
COUNTING PAIRS OF WORDS ACCORDING TO THE NUMBER OF COMMON RISES,
LEVELS, AND DESCENTS

TOUFIK MANSOUR AND MARK SHATTUCK

ABSTRACT. A level (L) is an occurrence of two consecutive equal entries in a word w =
w1w2 · · · , while a rise (R) or descent (D) occurs when the right or left entry, respectively, is
strictly larger. If u = u1u2 · · ·un and v = v1v2 · · ·vn are k-ary words of the same given length
and 1 ∑ i ∑ n°1, then there is, for example, an occurrence of LR at index i if ui = ui+1 and
vi < vi+1, and, likewise, for the other possibilities. Similar terminology may be used when
discussing ordered d-tuples of k-ary words of length n (the set of which we’ll often denote
by [k]nd ).

In this paper, we consider the problem of enumerating the members of [k]nd according
to the number of occurrences of the pattern Ω, where d ∏ 1 and Ω is any word of length d in
the alphabet {L,R,D}. In particular, we find an explicit formula for the generating function
counting the members of [k]nd according to the number of occurrences of the patterns
Ω = Li Rd°i , 0 ∑ i ∑ d , which, by symmetry, is seen to solve the aforementioned problem
in its entirety. We also provide simple formulas for the average number of occurrences of
Ω within all of the members of [k]nd , providing both algebraic and combinatorial proofs.
Finally, in the case d = 2, we solve the problem above where we also allow for weak rises
(which we’ll denote by Rw ), i.e., indices i such that wi ∑ wi+1 in w . Enumerating the cases
Rw Rw and RRw seems to be more difficult, and to do so, we combine the kernel method
with the simultaneous use of several recurrences.

1. INTRODUCTION

Let [k] = {1,2, . . . ,k}. A k-ary word is one all of whose letters are in [k]. If w = w1w2 · · ·wn

is a k-ary word and i 2 [n ° 1], then w is said to have a level (resp., rise or descent) at
index i if wi = wi+1 (resp., wi < wi+1 and wi > wi+1). Throughout, we’ll often represent
levels, rises, and descents by L, R, and D , respectively. Concerning the pair of k-ary words
u = u1u2 · · ·un and v = v1v2 · · ·vn , we’ll say that there is an occurrence of LL (resp., LR or
LD) at index i , where i 2 [n °1], if ui = ui+1 and vi = vi+1 (resp., vi < vi+1 or vi > vi+1),
and similarly for the other six possibilities. Given a word Ω of length two in the alphabet
{L,R,D}, let ∫Ω denote the statistic defined on ordered pairs of k-ary words of the same
given length which counts the number of occurrences ofΩ. By symmetry, and, if necessary,
replacing a word w = w1w2 · · · by its complement w 0 = w 0

1w 0
2 · · · , where i 0 = k + 1° i for

i 2 [k], there are three distinct distributions for the various statistics ∫Ω, namely, those
corresponding to Ω = LL, RR, or RL.

If w = w1w2 · · ·wn is a word and i 2 [n °1], then we’ll say that w has a weak rise (resp.,
weak descent) at index i if wi ∑ wi+1 (resp., wi ∏ wi+1). Let us denote weak rises and weak
descents by Rw and Dw , respectively. By symmetry, there are three additional distributions
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for patterns Ω when d = 2 if one allows for weak rises and weak descents, namely, LRw ,
RRw , and Rw Rw .

More generally, given d ∏ 1, let Æ = (Æ(1),Æ(2), . . . ,Æ(d)) be an ordered d-tuple of k-ary
words of the same given length n (the set of which we will often denote by [k]nd ) and let
Ω = Ω1Ω2 · · ·Ωd be a word in the alphabet {L,R,D}. Then we’ll say that Æ has an occurrence
of Ω at index i if, for each j 2 [d ], there is an occurrence of L, R, or D at index i of Æ( j )

as determined by letter Ω j of Ω. In this context, one might call Ω a pattern. By symmetry,
there are d +1 distinct distributions on [k]nd corresponding to patterns Ω, namely, those
of the form Li Rd°i , where 0 ∑ i ∑ d .

This notation may be extended as follows. For example, if ∞ and ± are two words of the
same length m and i 2 [n °m +1], then we say that the pair of words u = u1u2 · · ·un and
v = v1v2 · · ·vn has an occurrence of (∞,±) at index i if the subword ui ui+1 · · ·ui+m°1 of u
is order isomorphic to ∞ and the subword vi vi+1 · · ·vi+m°1 of v is order isomorphic to ±.
For instance, let Lm denote the level of length m, which by definition corresponds to an
index i for which wi = wi+1 = ·· · = wi+m in a word w . Then there is an occurrence of
L2

m = (Lm ,Lm) at index i in the word pair u and v if there is an occurrence of Lm at index
i in both u and v . The notation may be easily extended when discussing the comparable
problem on d-tuples of k-ary words.

The general enumeration problem concerning subword patterns dates to the 1970’s
when Carlitz and collaborators wrote several papers on rises, levels, and descents for var-
ious subclasses of words, including permutations and compositions (see, for example,
[3, 4, 6]). Recently, the study has been extended to longer subword patterns on such struc-
tures as k-ary words [2], permutations [7], and finite set partitions [10, 11]. The enumera-
tion of pairs of permutations according to the number of common rises was first consid-
ered by Carlitz, Scoville, and Vaughan [5]. Later, this result was q-generalized [8] and also
extended to arbitrary m-tuples of permutations [8, 9] in various ways. See also the paper
of Stanley [12], who considered a more general version of the problem related to binomial
posets

Here, we study the analogous problem on k-ary words. In particular, we find explicit
formulas for the generating functions that enumerate the members of [k]nd according to
the number of occurrences of any pattern Ω of the form Li Rd°i , 0 ∑ i ∑ d . This then pro-
vides a complete solution to the problem of counting members of [k]nd according to the
number of occurrences of any pattern Ω, where Ω has letters in {L,R,D}. For the case Ld ,
in addition, we are able to find a formula for the generating function that counts mem-
bers of [k]nd according to the number of occurrences of (Lm)d for any m ∏ 1 as well as an
explicit formula for the number of members of [k]nd having exactly m occurrences of Ld

for 0 ∑ m ∑ n °1. We also give simple formulas for the average number of occurrences of
Li Rd°i for any i , providing both algebraic and combinatorial proofs.

