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ABSTRACT. This statistic, i.e. the sum of positions of records, has been the object of recent interest
in the literature. Using the saddle point method, we obtain from the generating function of the sum
of positions of records in random permutations and Cauchy’s integral formula, asymptotic results in
central and non-central regions. In the non-central region, we derive asymptotic expansions gener-
alizing some results by Kortchemski. In the central region, we obtain a limiting distribution related
to Dickman’s function. This paper fits within the framework of Analytic Combinatorics.

1. INTRODUCTION

The statistic srec is defined as the sum of positions of records in random permutations. The
generating function (GF) of srec is given by

(1) G(z) =
nY

i=1
(zi + i °1),

and the probability generating function (PGF) is given by

(2) Z (z) =
Qn

i=1(zi + i °1)

n!
.

This statistic has been the object of recent interest in the literature. Let us mention
Kortchemski [9], where he obtains the GF (1) and also proves that, in a large deviation domain,

(3) Jn(`) := [z`]G(z) ª en ln(n)y+O (n), where `= n(n +1)
2

x, x = 1° y2, 0 < y < 1,

with an error O (1/ln(n)) (we assume that ` is integer). 1 The GF (1) is proved as follows: let Xk be
1 if k is a position of a record and 0 otherwise. It is well known (see, for instance, Rényi [16]), that
X1, X2, .., Xn are independent and P(Xk = 1) = 1

k , hence (1).
In [15], Prodinger analyzes the same statistic for a series of n random geometric variables (with

weak and strong records). He obtains an asymptotic expansion of E(srec).
In [8], Knopfmacher and Mansour analyze srec in a random composition of an integer m. Let

us also mention Kuba and Panholzer [10] which includes a related parameter.
In this paper, we obtain, in Section 2 an asymptotic expansion generalizing the large deviation

result (3) and we analyze the central region `= yn in Section 3. We use Cauchy’s integral formula,
the saddle point method and a technique developped in Arratia, Barbour and Tavare [2]. Section 4
provides the justification of the integration procedures used in the saddle point method. Section
5 concludes the paper.

Our results can be summarized as follows
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1As advocated by D.E. Knuth, we denote by [zn] f (z) the coefficient of zn in the power expansion of f (z).
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Theorem 1.1. Let the large deviation domain be defined as ` = n(n+1)
2 x, x = 1° y2, 0 < y < 1.

The asymptotic value of Jn(`) := [z`]G(z), in this large deviation domain, is given by

Jn(`) ª J̃n(`) = eS(z̃)

p
2ºS00(z̃)

where, with L := ln(n), S(z̃),S00(z̃) are given by

S(z̃) =ß3 +ß4 = nyL+n

∑
y(°1+ ln(y))+ 6191y

3600L
+ . . .

∏
+ n2

n1/y L

∑
° y

y1/y
+ . . .

∏
+ . . . ,

S00(z̃) = n3
∑

4y3

5L
° 4y3(°18+5ln(y))

25L2 + . . .
∏

.

Theorem 1.2. In the central region, V := srec/n converges in distribution to a random variable with
density given by

e°∞Ω(v),

where Ω(v) is the Dickman’s function.

An alternative (non-constructive) proof of Theorem 1.2 goes as follows. Recall that srec =Pn
k=1 k Xk

with Xk the indicator that k is a position of a record. Rényi [16] proved that the Xk are indepen-
dent with P(Xk = 1) = 1/k. Hence srec is the sum of independent random variables with known
distribution and, as noted by Hwang and Tsai [7], the argument provided in Corollary 2.8 of Arratia
et al. [1] actually yields the local limit theorem

(4) P(srec = k) ª e°∞Ω(k/n)
n

The connection between Corollary 2.8 of Arratia et al. [1] and (4) is not transparent. However, in a
curious coincidence, a detailed explicit proof of (4) – relying on techniques which are independent
of ours – has recently been published to the ArXiv, see Giuliano, Szewczak and Weber [5]2.

This paper fits within the framework of Analytic Combinatorics. A preliminary version was pre-
sented at the AofA 2013 Conference.

2. THE LARGE DEVIATION `= n(n+1)
2 (1° y2)

2.1. The Saddle point method. By Cauchy’s theorem,

Jn(`) = 1
2ºi

Z

≠

G(z)

z`+1
d z

= 1
2ºi

Z

≠
eS(z)d z,(5)

where≠ is inside the analyticity domain of the integrand and encircles the origin and

S(z) =
nX

i=1
ln(zi + i °1)°

µ
n(n +1)

2
(1° y2)+1

∂
ln(z).

Set

S(i ) := d i S

d zi
.

We will use the Saddle point method (for a good introduction to this method, see Flajolet and
Sedgewick [4, ch.V I I I ]). First we must find the solution of

S(1)(z̃) = 0

2We thank Y. Swan for providing these lines of proof.
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with smallest modulus. This leads to

(6)
nX

i=1

i z̃i

z̃i + i °1
°

µ
n(n +1)

2
(1° y2)+1

∂
= 0.

The left-hand side of this equation is an increasing function of z̃, so the solution z̃ is unique. It is
easy to check that, for large n (depending on y), 0 < z̃ < 2. For instance, for y = 0.1, this is true for
n ∏ 200, for y = 0.2, this is true for n ∏ 60.

In some previous papers (see Louchard and Prodinger [13], [11], [14]), we simply tried z̃ = z§+
" for some z§, plugged into (6), and expanded into ". Here it appears that we cannot get this
expansion. So we expand first (6) itself. But we must be careful. There exists some ĩ such that
z̃ ĩ = ĩ . Some numerical experiments suggest that ĩ =O (n). So we set ĩ =Æn,0 <Æ< 1 and we must
now compute Æ. We obtain z̃ = eª > 1, with

0 < ª= L+ ln(Æ)
Æn

= o(1),

where here and in the sequel, L := ln(n). Note that this leads to

z̃n = exp
µ

L+ ln(Æ)
Æ

∂
= n1/ÆÆ1/Æ.

