/2] of width at most δ such that n,n +h, . . . ,n +kh
all lie in BbN /k !c(φ,ν1, . . . ,νr ; J , Iε, . . . , Iε). Then

k !h ∈ BN (φ,ν1, . . . ,νr ; IOk (δ), IOk (ε), . . . , IOk (ε)).

Proof. The fact that n,n+h, . . . ,n+kh ∈ BbN /k !c(φ,ν1, . . . ,νr ; J , Iε, . . . , Iε) implies in particu-
lar that n,n +h, . . . ,n +kh ∈ BN (ν1, . . . ,νm ; Iε, . . . , Iε), and so Lemma 7.6 implies that

(23) (∆h)kφ(n) = k !φ(h).

However, the fact that φ(n + j h) ∈ J for all j implies, by Lemma 3.2 (i) and induction, that

(∆h)kφ(n) ∈ IOk (δ),

which combined with (23) of course implies that

(24) k !φ(h) ∈ IOk (δ).

Now the fact that νi (n) and νi (n +h) both lie in Iε for all i implies, by Lemma 3.2 (i), that

(25) νi (h) ∈ I2ε for all i ,

which in turn implies, by Lemma 3.2 (ii), that νi (k !h) = k !νi (h) for all i . This implies that
φ(k !h) = (k !)kφ(h), which combined with (24) and Lemma 3.2 (ii) gives

(26) φ(k !h) ∈ IOk (δ).

Furthermore, (25) and Lemma 3.2 (ii) imply that

(27) νi (k !h) ∈ IOk (ε) for all i .

Combining (26) and (27) yields the desired result. �

Proof of Proposition 7.5. By Lemma 7.7 it suffices to find Ωk,r,ε(N ) values of h for each of
which there exists at least one progression n,n+h, . . . ,n+kh of common difference h con-
tained within BbN /k !c(φ,ν1, . . . ,νr ; J , Iε, . . . , Iε). We can certainly find many values of h for
which there exist such progressions contained within BbN /k !c(ν1, . . . ,νr ; Iε, . . . , Iε); indeed,
by Lemma 4.9 we have

(28) |BbN /(k+1)!c(ν1, . . . ,νr ; Iε/(k+1), . . . , Iε/(k+1))|Àk,r,ε N ,

and if h ∈ BbN /(k+1)!c(ν1, . . . ,νr ; Iε/(k+1), . . . , Iε/(k+1)) then for every n ∈
BbN /(k+1)!c(ν1, . . . ,νr ; Iε/(k+1), . . . , Iε/(k+1)) we have n,n + h, . . . ,n + kh ∈
BbN /k !c(ν1, . . . ,νr ; Iε, . . . , Iε). Writing a = ak,r,ε for the constant implicit in (28), so that

|BbN /(k+1)!c(ν1, . . . ,νr ; Iε/(k+1), . . . , Iε/(k+1))| > aN ,

we may conclude that for at least Ωk,r,ε(N ) values of h we have at least aN values of n for
which n,n +h, . . . ,n +kh ∈ BbN /k !c(ν1, . . . ,νr ; Iε, . . . , Iε).

Fix such an h. Now BbN /k !c(φ,ν1, . . . ,νr ; J , Iε, . . . , Iε) contains all but ηN of the points in
BbN /k !c(ν1, . . . ,νr ; Iε, . . . , Iε), and each element of BbN /k !c(ν1, . . . ,νr ; Iε, . . . , Iε) can belong to at
most k +1 progressions n,n+h, . . . ,n+kh, and so BbN /k !c(φ,ν1, . . . ,νr ; J , Iε, . . . , Iε) contains
at least all but (k+1)ηN of the progressions n,n+h, . . . ,n+kh in BbN /k !c(ν1, . . . ,νr ; Iε, . . . , Iε).
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In particular, if we fix η< a/(k+1) then the set BbN /k !c(φ,ν1, . . . ,νr ; J , Iε, . . . , Iε) contains at
least one such progression. The value of h was chosen arbitrarily from a set of cardinality
Ωk,r,ε(N ), and so the proposition is proved.