In the third and fourth sections, we undergo the task of finding explicit formulas for the
generating functions that count ordered pairs of k-ary words according to the number of
occurrences of the patterns LRw , Rw Rw , and RRw . Combining this with the prior result
provides a complete solution to the problem of counting ordered pairs of k-ary words
according to the number of occurrences of any pattern Ω having letters in {L,R,D,Rw ,Dw }.
We remark that the cases Rw Rw and RRw are apparently more difficult, and here we have
used a technique which combines the use of several recurrences with the kernel method
[1].
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Up to equivalence, Table 1 below gives all the generating functions which count ordered
pairs of k-ary words according to the number of occurrences of any pattern Ω having let-
ters in {L,R,D,Rw ,Dw }, where k ∏ 1 is fixed. Taking m = 1 in the first entry gives the case
of LL. Note that each generating function is of the form

X

n∏0

µX

Æ
q∫Ω(Æ)

∂
xn ,

where the inner sum is over all members Æ of [k]2n and ∫Ω(Æ) counts the number of oc-
currences of the pattern Ω in Æ.

Ω A formula for the generating function that counts members Reference
of [k]2n according to the number of occurrences of Ω

LmLm
1

1°k2x
≥

1°qx+(q°1)xm

1°qx+(q°1)xm+1

¥ Theorem 2.1

RR
1

1°kx +Pk°1
j=1

≥
1°(1+ j x(q°1))k

j (q°1)

¥ Theorem 2.5

LR
1

1° k
q°1

°
(1+ (q °1)x)k °1

¢ Theorem 2.5

LRw
1

1° k
q°1

≥
1

(1°(q°1)x)k °1
¥ Theorem 3.1

Rw Rw
1

1° x(1°yk )
yk (1°y)

° x
yk+1

Pk°2
j=0

1
y j

P j
i=0(°y)i

° j
i

¢°k+ j°i
j+1

¢ , Theorem 3.5

where y = 1° (q °1)x

RRw
1

1° x(1°zk )
1°z °xzk°1 Pk°2

j=0
P j

i=0(°1)i
° j

i

¢°k+ j°i
j+1

¢
z°i

, Theorem 4.4

where z = 1+ (q °1)x

TABLE 1. Formulas for all patterns Ω on ordered pairs of k-ary words, up to equivalence.

2. LEVELS AND RISES

In this section, we enumerate the members of [k]nd according to the number of occur-
rences of the pattern Li Rd°i , where d ∏ 1 and 0 ∑ i ∑ d . We consider separately the cases
where i = d and i < d .

2.1. Counting Ld . We may prove a more general result, wherein we allow for levels of ar-
bitrary length within each word. Given d ,m ∏ 1, let f = f (m)

d (x; q) denote the generating



4 TOUFIK MANSOUR AND MARK SHATTUCK

function which counts d-tuples of k-ary words of length n according to the number of
occurrences of (Lm)d . That is,

f (m)
d (x; q) =

X

n∏0

µX

Æ
q∫(Æ)

∂
xn ,

where the inner sum is over all members Æ of [k]nd and v(Æ) counts the number of com-
mon occurrences of the pattern Lm in Æ. Then f may be expressed explicitly as follows.

Theorem 2.1. We have

(1) f (m)
d (x; q) = 1

1°kd x
≥

1°qx+(q°1)xm

1°qx+(q°1)xm+1

¥ .

Proof. Suppose v(1),v(2), . . . ,v(r) are members of [k]d , with v(j) = (v ( j )
1 , v ( j )

2 , . . . , v ( j )
d ) for each

j 2 [r ]. Let fv(1)···v(r) denote the generating function counting the d-tuples of k-ary words
of length n according to the number of occurrences of (Lm)d in which the first r entries
of the i -th k-ary word in a d-tuple are v (1)

i , v (2)
i , . . . , v (r )

i for all i 2 [d ]. Furthermore, given a
vector a = (a1, a2, . . . , ad ) in [k]d , let ar denote r copies of the vector a.

From the definitions, we have for 1 ∑ j ∑ m,

fa j = x j +
X

c:c6=a
fa j c + fa j+1 = x j +x j

X

c:c6=a
fc + fa j+1 = x j +x j ( f ° fa °1)+ fa j+1

= x j ( f ° fa)+ fa j+1 ,(2)

with fam+1 = qx fam . Taking j = m in (2), and solving for fam , then gives

fam = xm

1°qx
( f ° fa).

Applying (2), repeatedly, implies

(3) fa j =
µ

x j +x j+1 +·· ·+xm°1 + xm

1°qx

∂
( f ° fa), 1 ∑ j ∑ m.

Taking j = 1 in (3), and solving for fa, gives

fa =

≥
x +x2 +·· ·+xm°1 + xm

1°qx

¥
f

1+x +·· ·+xm°1 + xm

1°qx

= x

µ
1°qx + (q °1)xm

1°qx + (q °1)xm+1

∂
f , a 2 [k]d .

