A PROBABILISTIC INTERPRETATION OF A SEQUENCE RELATED TO NARAYANA POLYNOMIALS

TEWODROS AMDEBERHAN, VICTOR H. MOLL, AND CHRISTOPHE VIGNAT

ABSTRACT. A sequence of coefficients appearing in a recurrence for the Narayana polynomials is generalized. The coefficients are given a probabilistic interpretation in terms of beta distributed random variables. The recurrence established by M. Lasalle is then obtained from a classical convolution identity. Some arithmetical properties of the generalized coefficients are also established.

1. Introduction

The Narayana polynomials

(1.1)
$$\mathcal{N}_r(z) = \sum_{k=1}^r N(r, k) z^{k-1}$$

with the Narayana numbers N(r, k) given by

(1.2)
$$N(r,k) = \frac{1}{r} \binom{r}{k-1} \binom{r}{k}$$

have a large number of combinatorial properties. In a recent paper, M. Lasalle [19] established the recurrence

(1.3)
$$(z+1)\mathcal{N}_r(z) - \mathcal{N}_{r+1}(z) = \sum_{n>1} (-z)^n \binom{r-1}{2n-1} A_n \mathcal{N}_{r-2n+1}(z).$$

The numbers A_n satisfy the recurrence

(1.4)
$$(-1)^{n-1}A_n = C_n + \sum_{j=1}^{n-1} (-1)^j \binom{2n-1}{2j-1} A_j C_{n-j},$$

with $A_1 = 1$ and $C_n = \frac{1}{n+1} {2n \choose n}$ the Catalan numbers. This recurrence is taken here as being the definition of A_n . The first few values are

$$(1.5) A_1 = 1, A_2 = 1, A_3 = 5, A_4 = 56, A_5 = 1092, A_6 = 32670.$$

Lasalle [19] shows that $\{A_n : n \in \mathbb{N}\}$ is an increasing sequence of positive integers. In the process of establishing the positivity of this sequence, he contacted D. Zeilberger, who suggested the study of the related sequence

$$a_n = \frac{2A_n}{C_n},$$

with first few values

$$(1.7) a_1 = 2, a_2 = 1, a_3 = 2, a_4 = 8, a_5 = 52, a_6 = 495, a_7 = 6470.$$

Date: June 18, 2013.

1991 Mathematics Subject Classification. Primary 11B83, Secondary 11B68,60C05.

Key words and phrases. Bessel zeta functions, beta distributions, Catalan numbers, conjugate random variables, cumulants, determinants, Narayana polynomials, random variables, Rayleigh functions.

The recurrence (1.4) yields

$$(1.8) (-1)^{n-1}a_n = 2 + \sum_{j=1}^{n-1} (-1)^j \binom{n-1}{j-1} \binom{n+1}{j+1} \frac{a_j}{n-j+1}.$$

This may be expressed in terms of the numbers

(1.9)
$$\sigma_{n,r} := \frac{2}{n} \binom{n}{r-1} \binom{n+1}{r+1}$$

that appear as entry A108838 in OEIS and count Dyck paths by the number of long interior inclines. The fact that $\sigma_{n,r}$ is an integer also follows from

(1.10)
$$\sigma_{n,r} = \binom{n-1}{r-1} \binom{n+1}{r} - \binom{n-1}{r-2} \binom{n+1}{r+1}.$$

The relation (1.8) can also be written as

(1.11)
$$a_n = (-1)^{n-1} \left[2 + \frac{1}{2} \sum_{j=1}^{n-1} (-1)^j \sigma_{n,j} a_j \right].$$

The original approach by M. Lasalle [19] is to establish the relation

(1.12)
$$(z+1)\mathcal{N}_r(z) - \mathcal{N}_{r+1}(z) = \sum_{n\geq 1} (-z)^n \binom{r-1}{2n-1} A_n(r) \mathcal{N}_{r-2n+1}(z)$$

for some coefficient $A_n(r)$. The expression

(1.13)
$$\mathcal{N}_r(z) = \sum_{m \ge 0} z^m (z+1)^{r-2m-1} \binom{r-1}{2m} C_m$$

given in [12], is then employed to show that $A_n(r)$ is independent of r. This is the definition of A_n given in [19]. Lasalle mentions in passing that "J. Novak observed, as empirical evidence, that the integers $(-1)^{n-1}A_n$ are precisely the (classical) cumulants of a standard semicircular random variable".

The goal of this paper is to revisit Lasalle's results, provide probabilistic interpretation of the numbers A_n and to consider Zeilberger's suggestion.

The probabilistic interpretation of the numbers A_n starts with the semicircular distribution

(1.14)
$$f_1(x) = \begin{cases} \frac{2}{\pi} \sqrt{1 - x^2} & \text{if } -1 \le x \le 1, \\ 0 & \text{otherwise.} \end{cases}$$

Let *X* be a random variable with distribution f_1 . Then $X_* = 2X$ satisfies

(1.15)
$$\mathbb{E}\left[X_*^r\right] = \begin{cases} 0 & \text{if } r \text{ is odd,} \\ C_m & \text{if } r \text{ is even, with } r = 2m, \end{cases}$$

where $C_m = \frac{1}{m+1} {2m \choose m}$ are the Catalan numbers. The moment generating function

(1.16)
$$\varphi(t) = \sum_{n=0}^{\infty} \mathbb{E}\left[X^n\right] \frac{t^n}{n!}$$

is expressed in terms of the modified Bessel function of the first kind $I_{\alpha}(x)$ and the cumulant generating function

(1.17)
$$\psi(t) = \log \varphi(t) = \sum_{n=1}^{\infty} \kappa_1(n) \frac{t^n}{n!}$$

has coefficients $\kappa_1(n)$, known as the cumulants of X. The identity

$$(1.18) A_n = (-1)^{n+1} \kappa_1(2n) 2^{2n},$$

is established here. Lasalle's recurrence (1.4) now follows from the convolution identity

(1.19)
$$\kappa(n) = \mathbb{E}\left[X^n\right] - \sum_{j=1}^{n-1} \binom{n-1}{j-1} \kappa(j) \mathbb{E}\left[X^{n-j}\right]$$

that holds for any pair of moments and cumulants sequences [24]. The coefficient a_n suggested by D. Zeilberger now takes the form

(1.20)
$$a_n = \frac{2(-1)^{n+1}\kappa_1(2n)}{\mathbb{E}\left[X_*^{2n}\right]},$$

with $X_* = 2X$.

In this paper, these notions are extended to the case of random variables distributed according to the symmetric beta distribution

(1.21)
$$f_{\mu}(x) = \frac{1}{B(\mu + \frac{1}{2}, \frac{1}{2})} (1 - x^2)^{\mu - 1/2}, \quad \text{for } |x| \le 1, \, \mu > -\frac{1}{2}$$

and 0 otherwise. The semi-circular distribution is the particular case $\mu = 1$. Here B(a, b) is the classical beta function defined by the integral

(1.22)
$$B(a,b) = \int_0^1 t^{a-1} (1-t)^{b-1} dt, \quad \text{for } a, b > 0.$$

These ideas lead to introduce a generalization of the Narayana polynomials and these are expressed in terms of the classical Gegenbauer polynomials $C_n^{\mu+\frac{1}{2}}$. The coefficients a_n are also generalized to a family of numbers $\{a_n(\mu)\}$ with parameter μ . The special cases $\mu=0$ and $\mu=\pm\frac{1}{2}$ are discussed in detail.

Section 2 produces a recurrence for $\{a_n\}$ from which the facts that a_n is increasing and positive are established. The recurrence comes from a relation between $\{a_n\}$ and the Bessel function $I_\alpha(x)$. Section 3 gives an expression for $\{a_n\}$ in terms of the determinant of an upper Hessenberg matrix. The standard procedure to evaluate these determinants gives the original recurrence defining $\{a_n\}$. Section 4 introduces the probabilistic interpretation of the numbers $\{a_n\}$. The cumulants of the associated random variable are expressed in terms of the Bessel zeta function. Section 5 presents the Narayana polynomials as expected values of a simple function of a semicircular random variable. These polynomials are generalized in Section 6 and they are expressed in terms of Gegenbauer polynomials. The corresponding extensions of $\{a_n\}$ are presented in Section 7. The paper concludes with some arithmetical properties of $\{a_n\}$ and its generalization corresponding to the parameter $\mu = 0$. These are described in Section 8.

2. The sequence $\{a_n\}$ is positive and increasing

In this section a direct proof of the positivity of the numbers a_n defined in (1.8) is provided. Naturally this implies $A_n \ge 0$. The analysis employs the *modified Bessel function of the first kind*

(2.1)
$$I_{\alpha}(z) := \sum_{j=0}^{\infty} \frac{1}{j!(j+\alpha)!} \left(\frac{z}{2}\right)^{2j+\alpha}.$$

Formulas for this function appear in [16].

Lemma 2.1. The numbers a_n satisfy

(2.2)
$$\sum_{j=1}^{\infty} \frac{(-1)^{j-1} a_j}{(j+1)!} \frac{x^{j-1}}{(j-1)!} = \frac{2}{\sqrt{x}} \frac{I_2(2\sqrt{x})}{I_1(2\sqrt{x})}.$$

Proof. The statement is equivalent to

(2.3)
$$\sqrt{x}I_1(2\sqrt{x}) \times \sum_{j=1}^{\infty} \frac{(-1)^{j-1}a_j}{(j+1)!} \frac{x^{j-1}}{(j-1)!} = 2I_2(2\sqrt{x}).$$

This is established by comparing coefficients of x^n on both sides and using (1.8).