�

Proof of (22) in the case k = 4. The function φ2 is of the form required in order to apply
Proposition 7.4, and so the bracket components of the function φ3 are weakly recurrent
(modulo 1). The case k = 4 then follows from Remark 7.3. �

Remark 7.8. More generally, and by an identical proof, the function

f : n 7→ e

(
γnt

{
βnr

m∏
i=1

{αi n}

}s)
satisfies ‖ f ‖U s(r+m)+t+1[N ] Àm,r,s,t 1.

8. APPROXIMATELY LOCALLY POLYNOMIAL FUNCTIONS

We can push slightly further than Section 7 and prove the k = 5 case of (22) by relaxing
the definition of being locally polynomial of degree k −1. The most obvious modification
is to require the kth derivatives to vanish only modulo 1, since it is only their value modulo
1 that will affect the quantity e(∆h1,...,hkφ(n)). Indeed, as was remarked in the introduction,
we have been considering bracket polynomials as functions into R, rather than into R/Z,
only because it made some of the proofs cleaner in earlier sections.

Another natural way in which it is possible to weaken the definition is not even to re-
quire the derivatives to vanish (modulo 1), but instead to require that ‖∆h1,...,hkφ(n)‖R/Z <
δ for some δ ¿ 1, as this would still be sufficient to introduce some bias into the sum
En∈[N ],h∈[−N ,N ]k e(∆h1,...,hkφ(n)).

Definition 8.1 (Approximately locally polynomial (modulo 1)). Let φ : [N ] → R be a func-
tion and let B ⊂ [N ]. Thenφ is said to be δ-approximately locally polynomial of degree k−1
(modulo 1) on B if whenever n ∈ [N ] and h ∈ [−N , N ]k satisfy n +ω ·h ∈ B for all ω ∈ {0,1}k

we have

(29) ‖∆h1,...,hkφ(n)‖R/Z ≤ δ.

If (29) holds whenever n +ω ·h ∈ B for all ω ∈ {0,1}k \{0} then φ is said to be strongly δ-
approximately locally polynomial of degree at most k −1 (modulo 1) on B.

The utility of making this definition lies in the following result.

Proposition 8.2. Letφ : [N ] →R be a function and define f : [N ] →C by f (n) := e(φ(n)). Let
δ ∈ [0,1/4) be a parameter and suppose that φ is strongly δ-approximately locally polyno-
mial of degree at most k (modulo 1) on some set B ⊂ [N ] with |B |À N . Then ‖ f ‖U k+1[N ] Àk,δ

1.

Proof. The definition of being strongly δ-approximately locally polynomial of degree k
(modulo 1) on B implies that Re(e(∆h1,...,hk+1φ(n))) Àδ 1 whenever n +ω ·h ∈ B for each
ω ∈ {0,1}k+1\{0}, and so∣∣En∈[N ],h∈[−N ,N ]k+1

(
e(∆h1,...,hk+1φ(n))

∏
ω∈{0,1}k+1\{0} 1B (n +ω ·h)

)∣∣
Àδ Pn∈[N ],h∈[−N ,N ]k+1 (n +ω ·h ∈ B for all ω ∈ {0,1}k+1\{0}).
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However, this last quantity is trivially at least Pn∈[N ],h∈[−N ,N ]k+1 (n +ω · h ∈ B for all ω ∈
{0,1}k+1), which by Lemma 4.1 is at least Ωk (1). An application of Lemma 4.2 therefore
completes the proof. �

Lemma 8.3. Suppose that ν : [N ] → R is a bracket polynomial that is strongly locally poly-
nomial of degree k − 1 on A ⊂ [N ], and define φ(n) := λn{ν(n)}. Let J ⊂ (−1/2,1/2] be an
interval with |J | ≤ 2−k . Then whenever n +ω ·h ∈ BN (ν; J )∩ A for all ω ∈ {0,1}k+1\{0} we
have ∆h1,...,hk+1φ(n) ∈ {qλn : q ∈Z, |q|¿k 1}.

