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Abstract

Lucy Slater used Bailey’s 6ψ6 summation formula to derive the Bailey pairs she used to construct her
famous list of 130 identities of the Rogers-Ramanujan type.

In the present paper we apply the same techniques to Chu’s 10ψ10 generalization of Bailey’s formula
to produce quite general Bailey pairs. Slater’s Bailey pairs are then recovered as special limiting cases
of these more general pairs.

In re-examining Slater’s work, we find that her Bailey pairs are, for the most part, special cases of
more general Bailey pairs containing one or more free parameters. Further, we also find new general
Bailey pairs (containing one or more free parameters) which are also implied by the 6ψ6 summation
formula.

Slater used the Jacobi triple product identity (sometimes coupled with the quintuple product identity)
to derive her infinite products. Here we also use other summation formulae (including special cases of the

6ψ6 summation formula and Jackson’s 6φ5 summation formula) to derive some of our infinite products.
We use the new Bailey pairs, and/or the summation methods mentioned above, to give new proofs

of some general series-product identities due to Ramanujan, Andrews and others. We also derive a
new general series-product identity, one which may be regarded as a partner to one of the Ramanujan
identities. We also find new transformation formulae between basic hypergeometric series, new identities
of Rogers-Ramanujan type, and new false theta series identities. Some of these latter are a kind of
“hybrid” in that one side of the identity consists a basic hypergeometric series, while the other side is
formed from a theta product multiplied by a false theta series. This type of identity appears to be new.

1 Introduction

Bailey’s 6ψ6 identity [5],

6ψ6

[
q
√
a,−q

√
a, b, c, d, e√

a,−
√
a, qa/b, qa/c, qa/d, qa/e

; q,
qa2

bcde

]
=

(aq, aq/bc, aq/bd, aq/be, aq/cd, aq/ce, aq/de, q, q/a; q)∞
(aq/b, aq/c, aq/d, aq/e, q/b, q/c, q/d, q/e, qa2/bcde; q)∞

, (1.1)

is probably the most important summation formula for bilateral basic hypergeometric series, and has many appli-
cations to number theory and partitions - see Andrews’ paper [2] for some examples. This summation formula was
also the main tool used by Slater [16, 17] to derive Bailey pairs and, from these, her list of 130 identities of the
Rogers-Ramanujan type.

Bailey’s formula was extended by Shukla [14], and Shukla’s formula was later further extended by Chu [6]. Let

K := K(a, b, c, d, e, u, v, q) =
[
uv (σ3 − aσ1) (qσ3 − aσ1) a2 + (1− q)uv

(
a2 − σ4

) (
a2 − σ2a+ σ4

)
a

+ (u+ v)(a+ uv) (σ3 − aσ1)
(
a2 − qσ4

)
a+

(
u2 + a

) (
v2 + a

) (
a2 − σ4

) (
a2 − qσ4

) ]
× {
(
a2 − bcde

) (
a2 − bcdeq

)
(1− u)(a− u)(1− v)(a− v)}−1, (1.2)

where, for 1 ≤ k ≤ 4, σk denotes the k-th elementary symmetric function in {b, c, d, e}. Then
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Proposition 1.1. (Chu [6]) For complex numbers a, b, c, d and e satisfying |a2/bcdeq| < 1, there holds the identity

10ψ10

[
q
√
a,−q

√
a, b, c, d, e, qu, qa/u, qv, qa/v√

a,−
√
a, qa/b, qa/c, qa/d, qa/e, u, a/u, v, a/v

; q,
a2

qbcde

]
=

∞∑
n=0

(1− aq2n)(b, c, d, e, uq, vq, aq/u, aq/v; q)n
(1− a)(aq/b, aq/c, aq/d, aq/e, u, v, a/u, a/v; q)n

(
a2

qbcde

)n
+

∞∑
n=1

(1− q2n/a)(b/a, c/a, d/a, e/a, uq/a, vq/a, q/u, q/v; q)n
(1− 1/a)(q/b, q/c, q/d, q/e, 1/u, 1/v, u/a, v/a; q)n

(
a2

qbcde

)n
= K

(aq, aq/bc, aq/bd, aq/be, aq/cd, aq/ce, aq/de, q, q/a; q)∞
(aq/b, aq/c, aq/d, aq/e, q/b, q/c, q/d, q/e, qa2/bcde; q)∞

. (1.3)

Upon letting u → ∞, v → ∞, we obtain Bailey’s formula (1.1), while letting u → ∞ recovers Shukla’s [14] 8ψ8

generalization of Bailey’s formula. For most values of the parameters, the expression for K is quite complicated, but
we note in passing that the case b = a/c results in considerable simplification.

Corollary 1.2. For complex numbers a, c, d and e satisfying |a/deq| < 1, there holds the identity

10ψ10

[
q
√
a,−q

√
a, a/c, c, d, e, qu, qa/u, qv, qa/v√

a,−
√
a, cq, qa/c, qa/d, qa/e, u, a/u, v, a/v

; q,
a

qde

]
=

(1− u/c)(1− cu/a)(1− v/c)(1− cv/a)

(1− u/a)(1− u)(1− v/a)(1− v)

(aq, q, cq/d, cq/e, aq/cd, aq/ce, aq/de, q, q/a; q)∞
(cq, aq/c, aq/d, aq/e, cq/a, q/c, q/d, q/e, qa/de; q)∞

. (1.4)

Since (1.1) was used by Slater to derive her Bailey pairs, it is natural to ask if Chu’s generalization of Bailey’s
formula at (1.3) can be used similarly to produce any new interesting results. The present paper is in part an
investigation of that question.

One observation we make is that most of Slater’s Bailey pairs are special cases of more general Bailey pairs
containing one or more free parameters - see Corollaries 2.8 and 2.13. Slater could have derived these more general
pairs herself, but it would seem that she was primarily interested in the special cases which would lead to identities
of the Rogers-Ramanujan type.

We also note that Slater used the Jacobi Triple Product identity to derive her infinite products. In the present
paper we use other summation formulae, including special cases of the 6ψ6- and 6φ5 summation formulae, to derive
some infinite products.

In the transformation at (2.5) below, Slater essentially employed three cases (y, z →∞ and y = ±√aq, z →∞)
to make the series containing the αn sequences summable. In the present paper we also explore additional cases, in
the process discovering some interesting new identities (see Section 3 below).

Our results include new proofs of some general series-product identities due to Ramanujan, Andrews and others,
and also a new general series-product identity

∞∑
n=0

(q/z; q)n+1(z; q)nq
n2+n

(q; q)2n+1
=

(zq2, q/z, q3; q3)∞
(q; q)∞

, (1.5)

which may be regarded as a partner to an identity equivalent to one recorded by Ramanujan in his lost notebook [4,
p. 99, Entry 5.3.1 with a = −z/q and q → √q throughout]:

∞∑
n=0

(q/z; q)n(z; q)nq
n2

(q; q)2n
=

(zq, q2/z, q3; q3)∞
(q; q)∞

. (1.6)

We also find new transformation formulae between basic hypergeometric series, new identities of Rogers-Ramanujan
type, and new false theta series identities. Some of these latter are a kind of “hybrid” in that one side of the identity
consists a basic hypergeometric series, while the other side is formed from a theta product multiplied by a false theta
series. For example,

∞∑
n=0

qn
2+n

(1− q2n+1)(q; q)2n
=

∑∞
n=0 q

6n2+2r(1− q8r+4)

(q; q)∞
(1.7)

This type of identity appears to be new.
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We employ the usual notations:

(a; q)n := (1− a)(1− aq) · · · (1− aqn−1),

(a1, a2, . . . , aj ; q)n := (a1; q)n(a2; q)n · · · (aj ; q)n,

(a; q)∞ := (1− a)(1− aq)(1− aq2) · · · , and

(a1, a2, . . . , aj ; q)∞ := (a1; q)∞(a2; q)∞ · · · (aj ; q)∞,

For later use, we recall that a pair of sequences (αn, βn) that satisfy α0 = 1 and

βn =

n∑
j=0

αj
(q; q)n−j(aq; q)n+j

, (1.8)

is termed a Bailey pair relative to a.

2 Bailey Pairs from Chu’s Extension of the 6ψ6 summation formula

2.1 General Bailey pairs

We first consider the case e = a and d = q−N in Chu’s formula. These same substitutions were made by Slater in (1.1),
and gave rise to a quite general Bailey pair (see below), which in turn led to many new identities of Rogers-Ramanujan
type. Let K be defined as at (1.2).

Theorem 2.1. The pair of sequences (αn, βn) is a Bailey pair with respect to a, where

αn :=
(q
√
a,−q

√
a, a, b, c, qu, qa/u, qv, qa/v; q)n

(
√
a,−
√
a, qa/b, qa/c, u, a/u, v, a/v, q; q)n

(−a
bc

)n
qn(n−3)/2, (2.1)

βn := K1(n)
(aq/bc; q)n

(aq/b, aq/c, q; q)n
,

where K1(n) := K(a, b, c, q−n, a, u, v, q).

Proof. First set e = a, so that all the terms with negative index in the bilateral sum at (1.3) become zero. Next, for
each non-negative integer n, set d = q−n, so that the sum on the left side of (1.3) becomes a finite sum, with the
summation index running from 0 to n. Simplify the resulting product on the right side of (1.3), and use the identity
(see [7, (I.10), page 351])

(q−n; q)j =
(q; q)nq

j(j−1)/2

(q; q)n−j(−qn)j
(2.2)

to modify the series side. The result then follows from (1.8), after some simple manipulations, noting also that
K1(0) = 1, so that the requirement α0 = β0 = 1 is satisfied.

The expression for K1(n) above is generally quite complicated, and thus so also is the expression for the βn.
However, as was also the case for K above, if we set b = a/c then K1(n) simplifies considerably. One can check,
preferably using a computer algebra system, that

K(a, a/c, c, q−n, a, u, v, q) =



1, n = 0,

(c− u)(c− v)(a− cu)(a− cv)

c2(a− u)(a− v)(1− u)(1− v)

− (1− c)(c− a)(c− aq)(1− cq)uv
c2q(a− u)(1− u)(a− v)(1− v)

, n = 1,

(c− u)(c− v)(a− cu)(a− cv)

c2(a− u)(a− v)(1− u)(1− v)
, n > 1.