Now change x to x^2 in Lemma 2.1 to write

(2.4)
$$\sum_{j=1}^{\infty} \frac{(-1)^{j-1} a_j}{(j+1)!} \frac{x^{2j-2}}{(j-1)!} = \frac{2}{x} \frac{I_2(2x)}{I_1(2x)}.$$

The classical relations

(2.5)
$$\frac{d}{dz} \left(z^{-m} I_m(z) \right) = z^{-m} I_{m+1}(z), \text{ and } \frac{d}{dz} \left(z^{m+1} I_{m+1}(z) \right) = z^{m+1} I_m(z)$$

give

(2.6)
$$I_1'(z) = I_2(z) + \frac{1}{z}I_1(z).$$

Therefore (2.4) may be written as

(2.7)
$$\sum_{j=1}^{\infty} \frac{(-1)^{j-1} a_j}{(j+1)!} \frac{x^{2j-2}}{(j-1)!} = \frac{1}{x} \frac{d}{dx} \log \left(\frac{I_1(2x)}{2x} \right).$$

The relations (2.5) also produce

(2.8)
$$\frac{d}{dz} \left(\frac{z^{m+1} I_{m+1}(z)}{z^{-m} I_m(z)} \right) = z^{2m+1} \frac{I_m^2(z) - I_{m+1}^2(z)}{I_m^2(z)}.$$

In particular,

(2.9)
$$\frac{d}{dz} \left(\frac{z^2 I_2(z)}{z^{-1} I_1(z)} \right) = z^3 - z^3 \frac{I_2^2(z)}{I_1^2(z)}.$$

Replacing this relation in (2.7) gives the recurrence stated next.

Proposition 2.2. The numbers a_n satisfy the recurrence

(2.10)
$$2na_n = \sum_{k=1}^{n-1} \binom{n}{k-1} \binom{n}{k+1} a_k a_{n-k}, \quad \text{for } n \ge 2,$$

with initial condition $a_1 = 1$.

Corollary 2.3. The numbers a_n are nonnegative.

Proposition 2.4. The numbers a_n satisfy

$$(2.11) 4a_n = \sum_{k=1}^{n-1} \binom{n-1}{k-1} \binom{n-1}{k} a_k a_{n-k} - \sum_{k=2}^{n-2} \binom{n-1}{k-2} \binom{n-1}{k+1} a_k a_{n-k}.$$

Proof. This follows from (2.10) and the identity

$$\binom{n}{k-1}\binom{n}{k+1} = \frac{n}{2} \left[\binom{n-1}{k-1}\binom{n-1}{k} - \binom{n-1}{k-2}\binom{n-1}{k+1} \right].$$

Corollary 2.5. The numbers a_n are nonnegative integers. Moreover a_n is even if n is odd.

Proof. Corollary 2.3 shows $a_n > 0$. It remains to show $a_n \in \mathbb{Z}$ and to verify the parity statement. This is achieved by simultaneous induction on n.

Assume first n = 2m + 1 is odd. Then (1.9) shows that $\frac{1}{2}\sigma_{n,r} \in \mathbb{Z}$ and (1.11), written as

(2.12)
$$a_n = (-1)^{n-1} \left[2 + \sum_{r=1}^{n-1} \frac{\sigma_{n,r}}{2} a_r \right],$$

proves that $a_n \in \mathbb{Z}$. Now write (2.10) as

(2.13)
$$2(2m+1)a_{2m+1} = 2\sum_{k=1}^{m} {2m+1 \choose k-1} {2m+1 \choose k+1} a_k a_{2m+1-k}$$

and observe that either k or 2m+1-k is odd. The induction hypothesis shows that either a_k or a_{2m+1-k} is even. This shows a_{2m+1} is even.

Now consider the case n=2m even. If r is odd, then a_r is even; if r is even then r-1 is odd and $\frac{1}{2}\sigma_{n,r} \in \mathbb{Z}$ in view of the identity

(2.14)
$$\sigma_{n,r} = \frac{2}{r-1} \binom{n-1}{r-2} \binom{n+1}{r+1}.$$

The result follows again from (2.12).

Corollary 2.6. The numbers A_n are nonnegative integers.

The recurrence in Proposition 2.2 is now employed to prove that $\{a_n : n \ge 2\}$ is an increasing sequence. The first few values are 1, 2, 8, 52.

Theorem 2.7. For $n \ge 3$, the inequality $a_n > a_{n-1}$ holds.

Proof. Take the terms k = 1 and k = n - 1 in the sum appearing in the recurrence in Proposition (2.2) and use $a_n > 0$ to obtain

(2.15)
$$a_n \ge \frac{1}{2n} \left[\binom{n}{0} \binom{n}{2} a_1 a_{n-1} + \binom{n}{n-2} \binom{n}{2} a_{n-1} a_1 \right].$$

Since $a_1 = 2$ the previous inequality yields

$$(2.16) a_n \ge (n-1)a_{n-1}.$$

Hence, for $n \ge 3$, this gives $a_n - a_{n-1} \ge (n-2)a_{n-1} > 0$.

3. AN EXPRESSION IN FORM OF DETERMINANTS

The recursion relation (1.8) expressed in the form

(3.1)
$$\sum_{j=1}^{m} (-1)^{j-1} \binom{m}{j-1} \binom{m+1}{j+1} a_j = 2m$$

is now employed to produce a system of equations for the numbers a_n by varying m through $1, 2, 3, \dots, n$. The coefficient matrix has determinant $(-1)^{\binom{n}{2}} n!$ and Cramér's rule gives

$$(3.2) a_n = \frac{(-1)^{n-1}}{n!} \det \begin{pmatrix} \binom{1}{1-1} \binom{1+1}{1+1} & 0 & 0 & \cdots & 0 & 2 \\ \binom{2}{1-1} \binom{2+1}{1+1} & \binom{2}{2-1} \binom{2+1}{2+1} & 0 & \cdots & 0 & 4 \\ \binom{3}{3} \binom{3+1}{1+1} & \binom{3}{2-1} \binom{3+1}{2+1} & \binom{3}{3-1} \binom{3+1}{3+1} & \cdots & 0 & 6 \\ \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\ \binom{n}{1-1} \binom{n+1}{1+1} & \binom{n}{2-1} \binom{n+1}{2+1} & \binom{n}{3-1} \binom{n+1}{3+1} & \cdots & \binom{n}{n-2} \binom{n+1}{n} & 2n \end{pmatrix}.$$

The power of -1 is eliminated by permuting the columns to produce the matrix

$$(3.3) B_{n} = \begin{pmatrix} 2 & \binom{1}{1-1} \binom{1+1}{1+1} & 0 & 0 & 0 \\ 4 & \binom{2}{2} \binom{2+1}{1+1} & \binom{2}{2-1} \binom{2+1}{2+1} & 0 & \cdots \\ 6 & \binom{3}{1-1} \binom{3+1}{1+1} & \binom{3}{2-1} \binom{3+1}{2+1} & 0 & \cdots \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ 2n & \binom{n}{1-1} \binom{n+1}{1+1} & \binom{n}{2-1} \binom{n+1}{2+1} & \binom{n}{3-1} \binom{n+1}{3+1} \cdots & \binom{n}{n-2} \binom{n+1}{n} \end{pmatrix}.$$

The representation of a_n in terms of determinants is given in the next result.

Proposition 3.1. The number a_n is given by

$$(3.4) a_n = \frac{\det B_n}{n!}$$

where B_n is the matrix in (3.3).

Recall that an *upper Hessenberg matrix* is one of the form

(3.5)
$$H_{n} = \begin{pmatrix} \beta_{1,1} & \beta_{1,2} & 0 & 0 & 0 & \cdots & \cdots & 0 & 0 \\ \beta_{2,1} & \beta_{2,2} & \beta_{2,3} & 0 & 0 & \cdots & \cdots & 0 & 0 \\ \beta_{3,1} & \beta_{3,2} & \beta_{3,3} & \beta_{3,4} & 0 & \cdots & \cdots & 0 & 0 \\ \cdots & \cdots \\ \beta_{n,1} & \beta_{n,2} & \beta_{n,3} & \beta_{n,4} & \cdots & \cdots & \beta_{n,n-1} & \beta_{n,n} \end{pmatrix}.$$

The matrix *B* is of this form with

(3.6)
$$\beta_{i,j} = \begin{cases} 2i & \text{if } 1 \le i \le n \text{ and } j = 1, \\ \binom{i}{j-2} \binom{i+1}{j} & \text{if } j-1 \le i \le n \text{ and } j > 1. \end{cases}$$

It turns out that the recurrence (1.8) used to define the numbers a_n can be recovered if one employs (3.4).

Proposition 3.2. *Define* α_n *by*

(3.7)
$$\alpha_n = \frac{\det B_n}{n!}$$

where B is the matrix (3.3). Then $\{\alpha_n\}$ satisfies the recursion

(3.8)
$$(-1)^{n-1}\alpha_n = 2 + \sum_{j=1}^{n-1} (-1)^j \binom{n-1}{j-1} \binom{n+1}{j+1} \frac{\alpha_j}{n-j+1}$$

and the initial condition $\alpha_1 = 1$. Therefore $\alpha_n = a_n$.

Proof. For convenience define $\det H_0 = 1$. The determinant of a Hessenberg matrix satisfies the recurrence

(3.9)
$$\det H_n = \sum_{r=1}^n (-1)^{n-r} \beta_{n,r} \det H_{r-1} \prod_{i=r}^{n-1} \beta_{i,i+1}.$$

A direct application of (3.9) yields

$$\alpha_{n} = \frac{1}{n!} \left\{ (-1)^{n-1} (2n)(n-1)! + \sum_{r=2}^{n} (-1)^{n-r} \binom{n}{r-2} \binom{n+1}{r} \det B_{r-1} \prod_{i=r}^{n-1} i \right\}$$

$$= 2(-1)^{n-1} + \frac{1}{n!} \sum_{r=2}^{n} (-1)^{n-r} \binom{n}{r-2} \binom{n+1}{r} \alpha_{r-1} (n-1)!$$

$$= 2(-1)^{n-1} + \sum_{r=2}^{n} (-1)^{n-r} \frac{1}{n} \binom{n}{r-2} \binom{n+1}{r} \alpha_{r-1}$$

$$= 2(-1)^{n-1} + \sum_{r=2}^{n} (-1)^{n-r} \binom{n}{r-2} \binom{n+1}{r} \frac{\alpha_{r-1}}{n-r+2}$$

$$= 2(-1)^{n-1} + (-1)^{n-1} \sum_{r=1}^{n} (-1)^{j} \binom{n-1}{j-1} \binom{n+1}{j+1} \frac{\alpha_{j}}{n-j+1}.$$

This is (3.8).