Corollary 8.4. Suppose that ν : [N ] →R is a bracket polynomial that is strongly locally poly-
nomial of degree k −1 on A ⊂ [N ]. Let J ⊂ (−1/2,1/2] be an interval with |J | ≤ 2−k , and let
δ> 0 be a parameter. Then the bracket polynomial φ : [N ] → R defined by φ(n) := λn{ν(n)}
is strongly Ok (δ)-approximately locally polynomial of degree k on BN (λn,ν; Iδ, J )∩ A.

Proof of Lemma 8.3. Assume that

(30) n +ω ·h ∈ BN (ν; J )∩ A for all ω ∈ {0,1}k+1\{0}.

We have

(31) ∆h1,...,hk+1φ(n) = ∑
ω∈{0,1}k+1

(−1)k+1−|ω|λ(n +ω ·h){ν(n +ω ·h)}.

Splitting the right-hand side of (31), we see that ∆h1,...,hk+1φ(n) is equal to

λn
∑

ω∈{0,1}k+1

(−1)k+1−|ω|{ν(n +ω ·h)}

+
k+1∑
i=1

λhi
∑

ω:ωi=1
(−1)k+1−|ω|{ν(n +ω ·h)}.

(32)

However, the final sum of (32) is equal to ∆h1,...,hi−1,hi+1,...,hk+1 {ν}(n +hi ), which vanishes
because n+ω·h ∈ BN (ν; J )∩A for everyωwithωi = 1 and because {ν} is locally polynomial
of degree k−1 on BN (ν; J )∩A by Lemma 3.5 and the hypothesis that |J | ≤ 2−k . We therefore
have

(33) ∆h1,...,hk+1φ(n) =λn
∑

ω∈{0,1}k+1

(−1)k+1−|ω|{ν(n +ω ·h}) =λn∆h1,...,hk+1 {ν}(n).

Now n may not belong to BN (ν; J )∩ A, and so we cannot similarly conclude that

∆h1,...,hk+1 {ν}(n) = 0.

However, by (30) and the assumption that ν is strongly locally polynomial on A we can
conclude that ∆h1,...,hk+1ν(n) = 0, and it is clear that ∆h1,...,hk+1 {ν}(n) and ∆h1,...,hk+1ν(n) dif-
fer by an integer and that |∆h1,...,hk+1 {ν}(n)| ¿k 1. Hence ∆h1,...,hr {ν}(n) ∈ {q ∈Z : |q| ¿k 1},
which combined with (33) yields the desired result. �

Proof of (22) in the case k = 5. Recall that

φk−1(n) =αk−1n{αk−2n{. . . {α1n} . . .}}.

By Proposition 7.4 there exist ε¿ 1 and ε′ À 1 such that

|BN (φ2,φ1,α4n; I1/2−ε′ , Iε, Iε)|À N ,

and so a similar argument to Proposition 7.2 implies that there is some interval J inside
(−1/2,1/2] such that

|BN (φ2,φ1,α4n; J , Iε, Iε)|À N
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and such that φ3 is strongly locally polynomial of degree 3 on BN (φ2,φ1,α4n; J , Iε, Iε).
By Corollary 8.4 there exists δÀ 1 such that if J ′ is an interval in (−1/2,1/2] of width δ

then φ4 is, say, 1/10-approximately strongly locally polynomial of degree 4 (modulo 1)
on BN (φ3,φ2,φ1,α4n; J ′, J , Iε, Iε). Applying the pigeonhole principle to the elements of
BN (φ2,φ1,α4n; J , Iε, Iε) we can obtain such an interval whilst ensuring that

|BN (φ3,φ2,φ1,α4n; J ′, J , Iε, Iε)|À N .

Proposition 8.2 then completes the proof of the theorem. �

Remark 8.5. An identical proof shows, more generally, that the function

f : n 7→ e

(
λn

{
γnt

{
βnr

m∏
i=1

{αi n}

}s})
satisfies ‖ f ‖U s(r+m)+t+2[N ] Àm,r,s,t 1.

APPENDIX A. COORDINATES, METRICS AND EQUIDISTRIBUTION IN NILMANIFOLDS

The aim of this appendix is to prove Lemmas 6.16, 6.17 and 6.18. Throughout, where
X and X ′ are Mal’cev bases for a nilmanifold G/Γ we write d for the metrics on G and
G/Γ, and ψ for the coordinates, associated to X ; we write d ′ and ψ′, respectively, for the
metrics and coordinates associated to X ′.