(2.3)

Upon letting u→∞, v →∞ in the Bailey pair in Theorem 2.1, we recover the following Bailey pair (with respect
to a) due to Slater,

αn =
(1− aq2n)(a, b, c; q)n

(1− a)(aq/b, aq/c, q; q)

(−a
bc

)n
q(n

2+n)/2, (2.4)
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βn =
(aq/bc; q)n

(aq/b, aq/c, q; q)n
,

which is implicitly contained in Equation (4.1) of [16].
It would appear that Slater’s principal motivation was to prove identities of the Rogers-Ramanujan type, so this

Bailey pair, and other general pairs mentioned below, were not stated explicitly by her in [16] and [17], where she
instead listed many special cases of them. However, they could all have been easily derived by her, using the same
methods she used to derive the special cases.

We remark in passing that all the Bailey pairs in Slater’s B, F and H tables, as well as pairs E(3), E(6) and
E(7) (see [16, page 468]), are derived from the Bailey pair at (2.4).

Slater also showed [16, Equation (1.3) on page 462] that if (αn, βn) is a Bailey pair with respect to a, then, for
non-zero complex numbers y and z,

∞∑
n=0

(y, z; q)n

(
aq

yz

)n
βn =

(aq/y, aq/z; q)∞
(aq, aq/yz; q)∞

∞∑
n=0

(y, z; q)n
(aq/y, aq/z; q)n

(
aq

yz

)n
αn. (2.5)

A finite generalization of this identity is of course implied by Bailey’s Lemma (see, for example, Theorem 12.2.3
in [3]), namely, if (αn, βn) is a Bailey pair with respect to a, and N is a non-negative integer, then

N∑
n=0

(y, z, q−N ; q)n
(yzq−N/a; q)n

qnβn =
(aq/y, aq/z; q)N
(aq, aq/yz; q)N

N∑
n=0

(y, z, q−N ; q)n
(aq/y, aq/z, aq1+N ; q)n

(
−aqN

yz

)n
q−n(n−3)/2αn. (2.6)

The identity at (2.5) is a particular case of the Bailey Transform: if βn =
∑n
r=0 αrun−rvn+r and γn =∑∞

r=n δrur−n vr+n, then
∞∑
n=0

αnγn =

∞∑
n=0

βnδn.

In the present paper, for ease of notation we will refer to (2.5) as the Bailey Transform.
If we set b = a/c in the Bailey pair from Theorem 2.1, and then substitute this pair into (2.5) and (2.6), we get

the following unusual basic hypergeometric identities.

Corollary 2.2. Let N ≥ 1 be an integer. Then

1 +
(c− u)(c− v)(a− cu)(a− cv)

c2(a− u)(a− v)(1− u)(1− v)

N∑
n=1

(y, z, q−N ; q)n(
cq,

aq

c
,
yzq−N

a
; q

)
n

qn =
a(c− a)(1− c)(1− y)(1− z)

(
1− qN

)
uv

c(a− u)(a− v)(1− u)(1− v) (yz − aqN )

+

(
aq

y
,
aq

z
; q

)
N(

aq,
aq

yz
; q

)
N

N∑
n=0

(
q
√
a,−q

√
a, a,

a

c
, c, qu,

qa

u
, qv,

qa

v
, y, z, q−N ; q

)
n(

√
a,−
√
a, cq,

qa

c
, u,

a

u
, v,

a

v
,
aq

y
,
aq

z
, aq1+N , q; q

)
n

(
aqN

yz

)n
; (2.7)

1 +
(c− u)(c− v)(a− cu)(a− cv)

c2(a− u)(a− v)(1− u)(1− v)

∞∑
n=1

(y, z; q)n(
cq, aq

c
; q
)
n

(
aq

yz

)n
=
a(c− a)(1− c)(1− y)(1− z)uv
c(a− u)(a− v)(1− u)(1− v)yz

+

(
aq

y
,
aq

z
; q

)
∞(

aq,
aq

yz
; q

)
∞

∞∑
n=0

(
q
√
a,−q

√
a, a,

a

c
, c, qu,

qa

u
, qv,

qa

v
, y, z; q

)
n(

√
a,−
√
a, cq,

qa

c
, u,

a

u
, v,

a

v
,
aq

y
,
aq

z
, q; q

)
n

(
−a
yz

)n
qn(n−1)/2. (2.8)

Note that setting c = a in (2.7) gives the q-Pfaff-Saalschütz sum (see [7, page 355, II.12]), while setting c = u
gives the identity (for N ≥ 0)

N∑
n=0

(
q
√
a,−q

√
a, a, qv,

qa

v
, y, z, q−N ; q

)
n(

√
a,−
√
a, v,

a

v
,
aq

y
,
aq

z
, aq1+N , q; q

)
n

(
aqN

yz

)n
=

[
1 +

a(1− y)(1− z)
(
1− qN

)
v

(a− v)(1− v) (yz − aqN )

] (aq, aq
yz

; q

)
N(

aq

y
,
aq

z
; q

)
N

. (2.9)
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2.2 Mod 3 Bailey pairs

We continue to follow in Slater’s footsteps, this time making the same substitutions in Chu’s identity (1.3) that she
did in (1.1) to produce the Bailey pairs in her A table. Let K be as defined at (1.2).

Theorem 2.3. (i) Let K0(n) := K(a, q−n, q1−n, q2−n, a, u, v, q3). Then the pair of sequences (αn, βn) is a Bailey
pair with respect to a = a, where α0 = β0 = 1, α3r±1 = 0, and

α3r =
1− aq6r

1− a

(
a, q3u, q3v, aq3/u, aq3/v; q3

)
r(

u, v, a/u, a/v, q3; q3
)
r

q
9r2−15r

2 (−a)r (2.10)

βn = K0(n)
(a; q3)n

(a; q)2n(q; q)n
.

Let K′0(n) := K(aq, q−n, q1−n, q2−n, aq, u, v, q3). Then
(ii) the pair of sequences (αn, βn) is a Bailey pair with respect to a = a, where α0 = β0 = 1, α3r−1 = 0, and

α3r =

(
aq, q3u, q3v, aq4/u, aq4/v; q3

)
r(

u, v, aq/u, aq/v, q3; q3
)
r

q
9r2−13r

2 (−a)r (2.11)

α3r+1 =

(
aq, q3u, q3v, aq4/u, aq4/v; q3

)
r(

u, v, aq/u, aq/v, q3; q3
)
r

q
9r2−r

2
+1(−a)r+1

βn = K′0(n)
(aq; q3)n

(aq; q)2n(q; q)n
;

(iii) the pair of sequences (αn, βn) is a Bailey pair with respect to a = a, where α0 = β0 = 1, α3r−1 = 0, and

α3r =

(
aq, q3u, q3v, aq4/u, aq4/v; q3

)
r(

u, v, aq/u, aq/v, q3; q3
)
r

q
9r2−7r

2 (−a)r (2.12)

α3r+1 = −
(
aq, q3u, q3v, aq4/u, aq4/v; q3

)
r(

u, v, aq/u, aq/v, q3; q3
)
r

q
9r2−7r

2 (−a)r

βn = K′0(n)
(aq; q3)nq

n

(aq; q)2n(q; q)n
.

Proof. Set e = a in (1.3), so that all the terms of negative index vanish. Then replace q with q3, set b = q−n, c = q1−n

and d = q2−n. Then after some simple manipulations (1.3) becomes

n/3∑
r=0

1− aq6r

1− a
(q−n; q)3r

(aqn+1; q)3r

(
a, q3u, q3v, aq3/u, aq3/v; q3

)
r(

u, v, a/u, a/v, q3; q3
)
r

(
aq3n−6)r = K0(n)

(a; q3)n(aq; q)n
(a; q)2n

.

Apply (2.2) to the (q−n; q)3r factor, divide both sides by (aq; q)n(q; q)n to get

n/3∑
r=0

1− aq6r

1− a
(−1)rq(9r

2−15r)/2

(aq; q)n+3r(q; q)n−3r

(
a, q3u, q3v, aq3/u, aq3/v; q3

)
r(

u, v, a/u, a/v, q3; q3
)
r

ar = K0(n)
(a; q3)n

(a; q)2n(q; q)n
(2.13)

and (2.10) follows.
For the other two pairs, replace a with aq in (2.13), and (2.11) follows from the identity

(1− aq6r+1)q(9r
2−13r)/2

(aq; q)n+3r+1(q; q)n−3r
=

q(9r
2−13r)/2

(aq; q)n+3r(q; q)n−3r
− a q(9r

2−r)/2+1

(aq; q)n+3r+1(q; q)n−3r−1
,

while (2.12) follows from the identity

(1− aq6r+1)q(9r
2−13r)/2

(aq; q)n+3r+1(q; q)n−3r
=

q−nq(9r
2−7r)/2

(aq; q)n+3r(q; q)n−3r
− q−nq(9r

2−7r)/2

(aq; q)n+3r+1(q; q)n−3r−1
.