Thus we have

f °1 =
X

a
fa = kd x

µ
1°qx + (q °1)xm

1°qx + (q °1)xm+1

∂
f ,

or
f = 1

1°kd x
≥

1°qx+(q°1)xm

1°qx+(q°1)xm+1

¥ ,

which completes the proof. ⇤
Taking m = 1 in (1) gives the following generating function for the number of common

levels within d-tuples of k-ary words.

Corollary 2.2. We have

(4) f (1)
d (x; q) = 1° (q °1)x

1° (kd °1+q)x
.
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In this case, an explicit formula may be given.

Corollary 2.3. If n ∏ 1, then the number of d-tuples of k-ary words of length n having
exactly j occurrences of Ld is given by

°n°1
j

¢
kd (kd °1)n°1° j .

Proof. From (4), we have

1° (q °1)x

1° (kd °1+q)x
= (1° (q °1)x)

X

n∏0
(kd °1+q)n xn

= 1+
X

n∏1
((kd °1+q)n ° (q °1)(kd °1+q)n°1)xn

= 1+
X

n∏1
kd (kd °1+q)n°1xn

= 1+
X

n∏1

√
n°1X

j=0

√
n °1

j

!

kd (kd °1)n°1° j q j

!

xn .

Extracting the coefficient of xn q j gives the result. ⇤

The formula in the prior corollary may be realized combinatorially as follows. Let Æ be
a d-tuple of k-ary words of length n having exactly j occurrences of Ld . Pick any vector
a = (a1, a2, . . . , ad ) in [k]d . Let S denote the set of indices i 2 [n °1] corresponding to oc-
currences of Ld . Note that there are

°n°1
j

¢
choices regarding S. To form Æ, start by letting

the entries of a comprise the first letters of the component words of Æ; note that there are
kd choices for a. Then fill in the second entries of the component words of Æ as follows: if
1 2 S, then the second letter within each word should be the same as the first, whereas if
1 62 S, then at least one of the second letters should differ from the first. Proceed similarly
for the `-th entry within each of the components of Æ going from left to right, using the
very same entries as those for the (`°1)-st if `°1 2 S, or using a different vector for these
entries if `°1 62 S. Since there are n °1° j members of [n °1]°S, there are (kd °1)n°1° j

choices regarding the `-th entries of the components of Æ corresponding to those ` such
that `°1 62 S, where 2 ∑ `∑ n. ⇤

Differentiating formula (1) with respect to q , and letting q = 1, gives the following result.

Corollary 2.4. If n ∏ m, then the total number of occurrences of (Lm)d within all the mem-
bers of [k]nd is given by (n °m)kd(n°m).

This result may be proven directly as follows. First note that it suffices to show that the
total number of occurrences of (Lm)d at index i , where i 2 [n°m] is fixed, is kd(n°m). This
is equivalent to showing that the number of d-tuples Æ that have an occurrence of (Lm)d

at index i is kd(n°m). Note that ai = ai+1 = ·· · = ai+m for each component word within
such Æ, and thus there are kd choices for these entries within all of the component words.
There are also kd(n°m°1) choices for all other entries within the components of Æ since
they may be chosen freely. Thus, there are kd ·kd(n°m°1) = kd(n°m) possible Æ, and hence
occurrences of (Lm)d at index i . ⇤

2.2. Counting Li Rd°i , i < d . Given d ∏ 2 and 0 ∑ i ∑ d ° 1, let g = gd ,i (x; q) denote the
generating function which counts d-tuples of k-ary words of length n according to the
number of occurrences of Li Rd°i . Then g may be expressed as follows.
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Theorem 2.5. We have

(5) gd ,i (x; q) = 1

1°ki x
P

(b1,...,bd°i°1)2[k]d°i°1

≥
1°∏k

1°∏

¥ , 0 ∑ i ∑ d °2,

where

∏ := 1+x(q °1)
d°i°1Y

j=1
(k °b j ),

with

(6) gd ,d°1(x; q) = 1

1° kd°1

q°1

°
(1+ (q °1)x)k °1

¢ .

Proof. First assume 0 ∑ i ∑ d °2. Suppose a = (a1, a2, . . . , ad ) is a member of [k]d . Let ga be
the generating function which counts the d-tuples Æ of k-ary words of length n according
to the number of occurrences of Li Rd°i in which the first entry in the j -th component ofÆ
is a j for each j 2 [d ]. If u and v are two vectors, then we’ll say that u > v if each component
of u is larger than each component of v. Given any a 2 [k]d , let us write a = (ea,a0), where
ea 2 [k]i and a0 2 [k]d°i . From the definitions, we have

(7) ga = xg +x(q °1)
X

c:ec=ea,
c0>a0

gc, a 2 [k]d .

Let us decompose a further as (ea,`,a00), where ` 2 [k] and a00 2 [k]d°i°1. If `= k, then

ga = g(ea,k,a00) = xg ,

since the sum on the right-hand side of (7) is empty in this case. If `= k °1, then

ga = g(ea,k°1,a00) = xg +x(q °1)
X

c=(ec,k,c00):
ec=ea,

c00>a00

gc = xg +x(q °1) · xg
dY

j=i+2
(k °a j ) = xgΩ,

where Ω = 1+x(q °1)
Qd

j=i+2(k °a j ). In general, if `= k °m, then by induction we have

(8) ga = g(ea,k°m,a00) = xgΩm , 0 ∑ m ∑ k °1,

since

g(ea,k°m,a00) = xg +x(q °1)
kX

r=k°m+1

X

c=(ec,r,c00):
ec=ea,

c00>a00

gc

= xg +x(q °1)
kX

r=k°m+1
xgΩk°r ·

dY

j=i+2
(k °a j )

= xg

√

1+x(q °1)
dY

j=i+2
(k °a j )

µ
1°Ωm

1°Ω

∂!