As we remarked in Section 6, the lemmas we are about to prove essentially follow by
combining various results from [7, Appendix A]. The notation of that work is identical to
ours, and so the results we cite can be read directly from [7, Appendix A] without difficulty.
We therefore refer to these results by number only, without restating them here.

We repeatedly use the observation, made in the proof of [7, Lemma A.15], that if G/Γ is
a nilmanifold then for every x, y ∈G there is some z ∈ Γ such that d(xΓ, yΓ) = d(x, y z).

We begin by recalling and proving Lemma 6.16.

Lemma 6.16. Let M ≥ 2. Let G/Γ be an m-dimensional nilmanifold with an M-rational
nested Mal’cev basis X , and let d be the metric associated to X . Let ρ ≤ 1 and x ∈ G, and
suppose that g : [N ] →G is η-equidistributed in G/Γ. Then a proportion of at least

ρm

MO(m)
− 3η

ρ

of the points (g (n)Γ)n∈[N ] lie in the ball {yΓ : d(yΓ, xΓ) ≤ ρ}.

We start by bounding from below the measure of a metric ball in G/Γ. Here and through-
out this appendix we write Bρ(x) for the ball {yΓ : d(yΓ, xΓ) ≤ ρ}.

Lemma A.1. Suppose x ∈G and let ρ ∈ (0,1) be a parameter. Then

µ(Bρ(x)) ≥ ρm

MO(m)
.

Proof. In this proof we appeal [7, Lemma A.14]. The reader may note that the hypothesis
of that lemma includes the assumption that X is adapted to some filtration of G . However,
the only place this is used is in invoking [7, Lemma A.3], which assumes only the weaker
property of being nested. We are therefore free to apply [7, Lemma A.14] in the context of
Lemma 6.16.
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Let δ ∈ (0,1) be a parameter to be determined later. Set B ′ = {y ∈ G : |ψ(y)−ψ(x)| ≤ δ}.
By [7, Lemma A.14] we may assume that |ψ(x)| ≤ 1, and so [7, Lemma A.4] implies that
there is an absolute constant C such that for every y ∈ B ′ we have

d(y, x) ≤ MC |ψ(y)−ψ(x)| ≤ MCδ.

Setting δ= ρ/MC therefore implies that B ′Γ⊂ Bρ(x), and in particular that µ(B) ≥ µ(B ′Γ).
It is a straightforward exercise to verify that for sufficiently small δ we have

µ(B ′Γ) =µ(B ′) = (2δ)m ≥ ρm

MC m
,

and so the lemma is proved. �

Proof of Lemma 6.16. Define a non-negative function f : G/Γ→R by

f (yΓ) = max
{

0,1−
(

2
ρ

)
d(yΓ,Bρ/2(x))

}
.

Since f takes the value 1 on Bρ/2(x) we have∫
G/Γ

f ≥µ(Bρ/2(x)) ≥ ρm

MO(m)

by Lemma A.1. Observe also that f is Lipschitz with Lipschitz norm 1+ 2/ρ, and so the
η-equidistribution of g therefore implies that

En∈[N ] f (g (n)Γ) ≥ ρm

MO(m)
−η

(
1+ 2

ρ

)
≥ ρm

MO(m)
− 3η

ρ
.

The fact that f is bounded by 1 and supported on Bρ(x) therefore yields the desired result.
�

We now recall and prove Lemma 6.17.

Lemma 6.17. Let ρ ≤ 1 and σ be parameters. Let G/Γ be a nilmanifold with an M-rational
nested Mal’cev basis X , suppose that G ′ is a rational subgroup of G, and suppose that X ′ is
a nested Mal’cev basis for G ′/Γ′ in which each element is an M-rational combination of the
elements of X . Suppose that ε ∈G satisfies d(ε,1) ≤σ, and that γ ∈ Γ. Finally, suppose that
g is an element of G ′ such that d ′(gΓ′,Γ′) ≤ ρ. Then d(εgγΓ,Γ) ≤ MO(1)ρ+σ.

Proof. The fact that d ′(gΓ′,Γ′) ≤ ρ implies that there exists z ∈ Γ′ such that

(34) d ′(g z,1) ≤ ρ.