Remark 2.4. K0(0) = K0(1) = K0(2) = 1.
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Theorem 2.5. Let K2(n) := K(q, q−n, q1−n, q2−n, e, u, v, q3) and suppose e 6= 1/q. Then
(i) the pair of sequences (αn, βn) is a Bailey pair with respect to a = 1, where α0 = β0 = 1 and

α3r = (−1)r
(
q

9r2−11r
2

(
e, q3u, q3v, q4/u, q4/v; q3

)
r(

q4/e, u, v, q/u, q/v; q3
)
r
er

+ q
9r2−5r

2

(
e/q, q2u, q2v, q3/u, q3/v; q3

)
r(

q3/e, u/q, v/q, 1/u, 1/v; q3
)
r
er

)
, (2.14)

α3r+1 = (−1)r+1q
9r2+r

2
+1

(
e, q3u, q3v, q4/u, q4/v; q3

)
r(

q4/e, u, v, q/u, q/v; q3
)
r
er
,

α3r−1 = (−1)r+1q
9r2−17r

2
+1

(
e/q, q2u, q2v, q3/u, q3/v; q3

)
r(

q3/e, u/q, v/q, 1/u, 1/v; q3
)
r
er
,

βn = K2(n)
(q2/e; q3)n

(q; q)2n(q2/e; q)n
;

(ii) the pair of sequences (αn, βn) is a Bailey pair with respect to a = 1, where α0 = β0 = 1 and

α3r = (−1)r
(
q

9r2−5r
2

(
e, q3u, q3v, q4/u, q4/v; q3

)
r(

q4/e, u, v, q/u, q/v; q3
)
r
er

+ q
9r2−11r

2

(
e/q, q2u, q2v, q3/u, q3/v; q3

)
r(

q3/e, u/q, v/q, 1/u, 1/v; q3
)
r
er

)
, (2.15)

α3r+1 = (−1)r+1q
9r2−5r

2

(
e, q3u, q3v, q4/u, q4/v; q3

)
r(

q4/e, u, v, q/u, q/v; q3
)
r
er
,

α3r−1 = (−1)r+1q
9r2−11r

2

(
e/q, q2u, q2v, q3/u, q3/v; q3

)
r(

q3/e, u/q, v/q, 1/u, 1/v; q3
)
r
er
,

βn = K2(n)
(q2/e; q3)nq

n

(q; q)2n(q2/e; q)n
,

(iii) the pair of sequences (αn, βn) is a Bailey pair with respect to a = q, where α0 = β0 = 1 and

α3r = (−1)r
1− q6r+1

1− q q
9r2−11r

2

(
e, q3u, q3v, q4/u, q4/v; q3

)
r(

q4/e, u, v, q/u, q/v; q3
)
r
er

(2.16)

α3r+1 = 0,

α3r−1 = (−1)r+1 1− q6r−1

1− q q
9r2−17r

2
+1

(
e/q, q2u, q2v, q3/u, q3/v; q3

)
r(

q3/e, u/q, v/q, 1/u, 1/v; q3
)
r
er
,

βn = K2(n)
(q2/e; q3)n

(q; q)2n(q2/e; q)n
,

Remark 2.6. The condition e 6= 1/q is necessary to ensure that β0 = 1.

Proof. Replace q with q3 in (1.3), and then set a = q, b = q−n, c = q1−n and d = q2−n. One easily checks that the
right side simplifies to give

K2(n)
(q, q2; q)n(q2/e; q3)n

(q; q)2n(q2/e; q)n
.

On the series side, the choices for the parameters force the series to terminate above and below, and we get, after
some elementary manipulations, that the series becomes

n/3∑
r=−(n+1)/3

1− q6r+1

1− q
(q−n; q)3r
(qn+2; q)3r

(
e, q3u, q3v, q4/u, q4/v; q3

)
r(

q4/e, u, v, q/u, q/v; q3
)
r

(
q3n−4

e

)r
.

Next, we apply (2.2) to the (q−n; q)3r factor above and rearrange terms to get

n/3∑
r=−n+1

3

(1− q6r+1)(−1)rq(9r
2−11r)/2

(q; q)n+3r+1(q; q)n−3r er

(
e, q3u, q3v, q4/u, q4/v; q3

)
r(

q4/e, u, v, q/u, q/v; q3
)
r

=
K2(n)(q2/e; q3)n
(q; q)2n(q2/e; q)n

.

Noting that, for arbitrary non-zero y and z,

(y; q)−r
(z; q)−r

=
(q/z; q)rz

r

(q/y; q)ryr
, (2.17)
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we get that

K2(n)
(q2/e; q3)n

(q; q)2n(q2/e; q)n

=

n/3∑
r=0

(1− q6r+1)(−1)rq(9r
2−11r)/2

(q; q)n+3r+1(q; q)n−3rer

(
e, q3u, q3v, q4/u, q4/v; q3

)
r(

q4/e, u, v, q/u, q/v; q3
)
r

+

n+1
3∑
r=1

(1− q−6r+1)(−1)rq(9r
2−5r)/2

(q; q)n−3r+1(q; q)n+3rer

(
e/q, q2u, q2v, q3/u, q3/v; q3

)
r(

q3/e, u/q, v/q, 1/u, 1/v; q3
)
r

=

n/3∑
r=0

(
q(9r

2−11r)/2

(q; q)n+3r(q; q)n−3r
− q(9r

2+r)/2+1

(q; q)n+3r+1(q; q)n−3r−1

)
(−1)r

(
e, q3u, q3v, q4/u, q4/v; q3

)
r(

q4/e, u, v, q/u, q/v; q3
)
r

+

(n+1)
3∑
r=1

(
q(9r

2−5r)/2

(q; q)n−3r(q; q)n+3r
− q(9r

2−17r)/2+1

(q; q)n−3r+1(q; q)n+3r−1

)
(−1)r

(
e/q, q2u, q2v, q3/u, q3/v; q3

)
r(

q3/e, u/q, v/q, 1/u, 1/v; q3
)
r

,

where the last equality follows from the identities

(1− q6r+1)q
9r2−11r

2 = q
9r2−11r

2 (1− qn+3r+1)− q
9r2+r

2
+1(1− qn−3r), (2.18)

(1− q−6r+1)q
9r2−5r

2 = q
9r2−5r

2 (1− qn−3r+1)− q
9r2−17r

2
+1(1− qn+3r).

That (2.14) gives a Bailey pair now follows from the definition of a Bailey pair at (1.8), also noting that K2(0) =
K2(1) = 1.

If, instead of using the identities at (2.18), we use the identities

(1− q6r+1)q
9r2−11r

2 = q
9r2−5r

2
−n((1− qn+3r+1)− (1− qn−3r)), (2.19)

(1− q−6r+1)q
9r2−5r

2 = q
9r2−11r

2
−n((1− qn−3r+1)− (1− qn+3r)),

we get that the pair at (2.15) is a Bailey pair.
The proof of (2.16) follows from the right side of the first equality following (2.17), upon setting (q; q)n+3r+1

(q; q)n−3r = (1− q)(q2; q)n+3r(q; q)n−3r in the first sum and (q; q)n−3r+1(q; q)n+3r = (1− q)(q; q)n−3r+1(q2; q)n+3r−1

in the second sum.

If we begin by setting a = q2 instead of a = q, but keep the same choices b = q−n, c = q1−n and d = q2−n in
(1.3), then we get Theorems 2.7 following.

Theorem 2.7. Let K3(n) := K(q2, q−n, q1−n, q2−n, e, u, v, q3). Then
(i) the pair of sequences (αn, βn) is a Bailey pair with respect to a = q, where α0 = β0 = 1 and

α3r = (−1)rq
9r2−7r

2

(
e, q3u, q3v, q5/u, q5/v; q3

)
r(

q5/e, u, v, q2/u, q2/v; q3
)
r
er
, (2.20)

α3r+1 = (−1)r+1q
9r2+5r

2
+2

(
e, q3u, q3v, q5/u, q5/v; q3

)
r(

q5/e, u, v, q2/u, q2/v; q3
)
r
er

+ (−1)rq
9r2−r

2
−3

(
e/q2, qu, qv, q3/u, q3/v; q3

)
r+1(

q3/e, u/q2, v/q2, 1/u, 1/v; q3
)
r+1

er+1 ,

α3r−1 = (−1)rq
9r2−7r

2

(
e/q2, qu, qv, q3/u, q3/v; q3

)
r(

q3/e, u/q2, v/q2, 1/u, 1/v; q3
)
r
er
,

βn = K3(n)
(q4/e; q3)n

(q2; q)2n(q3/e; q)n
;

(ii) the pair of sequences (αn, βn) is a Bailey pair with respect to a = q, where α0 = β0 = 1 and

α3r = (−1)rq
9r2−r

2

(
e, q3u, q3v, q5/u, q5/v; q3

)
r(

q5/e, u, v, q2/u, q2/v; q3
)
r
er
, (2.21)

α3r+1 = (−1)r+1q
9r2−r

2

(
e, q3u, q3v, q5/u, q5/v; q3

)
r(

q5/e, u, v, q2/u, q2/v; q3
)
r
er

+ (−1)rq
9r2+5r

2
−2

(
e/q2, qu, qv, q3/u, q3/v; q3

)
r+1(

q3/e, u/q2, v/q2, 1/u, 1/v; q3
)
r+1

er+1 ,
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α3r−1 = (−1)rq
9r2−13r

2

(
e/q2, qu, qv, q3/u, q3/v; q3

)
r(

q3/e, u/q2, v/q2, 1/u, 1/v; q3
)
r
er
,

βn = K3(n)
(q4/e; q3)nq

n

(q2; q)2n(q3/e; q)n
.

(iii) the pair of sequences (αn, βn) is a Bailey pair with respect to a = q2, where α0 = β0 = 1, and

α3r = (−1)r
1− q6r+2

1− q2 q
9r2−7r

2

(
e, q3u, q3v, q5/u, q5/v; q3

)
r(

q5/e, u, v, q2/u, q2/v; q3
)
r
er
, (2.22)

α3r+1 = (−1)r
1− q6r+4

1− q2 q
9r2−r

2
−3

(
e/q2, qu, qv, q3/u, q3/v; q3

)
r+1(

q3/e, u/q2, v/q2, 1/u, 1/v; q3
)
r+1

er+1 ,

α3r−1 = 0,

βn = K3(n)
(q4/e; q3)n

(q2; q)2n(q3/e; q)n
;

Proof. The proof parallels that of Theorem 2.5, except that after arriving at the identity

∑ (1− q6r+2)(−1)rq(9r
2−7r)/2

(q2; q)n+3r+1(q; q)n−3r er

(
e, q3u, q3v, q5/u, q5/v; q3

)
r(

q5/e, u, v, q2/u, q2/v; q3
)
r

=
K3(n)(q4/e; q3)n
(q2; q)2n(q3/e; q)n

, (2.23)

and then separating the sum into two sums (r ≥ 0 and r < 0) as previously, we instead employ the identities

(1− q6r+2)q
9r2−7r

2 = q
9r2−7r

2 (1− qn+3r+2)− q
9r2+5r

2
+2(1− qn−3r), (2.24)

(1− q−6r+2)q
9r2−7r

2 = q
9r2−7r

2 (1− qn−3r+2)− q
9r2−19r

2
+2(1− qn+3r),

to get (2.20). The result follows as in Theorem 2.5, except that it is necessary to re-index one of the four sums (by
replacing r with r + 1).