Corollary 3.3. The modified Bessel function of the first kind admits a determinant expression

(3.10)
$$I_1(x) = x \exp\left(\sum_{j=1}^{\infty} \frac{(-1)^{j-1} \det B_j}{(j+1)! \, j!^2} \left(\frac{x}{2}\right)^{2j}\right).$$

Proof. This follows by integrating the identity

(3.11)
$$\frac{2I_2(2x)}{xI_1(2x)} = \frac{1}{x}\frac{d}{dx}\log\frac{I_1(2x)}{2x}.$$

4. THE PROBABILISTIC BACKGROUND: CONJUGATE RANDOM VARIABLES

This section provides the probabilistic tools required for an interpretation of the sequence A_n defined in (1.4). The specific connections are given in Section 5.

Consider a random variable X with the *symmetric beta distribution* given in (1.21). The moments of the symmetric beta distribution, given by

(4.1)
$$\mathbb{E}\left[X^{n}\right] = \frac{1}{B(\mu + \frac{1}{2}, \frac{1}{2})} \int_{-1}^{1} x^{n} (1 - x^{2})^{\mu - 1/2} dx,$$

vanish for n odd and for n = 2m they are

(4.2)
$$\mathbb{E}\left[X^{2m}\right] = \frac{\Gamma(\mu+1)}{\Gamma(\mu+1+m)} \frac{(2m)!}{2^{2m} m!}.$$

Therefore the moment generating function is

(4.3)
$$\varphi_{\mu}(t) = \mathbb{E}\left[e^{tX}\right] = \sum_{n=0}^{\infty} \mathbb{E}\left[X^{n}\right] \frac{t^{n}}{n!} = \Gamma(\mu+1) \sum_{m=0}^{\infty} \frac{t^{2m}}{2^{2m} m! \Gamma(\mu+m+1)}.$$

The next proposition summarizes properties of $\varphi_{\mu}(t)$. The first one is to recognize the series in (4.3) from (2.1). The zeros $\{j_{\mu,k}\}$ of the Bessel function of the first kind

(4.4)
$$J_{\alpha}(x) = \sum_{j=0}^{\infty} \frac{(-1)^m}{m! \Gamma(m+\alpha+1)} \left(\frac{x}{2}\right)^{2m+\alpha}$$

appear in the factorization of φ_{μ} in view of the relation $I_{\mu}(z) = e^{-\pi i \mu/2} J_{\mu}(iz)$.

Proposition 4.1. The moment generating function $\varphi_{\mu}(t)$ of a random variable $X \sim f_{\mu}$ is given by

(4.5)
$$\varphi_{\mu}(t) = \Gamma(\mu+1) \left(\frac{2}{t}\right)^{\mu} I_{\mu}(t).$$

Note 4.2. The Catalan numbers C_n appear as the even-order moments of f_μ when $\mu = 1$. More precisely, if X is distributed as f_1 (written as $X \sim f_1$), then

(4.6)
$$\mathbb{E}[(2X)^{2n}] = C_n \text{ and } \mathbb{E}[(2X)^{2n+1}] = 0.$$

Note 4.3. The moment generating function of f_{μ} admits the Weierstrass product representation

(4.7)
$$\varphi_{\mu}(t) = \prod_{k=1}^{\infty} \left(1 + \frac{t^2}{j_{\mu,k}^2} \right)$$

where $\{j_{\mu,k}\}$ are the zeros of the Bessel function of the first kind J_{μ} .

Definition 4.4. The *cumulant generating function* is

$$\begin{array}{rcl} \psi_{\mu}(t) & = & \log \varphi_{\mu}(t) \\ & = & \log \left(\sum_{n=0}^{\infty} \mathbb{E} \left[X^{n} \right] \frac{t^{n}}{n!} \right). \end{array}$$

The product representation of $\varphi_{\mu}(t)$ yields

$$\log \varphi_{\mu}(t) = \sum_{k=1}^{\infty} \log \left(1 + \frac{t^2}{j_{\mu,k}^2} \right)$$

$$= \sum_{k=1}^{\infty} \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} \left(\frac{t}{j_{\mu,k}} \right)^{2n}$$

$$:= \sum_{n=1}^{\infty} \kappa_{\mu}(n) \frac{t^n}{n!}.$$

The series converges for $|t| < j_{\mu,1}$. The first Bessel zero satisfies $j_{\mu,1} > 0$ for all $\mu \ge 0$. It follows that the series has a non-zero radius of convergence.

Note 4.5. The coefficient $\kappa_{\mu}(n)$ is the *n*-th *cumulant* of *X*. An expression that links the moments to the cumulants of *X* is provided by V. P. Leonov and A. N. Shiryaev [20]:

(4.8)
$$\kappa_{\mu}(n) = \sum_{\mathcal{V}} (-1)^{k-1} (k-1)! \prod_{i=1}^{k} \mathbb{E}(2X)^{|V_i|}$$

where the sum is over all partitions $\mathcal{V} = \{V_1, \dots, V_k\}$ of the set $\{1, 2, \dots, n\}$.

In the case $\mu = 0$ the moments are Catalan numbers or 0, in the case $\mu = 1$ the moments are central binomial coefficients or 0. Therefore, in both cases, the cumulants $\kappa_{\mu}(n)$ are integers. An expression for the general value of μ involves

(4.9)
$$\zeta_{\mu}(s) = \sum_{k=1}^{\infty} \frac{1}{j_{\mu,k}^{s}}$$

the Bessel zeta function, sometimes referred as the Rayleigh function.

The next result gives an expression for the cumulants of a random variable X with a distribution f_{μ} . The special case $\mu = 1$, described in the next section, provides the desired probabilistic interpretation of the original sequence A_n .

Theorem 4.6. Let $X \sim f_{\mu}$. Then

(4.10)
$$\kappa(n) = \begin{cases} 0 & \text{if } n \text{ is odd,} \\ 2(-1)^{n/2+1}(n-1)! \zeta_{\mu}(n) & \text{if } n \text{ is even.} \end{cases}$$

Proof. Rearranging the expansion in Definition 4.4 gives

$$\log \varphi_{\mu}(t) = \sum_{k=1}^{\infty} \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} \left(\frac{t}{j_{\mu,k}}\right)^{2n}$$
$$= \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} t^{2n} \sum_{k=1}^{\infty} \frac{1}{j_{\mu,k}^{2n}}.$$

Now compare powers of t in this expansion with the definition

(4.11)
$$\log \varphi_{\mu}(t) = \sum_{n=1}^{\infty} \kappa_{\mu}(n) \frac{t^n}{n!}$$

to obtain the result.

The next ingredient in the search for an interpretation of the sequence A_n is the notion of conjugate random variables. The properties described below appear in [25]. A complex-valued random variable Z is called a *regular random variable* (rrv for short) if $\mathbb{E}|Z|^n < \infty$ for all $n \in \mathbb{N}$ and

$$(4.12) \mathbb{E}[h(Z)] = h(\mathbb{E}[Z])$$

for all polynomials h. The class of rrv is closed under compositions with polynomials (if Z is rrv and P is a polynomial, then P(Z) is rrv) and it is also closed under addition of independent rrv. The basic definition is stated next.

Definition 4.7. Let X, Y be real random variables, not necessarily independent. The pair (X, Y) is called *conjugate random variables* if Z = X + iY is an rrv. The random variable X is called *self-conjugate* if Y has the same distribution as X.

The property of rrv's may be expressed in terms of the function

$$\Phi(\alpha, \beta) := \mathbb{E}\left[\exp(i\alpha X + i\beta Y)\right]$$

The next theorem gives a condition for Z = X + iY to be an rrv. The random variables X and Y are not necessarily independent.

Theorem 4.8. Let Z = X + iY be a complex valued random variable with $\mathbb{E}[Z] = 0$ and $\mathbb{E}[Z^n] < \infty$. Then Z is an rrv if and only if $\Phi(\alpha, i\alpha) = 1$ for all $\alpha \in \mathbb{C}$.

This is now reformulated for real and independent random variables.

Theorem 4.9. Let X, Y be independent real valued random variables with finite moments. Define the characteristic functions of X and Y as

$$\Phi_X(\alpha) = \mathbb{E}\left[e^{i\alpha X}\right] = \sum_{n=0}^{\infty} \frac{(i\alpha)^n}{n!} \mathbb{E}\left[X^n\right] \text{ and } \Phi_Y(\beta) = \mathbb{E}\left[e^{i\alpha Y}\right] = \sum_{n=0}^{\infty} \frac{(i\beta)^n}{n!} \mathbb{E}\left[Y^n\right].$$

Then Z = X + iY is an rrv with mean zero if and only if $\Phi_X(\alpha)\Phi_Y(i\alpha) = 1$ for every $\alpha \in \mathbb{R}$.

Example 4.10. Let *X* and *Y* be independent Gaussian variables with zero mean and same variance σ^2 . Then *X* and *Y* are conjugate since

$$\varphi_X(t) = \exp\left(\frac{\sigma^2}{2}t^2\right) \text{ and } \varphi_{iY}(t) = \exp\left(-\frac{\sigma^2}{2}t^2\right).$$

Note 4.11. Suppose Z = X + iY is a rrv with $\mathbb{E}[Z] = 0$ and $z \in \mathbb{C}$. The condition (4.12) becomes

$$(4.13) \mathbb{E}\left[h(z+X+iY)\right] = h(z).$$

Given a sequence of polynomials $\{Q_n(z)\}$ such that $\deg(Q_n)=n$ and with leading coefficient 1, an elementary argument shows that there is a unique sequence of coefficients $\alpha_{j,n}$ such that the relation

(4.14)
$$Q_{n+1}(z) - zQ_n(z) = \sum_{j=0}^{n} \alpha_{j,n} Q_j(z)$$

holds. This section discusses this recurrence for the sequence of polynomials

$$(4.15) P_n(z) := \mathbb{E}(z+X)^n$$

associated to a random variable X. The polynomial P_n is of degree n and has leading coefficient 1. It is shown that if the cumulants of odd order vanish, then the even order cumulants provide the coefficients $\alpha_{j,n}$ for the recurrence (4.14).