We use the classical splitting of the sum technique, (see for instance Greene and Knuth, [6]). Let us
assume ĩ integer, or use instead bĩc (we keep the notation ĩ in the sequel, to simplify our expres-
sions). Now equ. (6), leads to (we provide in the sequel only a few terms in the expansions, but
Maple knows and uses more )

ß1 :=
ĩX

i=1

i z̃i

z̃i + i °1
,

ß2 :=
nX

i=ĩ+1

i z̃i

z̃i + i °1
°

µ
n(n +1)

2
(1° y2)+1

∂
.

As
z̃i °1

i
< z̃ ĩ °1

ĩ
< z̃ ĩ

ĩ
= 1, i < ĩ ,

we have

ß1 =
ĩX

i=1

z̃i

1+ z̃i°1
i

=
ĩX

i=1
z̃i

"

1° z̃i °1
i

+
µ

z̃i °1
i

∂2

+ . . .

#

(7)

The first summation is immediate

(8)
ĩX

i=1
z̃i = z̃ ĩ+1 °1

z̃ °1
° z̃

z̃ °1
ª Æ2n2

L+ ln(Æ)
+O (n).

For the next summations, we use the Euler-Maclaurin summation formula. First of all, the correc-
tion (to first order) arising from replacing the summations in (7) by integrals is given by

(9)
1
2
+ 1

2
ĩ

1+ ĩ°1
ĩ

= 1
2
+ 1

2
Æn

2°1/(Æn)
ª 1

4
Æn.

Next, we must compute integrals such as

(10)
Zĩ

1
z̃v

µ
z̃v °1

v

∂k

d v.
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But we know that

K :=
Zĩ

1
z̃v

µ
z̃v °1

v

∂
d v =

Zĩ

1
eªv

µ
eªv °1

v

∂
d v =

Zĩ

1

h
e2ªv °eªv

i d v

v

=
Z°ĩ

°1

h
e°2ªu °e°ªu

i du

u
=

Z°ªĩ

°ª

£
e°2t °e°t § d t

t

= Ei(1,°2ª)°Ei(1,°ª)+Ei(1,°ĩª)°Ei(1,°2ĩª)

= Ei(1,°2ª)°Ei(1,°ª)+Ei(1,°(L+ ln(Æ)))°Ei(1,°2(L+ ln(Æ))),

where Ei(1, x) is the exponential integral of index 1 and we use suitable extensions (with Cauchy
principal values):

Ei(1, x) :=
Z1

x

e°y

y
d y.

Setting L1 := L+ ln(Æ) ¬ 1, 3 we have

<(Ei(1,°ª)) =°∞° ln(ª)°ª° ª2

4
+ . . . ,

<(Ei(1,°L1)) = eL1

"

° 1
L1

° 1

L2
1

+ . . .

#

.

This gives, for instance,

K ª° ln(2ª)°ª° 3ª2

4
+ . . .+ ln(ª)°e2L1

"

° 1
2L1

° 1

4L2
1

+ . . .

#

+eL1

"

° 1
L1

° 1

L2
1

+ . . .

#

.

But eL1 = nÆ. Proceeding to asymptotics w.r.t n and to asymptotics w.r.t L, we derive

K ª n2
∑
Æ2

2L
+ 1

8
Æ2(°4ln(Æ)+2)

L2 +O

µ
1

L3

∂∏
+O (n).

We use similar expansions for terms like (10), using integration by parts. This finally leads, with (9)
and (8), to

(11) ß1 = n2
∑

47Æ2

60L
+ Æ2(°564ln(Æ)°155)

720L2 +O (L°3)
∏
+O (n).

Note that we must use enough terms in (7) to obtain a sufficient precision: 5 terms are necessary
to obtain the first two terms of (11).

Now we turn to ß2. As
i °1

z̃i
< ĩ +1°1

z̃ ĩ+1
< ĩ

z̃ i
= 1, i > ĩ ,

we have

ß2 =
nX

i=ĩ+1

i

1+ i°1
z̃i

°
µ

n(n +1)
2

(1° y2)+1
∂

=
nX

i=ĩ+1

i

∑
1° i °1

z̃i
+

µ
i °1

z̃i

∂2

+ . . .
∏
°

µ
n(n +1)

2
(1° y2)+1

∂
.

After all summations and substitutions such as

z̃i n = (n1/ÆÆ1/Æ)i , z̃i nÆ = (nÆ)i ,

3We recall the notation: f (n) ¡ g (n) () limn!1
f (n)
g (n) = 0.
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we obtain

ß2 = n2
∑

1
2
° Æ2

2
° 47Æ2

60L
+ Æ2(2820ln(Æ)°5839)

3600L2 + . . .
∏
+O (n)

+ n3

n1/Æ

h Æ

Æ1/ÆL
+ . . .

i
°

µ
n(n +1)

2
(1° y2)+1

∂
+ . . . .

Note the presence of the same coefficient 47
60 in ß1 and ß2.

So

(12) S0(z̃) =ß1 +ß2 = n2
∑

1
2
° Æ2

2
° 3307Æ2

1800L2 + . . .° (1° y2)/2
∏
+O (n)+ n3

n1/Æ

h Æ

Æ1/ÆL
+ . . .

i
+ . . . = 0,

Putting the coefficient of n2 to 0, and solving wrt Æ gives the solution

(13) Æ§ = y ° 3307y

1800L2 + 10936249y

2160000L4 + . . .

Now we must consider the other terms of (12). First we must compare n with n3

n1/Æ .
If Æ > 1

2 , n3°1/Æ > n and vice-versa. The most interesting case is the case Æ > 1
2 ï£¡ (the other

one can be treated by similar methods). Note that there are also other terms in (12) of order
nk°(k°2)/Æ,k ∏ 4. These terms are greater than n if Æ> (k °2)/(k °1).