For (2.21) we instead use the identities

(1− q6r+2)q
9r2−7r

2 = q
9r2−r

2
−n((1− qn+3r+2)− (1− qn−3r)), (2.25)

(1− q−6r+2)q
9r2−7r

2 = q
9r2−13r

2
−n((1− qn−3r+2)− (1− qn+3r)).

The proof of (2.22) is like the proof of (2.16) in Theorem 2.5, except that after separating the sum at (2.23) into
two sums, according to r ≥ 0 or r < 0, and then replacing r with −r for the sum with r < 0, we use the identities
(q2; q)n+3r+1(q; q)n−3r = (1− q2)(q3; q)n+3r(q; q)n−3r and (q2; q)n−3r+1(q; q)n−3r = (1− q2)(q; q)n−3r+2(q3; q)n+3r−2,
and finally re-index in the latter case by replacing r with r + 1.

The nine Bailey pairs in the next corollary derive, respectively, from the pairs in Theorems 2.3 - 2.7, by letting
u, v →∞ in each case.

Corollary 2.8. The sequences (αn, βn) below are Bailey pairs with respect to the stated values of a, where

α3r =
1− aq6r

1− a
(a; q3)r
(q3; q3)r

q
9r2−3r

2 (−a)r (2.26)

α3r±1 = 0,

βn =
(a; q3)n

(a; q)2n(q; q)n
, with respect to a = a;

α3r =

(
aq; q3

)
r(

q3; q3
)
r

q
9r2−r

2 (−a)r, (2.27)

α3r+1 =

(
aq; q3

)
r(

q3; q3
)
r

q
9r2+11r

2
+1(−a)r+1,

α3r−1 = 0,
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βn =
(aq; q3)n

(aq; q)2n(q; q)n
, with respect to a = a;

α3r =

(
aq; q3

)
r(

q3; q3
)
r

q
9r2+5r

2 (−a)r, (2.28)

α3r+1 = −
(
aq; q3

)
r(

q3; q3
)
r

q
9r2+5r

2 (−a)r,

α3r−1 = 0,

βn =
(aq; q3)nq

n

(aq; q)2n(q; q)n
, with respect to a = a;

α3r = (−1)r
(
q9r

2/2+r/2(e; q3)r
(q4/e; q3)rer

+
q9r

2/2+7r/2(e/q; q3)r
(q3/e; q3)rer

)
, (2.29)

α3r+1 =
(−1)r+1q9r

2/2+13r/2+1(e; q3)r
(q4/e; q3)rer

,

α3r−1 =
(−1)r+1q9r

2/2−5r/2+1(e/q; q3)r
(q3/e; q3)rer

,

βn =
(q2/e; q3)n

(q; q)2n(q2/e; q)n
, with respect to a = 1;

α3r = (−1)r
(
q9r

2/2+7r/2(e; q3)r
(q4/e; q3)rer

+
q9r

2/2+r/2(e/q; q3)r
(q3/e; q3)rer

)
, (2.30)

α3r+1 =
(−1)r+1q9r

2/2+7r/2(e; q3)r
(q4/e; q3)rer

,

α3r−1 =
(−1)r+1q9r

2/2+r/2(e/q; q3)r
(q3/e; q3)rer

,

βn =
qn(q2/e; q3)n

(q; q)2n(q2/e; q)n
, with respect to a = 1;

α3r = (−1)r
1− q6r+1

1− q q
9r2+r

2

(
e; q3

)
r(

q4/e; q3
)
r
er

(2.31)

α3r+1 = 0,

α3r−1 = (−1)r+1 1− q6r−1

1− q q
9r2−5r

2
+1

(
e/q; q3

)
r(

q3/e; q3
)
r
er
,

βn =
(q2/e; q3)n

(q; q)2n(q2/e; q)n
, with respect to a = q;

α3r =
(−1)rq9r

2/2+5r/2(e; q3)r
(q5/e; q3)rer

, (2.32)

α3r+1 =
(−1)rq9r

2/2+11r/2+3(e/q2; q3)r+1

(q3/e; q3)r+1er+1
+

(−1)r+1q9r
2/2+17r/2+2(e; q3)r

(q5/e; q3)rer
,

α3r−1 =
(−1)rq9r

2/2+5r/2(e/q2; q3)r
(q3/e; q3)rer

,

βn =
(q4/e; q3)n

(q2; q)2n(q3/e; q)n
, with respect to a = q;
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α3r =
(−1)rq9r

2/2+11r/2(e; q3)r
(q5/e; q3)rer

, (2.33)

α3r+1 =
(−1)rq9r

2/2+17r/2+4(e/q2; q3)r+1

(q3/e; q3)r+1er+1
+

(−1)r+1q9r
2/2+11r/2(e; q3)r

(q5/e; q3)rer
,

α3r−1 =
(−1)rq9r

2/2−r/2(e/q2; q3)r
(q3/e; q3)rer

,

βn =
qn(q4/e; q3)n

(q2; q)2n(q3/e; q)n
, with respect to a = q;

α3r = (−1)r
1− q6r+2

1− q2 q
9r2+5r

2

(
e; q3

)
r(

q5/e; q3
)
r
er
, (2.34)

α3r+1 = (−1)r
1− q6r+4

1− q2 q
9r2+11r

2
+3

(
e/q2; q3

)
r+1(

q3/e; q3
)
r+1

er+1 ,

α3r−1 = 0,

βn =
(q4/e; q3)n

(q2; q)2n(q3/e; q)n
with respect to a = q2.

All eight pairs in Slater’s A table ([16, page 463]) and all six on her J list ([17, pp. 148–149]) are derived from
the five Bailey pairs (2.26), (2.29), (2.30), (2.32), (2.33) above, for particular values of e. Slater did not write down
these general pairs above explicitly, but she could easily have derived them by the same methods she used to derive
the special cases. None of Slater’s pairs arise as special cases of (2.27), (2.28), (2.31) or (2.34), although the special
case e = −q2 of (2.31) was given in [9]. However, specializing the parameters give Bailey pairs which then give rise to
some of the series-product identities on Slater’s list, showing that different Bailey pairs may lead the same identity
of Rogers-Ramanujan type.

Each of the nine Bailey pairs above also gives rise to a transformation between basic hypergeometric series, upon
substituting the pair into (2.5). The pair at (2.26), for example, gives the following identity.

Corollary 2.9.

∞∑
n=0

(y, z; q)n(a; q3)n
(a; q)2n(q; q)n

(
aq

yz

)n
=

(aq/y, aq/z; q)∞
(aq, aq/yz; q)∞

∞∑
n=0

(1− aq6n)(y, z; q)3n(a; q3)na
4nq9n

2/2+3n/2

(1− a)(aq/y, aq/z; q)3n(q3; q3)n

(
−1

yz

)3n

. (2.35)

2.3 Mod 2 Bailey Pairs

We next consider how Slater produced the Bailey pairs in the G-, C- and I tables of [16, 17].

Theorem 2.10. Let K4(n) := K(a, q−n, q1−n, d, a, u, v, q2). Then
(i) the pair of sequences (αn, βn) is a Bailey pair with respect to a = a, where α0 = β0 = 1 and

α2r =
1− aq4r

1− a

(
a, d, q2u, q2v, aq2/u, aq2/v; q2

)
r
q2r

2−4rar(
aq2/d, u, v, a/u, a/v, q2; q2

)
r
dr

, (2.36)

α2r−1 = 0,

βn = K4(n)
(aq/d; q2)n

(aq; q2)n(aq/d, q; q)n
.

Let K′4(n) := K(aq, q−n, q1−n, d, aq, u, v, q2). Then
(ii) the pair of sequences (αn, βn) is a Bailey pair with respect to a = a, where α0 = β0 = 1 and

α2r =

(
aq, d, q2u, q2v, aq3/u, aq3/v; q2

)
r
q2r

2−3rar(
aq3/d, u, v, aq/u, aq/v, q2; q2

)
r
dr

, (2.37)

α2r+1 = −
(
aq, d, q2u, q2v, aq3/u, aq3/v; q2

)
r
q2r

2+r+1ar+1(
aq3/d, u, v, aq/u, aq/v, q2; q2

)
r
dr

,

βn = K4(n)′
(aq2/d; q2)n

(aq2; q2)n(aq2/d, q; q)n
;
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(iii) the pair of sequences (αn, βn) is a Bailey pair with respect to a = a, where α0 = β0 = 1 and

α2r =

(
aq, d, q2u, q2v, aq3/u, aq3/v; q2

)
r
q2r

2−rar(
aq3/d, u, v, aq/u, aq/v, q2; q2

)
r
dr

, (2.38)

α2r+1 = −
(
aq, d, q2u, q2v, aq3/u, aq3/v; q2

)
r
q2r

2−rar(
aq3/d, u, v, aq/u, aq/v, q2; q2

)
r
dr

,

βn = K4(n)′
(aq2/d; q2)nq

n

(aq2; q2)n(aq2/d, q; q)n
;

Proof. The proof is quite similar to the proof of Theorem 2.3. As in the proof of that theorem, set e = a in (1.3), so
that all the terms of negative index vanish. Then replace q with q2, set b = q−n and d = q1−n. After some simple
manipulations, (1.3) becomes

n/2∑
r=0

1− aq4r

1− a
(q−n; q)2r

(aqn+1; q)2r

(
a, d, q2u, q2v, aq2/u, aq2/v; q2

)
r(

aq2/du, v, a/u, a/v, q2; q2
)
r

(
aq2n−3

d

)r
= K4(n)

(aq/d; q2)n(aq; q)n
(aq; q2)n(aq/d; q)n

.