Theorem 4.12. Let X be a random variable with cumulants $\kappa(m)$. Assume the odd-order cumulants vanish and that X has a conjugate random variable Y. Define the polynomials

$$(4.16) P_n(z) = \mathbb{E}\left[(z+X)^n \right].$$

Then P_n satisfies the recurrence

(4.17)
$$P_{n+1}(z) - zP_n(z) = \sum_{m \ge 1} \binom{n}{2m-1} \kappa(2m) P_{n-2m+1}(z).$$

Proof. Let X_1 , X_2 independent copies of X. Then

$$\mathbb{E}\left[X_{1}\left((X_{1}+iY_{1}+z+X_{2})^{n}-(z+X_{2})^{n}\right)\right] = \\ = \sum_{i=0}^{n} \binom{n}{i} \mathbb{E}\left[X_{1}(X_{1}+iY_{1})^{j}(z+X_{2})^{n-j}\right] - \mathbb{E}\left[X_{1}(z+X_{2})^{n}\right].$$

This last expression becomes

$$\sum_{j=1}^{n} \binom{n}{j} \mathbb{E} \left[X_1 (X_1 + i Y_1)^j (z + X_2)^{n-j} \right] = \sum_{j=1}^{n} \binom{n}{j} \mathbb{E} \left[X_1 (X_1 + i Y_1)^j \right] \mathbb{E} \left[(z + X_2)^{n-j} \right].$$

On the other hand

$$\mathbb{E}\left[X_{1}\left((X_{1}+z+X_{2}+i\,Y_{1})^{n}-(z+X_{2})^{n}\right)\right] = \sum_{r=0}^{n} \binom{n}{r} \mathbb{E}\left[X_{1}(X_{1}+z)^{n-r}\right] \mathbb{E}\left[\left(X_{2}+i\,Y_{1}\right)^{r}\right] - \mathbb{E}\left[X_{1}(z+X_{2})^{n}\right].$$

The cancellation property (4.28) shows that the only surviving term in the sum corresponds to r = 0, therefore

$$\mathbb{E}\left[X_{1}\left((X_{1}+z+X_{2}+i\,Y_{1})^{n}-(z+X_{2})^{n}\right)\right]=\mathbb{E}\left[X_{1}(X_{1}+z)^{n}\right]-\mathbb{E}\left[X_{1}\right]\mathbb{E}\left[(z+X_{2})^{n}\right]$$

and $\mathbb{E}[X_1] = 0$ since $\kappa(1) = 0$. This shows the identity

(4.18)
$$\sum_{j=1}^{n} {n \choose j} \mathbb{E}\left[X_1(X_1 + iY_1)^j\right] \mathbb{E}\left[(z + X_2)^{n-j}\right] = \mathbb{E}\left[X_1(X_1 + z)^n\right].$$

The cumulants of *X* satisfy

(4.19)
$$\kappa(m) = \mathbb{E}X(X+iY)^{m-1}, \quad \text{for } m \ge 1,$$

(see Theorem 3.3 in [13]), therefore in the current situation

(4.20)
$$\mathbb{E}\left[X_1(X_1+iY_1)^j\right] = \begin{cases} 0 & \text{if } j \text{ is even,} \\ \kappa(2m) & \text{if } j=2m+1 \text{ is odd.} \end{cases}$$

On the other hand

$$\mathbb{E}[X_1(X_1+z)^n] = \mathbb{E}[(X_1+z)^{n+1} - z(X_1+z)^n]$$

= $P_{n+1}(z) - zP_n(z)$.

Replacing in (4.18) yields the result.

Recall that a random variable has a Laplace distribution if its probability density function is

$$(4.21) f_L(x) = \frac{1}{2}e^{-|x|}.$$

Assume X_{μ} has a probability density function f_{μ} defined in (1.21) and moment generating function given by (4.7). The next lemma constructs a random variable Y_{μ} conjugate to X_{μ} .

Lemma 4.13. Let $Y_{\mu,n}$ be a random variable defined by

$$(4.22) Y_{\mu,n} = \sum_{k=1}^{n} \frac{L_k}{j_{\mu,k}}$$

where $\{L_k : k \in \mathbb{N}\}$ is a sequence of independent, identically distributed Laplace random variables. Then $\lim_{n\to\infty} Y_{\mu,n} = Y_{\mu}$ exists and is a random variable with continuous probability density. Moreover, the moment generating function of iY_{μ} is

$$(4.23) \mathbb{E}\left[e^{itY_{\mu}}\right] = \prod_{k=1}^{\infty} \left(1 + \frac{t^2}{j_{\mu,k}^2}\right)^{-1}.$$

the reciprocal of the moment generating function of f_{μ} given in (4.7).

Proof. The characteristic function of a Laplace random variable $\frac{iL_k}{j_{u,k}}$ is

(4.24)
$$\varphi_{iL_k}(t) = \frac{1}{1 + \frac{t^2}{j_{\mu,k}^2}}.$$

The values

(4.25)
$$\mathbb{E}\left[\frac{L_k}{j_{\mu,k}}\right] = 0, \text{ and } \mathbb{E}\left[\frac{L_k^2}{j_{\mu,k}^2}\right] = \frac{2}{j_{\mu,k}^2},$$

guarantee the convergence of the series

(4.26)
$$\sum_{k=1}^{\infty} \mathbb{E}\left[\frac{L_k}{j_{\mu,k}}\right] \text{ and } \sum_{k=1}^{\infty} \mathbb{E}\left[\frac{L_k^2}{j_{\mu,k}^2}\right].$$

(The last series evaluates to $1/(2\mu+2)$). This ensures the existence of the limit defining Y_{μ} (see [17] for details). The continuity of the limiting probability density Y_{μ} is ensured by the fact that at least one term (in fact all) in the defining sum has a continuous probability density that is of bounded variation.

Note 4.14. In the case $X_{\mu} \sim f_{\mu}$ is independent of Y_{μ} , then the conjugacy property states that if h is an analytic function in a neighborhood \mathcal{O} of the origin, then

$$(4.27) \mathbb{E}\left[h(z+X_{\mu}+iY_{\mu})\right] = h(z), \text{for } z \in \mathcal{O}.$$

In particular

(4.28)
$$\mathbb{E}\left[\left(X_{\mu}+i\,Y_{\mu}\right)^{n}\right] = \begin{cases} 1 & \text{if } n=0,\\ 0 & \text{otherwise.} \end{cases}$$

Note 4.15. In the special case $\mu = n/2 - 1$ for $n \in \mathbb{N}$, $n \ge 3$, the function (4.23) has been characterized in [11] as the moment generating function of the total time T_n spent in the sphere S^{n-1} by an n-dimensional Brownian motion starting at the origin.

5. THE NARAYANA POLYNOMIALS AND THE SEQUENCE A_n

The result of Theorem 4.12 is now applied to a random variable $X \sim f_1$. In this case the polynomials P_n correspond, up to a change of variable, to the Narayana polynomials \mathcal{N}_n . The recurrence established by M. Lasalle comes from the results in Section 4. In particular, this provides an interpretation of the sequence $\{A_n\}$ in terms of cumulants and the Bessel zeta function.

Recall the probability density function f_1

(5.1)
$$f_1(x) = \begin{cases} \frac{2}{\pi} \sqrt{1 - x^2}, & \text{for } |x| \le 1, \\ 0, & \text{otherwise.} \end{cases}$$

Lemma 5.1. Let $X \sim f_1$. The Narayana polynomials appear as the moments

(5.2)
$$\mathcal{N}_r(z) = \mathbb{E}\left[\left(1 + z + 2\sqrt{z}X\right)^{r-1}\right],$$

for $r \ge 1$.

Proof. The binomial theorem gives

$$\mathbb{E}\left[\left(1+z+2\sqrt{z}X\right)^{r-1}\right] = \sum_{j=0}^{r-1} \binom{r-1}{j} (z+1)^{r-1-j} z^{j/2} \mathbb{E}\left[\left(2X\right)^{j}\right].$$

The result now follows from (4.6) and (1.13).

In order to apply Theorem 4.12 consider the identities

(5.3)
$$\mathcal{N}_{r}(z) = \mathbb{E}\left[\left(1+z+2\sqrt{z}X\right)^{r-1}\right] \\ = (2\sqrt{z})^{r-1}\mathbb{E}\left[\left(X+z_{*}\right)^{r-1}\right] \\ = (2\sqrt{z})^{r-1}P_{r-1}(z_{*}),$$

with

$$z_* = \frac{1+z}{2\sqrt{z}}.$$

The recurrence (4.17) applied to the polynomial $P_n(z_*)$ yields

(5.5)
$$\frac{\mathcal{N}_{n+2}(z)}{(2\sqrt{z})^{n+1}} - \frac{(1+z)}{2\sqrt{z}} \frac{\mathcal{N}_{n+1}(z)}{(2\sqrt{z})^n} = \sum_{m \ge 1} \binom{n}{2m-1} \kappa(2m) \frac{\mathcal{N}_{n-2m+2}(z)}{(2\sqrt{z})^{n-2m+1}}$$

that reduces to

(5.6)
$$(1+z)\mathcal{N}_r(z) - \mathcal{N}_{r+1}(z) = -\sum_{m\geq 1} \binom{r-1}{2m-1} \kappa(2m) 2^{2m} z^m \mathcal{N}_{r+1-2m}(z),$$

by using r = n + 1. This recurrence has the form of (1.12).

Theorem 5.2. Let $X \sim f_1$. Then the coefficients A_n in Definition 1.3 are given by

(5.7)
$$A_n = (-1)^{n+1} \kappa(2n) 2^{2n}.$$

The expression in (4.10) gives the next result.

Corollary 5.3. *Let*

(5.8)
$$\zeta_{\mu}(s) = \sum_{k=1}^{\infty} \frac{1}{j_{\mu,k}^{s}}$$

be the Bessel zeta function. Then the coefficients A_n are given by

$$A_n = 2^{2n+1}(2n-1)!\zeta_1(2n).$$

The scaled coefficients a_n are now expressed in terms of the Bessel zeta function.