Returning to (12), we first compute n1/Æ§ = n1/y'(y,L), with

(14) '(y,L) = eL(1/Æ§°1/y) = 1+ 3307
1800yL

+ . . .

So we obtain from (12) the term

n3

n1/y'(y,L)

∑
Æ§

Æ§1/Æ§L
+ . . .

∏
,

and with (13),

n3

n1/y

∑
y

y1/y L
+ . . .

∏
.

Now we set Æ = Æ§+ C n
n1/y , plug into (12) (ignoring the O (n) term), and expand. The n2 term must

theoretically be 0. Actually, it is given by a series of large powers of 1/L as we only use a finite
number of terms in (13). Solving the coefficient of n3

n1/y wrt C , we obtain

C§ = 1
Ly1/y

+ . . .

and

(15) Æ=Æ§+ C§n

n1/y
+ . . .

This implies, for instance,

ln(z̃) = L+ ln(Æ)
Æn

ª L+ ln(Æ§+C§n1°1/y )
Æn

ª L+ ln(Æ§)+C§n1°1/y /Æ§

(Æ§+C§n1°1/y )n

ª 1
n

∑
L+ ln(Æ§)

Æ§ ° C§n1°1/y (°1+L+ ln(Æ§))
Æ§2 + . . .

∏
.
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2.2. The computation of S(z̃). Proceeding as above, we have

S(z̃) =ß3 +ß4

with

ß3 =
ĩX

i=1
ln(z̃i + i °1)(16)

=
ĩX

i=1
ln(i )+

ĩX

i=1
ln

µ
1+ z̃i °1

i

∂

=
ĩX

i=1
ln(i )+

ĩX

i=1

"
z̃i °1

i
° 1

2

µ
z̃i °1

i

∂2

+ . . .

#

(17)

and substituting z̃ = eª,

ß3 = n

∑
ÆL+Æ(ln(Æ)°1)+ 31Æ

36L
+ . . .

∏
.

Next,

ß4 =
nX

i=ĩ+1

ln(z̃i + i °1)°
µ

n(n +1)
2

(1° y2)+1
∂

ln(z̃)

=
nX

i=ĩ+1

ln(z̃i )+
nX

i=ĩ+1

ln
µ
1+ i °1

z̃i

∂
°

µ
n(n +1)

2
(1° y2)+1

∂
ln(z̃)

=
nX

i=ĩ+1

iª+
nX

i=ĩ+1

∑
i °1

z̃i
° 1

2

µ
i °1

z̃i

∂2

+ . . .
∏
°

µ
n(n +1)

2
(1° y2)+1

∂
ª

= nL

∑°Æ2 + y2

2Æ
° 1

2
(Æ2 ° y2) ln(Æ)

LÆ
+ . . .

∏
+ n2

n1/Æ

∑
° (Æ+L+ ln(Æ))Æ

(L+ ln(Æ))2Æ1/Æ
+ . . .

∏
+ . . . ,

and, using (15), (14),

(18) S(z̃) =ß3 +ß4 = nyL+n

∑
y(°1+ ln(y))+ 6191y

3600L
+ . . .

∏
+ n2

n1/y L

∑
° y

y1/y
+ . . .

∏
+ . . .

2.3. The computation of S00(z̃). We have

S00(z̃) =
nX

i=1

∑
z̃i i 2

z̃2(z̃i + i °1)
° z̃i i

z̃2(z̃i + i °1)
° z̃2i i 2

z̃2(z̃i + i °1)2

∏
+

µ
n(n +1)

2
(1° y2)+1

∂
/z̃2.

Proceeding as above and omitting the details, we have (here we only use the n3 term)

(19) S00(z̃) = n3
∑

4y3

5L
° 4y3(°18+5ln(y))

25L2 + . . .
∏

.

Similarly, we have

S000(z̃) =O

µ
n4

L

∂
,

S(4)(z̃) =O

µ
n5

L

∂
.
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2.4. The final integration. Now we obtain

Jn(`) = 1
2ºi

Z

≠0
exp

h
S(z̃)+S(2)(z̃)(z ° z̃)2/2!+

1X

k=3
S(k)(z̃)(z ° z̃)k /k !

i
d z + 1

2ºi

Z

≠°≠0
exp[S(z)]d z

where≠0 is in the domain of convergence of the S(z) function power expansion (note carefully that
the linear term vanishes).

In Figure 1 we show, for n = 150, y = 0.5, z = x + iø,

H(z) =<(S(z)) =<
√

nX

i=1
ln(zi + i °1)°

µ
n(n +1)

2
(1° y2)+1

∂
ln(z)

!

.

In Figures 2 and 3 we show, for n = 1000, y = 0.5,

1.04
1.05

1.06
1.07

1.08
1.09

1.1
1.11

x

–0.1

–0.05

0

0.05

0.1

ta

200

220

240

260

280

300

FIGURE 1. H(z), n = 150, y = 0.5

<
h

H1

≥
eª+iµ

¥
°H1

≥
eª

¥i

as function of µ, with

H1(z) =
nX

i=1
ln(zi + i °1).

From these Figures and some numerical results, the decreasing property along eª+iµ is clear. It
appears that this function is firstly rapidly decreasing and, next, asymptotically given by a large
(negative) constant. We will prove these facts in Sec. 4.