= xg

µ
1+ (Ω°1)

µ
1°Ωm

1°Ω

∂∂

= xgΩm .
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Taking m = k °` in (8), and writing a = (ea,`,a00), implies

ga = xgΩk°`, a 2 [k]d .

Thus, if 1 ∑ i ∑ d °2, we have

g °1 =
X

a
ga =

X

(ea,`,a00)2[k]d

g(ea,`,a00) =
X

ea2[k]i

X

a002[k]d°i°1

kX

`=1
xgΩk°`

= ki xg
X

a002[k]d°i°1

kX

`=1
Ωk°`

= ki xg
X

(ai+2,...,ad )2[k]d°i°1

µ
1°Ωk

1°Ω

∂
,

which gives formula (5), upon solving for g and renaming the variables. If i = 0, then there
is no outer sum in ea in the last calculation, but the same formula still holds. If i = d °1,
then proceed similarly, noting that Ω = 1+ x(q °1) in this case. The middle sum in a00 in
the last calculation would not occur, so that

g °1 =
µ

kd°1((1+ (q °1)x)k °1)
q °1

∂
g ,

which gives (6). ⇤

Setting q = 0 in Theorem 2.5 gives an expression for the generating function which
counts the members of [k]nd that avoid Li Rd°i .

Taking d = 2 in the prior theorem gives formulas for the generating functions u(x; q)
and v(x; q) counting ordered pairs of k-ary words according to the number of occurrences
of RR or LR, respectively.

Corollary 2.6. We have

(9) u(x; q) = 1

1°kx + 1
q°1

≥
Hk°1 °

Pk°1
b=1

(1+x(q°1)(k°b))k

k°b

¥ ,

where Hk°1 = 1+ 1
2 +·· ·+ 1

k°1 denotes the (k °1)-st harmonic number, and

(10) v(x; q) = 1

1° k
q°1

°
(1+ (q °1)x)k °1

¢ .

Proof. Taking d = 2 in (5) gives

u(x; q) = 1

1+x
Pk

b=1
1°(1+x(q°1)(k°b))k

x(q°1)(k°b)

,
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with
kX

b=1

1° (1+x(q °1)(k °b))k

(q °1)(k °b)
= lim

b!k

µ
1° (1+x(q °1)(k °b))k

(q °1)(k °b)

∂

+
k°1X

b=1

1° (1+x(q °1)(k °b))k

(q °1)(k °b)

=°kx + 1
q °1

√

Hk°1 °
k°1X

b=1

(1+x(q °1)(k °b))k

k °b

!

.

Taking d = 2 in (6) gives (10). ⇤
We have the following simple expression for the total number of occurrences of Li Rd°i .

Corollary 2.7. If n ∏ 1, then the total number of occurrences of Li Rd°i , 0 ∑ i ∑ d °1, within

all the members of [k]nd is given by (n °1)
°k

2

¢d°i
kd(n°2)+i .

Proof. Equivalently, we must show that there are
°k

2

¢d°i
kd(n°2)+i members Æ of [k]nd that

have an occurrence of Li Rd°i at index j for each j 2 [n ° 1]. To see this, note that there
are ki choices for the j -th and ( j +1)-st entries within the first i component words of Æ,

and
°k

2

¢d°i
choices for these entries within the final d ° i components of Æ. The remaining

entries of Æ may be chosen in any of kd(n°2) ways. ⇤
Dividing by knd , we see that the average number of occurrences of Li Rd°i within the

members of [k]nd is given by (n°1)(k°1)d°i

2d°i kd .
As a consistency check, we will show how Corollary 2.7 can be obtained from Theorem

2.5. Let us first assume 0 ∑ i ∑ d °2. Note that

gd ,i (x;1) = lim
q!1

(gd ,i (x; q)) = 1

1°kd x

since

lim
q!1

µ
1°∏k

1°∏

∂
= k

for all (d ° i °1)-tuples (b1, . . . ,bd°i°1), by L0Hôpital’s rule. Let s =Qd°i°1
j=1 (k °b j ). Thus,

d

d q
gd ,i (x; q) |q=1= lim

q!1

µ
d

d q
gd ,i (x; q)

∂
=

ki x limq!1

≥P
(b1,...,bd°i°1)2[k]d°i°1

d
d q

≥
1°∏k

1°∏

¥¥

(1°kd x)2
,

with

lim
q!1

µ
d

d q

µ
1°∏k

1°∏

∂∂
=° 1

sx
lim
q!1

µ
d

d q

µ
1° (1+ s(q °1)x)k

q °1

∂∂

= 1
sx

lim
q!1

µ
ks(q °1)∏k°1x + (1°∏k )

(q °1)2

∂

= 1
2sx

lim
q!1

h
(2k(k °1)s2x2 °k(k °1)s2x2)∏k°2

i
=

√
k

2

!

sx,
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by two applications of L0Hôpital’s rule, so that

d

d q
gd ,i (x; q) |q=1=

ki
°k

2

¢
x2

(1°kd x)2

X

(b1,...,bd°i°1)2[k]d°i°1

d°i°1Y

j=1
(k °b j ).

Note the identity
X

(b1,...,bm )2[k]m

mY

j=1
(k °b j ) =

√
k

2

!m

, m ∏ 1,

which we cannot find in the literature, but can be shown easily by induction or by arguing
that both sides count the m-tuples of doubleton subsets of [k]. The left-hand side achieves
this by specifying the smaller elements (b1, . . . ,bm) within an m-tuple of doubletons.