Corollary 5.4. The coefficients a_n are given by

(5.9)
$$a_n = 2^{2n+1}(n+1)!(n-1)!\zeta_1(2n).$$

Note 5.5. This expression for the coefficients and the recurrence

(5.10)
$$(n+\mu)\zeta_{\mu}(2n) = \sum_{r=1}^{n-1} \zeta_{\mu}(2r)\zeta_{\mu}(2n-2r).$$

given in [15], provide a new proof of the recurrence in Proposition (2.2).

6. THE GENERALIZED NARAYANA POLYNOMIALS

The Narayana polynomials $\mathcal{N}_r(z)$, defined in (1.1), have been expressed as the moments

(6.1)
$$\mathcal{N}_r(z) = \mathbb{E}\left[\left(1 + z + 2\sqrt{z}X\right)^{r-1}\right],$$

for $r \ge 1$. Here X is a random variable with density function f_1 . This suggests the extension

(6.2)
$$\mathcal{N}_n^{\mu}(z) = \mathbb{E}\left[\left(1 + z + 2\sqrt{z}X\right)^{n-1}\right],$$

with $X \sim f_{\mu}$. Therefore, $\mathcal{N}_n = \mathcal{N}_n^1$.

Note 6.1. The same argument given in (5.6) gives the recurrence

(6.3)
$$(1+z)\mathcal{N}_r^{\mu}(z) - \mathcal{N}_{r+1}^{\mu}(z) = -\sum_{m\geq 1} {r-1 \choose 2m-1} \kappa(2m) 2^{2m} z^m \mathcal{N}_{r+1-2m}^{\mu}(z),$$

where $\kappa(2n)$ are the cumulants of $X \sim f_{\mu}$. Theorem 5.2 gives an expression for the generalization of the Lasalle numbers:

(6.4)
$$A_n^{\mu} := (-1)^{n+1} \kappa(2n) 2^{2n}$$

and the corresponding expression in terms of the Bessel zeta function:

(6.5)
$$A_n^{\mu} := 2^{2n+1} (2n-1)! \zeta_{\mu}(2n).$$

The generalized Narayana polynomials are now expressed in terms of the Gegenbauer polynomials $C_n^{\mu}(x)$ defined by the generating function

(6.6)
$$\sum_{n=0}^{\infty} C_n^{\mu}(x) t^n = (1 - 2xt + t^2)^{-\mu}.$$

These polynomials admit several hypergeometric representations:

(6.7)
$$C_{n}^{\mu}(x) = \frac{(2\mu)_{n}}{n!} {}_{2}F_{1}\left(-n, n+2\mu; \mu+\frac{1}{2}; \frac{1-x}{2}\right)$$

$$= \frac{2^{n}(\mu)_{n}}{n!} (x-1)^{n} {}_{2}F_{1}\left(-n, -n-\mu+\frac{1}{2}; -2n-2\mu+1; \frac{2}{1-x}\right)$$

$$= \frac{(2\mu)_{n}}{n!} \left(\frac{x+1}{2}\right)^{n} {}_{2}F_{1}\left(-n, -n-\mu+\frac{1}{2}; \mu+\frac{1}{2}; \frac{x-1}{x+1}\right).$$

The connection between Narayana and Gegenbauer polynomials comes from the expression for $C_n^{\mu}(z)$ given in the next proposition.

Proposition 6.2. The Gegenbauer polynomials are given by

(6.8)
$$C_n^{\mu}(z) = \frac{(2\mu)_n}{n!} \mathbb{E}\left[\left(z + \sqrt{z^2 - 1}X_{\mu - 1/2}\right)^n\right].$$

Proof. The Laplace integral representation

(6.9)
$$C_n^{\mu}(\cos\theta) = \frac{\Gamma(n+2\mu)}{2^{2\mu-1}n!\Gamma^2(\mu)} \int_0^{\pi} \left(\cos\theta + i\sin\theta\cos\phi\right)^n \sin^{2\mu-1}\phi \,d\phi$$

appears as Theorem 6.7.4 in [3]. The change of variables $z = \cos \theta$ and $X = \cos \phi$ gives

$$C_n^{\mu}(z) = \frac{\Gamma(n+2\mu)}{2^{2\mu} n! \Gamma^2(\mu)} \int_{-1}^1 \left(z + \sqrt{z^2 - 1}X\right)^n (1 - X^2)^{\mu - 1} dX$$
$$= \frac{(2\mu)_n}{n!} \mathbb{E}\left[\left(z + \sqrt{z^2 - 1}X_{\mu - 1/2}\right)^n\right],$$

as claimed. Since this is a polynomial identity in z, it can be extended to all $z \in \mathbb{C}$.

Theorem 6.3. The Gegenbauer polynomial C_n^{μ} and the generalized polynomial \mathcal{N}_n^{μ} satisfy the relation

(6.10)
$$\mathcal{N}_{n+1}^{\mu}(z) = \frac{n!}{(2\mu+1)_n} (1-z)^n C_n^{\mu+\frac{1}{2}} \left(\frac{1+z}{1-z}\right).$$

Proof. Introduce the variable

(6.11)
$$Z = \frac{1+z}{1-z}$$

so that

(6.12)
$$z = \frac{Z-1}{Z+1} \text{ and } \frac{Z}{\sqrt{Z^2-1}} = \frac{1+z}{2\sqrt{z}}.$$

Then

$$\begin{split} C_{n}^{\mu+\frac{1}{2}} \left(\frac{1+z}{1-z}\right) &= \frac{(2\mu+1)_{n}}{n!} \left(\frac{2\sqrt{z}}{1-z}\right)^{n} \mathbb{E}\left[\left(\frac{1+z}{2\sqrt{z}} + X_{\mu}\right)^{n}\right] \\ &= \frac{(2\mu+1)_{n}}{n! (1-z)^{n}} \mathbb{E}\left[\left(1+z+2\sqrt{z}X_{\mu}\right)^{n}\right] \\ &= \frac{(2\mu+1)_{n}}{n! (1-z)^{n}} \mathcal{N}_{n+1}^{\mu}(z), \end{split}$$

using $Z^2 - 1 = 4z/(1-z)^2$.

The expression (6.7) now provides hypergeometric expressions for the original Narayana polynomials

(6.13)
$$\mathcal{N}_{n+1}(z) = \frac{2(1-z)^n}{(n+2)(n+1)} C_n^{3/2} \left(\frac{1+z}{1-z}\right).$$

Corollary 6.4. The Narayana polynomials are given by

(6.14)
$$\mathcal{N}_{n+1}(z) = (1-z)^{n} {}_{2}F_{1}\left(-n, n+3; 2; \frac{z}{z-1}\right)$$

$$= \frac{(2n+2)!}{(n+2)!(n+1)!} z^{n} {}_{2}F_{1}\left(-n, -n-1; -2n-2; \frac{z-1}{z}\right)$$

$$= {}_{2}F_{1}(-n, -n-1; 2; z).$$

Each one of these identities yields a corresponding representation as a finite sum:

(6.15)
$$\mathcal{N}_{n+1}(z) = \sum_{k=0}^{n} \frac{1}{k+1} \binom{n}{k} \binom{n+k+2}{k} z^{k} (1-z)^{n-k}$$
$$= \frac{1}{n+1} \sum_{k=0}^{n} \binom{n+1}{k} \binom{2n+2-k}{n-k} z^{n-k} (1-z)^{k}$$
$$= \frac{1}{n+1} \sum_{k=0}^{n} \binom{n+1}{k+1} \binom{n+1}{k} z^{k}.$$

Note that the first two expressions coincide up to the change of summation variable $k \rightarrow n - k$ while the third identity is nothing but (1.1).

Note 6.5. The representation

(6.16)
$$C_n^{\mu}(z) = \frac{(\mu)_n}{n!} (2x)^n {}_2F_1\left(-\frac{n}{2}, \frac{1-n}{2}; 1-n-\mu; \frac{1}{x^2}\right)$$

that appears in as 6.4.12 in [3], gives the expression

(6.17)
$$\mathcal{N}_{n+1}(z) = \frac{(2n+2)!}{(n+1)!(n+2)!} \left(\frac{1+z}{2}\right)^n {}_2F_1\left(-\frac{n}{2}, \frac{1-n}{2}; -n - \frac{1}{2}; \left(\frac{1-z}{1+z}\right)^2\right)$$

that yields the finite sum representation

(6.18)
$$\mathcal{N}_{n+1}(z) = \frac{1}{2^{n-1}(n+2)} \sum_{k=0}^{\lfloor n/2 \rfloor} (-1)^k \binom{n}{k} \binom{2n+1-2k}{n-2k} (1-z)^{2k} (1+z)^{n-2k}.$$

Note 6.6. The polynomials $S_n(z) = z \mathcal{N}_n^1(z)$ satisfy the symmetry identity

(6.19)
$$S_n(z) = z^{n+1} S_n(z^{-1}).$$

These polynomials were expressed in [21] as

(6.20)
$$S_n(z) = (z-1)^{n+1} \int_0^{z/(z-1)} P_n(2x-1) dx$$

where $P_n(x) = C_n^{1/2}(x)$ are the Legendre polynomials. An equivalent formulation is provided next.