An application of [7, Lemma A.4] therefore implies that |ψ′(g z)| ≤ MO(1)ρ, and so (34) and
[7, Lemma A.6] combine to give

(35) d(g z,1) ≤ MO(1)ρ.

The right-invariance of d (15) implies that d(εg z,1) = d(ε, (g z)−1), and so the symmetry of
d about the identity (16) and the triangle inequality imply that

(36) d(εg z,1) ≤ d(ε,1)+d((g z)−1,1) = d(ε,1)+d(g z,1).

The left-hand side of (36) is equal to d(εgγΓ,Γ), since γ, z ∈ Γ, whilst the right-hand side is
at most MO(1)ρ+σ by (35) and the assumption on ε, and so the lemma is proved. �

Finally, let us recall and prove Lemma 6.18.
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Lemma 6.18. Let Y = {Y1, . . . ,Ym} be a nested Mal’cev basis for T r
p /Z r

p in which each ele-
ment Yi is equal to either an element X j of the standard basis X or its inverse −X j . Then
the nilmanifold coordinate map χY associated to Y , and the metric d associated to the
standard basis X = {X1, . . . , Xm}, satisfy

|χY (x)|¿p,r d(xΓ,Γ)

for every x ∈ T r
p .

Proof. Let c < 1 be an absolute constant to be determined later. Since |χY (x)| ¿p,r 1 for
every x ∈G , it is sufficient to prove the lemma under the additional assumption that

(37) d(xΓ,Γ) < c < 1.

Let z be an element of Γ satisfying

(38) d(xz,1) = d(xΓ,Γ).

The assumptions on Y imply in particular that each element of Y is a 1-rational combi-
nation of elements of the standard basis, and vice versa, and so [7, Lemma A.4] combines
with (37) and (38) to imply that there is an absolute constant C such that

(39) |ψY (xz)| ≤C d(xΓ,Γ).

Setting c = 1/2C , condition (37) therefore implies that |ψY (xz)| < 1/2, which in particular
implies that

χY (x) =ψY (xz),

and so the lemma follows from (39). �

APPENDIX B. BERGELSON AND LEIBMAN’S CHARACTERISATION OF BRACKET POLYNOMIALS

The purpose of this appendix is to sketch how Theorem 6.3 can be read out of the work
of Bergelson and Leibman [1]. Let us begin, then, by recalling the statement of Theorem
6.3.

Theorem 6.3 (Bergelson–Leibman [1]). Let Θ1, . . . ,Θr be constant-free bracket forms. Then
there exist p ≥ 1, a constant-free polynomial form P on T r

p , and a nested Mal’cev basis Y =
{Y1, . . . ,Ym} for T r

p /Z r
p such that each element Yi of Y is equal to either an element X j of

the standard basis X or its inverse −X j , and such that for every i = 1, . . . ,r we have {±Θi } =
χY (P )m−r+i .

This essentially follows from [1, Proposition 6.9]. Indeed, it is shown in [1, §6.8] how,
given a Mal’cev basis Y of Tp , the nilmanifold coordinates χY (g )i of a matrix g ∈ Tp can
be defined equivalently as formal bracket expressions in the entries of g ; [1, Proposition
6.9] then states that if A is a commutative ring, and b is an arbitrary bracket expression
in the elements of A , then there is some Tp /Zp with Mal’cev basis Y = {Y1, . . . ,Ym}, and
some upper-triangular matrix with elements of A as entries, such that {±b} = χ(A)m . To
prove Theorem 6.3, therefore, we essentially just apply this result with A as the ring of
constant-free polynomial forms.

There are, however, some issues with this deduction.

(1) In [1] fractional parts are taken to lie in [0,1), whereas in the present work they lie
in (−1/2,1/2].
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(2) Whilst it is explicit in [1, Proposition 6.9] each element Yi of the Mal’cev basis Y is
equal to either an element X j of the standard basis X or its inverse −X j , it is not
stated explicitly that the Yi are ordered in such a way that Y is nested.