As usual, we want to introduce a splitting value µ0 such that n3µ2
0 !1,n4µ3

0 ! 0,n !1. For
instance, we choose µ0 = nØ,Ø=°17

12 .
Proceeding to tails pruning, we want to find asymptotics for sums such that (see for instance,

(17)),

<
∑ÆnX

1
ln

∑
exp(k[ª+ iµ])°1

k

∏∏

of a suitable form
n3

L
'1(µ).
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FIGURE 2. <
£
H1

°
eª+iµ

¢
°H1

°
eª

¢§
,n = 1000, y = 0.5,µ = 0..0.05
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tet

FIGURE 3. <
£
H1

°
eª+iµ

¢
°H1

°
eª

¢§
,n = 1000, y = 0.5,µ = 0..º

This should entail that Z2º°µ0

µ0

e
n3
L '1(µ)dµ

is negligible. This is necessary to be sure that we can ignore, in (5), the integration outside the
domain [°µ0,µ0]. See again Flajolet and Sedgewick [4, ch.V I I I ]. The details are given in Sec.4.
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So we choose≠0 = z̃ exp iµ,µ 2 [°µ0,µ0]. We derive

Jn(`) ª 1
2º

Zµ0

°µ0

exp
h

S(z̃)+S(2)(z̃)(z ° z̃)2/2!+S(3)(z̃)(z ° z̃)3/3!+O (n5µ4
0)

i
z̃dµ

ª 1
2º

Zµ0

°µ0

exp
h

S(z̃)+S(2)(z̃)(z ° z̃)2/2!+S(3)(z̃)(z ° z̃)3/3!+O (n°2/3)
i

z̃dµ.

We can shift the path to a path parallel to the imaginary axis. Set z = z̃ + iø. Classically completing
the tails, this gives

(20) Jn(`) ª 1
2º

exp[S(z̃)]
Z1

°1
exp

h
S(2)(z̃)(iø)2/2!+S(3)(z̃)(iø)3/3!

i
dø.

We can now compute (20), for instance by using the classical trick of setting

S(2)(z̃)(iø)2/2!+
4X

k=3
S(k)(z̃)(iø)k /k ! =°u2/2,

computing ø as a truncated series in u which gives (by inversion)

ø=
p

L

n3/2

£
uø1 +u2ø2 +u3ø3 +u4ø4 + . . .

§
,

with

ø1 =
s

5
9y2 + . . .

ø2 =O

√
i
p

L
p

n

!

,

ø3 =O

µ
L

n

∂
,

ø4 =O

µ
iL3/2

n3/2

∂
.

Setting dø= dø
du du, expanding w.r.t. n and integrating on u 2 (°1,1), we finally obtain

Theorem 2.1. The asymptotic value of Jn(`) := [z`]G(z), in the large deviation domain considered
here, is given by

Jn(`) ª J̃n(`) = eS(z̃)

p
2ºS00(z̃)

where S(z̃),S00(z̃) are given by (18) and (19).

In Figure 4, we give, for n = 150, a comparison between ln(Jn(`)) (circle) and ln( J̃n(`)) (line),
as a function of y . The fit is quite good, but when y is close to 1. But ` is then small and our
asymptotics are no more very efficient (we are outside the large deviation range). We also show
the first approximation (3): nLy ( blue line ) which is only efficient for very large n (i.e. when L is
large, see the linear n term in (18). Let us note that other large deviation regions can be analyzed
by the same method. See for instance Louchard and Prodinger [12].

3. THE CENTRAL REGION `= yn

From (2), we see that, as expected, Z (1) = 1. Moreover

Z 0(z) =
nX

i=1

i zi°1

zi + i °1
Z (z),
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FIGURE 4. Comparison between ln(Jn(`)) (circle) and ln( J̃n(`)) (line), as a function
of y , n = 150. Also it shows the first approximation (3): nLy (blue line )

and

Z 00(z) =
nX

i=1

i [zi°2i 2 °2i zi°2 ° z2i°2 + zi°2]

(zi + i °1)2
Z (z)+

√
nX

i=1

i zi°1

zi + i °1

!2

Z (z).

So
E(srec) = Z 0(1) = n,

and the variance is given by

V(srec) = Z 00(1)+n °n2 =
nX

i=1
(i °2)+n2 +n °n2 = n(n °1)

2
.

Of course Z (z) corresponds to a sum of independent non-identically distributed random vari-
ables, but it is clear that the Lindeberg-Lévy conditions (see for instance, Feller [3]) are not satisfied
here. The distribution is not asymptotically Gaussian. We tried to use the classical Saddle point
method, but it appears that, at the Saddle point, the second derivative is of order n2 but the third
derivative is of order n3! So we couldn’t apply this method. Fortunately, we can use a technique
developped in Arratia, Barbour and Tavare [2], sec. 4.2, which leads to an asymptotic distribution
depending on Dickman’s function Ω(x)4.

Equ. (2) can be written as

Z (z) =
nY

i=1
(1° 1

i
+ zi

i
),

which corresponds to a sum of Bernoulli independent random variables, with parameter 1/i . Let
V := srec/n. Then

E
°
e°sV ¢

= exp
µ nX

1
ln

∑
1+ e°i s/n °1

i

∏∂
.

4We are indebted to S.Janson for suggesting this use of Dickman’s function.
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But e°i s/n°1
i =O ( 1

n ) uniformly in i , so

(21) E
°
e°sV ¢

= exp
µ
°

nX

1

1°e°i s/n

i
+O (

1
n

)
∂

.

This is exactly the expression given in Arratia et al. [2] p.81, for µ = 1. This leads to an asymptotic
distribution given by e°∞Ω(v), where Ω(v) is the Dickman’s function.

For the sake of completeness, following the lines of [2], let us derive this formula.
By dominated convergence, (21) leads to

E
°
e°sV ¢

ª exp
∑
°

Z1

0
(1°e°sx)

1
x

d x

∏

= e°∞s°1e°Ei(1,s)

= e°∞s°1
1X

0

(°1)k

k !

µZ1

s

e°y

y
d y

∂k

,(22)

and, for k ∏ 1,

s°1
µZ1

s

e°y

y
d y

∂k

=
Z1

1
. . .

Z1

1
s°1 exp

"

°s
kX

1
vi

#
d v1 . . .d vk

v1 . . . vk

=
Z1

1
. . .