Apply (2.2) to the (q−n; q)2r factor, divide both sides by (aq; q)n(q; q)n to get

n/2∑
r=0

1− aq4r

1− a
q2r

2−4r

(aq; q)n+2r(q; q)n−2r

(
a, d, q2u, q2v, aq2/u, aq2/v; q2

)
r(

aq2/du, v, a/u, a/v, q2; q2
)
r

(a
d

)r
= K4(n)

(aq/d; q2)n
(aq; q2)n(aq/d, q; q)n

, (2.39)

and the proof for the pair at (2.36) follows.
For (2.37) and (2.38), replace a with aq in (2.39), and use, respectively, the identities

(1− aq4r+1)q2r
2−3r = q2r

2−3r(1− aqn+2r+1)− aq2r
2+r+1(1− qn−2r),

(1− aq4r+1)q2r
2−3r = q2r

2−rq−n((1− aqn+2r+1)− (1− qn−2r)).

Theorem 2.11. Let K5(n) := K(q, q−n, q1−n, d, e, u, v, q2). Then
(i) the pair of sequences (αn, βn) is a Bailey pair with respect to a = q, where α0 = β0 = 1 and

α2r =
1− q4r+1

1− q

(
d, e, q2u, q2v, q3/u, q3/v; q2

)
r
q2r

2−2r(
q3/d, q3/e, u, v, q/u, q/v; q2

)
r

(d e)r
, (2.40)

α2r−1 = −1− q4r−1

1− q

(
d/q, e/q, qu, qv, q2/u, q2/v; q2

)
r
q2r

2−4r+1(
q2/d, q2/e, u/q, v/q, 1/u, 1/v; q2

)
r

(de)r
,

βn = K5(n)
(q3/de; q2)n

(q2; q2)n(q2/d, q2/e; q)n
;

(ii) The pair of sequences (αn, βn) is a Bailey pair with respect to a = 1, where α0 = β0 = 1 and

α2r =

(
d, e, q2u, q2v, q3/u, q3/v; q2

)
r
q2r

2−2r(
q3/d, q3/e, u, v, q/u, q/v; q2

)
r

(d e)r
+

(
d/q, e/q, qu, qv, q2/u, q2/v; q2

)
r
q2r

2(
q2/d, q2/e, u/q, v/q, 1/u, 1/v; q2

)
r

(de)r
, (2.41)

α2r−1 = −
(
d, e, q2u, q2v, q3/u, q3/v; q2

)
r−1

q2r
2−2r+1(

q3/d, q3/e, u, v, q/u, q/v; q2
)
r−1

(d e)r−1 −
(
d/q, e/q, qu, qv, q2/u, q2/v; q2

)
r
q2r

2−4r+1(
q2/d, q2/e, u/q, v/q, 1/u, 1/v; q2

)
r

(de)r
,

βn = K5(n)
(q3/de; q2)n

(q2; q2)n(q2/d, q2/e; q)n
;

(iii) The pair of sequences (αn, βn) is a Bailey pair with respect to a = 1, where α0 = β0 = 1 and

α2r =

(
d, e, q2u, q2v, q3/u, q3/v; q2

)
r
q2r

2(
q3/d, q3/e, u, v, q/u, q/v; q2

)
r

(d e)r
+

(
d/q, e/q, qu, qv, q2/u, q2/v; q2

)
r
q2r

2−2r(
q2/d, q2/e, u/q, v/q, 1/u, 1/v; q2

)
r

(de)r
, (2.42)

α2r−1 = −
(
d, e, q2u, q2v, q3/u, q3/v; q2

)
r−1

q2r
2−4r+2(

q3/d, q3/e, u, v, q/u, q/v; q2
)
r−1

(d e)r−1 −
(
d/q, e/q, qu, qv, q2/u, q2/v; q2

)
r
q2r

2−2r(
q2/d, q2/e, u/q, v/q, 1/u, 1/v; q2

)
r

(de)r
,

βn = K5(n)
qn (q3/de; q2)n

(q2; q2)n(q2/d, q2/e; q)n
;
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Proof. The proof is very similar to the proof of Theorem 2.5. This time, replace q with q2 in (1.3), and then set
a = q, b = q−n, c = q1−n. The right side simplifies to give

K5(n)
(q, q2; q)n(q3/de; q2)n

(q2; q2)n(q2/d, q2/e; q)n
.

After some elementary manipulations, the series becomes

n/2∑
r=−(n+1)/2

1− q4r+1

1− q
(q−n; q)2r
(qn+2; q)2r

(
d, e, q2u, q2v, q3/u, q3/v; q2

)
r(

q3/d, q3/e, u, v, q/u, q/v; q2
)
r

(
q2n−1

de

)r
.

We apply (2.2) to the (q−n; q)2r factor above and rearrange terms to get

n/2∑
r=−n+1

2

(1− q4r+1)q2r
2−2r

(1− q)(q2; q)n+2r(q; q)n−2r drer

(
d, e, q2u, q2v, q3/u, q3/v; q2

)
r(

q3/d, q3/e, u, v, q/u, q/v; q2
)
r

=
K5(n)(q3/de; q3)n

(q2; q2)n(q2/d, q2/e; q)n
.

After applying (2.17) to the terms of negative index in the sum above, we get that

K5(n)
(q3/de; q2)n

(q2; q2)n(q2/d, q2/e; q)n

=

n/2∑
r=0

(1− q4r+1)q2r
2−2r

(1− q)(q2; q)n+2r(q; q)n−2r drer

(
d, e, q2u, q2v, q3/u, q3/v; q2

)
r(

q3/d, q3/e, u, v, q/u, q/v; q2
)
r

−

n+1
2∑
r=1

(1− q4r−1)q2r
2−4r+1

(1− q)(q2; q)n−2r(q; q)n+2r drer

(
d/q, e/q, qu, qv, q2/u, q2/v; q2

)
r(

q2/d, q2/e, u/q, v/q, 1/u, 1/v; q2
)
r

. (2.43)

The pair at (2.40) now follows after some simple manipulations, noting that

(q2; q)n−2r(q; q)n+2r = (q; q)n−2r+1(q2; q)n+2r−1.

The pair at (2.41) follows from (2.43), upon absorbing the 1− q factor in the denominators there, employing the
identities

(1− q4r+1)q2r
2−2r = q2r

2−2r(1− qn+2r+1)− q2r
2+2r+1(1− qn−2r), (2.44)

(1− q4r−1)q2r
2−4r+1 = q2r

2−4r+1(1− qn+2r)− q2r
2

(1− qn−2r+1),

in the way similar to the way that the pair of identities at (2.18) was used in the proof of Theorem 2.5, and finally
re-indexing one of the resulting sums (by replacing r with r − 1).

The proof for the pair at (2.42) is similar to the proof for the pair at (2.41), except we employ the identities

(1− q4r+1)q2r
2−2r = q2r

2−n((1− qn+2r+1)− (1− qn−2r)), (2.45)

(1− q4r−1)q2r
2−4r+1 = q2r

2−2r−n((1− qn+2r)− (1− qn−2r+1)).

As with K0 - K3, K4 and K5 are in general quite complicated, but simplify considerably for particular values of
the parameters, leading (as was the case in Corollary 2.2) to transformations of basic hypergeometric series. We give
one example.

Corollary 2.12. If a, y, z, q ∈ C such that |q| < 1 and none of the denominators below vanish, then

∞∑
n=0

(y, z; q)n(−1/q; q2)n
(q2; q2)n(aq; q2)n

(
aq2

yz

)n
=

(aq/y, aq/z; q)∞
(aq, aq/yz; q)∞

∞∑
n=0

1− aq4n

1− a
(y, z; q)2n(a2,−aq4; q4)n

(aq/y, aq/z; q)2n(−a, q4; q4)n

(
−a2

y2z2

)n
q2n

2

.

(2.46)

Proof. In the Bailey pair at (2.36), set d = −a/q2, u = −q2 and v = i
√
a, so that K4(n) takes the value

K

(
a, q−n, q1−n,

−a
q2
, a,−q2, i

√
a, q2

)
=
qn−1(q + 1)

(
qn+1 + 1

) (
qn+2 + 1

)
(q2 + 1) (q2n−1 + 1) (q2n+1 + 1)

.

Substitute the resulting Bailey pair into (2.5), and the result follows after some elementary q-product manipulations.
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The Bailey pairs in Slater’s G-, C- and I tables, as well as pairs E(1), E(2) , E(4) and E(5) (see [16, pages 469
and 470]), are derived from the next six Bailey pairs. These, in turn, are derived from the pairs in Theorems 2.10
and 2.11, by letting u, v →∞.

Corollary 2.13. The sequences (αn, βn) below are Bailey pairs with respect to the stated values of a, where α0 =
β0 = 1 and

α2r =
1− aq4r

1− a

(
a, d; q2

)
r
arq2r

2(
aq2/d, q2; q2

)
r
dr
, (2.47)

α2r−1 = 0,

βn =
(aq/d; q2)n

(aq; q2)n(aq/d, q; q)n
, with respect to a = a;

α2r =

(
aq, d; q2

)
r
q2r

2+rar(
aq3/d, q2; q2

)
r
dr

, (2.48)

α2r+1 = −
(
aq, d; q2

)
r
q2r

2+5r+1ar+1(
aq3/d, q2; q2

)
r
dr

,

βn =
(aq2/d; q2)n

(aq2; q2)n(aq2/d, q; q)n
with respect to a = a;

α2r =

(
aq, d; q2

)
r
q2r

2+3rar(
aq3/d, q2; q2

)
r
dr

, (2.49)

α2r+1 = −
(
aq, d; q2

)
r
q2r

2+3rar(
aq3/d, q2; q2

)
r
dr

,

βn =
(aq2/d; q2)nq

n

(aq2; q2)n(aq2/d, q; q)n
, with respect to a = a;

α2r =
(1− q4r+1)q2r

2+2r(d; q2)r(e; q
2)r

(1− q)(q3/d; q2)r(q3/e; q2)rdrer
, (2.50)

α2r−1 = − (1− q4r−1)q2r
2+1(d/q; q2)r(e/q; q

2)r
(1− q)(q2/d; q2)r(q2/e; q2)rdrer

,

βn =
(q3/de; q2)n

(q2; q2)n(q2/d; q)n(q2/e; q)n
, with respect to a = q;