Theorem 6.7. The polynomials $S_n(z)$ are given by

$$S_n(z) = \frac{1}{2^{n+1}} \sum_{k=0}^{\lfloor n/2 \rfloor} \frac{(-1)^k}{n+1-k} \binom{2n-2k}{n-k} \binom{n+1-k}{k} (1-z)^{2k} (1+z)^{n+1-2k}.$$

Proof. The integration rule

(6.21)
$$\int C_n^{\mu}(x) \, dx = \frac{1}{2(\mu - 1)} C_{n+1}^{\mu - 1}(x)$$

implies

(6.22)
$$\int_0^{z/(z-1)} C_n^{1/2}(2x-1) \, dx = -\frac{1}{2} C_{n+1}^{-1/2} \left(\frac{z+1}{z-1} \right),$$

since the generating function

(6.23)
$$\sum_{n=0}^{\infty} t^n C_n^{-1/2}(z) = (1 - 2zt + t^2)^{1/2}$$

gives $C_{n+1}^{-1/2}(-1) = 0$ for n > 1. Then (6.20) yields

(6.24)
$$S_n(z) = -\frac{1}{2}(z-1)^{n+1}C_{n+1}^{-1/2}\left(\frac{z+1}{z-1}\right).$$

A classical formula for the Gegenbauer polynomials states

(6.25)
$$C_n^{\mu}(z) = \sum_{k=0}^{\lfloor n/2 \rfloor} \frac{(-1)^k}{k!} \frac{(\mu)_{n-k}}{(n-2k)!} (2z)^{n-2k}$$

and the identity

$$\left(-\frac{1}{2}\right)_k = -\frac{1}{2^{2k-1}} \frac{(2k-2)!}{(k-1)!}$$

produce

(6.26)
$$C_n^{-1/2}(z) = \frac{1}{2^{n-1}} \sum_{k=0}^{\lfloor n/2 \rfloor} \frac{(-1)^{k+1}}{n-k} {2n-2k-2 \choose n-k-1} {n-k \choose k} z^{n-2k}.$$

The result now follows from (6.24).

7. THE GENERALIZATION OF THE NUMBERS a_n

The terms forming the original suggestion of Zeilberger

$$a_n = \frac{2A_n}{C_n}$$

have been given a probabilistic interpretation: let X be a random variable with a symmetric probability distribution function. The numerator A_n is

(7.2)
$$A_n = (-1)^{n+1} \kappa(2n) 2^{2n}$$

where $\kappa(2n)$ is the even-order cumulant of the scaled random variable $X_* = 2X$. The denominator C_n is interpreted as the even-order moment of X_* :

$$(7.3) C_n = \mathbb{E}\left[X_*^{2n}\right].$$

These notions are used now to define an extension of the coefficients a_n .

Definition 7.1. Let X be a random variable with vanishing odd cumulants. The numbers a_n are defined by

(7.4)
$$a_n = \frac{2(-1)^{n+1}\kappa(2n)}{\mathbb{E}\left[X_*^{2n}\right]}.$$

In the special case X has a symmetric beta distribution with parameter μ , that is $X \sim f_{\mu}$ and $X_* = 2X$, these numbers are computed using the cumulants

(7.5)
$$\kappa_{\mu}(2n) = (-1)^{n+1} 2^{2n+1} (2n-1)! \zeta_{\mu}(2n)$$

and the even order moments

(7.6)
$$\mathbb{E}\left[X_*^{2n}\right] = \frac{(2n)!}{n!} \frac{1}{(\mu+1)_n}$$

to produce

(7.7)
$$a_n = a_n(\mu) = 2^{2n+1} (n-1)! (\mu+1)_n \zeta_{\mu}(2n).$$

The value

(7.8)
$$\zeta_{\mu}(2) = \frac{1}{4(\mu+1)}$$

yields the initial condition $a_1(\mu) = 2$.

The recurrence (5.10) now provides the next result. Recall that when x is not necessarily a positive integer, the binomial coefficient is given by

Proposition 7.2. The coefficients $a_n(\mu)$ satisfy the recurrence

(7.10)
$$a_n(\mu) = \frac{1}{2\binom{n+\mu-1}{n-1}} \sum_{k=1}^{n-1} \binom{n+\mu-1}{n-k-1} \binom{n+\mu-1}{k-1} a_k(\mu) a_{n-k}(\mu),$$

with initial condition $a_1(\mu) = 2$.

Proof. Start with the convolution identity for Bessel zeta functions (5.10) and replace each zeta function by its expression in terms of $a_n(\mu)$ from (7.7), which gives

$$(n+\mu)\frac{a_n(\mu)}{2^{2n+1}(n-1)!(\mu+1)_n} = \sum_{k=1}^{n-1} \frac{a_k(\mu)}{2^{2k+1}(k-1)!(\mu+1)_k} \frac{a_{n-k}(\mu)}{2^{2n-2k+1}(n-k-1)!(\mu+1)_{n-k}}$$

and after simplification

$$a_n(\mu) = \frac{1}{2(n+\mu)} \sum_{k=1}^{n-1} \frac{(n-1)!}{(k-1)!(n-k-1)!} \frac{(\mu+1)_n}{(\mu+1)_k(\mu+1)_{n-k}} a_k(\mu) a_{n-k}(\mu).$$

The result now follows by elementary algebra

Note 7.3. In the case $\mu = 1$, the recurrence (7.10) becomes (2.10) and the coefficients $a_n(1)$ are the original numbers a_n .

Note 7.4. The recurrence (7.10) can be written as

$$a_n(\mu) = \frac{1}{2} \sum_{k=1}^{n-1} \frac{\Gamma(n)\Gamma(\mu+1)\Gamma(n+\mu)}{\Gamma(\mu+k+1)\Gamma(n+\mu-k+1)\Gamma(n-k)\Gamma(k)} a_k(\mu) a_{n-k}(\mu).$$

Theorem 7.5. The coefficients $a_n(\mu)$ are positive and increasing for $n \ge \lfloor \frac{\mu+3}{2} \rfloor$.

Proof. The positivity is clear from (7.7). Now take the terms corresponding to k = 1 and k = n - 1 in (7.10) to obtain

(7.11)
$$a_n(\mu) \ge \frac{n-1}{\mu+1} a_1(\mu) a_{n-1}(\mu) = \frac{2(n-1)}{\mu+1} a_{n-1}(\mu).$$

This yields

(7.12)
$$a_n(\mu) - a_{n-1}(\mu) \ge \frac{2n - 3 - \mu}{\mu + 1} a_{n-1}(\mu)$$

and the result follows.

Some other special cases are considered next.

The case $\mu = 0$. In this situation one obtains the arcsine probability distribution function given by

(7.13)
$$f_0(x) = \begin{cases} \frac{1}{\pi} \frac{1}{\sqrt{1-x^2}}, & \text{for } |x| \le 1, \\ 0, & \text{otherwise.} \end{cases}$$

By the recurrence on the ζ_0 function, the coefficients

$$(7.14) a_n(0) = 2^{2n}(n-1)! n! \zeta_0(2n)$$

satisfy

(7.15)
$$a_n(0) = \frac{1}{2} \sum_{k=1}^{n-1} {n-1 \choose k} {n-1 \choose k-1} a_k(0) a_{n-k}(0)$$

with $a_1(0) = 2$. Now define as Lasalle $b_n = \frac{1}{2}a_n(0)$. Then (7.15) becomes

(7.16)
$$b_{n} = \sum_{k=1}^{n-1} {n-1 \choose k} {n-1 \choose k-1} b_{k} b_{n-k},$$

$$b_{1} = 1.$$

In particular b_n is a positive integer.

The following comments are obtained by an analysis similar to that for a_n .

Note 7.6. The recurrence

$$\sum_{j=1}^{n} (-1)^{j-1} \binom{n}{j} \binom{n-1}{j-1} b_j = 1$$

gives the generating function

$$\sum_{j=1}^{\infty} \frac{(-1)^{j-1}b_j}{j!} \frac{x^{2j-2}}{(j-1)!} = \frac{I_1(2x)}{x I_0(2x)} = \frac{1}{2x} \frac{d}{dx} \log I_0(2x).$$

Note 7.7. The sequence b_n admits a determinant representation $b_n = \det(M_n)$, where

$$(7.17) M_n = \begin{pmatrix} 1 & \binom{1}{1}\binom{1-1}{1-1} & 0 & 0 & \cdots & 0 \\ 1 & \binom{2}{1}\binom{2-1}{1-1} & \binom{2}{2}\binom{2-1}{2-1} & 0 & \cdots & 0 \\ 1 & \binom{3}{1}\binom{3-1}{1-1} & \binom{3}{2}\binom{3-1}{2-1} & \binom{3}{3}\binom{3-1}{3-1} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots & \ddots & \ddots & \vdots \\ 1 & \binom{n}{1}\binom{n-1}{1-1} & \binom{n}{2}\binom{n-1}{2-1} & \binom{n}{3}\binom{n-1}{3-1} & \cdots & \binom{n}{n-1}\binom{n-1}{n-2} \end{pmatrix}.$$

Note 7.8. The identity $I_2(x) = I_0(x) - \frac{2}{x}I_1(x)$ expressed as

(7.18)
$$\frac{I_1(2x)}{xI_0(2x)} \left[1 + \frac{1}{2} x^2 \frac{2I_2(2x)}{xI_1(2x)} \right] = 1$$

provides the relation

(7.19)
$$b_n = \frac{1}{2} \sum_{j=1}^{n-1} \binom{n-1}{j} \binom{n}{j-1} b_j a_{n-j}.$$

The case $\mu = \frac{1}{2}$. Now one obtains the uniform distribution on [-1,1] with even moments

(7.20)
$$\mathbb{E}(2X)^{2n} = \mathbb{E}X_*^{2n} = \frac{2^{2n}}{2n+1}$$

and vanishing odd moments. The sequence of cumulants is

(7.21)
$$\kappa_{1/2}(2n) = 2(-1)^{n+1}(2n-1)!\zeta_{1/2}(2n)$$

where the Bessel zeta function is

(7.22)
$$\zeta_{1/2}(2n) = \sum_{k=1}^{\infty} \frac{1}{\pi^{2n} k^{2n}} = \frac{1}{\pi^{2n}} \zeta(2n) = \frac{2^{2n-1}}{(2n)!} |B_{2n}|,$$

with B_n the Bernoulli numbers. This follows from the identity

(7.23)
$$J_{1/2}(x) = \sqrt{\frac{2}{\pi x}} \sin x,$$

and it yields

(7.24)
$$\kappa_{1/2}(2n) = 2^{2n} \frac{B_{2n}}{2n} \text{ and } \kappa_{1/2}(2n+1) = 0,$$

with $\kappa_{1/2}(0) = 0$. These are the coefficients of $u^n/n!$ in the cumulant moment generating function

(7.25)
$$\log \varphi_{1/2}(u) = \log \frac{\sinh u}{u} = \frac{1}{6}u^2 - \frac{1}{180}u^4 + \frac{1}{2835}u^6 + \cdots$$