Z1

1

Z1
Pk

1 vi

e°sxd x
d v1 . . .d vk

v1 . . . vk

=
Z1

0
e°sx

Z1

1
. . .

Z1

1
[[

kX

1
vi < x]]

d v1 . . .d vk

v1 . . . vk
d x

=
Z1

0
e°sx

Z
. . .

Z

Ik (x)

d y1 . . .d yk

y1 . . . yk
d x

where 5

Ik (x) := [[y1 > x°1, . . . , yk > x°1,
kX

1
yi < 1]].

But the Dickman’s function is given by

Ω(u) = 1+
1X

1

(°1)k

k !

Z
. . .

Z

Ik (u)

d y1 . . .d yk

y1 . . . yk
,

so, by (22) and Vervaat [17], p.90, we obtain the following theorem

Theorem 3.1. In the central region, V := srec/n converges in distribution to a random variable with
density given by

e°∞Ω(v).

Let us recall that Ω(u) is the solution of

uΩ0(u)+Ω(u °1) = 0, for u > 0,

and
Ω(u) = 0, for u < 0,Ω(u) = 1, for 0 ∑ u ∑ 1.

The first values of Ω(u) are given by

Ω(u) = 1° ln(u), for 1 ∑ u ∑ 2,Ω(u) = 1° [1° ln(1°u)] ln(u)+Li2(1°u)+ º2

12
for 2 ∑ u ∑ 3,

where

Li2(z) :=°
Zz

0

ln(1° t )
t

d t .

5As advocated by D.E. Knuth, we denote by [[.]] the indicator function: [[B ]] = 1 if B is true, 0 otherwise.
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Note that the function dilog(z) often used in Computer algebra systems is given by

dilog(z) = Li2(1° z).

From (4), we derive

(23) P(srec = k) ª e°∞

n
,k ∑ n.

This is easily checked in our case. Indeed, for k ∑ n,

P(srec = k) = 1
n!

[zk ]
kY

i=1
[zi + i °1]

n°1Y

u=k
u,

and, if k is large, by (23),

[zk ]
kY

i=1
[zi + i °1] ª k !

e°∞

k
.

So

P(srec = k) ª e°∞ 1
n!

(k °1)!
n°1Y

u=k
u = e°∞

n
.

For k ∑ n large enough, P(srec = k) is asymptotically constant.
We have made a numerical comparison of P(srec = k),n = 200,k = 1..3n with e°∞Ω(k/n)

n . This is
given in Figure 5 and is quite excellent.

0.0005

0.001

0.0015

0.002

0.0025

0.003

0 0.5 1 1.5 2 2.5 3

FIGURE 5. Comparison between P(srec = k),n = 200,k = 1..3n (circle) as function
of k/n and the asymptotics e°∞Ω(k/n)

n (line)

4. JUSTIFICATION OF THE INTEGRATION PROCEDURES USED IN THE LARGE DEVIATION SADDLE

POINT METHOD.

We consider the large deviation `= n(n+1)
2 (1° y2).

We will distinguish two domains: µĩ ¬ 1 and µĩ = o(1). (Recall that ĩ = nÆ). We are only inter-
ested here in rough asymptotics.
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4.1. The first domain µĩ ¬ 1. Let us first precisely compute a value k̃ such that z̃ k̃

k̃°1
= 1. Set l =

k̃ °1, l = ĩ °¢. We have

z̃ ĩ°¢+1 = ĩ °¢,

z̃°¢+1 = 1°¢/ĩ ,

ª(°¢°1) ª¢/ĩ ,

¢ª 1+1/L1,

k̃ ª ĩ °1/L1,

where L1 := L+ ln(Æ).
So we can choose the summation in ß3, ( given by (16)) as

ß3(µ) =
ĩ°1X

k=1
ln

h
(z̃e iµ)k +k °1

i

= ln
h

z̃e iµ
i
+ ln

h
1+ (z̃e iµ)2

i
+

ĩ°1X

k=3
ln

h
(z̃e iµ)k +k °1

i
.

The lower summation index 3 is justified below.
We are interested in <(ß3(µ)°ß3(0)). This first leads, for k = 2, to

(24) <
≥
ln

h
1+ (z̃e iµ)2

i¥
° ln

£
1+ z̃2§ª° 2z̃2

(1+ z̃2)2µ
2 ª°1

4
µ2,

and next, to

ß§
3 (µ) =

1X

j=1

(°1) j+1

j

ĩ°1X

k=3
<

"°
eª+iµ

¢k j

(k °1) j
° eªk j

(k °1) j

#

=
1X

j=1

(°1) j+1

j
T j ,

where

T j =
ĩ°1X

k=3

eªk j

(k °1) j

£
cos(k jµ)°1

§
.

Note that, for k = 2, eªk

k°1 = e2ª > 1 which should lead to an exponentially large value e2ª j if ª j ¬ 1.

But e3ª

2 < 1 which is OK, hence our lower summation index 3.
Setting k = ĩ °u,

T j =
ĩ°3X

u=1

eª(ĩ°u) j

ĩ j (1°u/ĩ °1/ĩ ) j

£
cos( j (ĩ °u)µ)°1

§
.

Using Euler-Maclaurin, setting v = ªu,

(25) T j ª
ZL1(1°3/ĩ )

ª

e° j v

(1° v/L1 °1/ĩ ) j

£
cos( j ĩ (1° v/L1)µ)°1

§ ĩ

L1
d v.

The error terms are respectively given by
• If u = 1, then

e° jª

(1°1/ĩ °1/ĩ ) j

£
cos( j ĩµ)°1

§

is bounded above by

2
e° jª

(1°1/ĩ °1/ĩ ) j
ª 2e° jªe2 j /ĩ ª 2e° jª.