Thus, we have

d

d q
gd ,i (x; q) |q=1

=
ki

°k
2

¢d°i
x2

(1°kd x)2
=

µ
k °1

2

∂d°i

x
X

n∏0
nkdn xn =

µ
k °1

2

∂d°i X

n∏1
(n °1)kd(n°1)xn

=
√

k

2

!d°i X

n∏1
(n °1)kd(n°2)+i xn ,

from which Corollary 2.7 follows when 0 ∑ i ∑ d °2, upon extracting the coefficient of xn .
A similar, shorter calculation may be given when i = d °1.

3. WEAK RISES

We first consider the case LRw , where we may prove more. Given d ∏ 2, let h = hd (x; q)
denote the generating function which counts d-tuples of k-ary words of length n accord-
ing to the number of occurrences of Ld°1Rw . Then h may be expressed as follows.

Theorem 3.1. We have

(11) h = 1

1° kd°1

q°1

≥
1

(1°(q°1)x)k °1
¥ .

Proof. Given a = (a1, a2, . . . , ad ) 2 [k]d , let ha be the generating function that counts the
members Æ of [k]nd according to the number of occurrences of Ld°1Rw in which the first
entry in the i -th component of Æ is ai for each i 2 [d ]. Let us write a = (ea,`), where ea 2
[k]d°1 and ` 2 [k]. From the definitions, we have

(12) ha = h(ea,`) = xh +x(q °1)
kX

j=`
h(ea, j ), a 2 [k]d .

Taking `= k in (12) implies

h(ea,k) =
xh

1° (q °1)x
,

and in general, by induction using (12),

h(ea,`) =
xh

(1° (q °1)x)k°`+1
, 1 ∑ `∑ k.
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Therefore, we have

h °1 =
X

a
ha =

X

(ea,`)
h(ea,`) =

X

ea2[k]d°1

kX

`=1

xh

(1° (q °1)x)k°`+1

= kd°1xh
kX

`=1

1

(1° (q °1)x)`
= kd°1h

q °1

µ
1

(1° (q °1)x)k
°1

∂
,

which gives (11). ⇤

We now study the case Rw Rw . Let R = R(x; q) denote the generating function which
counts ordered pairs of k-ary words of length n according to the number of occurrences
of Rw Rw . That is,

R(x; q) =
X

n∏0

µX

Æ
qµ(Æ)

∂
xn ,

where the inner sum is over all ordered pairs Æ of k-ary words of length n and µ(Æ) counts
the number of occurrences of Rw Rw in Æ. If (a,b) 2 [k]2, then let R(a,b)(x; q) denote the
generating function counting the ordered pairs of k-ary words of length n according to
the number of occurrences of Rw Rw in which the first entry of the first word is a and the
first entry of the second word is b. From the definitions, we can state the relation

R(a,b)(x; q) = xR(x; q)+x(q °1)
kX

c=a

kX

d=b
R(c,d)(x; q), 1 ∑ a,b ∑ k,(13)

which implies

R(a,b)(x; q) = R(a+1,b)(x; q)+x(q °1)
kX

d=b
R(a,d)(x; q), 1 ∑ b ∑ k, 1 ∑ a ∑ k °1.(14)

Let Ra(u) = Ra(x; q,u) =Pk
b=1 R(a,b)(x; q)ub for all a. Multiplying (14) by ub , and summing

over b = 1,2, . . . ,k, we obtain

Ra(u) = Ra+1(u)+x(q °1)
kX

d=1

u °ud+1

1°u
R(a,d)(x; q)

= Ra+1(u)+ xu(q °1)
1°u

(Ra(1)°Ra(u)), 1 ∑ a ∑ k °1.(15)

We may express Rk (u) explicitly.

Lemma 3.2. We have

(16) Rk (u) = uxR(x; q)

yk
· 1° (yu)k

1° yu
,

where y = 1° (q °1)x.

Proof. By (13), we have R(k,k)(x; q) = xR(x; q)+x(q °1)R(k,k)(x; q), which implies that

R(k,k)(x; q) = x

y
R(x; q).



COUNTING PAIRS OF WORDS 11

Assume by induction that R(k,k°`)(x; q) = x
y`+1 R(x; q) for all `= 0,1, . . . , j °1. Then solving

for R(k,k° j )(x; q) in (13) and applying the induction hypothesis yields

yR(k,k° j )(x; q) = xR(x; q)+x(q °1)
kX

b=k° j+1
R(k,b)(x; q)

= xR(x; q)

√

1+x(q °1)
kX

b=k° j+1

1

yk+1°b

!

= xR(x; q)

√

1+x(q °1)
jX

b=1

1

yb

!

= xR(x; q)
µ
1+ (1° y)

1/y ° (1/y) j+1

1°1/y

∂
= x

y j
R(x; q),

whence R(k,k° j )(x; q) = x
y j+1 R(x; q), which completes the induction step. Therefore,

Rk (u) = xR(x; q)

yk+1

kX

b=1
(uy)b = uxR(x; q)

yk
· 1° (yu)k

1° yu
,

as desired. ⇤

Let R 0
a(u) = Ra (u)

xR(x;q) for all a. We have the following recurrence for R 0
a(u).

Lemma 3.3. If 0 ∑ j ∑ k °1, then

R 0
k° j (u) = u(1°u) j (1° (yu)k )

yk (1° yu) j+1
+ u(1° y)

1°u

j°1X

i=0

µ
1°u

1° yu

∂ j°i

R 0
k°i

µ
1
y

∂
.(17)

Proof. Substituting u = 1/y into (15) gives

R 0
a+1

µ
1
y

∂
= R 0

a(1), 1 ∑ a ∑ k °1,(18)

and, by (16), we have

R 0
k

µ
1
y

∂
= k

yk+1
.(19)

By (15), (16), and (18), we may write

R 0
a(u) = 1°u

1° yu
R 0

a+1(u)+ u(1° y)
1° yu

R 0
a+1

µ
1
y

∂
, 1 ∑ a ∑ k °1,

with R 0
k (u) = u(1°(yu)k )

yk (1°yu)
. Iterating the last recurrence yields (17). ⇤

In the next lemma, we provide an explicit formula for R 0
k° j

≥
1
y

¥
.