α2r =
q2r

2+4r(d/q; q2)r(e/q; q
2)r

(q2/d; q2)r(q2/e; q2)rdrer
+

q2r
2+2r(d; q2)r(e; q

2)r
(q3/d; q2)r(q3/e; q2)rdrer

, (2.51)

α2r+1 = − q2r
2+4r+3(d/q; q2)r+1(e/q; q2)r+1

(q2/d; q2)r+1(q2/e; q2)r+1dr+1er+1
− q2r

2+6r+1(d; q2)r(e; q
2)r

(q3/d; q2)r(q3/e; q2)rdrer
,

βn =
(q3/de; q2)n

(q2; q2)n(q2/d; q)n(q2/e; q)n
, with respect to a = 1;

α2r =
q2r

2+2r(d/q; q2)r(e/q; q
2)r

(q2/d; q2)r(q2/e; q2)rdrer
+

q2r
2+4r(d; q2)r(e; q

2)r
(q3/d; q2)r(q3/e; q2)rdrer

, (2.52)

α2r+1 = − q2r
2+6r+4(d/q; q2)r+1(e/q; q2)r+1

(q2/d; q2)r+1(q2/e; q2)r+1dr+1er+1
− q2r

2+4r(d; q2)r(e; q
2)r

(q3/d; q2)r(q3/e; q2)rdrer
,

βn =
qn(q3/de; q2)n

(q2; q2)n(q2/d; q)n(q2/e; q)n
, with respect to a = 1.
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2.4 Mod 4 Bailey Pairs

We continue to follow in Slater’s path [16], next considering how she produced the Bailey pairs in her K table.

Theorem 2.14. Let K6(n) := K(q, q−n, q1−n, q2−n, q3−n, u, v, q4) for n ≥ 3, and K6(0) = K6(1) = K6(2) = 1. Then
(i) the pair of sequences (αn, βn) is a Bailey pair with respect to a = 1, where α0 = β0 = 1, α4r+2 = 0, and

α4r =

(
q4u, q4v, q5/u, q5/v; q4

)
r(

u, v, q/u, q/v; q4
)
r

q8r
2−10r +

(
q3u, q3v, q4/u, q4/v; q4

)
r(

u/q, v/q, 1/u, 1/v; q4
)
r

q8r
2−6r (2.53)

α4r+1 = −
(
q4u, q4v, q5/u, q5/v; q4

)
r(

u, v, q/u, q/v; q4
)
r

q8r
2−2r+1

α4r−1 = −
(
q3u, q3v, q4/u, q4/v; q4

)
r(

u/q, v/q, 1/u, 1/v; q4
)
r

q8r
2−14r+1

βn = K6(n)
(−q2; q2)n−1

(q; q)2n
;

(ii) the pair of sequences (αn, βn) is a Bailey pair with respect to a = 1, where α0 = β0 = 1, α4r+2 = 0, and

α4r =

(
q4u, q4v, q5/u, q5/v; q4

)
r(

u, v, q/u, q/v; q4
)
r

q8r
2−6r +

(
q3u, q3v, q4/u, q4/v; q4

)
r(

u/q, v/q, 1/u, 1/v; q4
)
r

q8r
2−10r (2.54)

α4r+1 = −
(
q4u, q4v, q5/u, q5/v; q4

)
r(

u, v, q/u, q/v; q4
)
r

q8r
2−6r

α4r−1 = −
(
q3u, q3v, q4/u, q4/v; q4

)
r(

u/q, v/q, 1/u, 1/v; q4
)
r

q8r
2−10r

βn = K6(n)
qn (−q2; q2)n−1

(q; q)2n
.

Proof. The proof is initially similar to the proof of Theorem 2.3, except we replace q with q4 and set b = q−n,
c = q1−n, d = q2−n and e = q3−n. Instead of (2.13), we arrive at

∑
r∈Z

1− aq8r

1− a
a2rq8r

2−12r

(aq; q)n+4r(q; q)n−4r

(
q4u, q4v, aq4/u, aq4/v; q4

)
r(

u, v, a/u, a/v; q4
)
r

= K(a, q−n, q1−n, q2−n, q3−n, u, v, q4)
(q4/a, a/q, a, aq; q4)∞
(q, q2, q3, a2/q2; q4)∞

(−a/q; q2)n
(a; q)2n

. (2.55)

Next, separate the sum into terms of positive and negative index, re-index the latter sum by replacing r with −r
(and also using (2.17)), to get

∑
r≥0

1− aq8r

1− a
a2rq8r

2−12r

(aq; q)n+4r(q; q)n−4r

(
q4u, q4v, aq4/u, aq4/v; q4

)
r(

u, v, a/u, a/v; q4
)
r

+
∑
r≥1

1− aq−8r

1− a
a−2rq8r

2−4r

(aq; q)n−4r(q; q)n+4r

(
q4/u, q4/v, uq4/a, vq4/a; q4

)
r(

1/u, 1/v, u/a, v/a; q4
)
r

= K(a, q−n, q1−n, q2−n, q3−n, u, v, q4)
(q4/a, a/q, a, aq; q4)∞
(q, q2, q3, a2/q2; q4)∞

(−a/q; q2)n
(a; q)2n

. (2.56)

The proof for the Bailey pair at (2.53) then follows, upon setting a = q, simplifying the product side, and using
the identities

(1− q8r+1)q8r
2−10r = q8r

2−10r(1− qn+4r+1)− q8r
2−2r+1(1− qn−4r),

(1− q−8r+1)q8r
2−6r = q8r

2−6r(1− qn−4r+1)− q8r
2−14r+1(1− qn+4r).

The proof for the Bailey pair at (2.54) is similar, except we use the identities

(1− q8r+1)q8r
2−10r = q−nq8r

2−6r((1− qn+4r+1)− (1− qn−4r)),

(1− q−8r+1)q8r
2−6r = q−nq8r

2−10r((1− qn−4r+1)− (1− qn+4r)).
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Theorem 2.15. Let K7(n) := K(q2, q−n, q1−n, q2−n, q3−n, u, v, q4) for n ≥ 0. Then (i) the pair of sequences (αn, βn)
is a Bailey pair with respect to a = q, where α0 = β0 = 1, and

α4r =

(
q4u, q4v, q6/u, q6/v; q4

)
r(

u, v, q2/u, q2/v; q4
)
r

q8r
2−8r (2.57)

α4r+1 = −
(
q4u, q4v, q6/u, q6/v; q4

)
r(

u, v, q2/u, q2/v; q4
)
r

q8r
2+2

α4r−1 =

(
q2u, q2v, q4/u, q4/v; q4

)
r(

u/q2, v/q2, 1/u, 1/v; q4
)
r

q8r
2−8r

α4r−2 = −
(
q2u, q2v, q4/u, q4/v; q4

)
r(

u/q2, v/q2, 1/u, 1/v; q4
)
r

q8r
2−16r+2

βn = K7(n)
(−q; q2)n
(q2; q)2n

;

(ii) the pair of sequences (αn, βn) is a Bailey pair with respect to a = q, where α0 = β0 = 1, and

α4r =

(
q4u, q4v, q6/u, q6/v; q4

)
r(

u, v, q2/u, q2/v; q4
)
r

q8r
2−4r (2.58)

α4r+1 = −
(
q4u, q4v, q6/u, q6/v; q4

)
r(

u, v, q2/u, q2/v; q4
)
r

q8r
2−4r

α4r−1 =

(
q2u, q2v, q4/u, q4/v; q4

)
r(

u/q2, v/q2, 1/u, 1/v; q4
)
r

q8r
2−12r

α4r−2 = −
(
q2u, q2v, q4/u, q4/v; q4

)
r(

u/q2, v/q2, 1/u, 1/v; q4
)
r

q8r
2−12r

βn = K7(n)
qn(−q; q2)n

(q2; q)2n
.

Proof. Set a = q2 in (2.56), simplify the product side and absorb the 1 − q2 terms on the sum side into what were
previously the (aq; q)n+4r and (aq; q)n−4r factors. The pair at (2.57) follows after using the identities

(1− q8r+2)q8r
2−8r = q8r

2−8r(1− qn+4r+2)− q8r
2+2(1− qn−4r),

(1− q−8r+2)q8r
2−8r = q8r

2−8r(1− qn−4r+2)− q8r
2−16r+2(1− qn+4r).

The pair at (2.58) follows similarly, after employing the identities

(1− q8r+2)q8r
2−8r = q−nq8r

2−4r((1− qn+4r+2)− (1− qn−4r)),

(1− q−8r+2)q8r
2−8r = q−nq8r

2−12r((1− qn−4r+2)− (1− qn+4r)).

Theorem 2.16. Let K8(0) = 1,

K8(1) =
(q − u)

(
q2 − u

)
(q − v)

(
q2 − v

)
(q3 − u) (u− 1) (q3 − v) (v − 1)

−
(q − 1)4(q + 1)2

(
q2 + q + 1

)
uv

q (q3 − u) (u− 1) (q3 − v) (v − 1)
,

and K8(n) := K(q3, q−n, q1−n, q2−n, q3−n, u, v, q4) for n ≥ 2. Then
(i) the pair of sequences (αn, βn) is a Bailey pair with respect to a = q2, where α0 = β0 = 1, and

α4r =

(
q4u, q4v, q7/u, q7/v; q4

)
r(

u, v, q3/u, q3/v; q4
)
r

q8r
2−6r (2.59)

α4r+1 = −
(
q4u, q4v, q7/u, q7/v; q4

)
r(

u, v, q3/u, q3/v; q4
)
r

q8r
2+2r+3 −

(
q4/u, q4/v, qu, qv; q4

)
r+1(

1/u, 1/v, u/q3, v/q3; q4
)
r+1

q8r
2−2r−7

α4r−1 = 0
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α4r−2 =

(
q4/u, q4/v, qu, qv; q4

)
r(

1/u, 1/v, u/q3, v/q3; q4
)
r

q8r
2−10r

βn = K8(n)
(−q2; q2)n
(q3; q)2n

;

(ii) the pair of sequences (αn, βn) is a Bailey pair with respect to a = q2, where α0 = β0 = 1, and

α4r =

(
q4u, q4v, q7/u, q7/v; q4

)
r(

u, v, q3/u, q3/v; q4
)
r

q8r
2−2r (2.60)

α4r+1 = −
(
q4u, q4v, q7/u, q7/v; q4

)
r(

u, v, q3/u, q3/v; q4
)
r

q8r
2−2r −

(
q4/u, q4/v, qu, qv; q4

)
r+1(

1/u, 1/v, u/q3, v/q3; q4
)
r+1

q8r
2+2r−6

α4r−1 = 0

α4r−2 =

(
q4/u, q4/v, qu, qv; q4

)
r(

1/u, 1/v, u/q3, v/q3; q4
)
r

q8r
2−14r

βn = K8(n)qn
(−q2; q2)n
(q3; q)2n

;

Remark 2.17. The reason K8(1) does not fit into the formula for K8(n) for n > 1 is that it is necessary to be
careful with the order in which (after replacing q with q4) we set a = q3, b = 1/q, c = 1, d = q and e = q2, in
order to get the series at (1.3) to converge. It is easy to see that making those substitutions simultaneously gives
a2/q4bcde = 1, contradicting the requirement that |a2/q4bcde| < 1 in the series. One way around this is to first set
c = 1 and b = a/q4, causing the series to terminate above and below, after which the other replacements can be
made.