This entails a maximum contribution to ß§
3 (µ) bounded by

1X

j=1

2
j

e° jª =°2ln(1°e°ª) ª 2e°ª ª 2.
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• If u = ĩ °ª, then

e° jªĩ

(1° (ĩ °3)/ĩ °1/ĩ ) j

£
cos( j 3µ)°1

§

is bounded above by

2
1

ĩ y (2/ĩ ) j
= 2

2 j
.

This entails a maximum contribution to ß§
3 (µ) bounded by

1X

j=1

2
j

1

2 j
=°2ln(1°1/2) = 1.39. . . .

If ĩµ ¬ 1, the strongly oscillating character of cos( j ĩ (1° v/L1µ) leads asymptotically, when inte-
grated, to 0. Indeed,

Z±

0
cos(Øv)d v = sin(Ø±)

Ø
= o(1)

for large Ø.
Now the function

F (v) := e°v

(1° v/L1 °1/ĩ )

is such that F (ª) = e°ª/(1° 2/ĩ ) ª 1,F (L1 ° 3ª) = e3ª

2 < 1, F (v) decreases from v = ª to a unique
minimum at v ª L1°1 where it has the value ª eL1/ĩ = eª and increases to v = L1°3ª where it has
the value ª 1

2 ..

• Now we consider
ZL1°3ª

ª

e° j v

(1° v/L1 °1/ĩ ) j
d v, and setting v = ª+ s

= e° jª

(1°2/ĩ ) j

ZL1°4ª

0

e° j s

(1° s
L1

1
1°2/ĩ

) j
d s, and setting j s = t

ª e° j (ª°2/ĩ )
Z(L1°4ª) j

0

e°t

(1° t
j L1

1
1°2/ĩ

) j

d t

j

ª e° jª

j

Z(L1°4ª) j

0

e°t

(1° t
j L1

1
1°2/ĩ

) j
d t .

• We first estimate the integral

I1 =
Z(L1°1) j

0

e°t

(1° t
j L1

1
1°2/ĩ

) j
d t ª

Z(L1°1) j

0

e°t

(1° t
j L1

) j
d t ª

Z(L1°1) j

0
et/L1 d t ª

Z(L1°1) j

0
e°t d t ª 1.

• We next consider the integral

I2 =
Z(L1°4ª) j

(L1°1) j

e°t

(1° t
j L1

1
1°2/ĩ

) j
d t ,

and setting t = (L1 °4ª) j °u, A = i
2L1

= 1
2ª ¬ 1,

I2 ª
Z j

0

(1/i ) j eu

( 2
i +

u
j L1

) j
du = 1

2 j

Z j

0

eu

(1+ u A
j ) j

du.

This last integral can itself be decomposed into two integrals, setting u§ := j
A = o( j )
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First of all, we have

I21 =
1

2 j

Zu§

0

eu

(1+ u A
j ) j

du ª 1

2 j

Zu§

0

eu

eu A
du = 1

2 j

1
A

h
1°e° j

i
.

Next we analyze

I22 =
1

2 j

Z j

u§

eu

(1+ u A
j ) j

du = u§ j

2 j

Z j

u§

eu

(u +u§) j
du.

For u = u§, the integrand gives
eu§

(2u§) j
,

and the derivative is given by

ª° A

2
eu§

(2u§) j
.

The integrand minimum is attained at u = j (1° 1
A ) and is given by

e j

( j +u§) j
ª e j

j j
.

Multiplying by u§ j

2 j , this leads to (eª) j , as expected.
Some numerical experiments show that the integrand is asymptotically (for large A) ex-

ponentially decreasing in the neighbourhood of u§. This should lead to

eu§

(2u§) j
e° A

2 (u°u§).

Setting u = wu§, w 2 [1, A], we must compare

eu§ e°(w°1) j /2

(2u§) j

with
ewu§

u§ j (1+w) j
,

or

j

∑
1
A
° w °1

2
° ln(2)

∏

with
j
hw

A
° ln(1+w)

i
.

For w = 1, we have equality. For w = 1+","= o(1), the first term of the expansion coincides.
For w = 2, we have respectively ª ° j 1.2. . . and ª ° j 1.1. . .. Of course, both expressions
become negatively large for large j . But even for small values of j , the two integrals

ZA

1
exp

µ
j

∑
1
A
° w °1

2
° ln(2)

∏∂
d w

and ZA

1
exp

≥
j
hw

A
° ln(1+w)

i¥
d w

give rather close values: for j = 3, A = 100, we obtain respectively 0.09. . . ,012. . ., for j =
4, A = 100, we obtain 0.033. . . ,0.045. . .,for j = 5, A = 100, we obtain 0.013. . . ,0.017. . .. So we
can use the rough approximation

I22 ª
u§ j

2 j

Z j

u§

eu§

(2u§) j
e° A

2 (u°u§)du = eu§

4 j

2
A

h
1°e° j A/2

i
ª

µ
e1/A

4

∂ j
2
A

.
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Using I1, I21, I22 this finally gives

T j ª° ĩ

L1

e° jª

j

"

1+ 1

2 j

1
A

h
1°e° j

i
+

µ
e1/A

4

∂ j
2
A

#

and

ß§
3 (µ) =

1X

j=1

(°1) j+1

j
T j ª

ĩ

L1

∑
pol yl og (2,1)+ 1

A
pol yl og (1,1/2)° 1

A
pol yl og (1,e°1/2)+ 2

A
pol yl og (1,1/4)

∏

ª°º
2

12
ĩ

L1
.

(26)

For instance, for n = 104,µ = 2,Æ= 1/2, we have <[ß3(µ)°ß3(0)] =°570 and ß§
3 (µ) =°482, which

is quite satisfactory. The analysis of ß§
4 (µ) given by

ß§
4 (µ) =

1X

j=1

(°1) j+1

j

nX

k=ĩ

(k °1) j e°ªk j £
cos(k jµ)°1

§

is quite analogous, we omit the details. The corrections due to (24) are negligible.