(3) Applying [1, Proposition 6.9] gives only a single bracket polynomial in terms of a
polynomial mapping into Tp /Zp , rather than an r -tuple of bracket polynomials in
terms of a polynomial mapping into T r

p /Z r
p .

It is straightforward to check that the change in the range of the fractional part operation
does not affect the truth of Theorem 6.3; in particular, the calculations in [1, §5.9] proceed
in exactly the same way. Point (1) is therefore of no concern.

Point (2) is also of no concern, since the Mal’cev basis defined implicitly in [1, Propo-
sition 6.9] is, in fact, nested. This is a consequence of the fact that the basis elements are
taken in a legal order in the sense of [1, §5.7].2

Point (3) is straightforward to overcome. So far, for each i = 1, . . . ,r we have a nilman-
ifold Tpi /Zpi of dimension mi , say; a nested Mal’cev basis Yi for Tpi /Zpi consisting of
elements of the standard basis and their inverses; and a polynomial form Pi on Tpi such
that {±Θi } = χYi (Pi )mi . We can define a nested Mal’cev basis Y ′ for the direct product
Tp1 ⊗ ·· · ⊗Tpr by simply taking the elements of Y1 in order, followed by the elements of
Y2 in order, and so on up until we finally take the elements of Yr in order. Note that
χY ′ = (χY1 , . . . ,χYr ), and so in particular we have {−Θi } =χY ′(Pi )m1+...+mi .

This leaves two further issues.

(4) Theorem 6.3 requires the pi all to be equal.
(5) Theorem 6.3 requires that theΘi are expressed in terms of the last r coordinates of

some polynomial form.

We resolve point (4) really only for convenience in the main body of the paper. The proof
of Theorem 2.8 would proceed almost identically in the event that Tp1 ⊗·· ·⊗Tpr appeared
in place of T r

p in the conclusion of Theorem 6.3, but having T r
p makes some of our notation

slightly cleaner. In fact, if we were concerned with optimising the implied constant in the
conclusion of Theorem 2.8 then it would be preferable to allow Tp1 ⊗ ·· ·⊗Tpr in place of
T r

p . However, we are not concerned with the exact bounds in Theorem 2.8, and so we prove
Theorem 6.3 as stated.

In any case, it is not difficult to obtain T r
p in place of Tp1 ⊗·· ·⊗Tpr . The key observation

is that if q is a multiple of p then there is an obvious embedding ιp,q : Tp ,→ Tq such that
the image ιp,q (Zp ) is a subset of Zq . For example, the Heisenberg group T2 embeds into T4

via the map ι2,4 : T2 ,→ T4 defined by

ι2,4

 1 x z
0 1 y
0 0 1

=


1 0 x 0 z
0 1 0 0 0
0 0 1 0 y
0 0 0 1 0
0 0 0 0 1

 ,

2Mal’cev bases in [1] are, by definition, adapted to the lower central series [1, §1.2]. However, taking the
basis elements in a legel order in the sense of [1, §5.7] does not guarantee that the resulting basis is adapted
to the lower central series, as can be seen by considering the order defined in [1, §5.5] in the case d = 4.
Being in a legal order does, however, guarantee that the basis is a nested Mal’cev basis in the sense we have
defined in this paper.
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and the subgroup ι2,4(Z2) is equal to
1 0 Z 0 Z

0 1 0 0 0
0 0 1 0 Z

0 0 0 1 0
0 0 0 0 1

 .

Moreover, and crucially, if W = {W1, . . . ,Wk } is a nested Mal’cev basis for Tp /Zp consisting
entirely of elements of the standard basis and their inverses, then it is possible to choose
a nested Mal’cev basis W (q) for Tq /Zq consisting entirely of elements of the standard ba-

sis and their inverses, and that includes the elements W (q)
i := log ιp,q (expWi ) in the same

order that they appear in W .3 The upshot of this is that the non-zero coordinates of an
element ιp,q (g ) with respect to W (q) in Tq will be the same as the coordinates of g with
respect to W in Tp . This implies that if z ∈ Zp and g z belongs to the fundamental domain
of Tp /Zp then ιp,q (g z) belongs to the fundamental domain of Tq /Zq , and so the non-zero
entries of χW (q) (ιp,q (g )) are equal to the non-zero entries of χW (g ).