Note also that, with the stated choices for the parameters, the a2 − bcdeq4 factor in the denominator of the
expression for K at (1.2) vanishes, and in fact these choices also cause the numerator of K to vanish. It is cancelling
these “zero factors” that make the expression for K8(1) different. The order of substitutions described above causes
K(q3, q−1, 1, q, q2, u, v, q4) to have the value assigned to K8(1), whereas for n > 1, K(q3, q−n, q1−n, q2−n, q3−n, u, v, q4)
is independent of the order of substitutions.

We also note that a similar situation occurs in some of the other theorems above.

Proof. The proof is similar to the proof of Theorem 2.15, except we set a = q3 in (2.56). The pair at (2.59) follows
after using the identities

(1− q8r+3)q8r
2−6r = q8r

2−6r(1− qn+4r+3)− q8r
2+2r+3(1− qn−4r),

(1− q−8r+3)q8r
2−10r = q8r

2−10r(1− qn−4r+3)− q8r
2−18r+3(1− qn+4r),

and then replacing r with r+1 in the sum corresponding to the second term in the second identity above (so that this
sum implicitly defines part of α4r+1 instead of α4r−3). The pair at (2.60) follows similarly, after using the identities

(1− q8r+3)q8r
2−6r = q−nq8r

2−2r((1− qn+4r+3)− (1− qn−4r)),

(1− q−8r+3)q8r
2−10r = q−nq8r

2−14r((1− qn−4r+3)− (1− qn+4r)).

The six Bailey pairs in Slater’s K table [16, page 471] follow from the three theorems in this section, upon letting
u, v →∞.

Corollary 2.18. The following pairs of sequences (αn, βn), with α0 = β0 = 1, are Bailey pairs with respect to the
stated value of a.

α4r = q8r
2−2r + q8r

2+2r (2.61)

α4r+1 = −q8r
2+6r+1

α4r−1 = −q8r
2−6r+1

α4r−2 = 0
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βn =
(−q2; q2)n−1

(q; q)2n
with respect to a = 1;

α4r = q8r
2+2r + q8r

2−2r (2.62)

α4r+1 = −q8r
2+2r

α4r−1 = −q8r
2−2r

α4r−2 = 0

βn =
qn (−q2; q2)n−1

(q; q)2n
with respect to a = 1;

α4r = q8r
2

(2.63)

α4r+1 = −q8r
2+8r+2

α4r−1 = q8r
2

α4r−2 = −q8r
2−8r+2

βn =
(−q; q2)n
(q2; q)2n

with respect to a = q;

α4r = q8r
2+4r (2.64)

α4r+1 = −q8r
2+4r

α4r−1 = q8r
2−4r

α4r−2 = −q8r
2−4r

βn =
qn(−q; q2)n

(q2; q)2n
with respect to a = q;

α4r = q8r
2+2r (2.65)

α4r+1 = −q8r
2+10r+3 − q8r

2+6r+1

α4r−1 = 0

α4r−2 = q8r
2−2r

βn =
(−q2; q2)n
(q3; q)2n

with respect to a = q2;

α4r = q8r
2+6r (2.66)

α4r+1 = −q8r
2+6r − q8r

2+10r+2

α4r−1 = 0

α4r−2 = q8r
2−6r

βn = qn
(−q2; q2)n
(q3; q)2n

with respect to a = q2.

3 Identities of the Rogers-Ramanujan-Slater type and False Theta
Series Identities

We use the Bailey pairs found in the previous section to derive several new series-product identities, and also to give
new proofs of some general identities due to Ramanujan, Andrews and others. We also remark that we sometimes
use a more general case of the 6ψ6 than the Jacobi Triple Product Identity, in contrast to how Slater derived her
products.
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3.1 General identities containing one or more free parameters

We first give new proofs for two quite general identities of Ramanujan ([12, page 33], see also R1 and R2 on page
8 of [10]). One reason these two identities are of interest is that each leads to infinitely many identities of Rogers-
Ramanujan type (set z = ±qa/b, where a and b > 0 are integers, and then replace q with qb).

Theorem 3.1. For |q| < 1 and z ∈ C \ {0},

∞∑
n=0

(q/z; q)n(z; q)nq
n2

(q; q)2n
=

(qz, q2/z, q3; q3)∞
(q; q)∞

. (3.1)

Proof. Let e→ 0 in the Bailey pair at (2.31), and then insert the resulting pair into (2.5), after setting y = q/z. This
leads to the identities

∞∑
n=0

(
q
z
; q
)
n

(z; q)nq
n2

(q; q)2n
=

(
qz, q

2

z
; q
)
∞

(q2, q; q)∞

[ ∞∑
r=0

1− q6r+1

1− q

(
q
z
, z; q

)
3r
q3r

2+r(
qz, q

2

z
; q
)
3r

−
∞∑
r=1

1− q6r−1

1− q
(q/z, z; q)3r−1q

3r2−r

(qz, q2/z; q)3r−1

]

=

(
qz, q

2

z
; q
)
∞

(q2, q; q)∞

[ ∞∑
r=0

1− q6r+1

1− q

(
q
z
, z; q3

)
r
q3r

2+r(
q3z, q

4

z
; q3
)
r

+

∞∑
r=1

1− q6r−1

1− 1/q

(1/z, z/q; q3)rq
3r2−r

(q2z, q3/z; q3)r

]

=

(
qz, q

2

z
; q
)
∞

(q2, q; q)∞

(q4, q3, q3, q2; q3)∞
(q4/z, zq3, q3/z, q2z; q3)∞

.

The second equality above follows after some elementary q-product manipulations and the last equality follows from
the fact that the two series in the previous equality combine to give a special case of Bailey’s 6ψ6 summation at (1.1)
(replace q with q3, let d, e→∞, set a = q, b = q/z and c = z). The result now follows after some further elementary
manipulations.

Theorem 3.2. For |q| < 1 and z ∈ C \ {0},

∞∑
n=0

(q2/z; q2)n(z; q2)nq
n2

(q; q2)n(q4; q4)n
=

(−q; q2)∞
(q2; q2)∞

(qz, q3/z, q4; q4)∞. (3.2)

Proof. The proof is similar to that of the theorem above. Let e → 0 and set d = q3/2 in the Bailey pair at (2.50),
and then insert the resulting pair into (2.5), after setting y = q/z. This leads to the identities

∞∑
n=0

(
q
z
; q
)
n

(z; q)nq
n2/2

(q1/2; q)n(q2; q2)n

=

(
qz, q

2

z
; q
)
∞

(q2, q; q)∞

[ ∞∑
r=0

1− q4r+1

1− q

(
q
z
, z; q

)
2r
qr

2+r/2(
qz, q

2

z
; q
)
2r

(−1)r
−
∞∑
r=1

1− q4r−1

1− q
(q/z, z; q)2r−1q

r2−r/2(−1)r

(qz, q2/z; q)2r−1

]

=

(
qz, q

2

z
; q
)
∞

(q2, q; q)∞

[ ∞∑
r=0

1− q4r+1

1− q

(
q
z
, z; q2

)
r

(−1)rqr
2+r/2(

q2z, q
3

z
; q2
)
r

+

∞∑
r=1

1− q4r−1

1− 1/q

(1/z, z/q; q2)r(−1)rqr
2−r/2

(qz, q2/z; q2)r

]

=

(
qz, q

2

z
; q
)
∞

(q2, q; q)∞

(q3, q2, zq1/2, q3/2/z, q2, q; q2)∞
(q3/z, zq2, q3/2, q2/z, qz, q1/2; q2)∞

.

The second equality above once again follows after some elementary q-product manipulations and once again the
two series on the right side in the second equality combine to give a special case of Bailey’s 6ψ6 summation at (1.1)
(replace q with q2, let e→∞, set a = q, b = q/z, c = z and d = q3/2). The result now follows after replacing q with
q2, followed by some further elementary manipulations.

Different proofs of the results in the two theorems above were also given in [4] (Entries 5.3.1 and 5.3.5) and in
[11].