Finally, the corresponding sequence

(7.26)
$$a_n\left(\frac{1}{2}\right) = \frac{2(-1)^{n+1}\kappa(2n)}{\mathbb{E}\left[X_*^{2n}\right]}$$

is given by

(7.27)
$$a_n\left(\frac{1}{2}\right) = 2^{2n} \frac{2n+1}{n} |B_{2n}|.$$

The first few terms are

$$(7.28) a_1\left(\frac{1}{2}\right) = 2, \ a_2\left(\frac{1}{2}\right) = \frac{4}{3}, \ a_3\left(\frac{1}{2}\right) = \frac{32}{9}, \ a_4\left(\frac{1}{2}\right) = \frac{96}{5}, \ a_5\left(\frac{1}{2}\right) = \frac{512}{3},$$

and, as expected, this is an increasing sequence for $n \ge 3$. The convolution identity (5.10) for Bessel zeta functions gives the well-known quadratic relation for the Bernoulli numbers

(7.29)
$$\sum_{k=1}^{n-1} {2n \choose 2k} B_{2k} B_{2n-2k} = -(2n+1)B_{2n}, \quad \text{for } n > 1.$$

Moreover, the moment-cumulants relation (1.19) gives, replacing n by 2n and after simplification, the other well-known identity for the Bernoulli numbers

(7.30)
$$\sum_{j=1}^{n} {2n+1 \choose 2j} 2^{2j} B_{2j} = 2n, \text{ for } n \ge 1.$$

Note 7.9. A generating function of the sequence $a_n(\frac{1}{2})$ is given by

$$\frac{I_{3/2}(x)}{xI_{1/2}(x)} = \frac{x \tanh x - 1}{x^2} = \sum_{j=1}^{\infty} \frac{(-1)^{j-1} 2a_j(\frac{1}{2})}{(2j+1)(2j-1)!} x^{2j-2}.$$

The limiting case $\mu = -\frac{1}{2}$ produces

(7.31)
$$f_{-1/2}(x) = \frac{1}{2}\delta(x-1) + \frac{1}{2}\delta(x+1)$$

(the discrete Rademacher distribution). For a random variable X with this distribution, the odd moments of $X_* = 2X$ vanish while the even order moments are

Therefore

(7.33)
$$\kappa_{-1/2}(2n) = (-1)^{n+1} 2^{2n+1} (2n-1)! \zeta_{-1/2}(2n).$$

The identity

(7.34)
$$J_{-1/2}(x) = \sqrt{\frac{2}{\pi x}} \cos x$$

shows that the zeros are $j_{k,-1/2} = (2k-1)\pi/2$ and therefore

(7.35)
$$\zeta_{-1/2}(2n) = \sum_{k=1}^{\infty} \frac{2^{2n}}{\pi^{2n} (2k-1)^{2n}} = \frac{2^{2n}-1}{\pi^{2n}} \zeta(2n).$$

The expression for $\kappa_{-1/2}(2n)$ may be simplified by the relation

(7.36)
$$E_n = -\frac{2}{n+1} (2^{n+1} - 1) B_{n+1}$$

between the Euler numbers E_n and the Bernoulli numbers. It follows that

(7.37)
$$\kappa_{-1/2}(2n) = -2^{4n-1}E_{2n-1}.$$

The corresponding sequence $a_n(-\frac{1}{2})$ is now given by

(7.38)
$$a_n\left(-\frac{1}{2}\right) = (-1)^n 2^{2n} E_{2n-1}$$

and its first few values are

$$a_1\left(-\frac{1}{2}\right) = 2$$
, $a_2\left(-\frac{1}{2}\right) = 4$, $a_3\left(-\frac{1}{2}\right) = 32$, $a_4\left(-\frac{1}{2}\right) = 544$, $a_5\left(-\frac{1}{2}\right) = 15872$.

Note 7.10. The generating function of the sequence $a_n(-\frac{1}{2})$ is given by

$$\frac{I_{1/2}(x)}{xI_{-1/2}(x)} = \frac{\tanh x}{x} = \sum_{j=1}^{\infty} \frac{(-1)^{j-1} 2a_j \left(-\frac{1}{2}\right)}{(2j-1)!} x^{2j-2}.$$

Note 7.11. The convolution identity (5.10) yields the well-known quadratic recurrence relation

(7.39)
$$\sum_{k=1}^{n-1} {2n-2 \choose 2k-1} E_{2k-1} E_{2n-2k-1} = 2E_{2n-1}, \text{ for } n > 1,$$

and the moment-cumulant relation (1.19) gives the other well-known identity

(7.40)
$$\sum_{k=1}^{n} {2n-1 \choose 2k-1} 2^{2k-1} E_{2k-1} = 1, \text{ for } n \ge 1.$$

8. Some arithmetic properties of the sequences a_n and b_n

Given a sequence of integers $\{x_n\}$ it is often interesting to examine its arithmetic properties. For instance, given a prime p, one may consider the p-adic valuation $v_p(x_n)$, defined as the largest power of p that divides x_n . Examples of this process appear in [2] for the Stirling numbers and in [1, 22] for a sequence of coefficients arising from a definite integral.

The statements described below give information about $v_p(a_n)$. These results will be presented in a future publication. M. Lasalle [19] established the next theorem by showing that A_n and C_n have the same parity. The fact that the Catalan numbers are odd if and only if $n = 2^r - 1$ for some $r \ge 2$ provides the proof. This result appears in [14, 18].

Theorem 8.1. The integer a_n is odd if and only if $n = 2(2^m - 1)$.

The previous statement may be expressed in terms of the sequence of binary digits of n.

Fact 8.2. Let $\{B(n)\}$ be the sequence of binary digits of n and denote \bar{x} a sequence of a arbitrary length consisting of the repetitions of the symbol x. The following statements hold (experimentally)

- 1) $v_2(a_n) = 0$ if and only if $B(n) = \{\bar{1}, 0\}$.
- 2) $v_2(a_n) = 1$ if and only if $B(n) = \{\bar{1}\}$ or $\{1, \bar{0}\}$.
- 3) $v_2(a_n) = 2$ if and only if $B(n) = \{1, 0, \overline{1}, 0\}$.

The experimental findings for the prime p = 3 are described next.

Fact 8.3. Suppose n is not of the form $3^m - 1$. Then

(8.1)
$$v_3(a_{3n-2}) = v_3(a_{3n-1}) = v_3(a_{3n}).$$

Define $w_i = 3^j - 1$. Suppose n lies in the interval $w_i + 1 \le n \le w_{i+1} - 1$. Then

(8.2)
$$v_3(a_{3n+2}) = j - v_3(n+1).$$

If $n = w_i$, then $v_3(a_{3n}) = 0$.

Now assume that $n = 3^m - 1$. Then

(8.3)
$$v_3(a_{3n}) = v_3(a_{3n-1}) - 1 = v_3(a_{3n-2}) - 1 = m.$$

Fact 8.4. The last observation deals with the sequence $\{a_n(\mu)\}$. Consider it now as defined by the recurrence (7.10). The initial condition $a_1(\mu) = 2$, motivated by the origin of the sequence, in general does not provide integer entries. For example, if $\mu = 2$, the sequence is

$$\left\{2, \frac{2}{3}, \frac{8}{9}, \frac{7}{3}, \frac{88}{9}, \frac{1594}{27}, \frac{1448}{3}\right\},\,$$

and for $\mu = 3$

$$\left\{2, \frac{1}{2}, \frac{1}{2}, \frac{39}{40}, 3, \frac{263}{20}, \frac{309}{4}\right\}.$$

Observe that the denominators of the sequence for $\mu = 2$ are always powers of 3, but for $\mu = 3$ the arithmetic nature of the denominators is harder to predict. On the other hand if in the case $\mu = 3$ the initial condition is replaced by $a_1(3) = 4$, then the resulting sequence has denominators that are powers of 5. This motivates the next definition.

Definition 8.5. Let x_n be a sequence of rational numbers and p be a prime. The sequence is called p-integral if the denominators of x_n are powers of p.

Therefore if $a_1(3) = 4$, then the sequence $a_n(3)$ is 5-integral. The same phenomena appears for other values of μ , the data is summarized in the next table.

	μ	2	3	4	5	6	7	8	9
	$a_1(\mu)$	2	4	10	12	84	264	990	2860
Ĭ	p	3	5	7	7	11	11	13	17

Note 8.6. The sequence {2, 4, 10, 12, 84, 264, 990, 2860} does not appear in Sloane's database OEIS.

This suggests the next conjecture.

Conjecture 8.7. Let $\mu \in \mathbb{N}$. Then there exists an initial condition $a_1(\mu)$ and a prime p such that the sequence $a_n(\mu)$ is p-integral.

Some elementary arithmetical properties of a_n are discussed next. A classical result of E. Lucas states that a prime p divides the binomial coefficient $\binom{a}{b}$ if and only if at least one of the base p digits of b is greater than the corresponding digit of a.

Proposition 8.8. Assume n is odd. Then a_n is even.

Proof. Let n = 2m + 1. The recurrence (2.10) gives

$$2(2m+1)a_{2m+1} = \sum_{k=1}^{2m} {2m+1 \choose k-1} {2m+1 \choose k+1} a_k a_{2m+1-k}$$
$$= 2\sum_{k=1}^{m} {2m+1 \choose k-1} {2m+1 \choose k+1} a_k a_{2m+1-k}.$$

For k in the range $1 \le k \le m$, one of the indices k or 2m+1-k is odd. The induction argument shows that for each such k, either a_k or a_{2m+1-k} is an even integer. This completes the argument.

Lemma 8.9. Assume $n = 2^m - 1$. Then $\frac{1}{2}a_n$ is an odd integer.