Lemma 3.4. If 0 ∑ j ∑ k °1, then

(20) R 0
k° j

µ
1
y

∂
= 1

yk+1+ j

jX

i=0
(°y)i

√
j

i

!√
k + j ° i

j +1

!

.
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Proof. We proceed by induction on j . By (19), we have R 0
k

≥
1
y

¥
= k

yk+1 , which agrees with
(20) when j = 0. Let us assume that the lemma holds for 0,1, . . . , j °1 and prove it for j .
Rewriting (17), we have

R 0
k° j (u) =

u(1°u) j (1° (yu)k )+ yk u(1° y)
P j°1

i=0
(1°yu)i+1

(1°u)i+1° j R 0
k°i

≥
1
y

¥

yk (1° yu) j+1
,

which implies

yk R 0
k° j (u)

u(1°u) j
=

1° (yu)k + yk (1° y)
P j°1

i=0
(1°yu)i+1

(1°u)i+1 R 0
k°i

≥
1
y

¥

(1° yu) j+1
.(21)

In order to find R 0
k° j

≥
1
y

¥
, we need to compute limu!1/y

yk R 0
k° j (u)

u(1°u) j . To do so, we make use

of L0Hôpital’s rule as follows. Let

as =
d s

dus

"

1° (yu)k + yk (1° y)
j°1X

i=0

(1° yu)i+1

(1°u)i+1
R 0

k°i

µ
1
y

∂#ØØØØØ
u=1/y

,

where 0 ∑ s ∑ j +1. We show that as = 0 for all s = 0,1, . . . , j . Clearly, a0 = 0, so assume s ∏ 1.
Then we have

(y °1)s°1as

s!y s
=°

√
k

s

!

(y °1)s°1

° yk°s(y °1)s

s!

s°1X

i=0

√
s

i +1

!

(i +1)!(°y)i+1 d s°i°1

dus°i°1

≥
(1°u)°i°1

¥
|u=1/y R 0

k°i

µ
1
y

∂

=°
√

k

s

!

(y °1)s°1 ° yk
s°1X

i=0

√
s

i +1

!

(i +1)!(°y)i+1 (s °1)!
i !s!

R 0
k°i

µ
1
y

∂

=°
√

k

s

!

(y °1)s°1 ° yk
s°1X

i=0

√
s °1

i

!

(°y)i+1R 0
k°i

µ
1
y

∂
.

By the induction hypothesis, we have

(y °1)s°1as

s!y s

=°
√

k

s

!

(y °1)s°1 ° yk
s°1X

i=0

√
s °1

i

!

(°y)i+1

√
1

yk+1+i

iX

`=0
(°y)`

√
i

`

!√
k + i °`

i +1

!!

=°
√

k

s

!

(y °1)s°1 °
s°1X

i=0

iX

`=0
(°1)i+1

√
s °1

i

!√
i

`

!√
k + i °`

i +1

!

(°y)`.

Extracting the coefficient of y`, where 0 ∑ ` ∑ s ° 1, from both sides of the last equation
yields

[y`]
µ

(y °1)s°1as

s!y s

∂
= (°1)s°`

√
k

s

!√
s °1
`

!

+
s°1X

i=`
(°1)i°`

√
s °1

i

!√
i

`

!√
k + i °`

i +1

!

.(22)
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Using the binomial identity

(23)
s°1X

i=`
(°1)i°`

√
s °1

i

!√
i

`

!√
k + i °`

i +1

!

= (°1)s°1°`
√

k

s

!√
s °1
`

!

, s ∏ 1, `,k ∏ 0,

we obtain (y°1)s°1as
s!y s = 0 and thus as = 0 for 0 ∑ s ∑ j , as desired. (Note that (23) may be

shown by applying trinomial revision to the first two factors in the sum on the left-hand
side, followed by computing the generating function in k ∏ 0 of both sides, where s and `
are fixed.)

Applying similar reasoning in the case when s = j +1 implies

[y`]

√
(y °1) j a j+1

( j +1)!y j+1

!

= (°1) j+1°`
√

k

j +1

!√
j

`

!

+
j°1X

i=`
(°1)i°`

√
j

i

!√
i

`

!√
k + i °`

i +1

!

,(24)

where 0 ∑ `∑ j . Note that (21) gives

lim
u!1/y

yk R 0
k° j (u)

u(1°u) j
=

a j+1

( j +1)!(°y) j+1
,

which implies, by (24),

lim
u!1/y

R 0
k° j (u)

= (°1) j+1

yk+1+ j

jX

`=0

√

(°1) j+1°`
√

k

j +1

!√
j

`

!

+
j°1X

i=`
(°1)i°`

√
j

i

!√
i

`

!√
k + i °`

i +1

!!

y`

= 1

yk+1+ j

jX

`=0

√

(°1)`
√

k

j +1

!√
j

`

!

+
j°1X

i=`
(°1) j°1+i°`

√
j

i

!√
i

`

!√
k + i °`

i +1

!!

y`.

Writing
j°1X

i=`
(°1) j°1+i°`

√
j

i

!√
i

`

!√
k + i °`

i +1

!

=
jX

i=`
(°1) j°1+i°`

√
j

i

!√
i

`

!√
k + i °`

i +1

!

+ (°1)`
√

j

`

!√
k + j °`

j +1

!

,

and using the identity (let s = j +1 in (23))
jX

i=`
(°1) j°1+i°`

√
j

i

!√
i

`

!√
k + i °`

i +1

!