Set q as the lowest common multiple of the pi , and write m for the dimension of the
group Tq . Set P ′

i = ιpi ,q (Pi ) and P = (P ′
1, . . . ,P ′

r ). Define a basis Y for T r
q by taking the

bases Y
(q)

i in order, but with the elements Y (q)
m , . . . ,Y (q)

m moved to the right so that they
are now the last r elements of the basis. Note that these basis elements are central, and
so this last operation affects neither the property of being a nested Mal’cev basis nor the
corresponding coordinates, and resolves point (5) above. We then have

{±Θi } = (χY (P )r m−r+i ),

as required by Theorem 6.3.

APPENDIX C. BASIC PROPERTIES OF POLYNOMIAL MAPPINGS

The main purpose of this appendix is to prove Lemma 6.7, which we now recall.

Lemma 6.7. Let k, p,r ∈N. Then there is a some d ∈N depending only on k and p such that
if ρ is an arbitrary polynomial mapping of degree at most k into T r

p then the derivatives
∂hd+1 . . .∂h1ρ are all trivial.

The proof of Lemma 6.7 rests on the following basic properties of polynomial mappings
into T r

p .

Lemma C.1. Let ρ,σ be polynomial mappings into Tp of degree at most k,k ′, respectively.
Then

(i) the product mapping ρσ taking n to ρ(n)σ(n) is a polynomial mapping of degree at
most k +k ′;

(ii) the inverse mapping ρ−1 taking n to ρ(n)−1 is a polynomial mapping of degree
Ok,p (1).

3The basis W (q) is not uniquely defined in this way. We simply choose a basis arbitrarily from all those
nested Mal’cev bases consisting of elements of the standard basis and their inverses in which the elements
log ιp,q (expWi ) appear in the desired order.
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Proof. The first assertion is trivial. The second is also straightforward; we present the de-
tails for completeness.

We claim that each entry (ρ−1(n))i j with i < j ≤ p +1 is a polynomial of degree at most
Ok,i (1), which is clearly sufficient to prove the second assertion. We prove this claim by
induction on p − i ; thus for any fixed i we may assume that the claim holds for all values
of j , for all greater values of i .

By definition of ρ−1, for i < j ≤ p +1 we have

p∑
t=1

ρ(n)i tρ
−1(n)t j = 0,

but since the diagonal entries of each matrixρ(n) andρ(n)−1 are 1, and the below-diagonal
entries are 0, this reduces to

ρ(n)i j +ρ−1(n)i j +
j−1∑

t=i+1
ρ(n)i tρ

−1(n)t j = 0.

This implies that

ρ−1(n)i j =−ρ(n)i j −
j−1∑

t=i+1
ρ(n)i tρ

−1(n)t j ,

which is, by induction, a polynomial of degree at most Ok,i (1), as claimed. �

Proof of Lemma 6.7. It clearly suffices to prove the lemma in the case r = 1.
Denote by Tp (l ) the subgroup of Tp consisting of those matrices whose non-diagonal

entries at a distance at most l from the main diagonal are zero. Thus, for example, Tp (0) =
Tp and Tp (p) = {Id}. We claim that there is some d ∈N depending only on k, l and p such
that if ρ is an arbitrary polynomial mapping of degree at most k into Tp whose image lies
in Tp (l ) then the derivatives ∂hd+1 . . .∂h1ρ are all trivial. This is clearly sufficient to prove
the lemma.

We prove this claim by induction on p − l ; thus, for any fixed l , we may assume that the
claim holds for all greater values of l .

The group operation of Tp (l ) restricted to the entries at a distance exactly l +1 from the
main diagonal is simply addition in each entry. Therefore, if ρ is a polynomial mapping
of degree at most k into Tp whose image lies in Tp (l ), then every derivative ∂hk+1 . . .∂h1ρ

lies in Tp (l +1). Moreover, by Lemma C.1 its other entries are all polynomials of degree at
most Ok,p (1), and so ∂hk+1 . . .∂h1ρ is a polynomial mapping of degree at most Ok,p (1) whose
image lies in Tp (l+1). The claim, and hence the lemma, therefore follows by induction. �
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