Proof. Proposition 8.8 shows that $\frac{1}{2}a_n$ is an integer. The relation (1.8) may be written as

(8.4)
$$(-1)^{n-1}a_n = 2 + \frac{1}{n} \sum_{j=1}^{n-1} (-1)^j \binom{n}{j-1} \binom{n+1}{j+1} a_j.$$

This implies

(8.5)
$$n\left[(-1)^{n-1}\frac{1}{2}a_n - 1\right] = \frac{1}{2}\sum_{j=1}^{n-1}(-1)^j \binom{n}{j-1} \binom{n+1}{j+1}a_j.$$

Observe that if j is odd, then a_j is even and $\binom{n+1}{j+1}$ is also even. Therefore the corresponding term in the sum is divisible by 4. If j is even, then Lucas' theorem shows that 4 divides $\binom{n+1}{j+1}$. It follows that the right hand side is an even number. This implies that $\frac{1}{2}a_n$ is odd, as claimed.

The next statement, which provides the easier part of Theorem 8.1, describes the indices that produce odd values of a_n .

Theorem 8.10. *If* $n = 2(2^m - 1)$, then a_n is odd.

Proof. Isolate the term j = n/2 in the identity (8.4) to produce

$$[(-1)^{n}a_{n}+2](2^{m}-1) = {2^{m+1}-2 \choose 2^{m}-2} {2^{m+1}-1 \choose 2^{m}} \frac{1}{2}a_{n/2} + \frac{1}{2} \sum_{j \neq n/2} (-1)^{j} {n \choose j-1} {n+1 \choose j+1} a_{j}.$$

Lemma 8.9 shows that $\frac{1}{2}a_{n/2}$ is odd and the binomial coefficients on the first term of the right-hand side are also odd by Lucas' theorem. Each term of the sum is even because a_j is even if j is odd and for j even $\binom{n}{j-1}$ is even. Therefore the entire right-hand side is even which forces a_n to be odd.

The final result discussed here deals with the parity of the sequence b_n . The main tool is the recurrence

(8.6)
$$b_n = \sum_{k=1}^{n-1} {n-1 \choose k} {n-1 \choose k-1} b_k b_{n-k}$$

with $b_1 = 1$. Observe that the binomial coefficients appearing in this recurrence are related to the Narayana numbers N(n, k) (1.2) by

(8.7)
$$\binom{n-1}{k} \binom{n-1}{k-1} = (n-1)N(n-1, k-1).$$

Arithmetic properties of the Narayana numbers have been discussed by M. Bona and B. Sagan [5]. It is established that if $n = 2^m - 1$ then N(n, k) is odd for $0 \le k \le n - 1$; while if $n = 2^m$ then N(n, k) is even for $1 \le k \le n - 2$.

The next theorem is the analog of M. Lasalle's result for the sequence b_n .

Theorem 8.11. The coefficient b_n is an odd integer if and only if $n = 2^m$, for some $m \ge 0$.

Proof. The first few terms $b_1 = 1$, $b_2 = 1$, $b_3 = 4$ support the base case of an inductive proof. If n is odd, then

(8.8)
$$b_n = (n-1)\sum_{k=1}^{n-1} N(n-1, k-1)b_k b_{n-k}$$

shows that b_n is even.

Consider now the case $n=2^m$. Then Lucas' theorem shows that $\binom{2^m-1}{k}\binom{2^m-1}{k-1}$ is odd for all k. The inductive step states that b_k is even if $k \neq 2^r$. In the case $k=2^r$, then b_{n-k} is odd if and only if $k=2^{m-1}$, in which case all the terms in (8.8) are even with the single exception $\binom{2^m-1}{2^{m-1}}\binom{2^m-1}{2^{m-1}-1}b_{2^{m-1}}^2$. This shows that b_n is odd.

Finally, if n = 2j is even with $j \neq 2^r$, then

(8.9)
$$b_n = \binom{2j-1}{j} \binom{2j-1}{j-1} b_j^2 + 2 \sum_{k=1}^{j-1} \binom{n-1}{k} \binom{n-1}{k-1} b_k b_{n-k}.$$

Now simply observe that $j \neq 2^r$, therefore b_j is even by induction. It follows that b_n itself is even.

This completes the proof.

9. ONE FINAL QUESTION

Sequences of combinatorial origin often turn out to be unimodal or logconcave. Recall that a sequence $\{x_j: 1 \le j \le n\}$ is called *unimodal* if there is an index m_* such that $x_1 \le x_2 \le \cdots \le x_{m_*}$ and $x_{m_*+1} \ge x_{m_*+2} \ge \cdots \ge x_n$. The sequence is called *logconcave* if $x_{n+1}x_{n-1} \le x_n^2$ and *logconvex* if $x_{n+1}x_{n-1} \ge x_n^2$. An elementary argument shows that a logconcave sequence is always unimodal. The reader will find in [4, 6, 7, 8, 9, 10, 23, 26] a variety of examples of these type of sequences.

Conjecture 9.1. The sequences $\{a_n\}$ and $\{b_n\}$ are logconvex.

Postscript. After submission of the present work, the authors learned through the preprint [27] a discussion on monotonicity of sequences which usually arise in conjunction with the ratio $\{z_{n+1}/z_n\}$ and root $\{z_n^{1/n}\}$ tests for infinite series. Appealing to such results, the authors of [27] have produced a proof of Conjecture 9.1.

Acknowledgements. The work of the second author was partially supported by NSF-DMS 0070567.

REFERENCES

- [1] T. Amdeberhan, D. Manna, and V. Moll. The 2-adic valuation of a sequence arising from a rational integral. *Jour. Comb. A*, 115:1474–1486, 2008.
- [2] T. Amdeberhan, D. Manna, and V. Moll. The 2-adic valuation of Stirling numbers. *Experimental Mathematics*, 17:69–82, 2008.
- [3] G. E. Andrews, R. Askey, and R. Roy. *Special Functions*, volume 71 of *Encyclopedia of Mathematics and its Applications*. Cambridge University Press, New York, 1999.
- [4] M. Bona. A combinatorial proof of the logconcavity of a famous sequence counting permutations. *Elec. Jour. Comb.*, 11:1–4, 2004.
- [5] M. Bona and B. Sagan. On divisibility of Narayana numbers by primes. *Jour. Int. Seq.*, 8:#05.2.4, 2005.
- [6] G. Boros and V. Moll. A criterion for unimodality. Elec. Jour. Comb., 6:1–6, 1999.
- [7] F. Brenti. Log-concave and unimodal sequences in Algebra, Combinatorics and Geometry: an update. *Contemporary Mathematics*, 178:71–89, 1994.
- [8] L. M. Butler. A unimodality result in the enumeration of subgroups of a finite abelian group. *Proc. Amer. Math. Soc.*, 101:771–775, 1987.
- [9] L. M. Butler. The q-logconcavity of q-binomial coefficients. J. Comb. Theory, Ser. A, 54:54–63, 1990.
- [10] J. Y. Choi and J. D. H. Smith. On the unimodality and combinatorics of Bessel numbers. *Disc. Math.*, 264:45–53, 2003.
- [11] D. S. Ciesielski and S. J. Taylor. First passage times and sojourn times for Brownian motion in space and the exact Hausdorff measure of the sample path. *Trans. Amer. Math. Soc.*, 103:434–450, 1962.
- [12] C. Coker. Enumerating a class of lattice paths. Disc. Math., 271:13–28, 2003.

- [13] E. Di Nardo, P. Petrullo, and D. Senato. Cumulants and convolutions via Abel polynomials. *Europ. Journal of Comb.*, 31:1792–1804, 2010.
- [14] O. Egecioglu. The parity of the Catalan numbers via lattice paths. Fib. Quart., 21:65-66, 1983.
- [15] E. Elizalde, S. Leseduarte, and A. Romeo. Sum rules for zeros of Bessel functions and an application to spherical Aharonov-Bohm quantum bags. *J. Phys. A: Math. Gen.*, 26:2409–2419, 1993.
- [16] I. S. Gradshteyn and I. M. Ryzhik. *Table of Integrals, Series, and Products*. Edited by A. Jeffrey and D. Zwillinger. Academic Press, New York, 7th edition, 2007.
- [17] B. Jessen and A. Wintner. Distribution functions and the Riemann zeta function. *Trans. Amer. Math. Soc.*, 38:48–88, 1935.
- [18] T. Koshy and M. Salmassi. Parity and primality of Catalan numbers. Coll. Math. J., 37:52–53, 2006.
- [19] M. Lasalle. Two integer sequences related to Catalan numbers. *J. Comb. Theory Ser. A*, 119:923–935, 2012.
- [20] V. P. Leonov and A. N. Shiryaev. On a method of calculation of semi-invariants. *Theory Prob. Appl.*, IV-3:312–328, 1959.
- [21] T. Mansour and Y. Sun. Identities involving Narayana polynomials and Catalan numbers. *Disc. Math.*, 309:4079–4088, 2009.
- [22] V. Moll and X. Sun. A binary tree representation for the 2-adic valuation of a sequence arising from a rational integral. *INTEGERS*, 10:211–222, 2010.
- [23] B. Sagan. Inductive proofs of q-logconcavity. Disc. Math., 99:289–306, 1992.
- [24] P. J. Smith. A recursive formulation of the old problem of obtaining moments from cumulants and viceversa. *The American Statistician*, 49:217–218, 1995.
- [25] F. Spitzer. On a class of random variables. Proc. Amer. Math. Soc., 6:494-505, 1955.
- [26] R. Stanley. Log-concave and unimodal sequences in Algebra, Combinatorics and Geometry. Graph theory and its applications: East and West (Jinan, 1986). *Ann. New York Acad. Sci.*, 576:500–535, 1989.
- [27] Wang, Yi and Zhu, Bao Xuan. Proof of some conjectures on monotonicity of number-theoretic and combinatorial sequences. *Preprint*, arXiV:1303.5595v2 [math.CO].

DEPARTMENT OF MATHEMATICS, TULANE UNIVERSITY, NEW ORLEANS, LA 70118 *E-mail address*: tambeder@tulane.edu

DEPARTMENT OF MATHEMATICS, TULANE UNIVERSITY, NEW ORLEANS, LA 70118 *E-mail address*: vhm@math.tulane.edu

INFORMATION THEORY LABORATORY, E.P.F.L., 1015 LAUSANNE, SWITZERLAND *E-mail address*: christophe.vignat@epfl.ch