= (°1)`°1

√
k

j +1

!√
j

`

!

,

we obtain

lim
u!1/y

R 0
k° j (u) = 1

yk+1+ j

jX

`=0
(°y)`

√
j

`

!√
k + j °`

j +1

!

,

which completes the induction step, as required. ⇤
By Lemma 3.4, (16), and (18), we have

Ra(1) = Ra+1(1/y) = xR(x; q)R 0
a+1(1/y)

= xR(x; q)

y2k°a

k°1°aX

i=0
(°y)i

√
k °1°a

i

!√
2k °1°a ° i

k °a

!

, 1 ∑ a ∑ k °1,
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with

Rk (1) = xR(x; q)

yk
· 1° yk

1° y
.

Since R(x; q) = 1+Pk
a=1 Ra(1), it follows that

R(x; q) = 1

1° x(1°yk )
yk (1°y)

°x
Pk°1

a=1
1

y2k°a

Pk°1°a
i=0 (°y)i

°k°1°a
i

¢°2k°1°a°i
k°a

¢

= 1

1° x(1°yk )
yk (1°y)

° x
yk+1

Pk°2
b=0

1
yb

Pb
i=0(°y)i

°b
i

¢°k+b°i
b+1

¢ ,

which leads to the main result of the section.

Theorem 3.5. Let k ∏ 1. Then the generating function R(x; q) is given by

(25) R(x; q) = 1

1° x(1°yk )
yk (1°y)

° x
yk+1

Pk°2
b=0

1
yb

Pb
i=0(°y)i

°b
i

¢°k+b°i
b+1

¢ ,

where y = 1° (q °1)x.

Setting q = 1 in (25) gives

R(x;1) = 1

1°kx °x
Pk°2

b=0
Pb

i=0(°1)i
°b

i

¢°k+b°i
b+1

¢ ,

and by the identity
Pb

i=0(°1)i
°b

i

¢°k+b°i
b+1

¢
= k, we see that

R(x;1) = 1
1°kx °x(k °1)k

= 1
1°k2x

,

in accordance with the fact that the number of the ordered pairs of k-ary words of length
n is given by k2n . Setting q = 0 in (25) gives the generating function which counts the
ordered pairs of k-ary words avoiding the pattern Rw Rw .

4. COUNTING RRw

We study the case RRw . Let T = T (x; q) denote the generating function which counts
ordered pairs of k-ary words of length n according to the number of occurrences of RRw .
If (a,b) 2 [k]2, then let T(a,b)(x; q) denote the generating function counting the ordered
pairs of k-ary words of length n according to the number of occurrences of RRw in which
the first entry of the first word is a and the first entry of the second word is b. From the
definitions, we can state the relation

T(a,b)(x; q) = xT (x; q)+x(q °1)
kX

c=a+1

kX

d=b
T(c,d)(x; q), 1 ∑ a,b ∑ k,(26)

which implies

T(a,b)(x; q) = T(a,b+1)(x; q)+x(q °1)
kX

c=a+1
T(c,b)(x; q), 1 ∑ a ∑ k, 1 ∑ b ∑ k °1.(27)
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Define Tb(u) = Tb(x; q,u) = Pk
a=1 T(a,b)(x; q)ua for all b. Multiplying (27) by ua , and sum-

ming over a = 1,2, . . . ,k, we obtain

Tb(u) = Tb+1(u)+x(q °1)
kX

c=1

u °uc

1°u
T(c,b)(x; q)

= Tb+1(u)+ x(q °1)
1°u

(uTb(1)°Tb(u)), 1 ∑ b ∑ k °1.(28)

One may give an explicit formula for Tk (u).

Lemma 4.1. We have

(29) Tk (u) = uxT (x; q)
zk °uk

z °u
,

where z = 1+ (q °1)x.

Proof. Note that T(k,k)(x; q) = xT (x; q), by (26). Then by induction, we have

T(a,k)(x; q) = xzk°aT (x; q), 1 ∑ a ∑ k,

since

T(k° j ,k)(x; q) = xT (x; q)+x(q °1)
kX

c=k° j+1
T(c,k)(x; q),

by (26). Thus,

Tk (u) = xT (x; q)
kX

a=1
zk°aua = uxT (x; q)

zk °uk

z °u
.

⇤
Define T 0

b(u) = Tb (u)
xT (x;q) for all b. Then T 0

b(u) satisfies the following recurrence.

Lemma 4.2. If 0 ∑ j ∑ k °1, then

T 0
k° j (u) = (1°u) j

(z °u) j
T 0

k (u)+ u(z °1)
z(1°u)

j°1X

i=0

µ
1°u

z °u

∂ j°i

T 0
k°i (z).(30)

Proof. Substituting u = z into (28) gives

T 0
b+1(z) = zT 0

b(1), 1 ∑ b ∑ k °1,(31)

and, by (29), we have

T 0
k (z) = kzk .(32)

By (28), (29), and (31), we may write

T 0
b(u) = 1°u

z °u
T 0

b+1(u)+ u(z °1)
z(z °u)

T 0
b+1(z), 1 ∑ b ∑ k °1,

with T 0
k (u) = u zk°uk

z°u . Iterating the last recurrence yields (30). ⇤
In the next lemma, we provide an explicit formula for T 0

k° j (z).