4.2. The second domain µĩ = o(1). Set for instance µ = 1
ĩ'(n)

where '(n) is an increasing function

of n. We split the summation on j into three parts: ß§
31(µ) = P j̃ /2°1

j=1 , ß§
32(µ) = P j̃

j= j̃ /2
and ß§

33(µ) =
P1

j= j̃+1
, where j̃ := º/2

ĩµ
= º/2'(n). We assume that j̃ is an even integer and j̃ /2 is an odd integer

(or, w.l.g. the closest value to j̃ satisfying these requirements).

• First subdomain j ∑ j̃ /2°1
As j ĩµ <º/2, we can use the first order approximation°

£
j ĩ (1° v/L1)µ

§2 /2 for
£
cos( j ĩ (1° v/L1)µ)°1

§
.

We have the asymptotics

T j ª°
ZL1(1°3/ĩ )

ª

e° j v

(1° v/L1 °1/ĩ ) j

£
j ĩ (1° v/L1)µ

§2 /2
ĩ

L1
d v.

Also, for j sufficiently large, due to the presence of e° j v , we can neglect the contribution of
v/L1. Proceeding as above,

T j ª°e° jª j
ĩ 3µ2

2L1
.

This gives

ß§
31(µ) ª°e°ª°e° j̃ /2ª

eª+1

ĩ 3µ2

2L1
.

(1) If j̃ª= o(1) i.e. '(n) = o(n) then

e°ª°e° j̃ /2ª

eª+1
ª j̃ª/4 = o(1).

(2) If j̃ª¬ 1 i.e. '(n) ¬ n then

e°ª°e° j̃ /2ª

eª+1
ª 1/2.

• Second subdomain j̃ /2 ∑ j ∑ j̃ Now we have

T j ª°e°ª j

j

∑
1°cos

µ
j

j̃

º

2

∂∏
ĩ

L1
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and

ß§
32(µ) ª°

j̃X

j= j̃ /2

(°1) j+1

j

e°ª j

j

∑
1°cos

µ
j

j̃

º

2

∂∏
ĩ

L1
.

For s odd and u even, we have
uX

j=s

(°1) j+1

j 2 f ( j ) =
uX

j=s

f ( j )
j 2 ° 1

2

u/2X

v=(s+1)/2

f (2v)
v2 .

hence

ß§
32(µ) ª° ĩ

L1

2

4
j̃X

j= j̃ /2

e°ª j

j 2

∑
1°cos

µ
j

j̃

º

2

∂∏
° 1

2

j̃ /2X

j= j̃ /4+1/2

e°2ª j

j 2

∑
1°cos

µ
2

j

j̃

º

2

∂∏3

5 .

(1) If j̃ª= o(1) i.e. '(n) = o(n) then, setting j = j̃ /2+u,"= ª j̃ /2 = o(1), the first summation
leads to

e°ª j̃ /2
Z j̃ /2

u=0

e°ªu

( j̃ /2+u)2

£
1°cos

£
(1/2+u/ j̃ )º/2

§§
du

ª e°"

( j̃ /2)2

Z"

v=0

e°v

(1+ v/")2 [1°cos[(1/2+ v/(2"))º/2]]
d v

ª

ª e°"

( j̃ /2)2
"

Z1

w=0

e°w"

(1+w)2 [1°cos[(1/2+w/2)º/2]]
d w

ª

ªC1
e°"

j̃ /2
, with

C1 =
Z1

w=0

1
(1+w)2 [1°cos[(1/2+w/2)º/2]]d w = 0.27. . . .

Setting j = j̃ /4+1/2+u,¥= ª( j̃ /2+1) = "+ª, the second summation leads to

e°ª( j̃ /4+1/2)2
Z j̃ /4°1/2

u=0

e°2ªu

( j̃ /4+1/2+u)2

£
1°cos

£
(1/2+1/ j̃ +2u/ j̃ )º/2

§§
du

ª e°¥

( j̃ /4+1/2)2

Z¥°2ª

v=0

e°v

(1+ v/¥)2

£
1°cos

£
(1/2+1/ j̃ + v/(ª j̃ ))º/2

§§ d v

2ª

ª e°¥

( j̃ /4+1/2)2
¥

Z1°2ª/¥

w=0

e°w¥

(1+w)2

£
1°cos

£
(1/2+1/ j̃ +w¥/(ª j̃ ))º/2

§§ d w

2ª

ª e°¥

j̃ /4+1/2

Z1°1/( j̃ /4+1/2)

w=0

e°w¥

(1+w)2

£
1°cos

£
(1/2+1/ j̃ +w(1/2+1/ j̃ ))º/2

§§
d w

ª e°¥

j̃ /4+1/2

£
C1 +C2/ j̃

§
with C2 =°0.04. . . .

So, finally,

ß§
32(µ) ª° ĩ

L1

∑
e°"C1

∑
1

j̃ /2
° e°ª

j̃ /2+1

∏
° 1

2
C2

e°¥

j̃ /4+1/2

1

j̃

∏

ª° ĩ

L1

∑
e°"C1

1

( j̃ /2)2
°2C2

e°¥

j̃ 2

∏
as

1

j̃ 2
¬

µ
ª

j̃

∂
,

ª° ĩ

L1

1

j̃ 2
[4C1 °2C2] =°1.17. . .

ĩ 3µ2

(º/2)2L1
.
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(2) If j̃ª¬ 1 i.e. '(n) ¬ n then setting M = j̃ª/2 ¬ 1,the first summation leads to

ª e°M

( j̃ /2)2

ZM

v=0

e°v

(1+ v/M)2 [1°cos[(1/2+ v/(2M))º/2]]
d v

ª

ª e°M

( j̃ /2)2

ZM

v=0
e°v e°2v/M [1°cos[(1/2+ v/(2M))º/2]]

d v

ª

ª e°M

( j̃ /2)2

1
ª

[1°cos(º/4)] .