Lemma 4.3. If 0 ∑ j ∑ k °1, then

(33) T 0
k° j (z) = zk° j

jX

i=0
(°1)i

√
j

i

!√
k + j ° i

j +1

!

z j°i .
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Proof. We proceed by induction on j . By (32), we have T 0
k (z) = kzk , which agrees with

(33) when j = 0. Let us assume that the lemma holds for 0,1, . . . , j °1 and prove it for j .
Rewriting (30), we have

T 0
k° j (u) =

u(1°u) j (zk °uk )+ (z°1)u
z(1°u)

P j°1
i=0 (1°u) j°i (z °u)i+1T 0

k°i (z)

(z °u) j+1
,

which implies

T 0
k° j (u)

u(1°u) j
=

zk °uk + z°1
z

P j°1
i=0

(z°u)i+1

(1°u)i+1 T 0
k°i (z)

(z °u) j+1
.(34)

In order to find T 0
k° j (z), we need to compute limu!z

T 0
k° j (u)

u(1°u) j . To do so, we make use of
L0Hôpital’s rule as follows. Let

bs =
d s

dus

"

zk °uk + z °1
z

j°1X

i=0

(z °u)i+1

(1°u)i+1
T 0

k°i (z)

#ØØØØØ
u=z

.

We show that bs = 0 for all s = 0,1, . . . , j . Clearly, b0 = 0, so assume s ∏ 1. Then we have

(1° z)s°1bs

s!zk°s
=°

√
k

s

!

(1° z)s°1 ° (1° z)s

s!zk+1°s

j°1X

i=0

d s

dus

(z °u)i+1

(1°u)i+1
|u=z T 0

k°i (z)

=°
√

k

s

!

(1° z)s°1 ° (1° z)s

s!zk+1°s

s°1X

i=0

s!(°1)i+1

(1° z)s

√
s °1

i

!

T 0
k°i (z)

=°
√

k

s

!

(1° z)s°1 + 1

zk+1°s

s°1X

i=0
(°1)i

√
s °1

i

!

T 0
k°i (z).

By the induction hypothesis, we have

(1° z)s°1bs

s!zk°s
=°

√
k

s

!

(1° z)s°1 +
s°1X

i=0

iX

`=0
(°1)`+i

√
s °1

i

!√
i

`

!√
k + i °`

i +1

!

zs°1°`,(35)

where 1 ∑ s ∑ j . Note that the right side of the last expression is a polynomial in z of degree
at most s°1. Extracting the coefficient of z`, where 0 ∑ `∑ s°1, from both sides of the last
equation yields

[z`]
µ

(1° z)s°1bs

s!zk°s

∂
= (°1)`°1

√
k

s

!√
s °1
`

!

+
s°1X

i=s°1°`
(°1)s°1°`+i

√
s °1

i

!√
i

s °1°`

!√
k + i ° s +1+`

i +1

!

.(36)

Using the identity (replace ` with s °1°` in (23))

(37)
s°1X

i=s°1°`
(°1)s°1°`+i

√
s °1

i

!√
i

s °1°`

!√
k + i ° s +1+`

i +1

!

= (°1)`
√

k

s

!√
s °1
`

!

,

we obtain (1°z)s°1bs

s!zk°s = 0 and hence bs = 0 for all s = 0,1, . . . , j , as desired.



COUNTING PAIRS OF WORDS 17

Thus, (34) gives

lim
u!z

T 0
k° j (u)

u(1°u) j
=

b j+1

( j +1)!(°1) j+1
.

We then have

T 0
k° j (z) = lim

u!z
T 0

k° j (u) = z(1° z) j b j+1

( j +1)!(°1) j+1

= (°1) j+1zk° j (1° z) j b j+1

zk° j°1( j +1)!

= (°1) j+1zk° j

√

°
√

k

j +1

!

(1° z) j +
j°1X

i=0

iX

`=0
(°1)`+i

√
j

i

!√
i

`

!√
k + i °`

i +1

!

z j°`
!

.

Combining like powers of z in the last expression, rewriting the second sum, and using
(37) then gives

T 0
k° j (z)

= (°1) j+1zk° j
jX

`=0

√

(°1)`°1

√
k

j +1

!√
j

`

!

+
jX

i= j°`
(°1) j°`+i

√
j

i

!√
i

j °`

!√
k + i ° j +`

i +1

!!

z`

+ (°1) j+1zk° j
jX

`=0
(°1)`+1

√
j

`

!√
k +`
j +1

!

z`

= zk° j
jX

`=0
(°1)`

√
j

`

!√
k + j °`

j +1

!

z j°`,

which completes the induction step, as required. ⇤
By Lemma 4.3, (29), and (31), we have

Tk°b°1(1) = Tk°b(z)
z

= x

z
T (x; q)T 0

k°b(z)

= xzk°1°bT (x; q)
bX

i=0
(°1)i

√
b

i

!√
k +b ° i

b +1

!

zb°i , 0 ∑ b ∑ k °2,

with

Tk (1) = xT (x; q)
1° zk

1° z
.

Since T (x; q) = 1+Tk (1)+Pk°2
b=0 Tk°b°1(1), we obtain

T (x; q) = 1

1° x(1°zk )
1°z °xzk°1 Pk°2

b=0
Pb

i=0(°1)i
°b

i

¢°k+b°i
b+1

¢
z°i

,

which leads to the main result in this section.

Theorem 4.4. Let k ∏ 1. Then the generating function T (x; q) is given by

(38) T (x; q) = 1

1° x(1°zk )
1°z °xzk°1 Pk°2

b=0
Pb

i=0(°1)i
°b

i

¢°k+b°i
b+1

¢
z°i

,

where z = 1+ (q °1)x.
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Setting q = 1 in (38) gives

T (x;1) = 1

1°kx °x
Pk°2

b=0
Pb

i=0(°1)i
°b

i

¢°k+b°i
b+1

¢ ,

and by the identity
Pb

i=0(°1)i
°b

i

¢°k+b°i
b+1

¢
= k, we see that

T (x;1) = 1
1°kx °x(k °1)k

= 1
1°k2x

,

as required.
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