Setting N = (ª( j̃ /2+1) = M +ª, the second summation leads to

ª e°N

( j̃ /4+1/2)2

ZN°2ª

v=0

e°v

(1+ v/N )2

£
1°cos

£
(1/2+1/ j̃ + v/(2N °2ª)º/2

§§ d v

2ª

ª e°N

( j̃ /4+1/2)2

1
2ª

[1°cos(º/4)]

So finally

ß§
32(µ) ª° ĩ

L1

e°M

( j̃ /2)2

1
ª

[1°cos(º/4)]
∑

1° e°ª

(1+2/ j̃ )2

∏
ª° ĩ

L1

e°M

( j̃ /2)2
[1°cos(º/4)] .

• Third subdomain j > j̃
We use (25), starting with T j̃+1. Of course cos(( j̃ +1)ĩ (1° v/L1)µ) ª cos(º/2(1° v/L1)) is

slowly oscillating, but, by the presence of e° j v , this is asymptotically equivalent to cos(º/2) =
0, and, when j gets larger, the oscillating character of cos(( j̃ + 1)ĩ (1° v/L1)µ)) leads also
asymptotically to 0. So

T j ª° ĩ

L1 j
e° jª,

and

ß§
33(µ) ª°

1X

j= j̃+1

(°1) j+1

j 2 e° jª ĩ

L1
.

The analysis is somewhat simpler than in the previous subdomain. Let x < 1, s odd. We
start from

(27)
1X

j=s

(°1) j+1

j 2 x j =
1X

j=s

1
j 2 x j ° 1

2

1X

j=(s+1)/2

1
j 2 x2 j .

For large s, setting j = s +u, x = e°ª,
1X

j=s

1
j 2 e°ª j ª F (s,ª),

F (s,ª) := e°ªs
Z1

0

e°ªu

(s +u)2 du = e°ªs

s2

Z1

0

e°v

(1+ v/(ªs))2

d v

ª
.

(1) If j̃ª= o(1) i.e. '(n) = o(n) then, setting "= ( j̃ +1)ª= o(1),

F ( j̃ +1,ª) ª e°"

( j̃ +1)2

Z1

0

e°v

(1+ v/")2

d v

ª
.

Now
Z1

0

e°v

(1+ v/")2 d v =
Z"

0

e°v

(1+ v/")2 d v +
Z1

"

e°v

(1+ v/")2 d v ª "

Z1

0

e°u"

(1+u)2 du +"
Z1

1

e°u"

(1+u)2 du ª ".

Hence

F ( j̃ +1,ª) ª e°"

( j̃ +1)2

1
ª
"= 1

( j̃ +1)
e°( j̃+1)ª.
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Using now (27), we derive

F ( j̃ +1,ª)° 1
2

F (( j̃ +2)/2,2ª) ª e°( j̃+1)ª
∑

1

j̃ +1
° e°ª

j̃ +2

∏
ª e°" 1

( j̃ +1)2
ª 1

j̃ 2
,

as
1

j̃ 2
¬

µ
ª

j̃

∂
.

Then

ß§
33(µ) ª° 1

j̃ 2

ĩ

L1
=° ĩ 3µ2

(º/2)2L1
.

(2) If j̃ª¬ 1 i.e. '(n) ¬ n then setting M = ( j̃ +1)ª¬ 1,

F ( j̃ +1,ª) ª e°M

( j̃ +1)2

Z1

0

e°v

(1+ v/M)2

d v

ª
.

Now
Z1

0

e°v

(1+ v/M)2 d v =
ZM

0

e°v

(1+ v/M)2 d v +
Z1

M

e°v

(1+ v/M)2 d v

ª
ZM

0
e°v e°2v/M d v +M 2

Z1

M

e°v

v2(1+M/v)2 d v ª 1+O (e°M ) ª 1.

Hence

F ( j̃ +1,ª) ª e°M

( j̃ +1)2

1
ª

.

Using again (27), we derive

F ( j̃ +1,ª)° 1
2

F (( j̃ +2)/2,2ª) ª e°( j̃+1)ª

( j̃ +1)2ª

∑
1° e°ª

(1+1/( j̃ +1))2

∏
ª e°M 1

( j̃ +1)2
ª e°M 1

j̃ 2
,

as
2

j̃
= o (ª) .

Then

ß§
33(µ) ª° 1

j̃ 2
e°M ĩ

L1
=° ĩ 3µ2

(º/2)2L1
e°M .

• So finally
(1) ß§

3 (µ) =ß§
31(µ)+ß§

32(µ)+ß§
33(µ) ª° ĩ 3µ2

(º/2)2L1
(1+4C1 °2C2 +O (")) if '(n) = o(n),

(2) ß§
3 (µ) =ß§

31(µ)+ß§
32(µ)+ß§

33(µ) ª° ĩ 3µ2

4L1
(1+O (e°M ) if '(n) ¬ n.

This is compatible with (19).
For instance, for n = 103,µ = 2.10°5,Æ = 1/2,'(n) = o(n), we have <[ß3(µ) °ß3(0)] =

°0.0014. . . and ß§
3 (µ) = °0.0069. . ., which has the correct order of magnitude. Of course,

we used rough asymptotics. For n = 103,µ = 2.10°7,Æ = 1/2,'(n) ¬ n, we have <[ß3(µ)°
ß3(0)] =°0.00000014. . . and ß§

3 (µ) =°0.00000020. . ., which is again satisfactory. Again, the
corrections due to (24) are negligible. Note that the case µ = 1/ĩ is compatible with (26).
Also the analysis of ß§

4 (µ) is quite analogous.

5. CONCLUSION.

Using the symbolic computer system Maple, we have obtained some asymptotic expressions for
the sum of positions of records in random permutations in central and non-central regions. The
saddle point method proved again to be a powerful tool in our expansions computation.
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