We now prove a new general series-product identity, one which may be regarded as a partner to Ramanujan’s
result in Theorem 3.1.
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Theorem 3.3. For |q| < 1 and z ∈ C \ {0},
∞∑
n=0

(q/z; q)n+1(z; q)nq
n2+n

(q; q)2n+1
=

(q2z, q/z, q3; q3)∞
(q; q)∞

. (3.3)

Proof. Let e → 0 in the Bailey pair at (2.34), and then insert the resulting pair into (2.5), after setting y = q2/z.
This leads to the identities

∞∑
n=0

(
q2

z
; q
)
n

(z; q)nq
n2+n

(q2; q)2n

=

(
qz, q

3

z
; q
)
∞

(q3, q; q)∞

[ ∞∑
r=0

1− q6r+2

1− q2

(
q2

z
, z; q

)
3r
q3r

2+2r(
qz, q

3

z
; q
)
3r

−
∞∑
r=0

1− q6r+4

1− q2
(q2/z, z; q)3r+1q

3r2+4r+1

(qz, q3/z; q)3r+1

]

=

(
qz, q

3

z
; q
)
∞

(q3, q; q)∞

[ ∞∑
r=0

1− q6r+2

1− q2

(
q2

z
, z; q3

)
r
q3r

2+2r(
q3z, q

5

z
; q3
)
r

+

∞∑
r=1

1− q6r−2

1− 1/q2
(1/z, z/q2; q3)rq

3r2−2r

(qz, q3/z; q3)r

]

=

(
qz, q

3

z
; q
)
∞

(q3, q; q)∞

(q5, q3, q3, q; q3)∞
(q5/z, zq3, q3/z, qz; q3)∞

.

The second equality above follows after some elementary q-product manipulations and re-indexing the second series
(replacing r with r − 1). The last equality follows from the fact that the two series in the previous equality combine
to give another special case of Bailey’s 6ψ6 summation (1.1) (replace q with q3, let d, e → ∞, set a = q2, b = q2/z
and c = z). The result once again follows after some further elementary manipulations.

Remark 3.4. Several identities on Slater’s list [17] follow as special cases of (3.3). We summarize these in the
following table.

Replace q by set z to to obtain Slater’s identity

q −q (22)

q2 −q (27) = (87)

q iq (28)

q3 q2 (40)

q3 q (41)

q4 q3 (55) = (57)

q e2πi/3q (92)

We next give new proofs of Andrews’ q-analog of Gauss’s 2F1(1/2) sum and a special case (b→∞) of Heine’s [8]
q-analog of Gauss’s sum:

∞∑
n=0

(a, b ; q)n
(c, q ; q)n

( c
ab

)n
=

(c/a, c/b ; q)∞
(c, c/ab ; q)∞

. (3.4)

We first recall Jackson’s summation formula for a very-well-poised 6φ5 series [7, p. 356, Eq. (II. 20)] (which
follows upon setting e = a in (1.1)):

∞∑
n=0

(a, q
√
a,−q

√
a, b, c, d; q)n(

q,
√
a,−
√
a, aq

b
, aq
c
, aq
d

; q
)
n

( aq
bcd

)n
=

(aq, aq/bc, aq/bd, aq/cd; q)∞
(aq/b, aq/c, aq/d, aq/bcd; q)∞

. (3.5)

Theorem 3.5.
∞∑
n=0

(a, b; q)nq
n(n+1)/2

(q; q)n(abq; q2)n
=

(aq, bq; q2)∞
(q, abq; q2)∞

, (Andrews, [1]) (3.6)

∞∑
n=0

(a; q)nq
n(n−1)/2(−c)n

(c, q; q)nan
=

(c/a; q)∞
(c; q)∞

, (Heine, [8]) (3.7)

Proof. Let d→ 0 in the Bailey pair at (2.47) to get the pair

α2r =
1− aq4r

1− a

(
a; q2

)
r

(−1)rqr
2−r(

q2; q2
)
r

, (3.8)
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α2r−1 = 0,

βn =
qn(n−1)/2

(aq; q2)n(q; q)n
, with respect to a = a.

Substitute this pair into (2.5), after setting y = a/z, to get

∞∑
n=0

(a/z, z; q)nq
n(n+1)/2

(aq; q2)n(q; q)n
=

(zq, aq/z; q)∞
(aq, q; q)∞

∞∑
r=0

1− aq4r

1− a
(a, a/z, z; q2)r

(zq2, aq2/z, q2; q2)r
(−1)rqr

2+r

=
(zq, aq/z; q)∞

(aq, q; q)∞

(aq2, q2; q2)∞
(q2z, aq2/z; q2)∞

=
(zq, aq/z; q2)∞

(aq, q; q2)∞
.

The next-to-last equality follows from (3.5) (replace q with q2, let d→∞, set b = a/z and c = z), and (3.6) follows
upon replacing a with ab and z with b.

Next, substitute the pair at (3.8) once again into (2.5), this time setting y =
√
aq. This gives

∞∑
n=0

(z; q)nq
n(n−1)/2

(−√aq; q)n(q; q)n

(√
aq

z

)n
=

(
√
aq, aq/z; q)∞

(aq,
√
aq/z; q)∞

∞∑
r=0

1− aq4r

1− a
(a, z, zq; q2)rq

r2+r

(aq2/z, aq3/z, q2; q2)r

(
−a
z2q

)r
=

(
√
aq, aq/z; q)∞

(aq,
√
aq/z; q)∞

(aq2, aq/z2; q2)∞
(aq2/z, aq/z; q2)∞

=
(−√aq/z; q)∞
(−√aq; q)∞

.

The next-to-last equality follows once again from (3.5) (replace q with q2, let d → ∞, set b = z and c = zq), and
(3.7) follows upon replacing −√aq with c and z with a.

3.2 A particular case of the Bailey Transform, I

If we set y = −√aq and z =
√
aq in (2.5), the following identity results, providing both series converge:

∞∑
n=0

(aq; q2)n (−1)n βn =
1

(aq2; q2)∞(−1; q)∞

∞∑
n=0

(−1)n αn. (3.9)

This particular case was not used by Slater [17], and may possibly be regarded as being of lesser importance
for two reasons. Firstly, it is certainly the case the both series above will not converge for all Bailey pairs (αn, βn),
and secondly, even if a series-product identity does result, the power of q on the series side may not be quadratic
in the exponent (and many do not consider such identities as being of Rogers-Ramanujan-Slater type), or else the
resulting identity is an easy consequence of a more general identity. However we believe such identities are sufficiently
interesting to include some examples.

Corollary 3.6.

1 +

∞∑
n=1

(−q2; q2)n−1q
n

(q2; q2)n
=

(−q; q2)∞
(q2; q2)∞

(−q6,−q10, q16; q16)∞, (3.10)

∞∑
n=1

(q; q2)nq
n

(−q; q2)n+1
= 1 +

∞∑
r=1

q8r
2

(q4r − q−4r), (3.11)

∞∑
n=0

(−q2; q2)nq
n

(q2; q2)n+1
=

(−q; q2)∞
(q2; q2)∞

(−q2,−q14, q16; q16)∞, (3.12)

∞∑
n=0

(q3; q3)n(−q)n

(q2; q2)n+1(q; q)n
=

(q; q2)∞
(q2; q2)∞

(q18; q18)∞
(q9; q18)∞

. (3.13)

Proof. For the first three identities above, insert the Bailey pairs at (2.62), (2.64) and (2.66), respectively into (3.9)
(noting that a = 1, q, q2, respectively), and in each case the result follows after some elementary manipulation of the
resulting identity.

For (3.13), substitute the Bailey pair at (2.28) into (3.9), set a = q2, and simplify the resulting identity.
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3.3 A particular case of the Bailey Transform, II

If we set y = q
√
a and let z →∞ in (2.5), the following identity results:

∞∑
n=0

(q
√
a; q)n

(
−
√
a
)n
qn(n−1)/2βn =

(q
√
a; q)∞

(aq; q)∞

∞∑
n=0

(1−
√
aqn)

(
−
√
a
)n
qn(n−1)/2αn. (3.14)

This transformation also gives rise to a number of interesting false theta series identities, and we give several
examples below. See §3.5 below for an explanation of false theta series.

Corollary 3.7.

∞∑
n=0

(1− qn+1)(q3; q3)n(−1)nqn(n+1)/2

(q; q)2n+2
=

∞∑
r=0

q9r
2+3r(1− q12r+6) +

∞∑
r=0

q9r
2+12r+4(1− q−6r−3) (3.15)

∞∑
n=0

(−1)nqn
2+n

(−q; q)2n
=

∞∑
r=0

q10r
2+r(1− q18r+9) +

∞∑
r=0

q10r
2+11r+3(1− q−2r−1). (3.16)

∞∑
n=0

(q; q)n+1(−q2; q2)n(−1)nq(n
2+n)/2

(q; q)2n+2
=

∞∑
r=0

q16r
2+4r(1− q24r+12)

−
∞∑
r=0

q16r
2+8r+1(1− q16r+8) +

∞∑
r=0

q16r
2+12r+2(1− q8r+4). (3.17)

∞∑
n=0

(−q; q)nqn(n+1)/2(−1)n

(q; q2)n+1
=

∞∑
r=0

(−1)rqr
2+r. (3.18)

Proof. Let a = q2 in the Bailey pair at (2.27), substitute the resulting pair into (3.14) (with a = q2) and (3.15)
follows after simplifying the left side and re-indexing two of the resulting series on the right side.

For (3.16), let e → ∞ and set d = q3/2 in the Bailey pair at (2.52), substitute the resulting pair (Slater’s pair
I(4)) into (3.14) (with a = 1), replace q with q2 and simplify.

For (3.17), substitute pair (2.61) into (3.14) (with a = 1), and rearrange.
To get (3.18), let a → 1 and set c = q1/2 and b = −q1/2 in Slater’s general Bailey pair at (2.4), substitute the

resulting pair (Slater’s pair H(1), corrected) into (3.14) (again with a = 1) and rearrange the resulting identity.

Remark 3.8. The transformation at (3.14) does lead to identities of Rogers-Ramanujan type, but those we found
were either not new, or were simple linear combinations of existing identities.

3.4 Miscellaneous Identities of the Rogers-Ramanujan-Slater type

Finally, we exhibit some identities that follow from Bailey pairs not listed by Slater, pairs that do follow however
from specializing the parameters in our general Bailey pairs. We use two cases of the transformation at (2.5) which
were used by Slater. Firstly, let y, z →∞ to get

∞∑
n=0

anqn
2

βn(a, q) =
1

(aq; q)∞

∞∑
n=0

anqn
2

αn(a, q). (3.19)

Secondly, let z →∞, set y = −√aq and then replace a with a2 and q with q2 to get

∞∑
n=0

(−aq; q2)na
nqn

2

βn(a2, q2) =
(−aq; q2)∞
(a2q2; q2)∞

∞∑
n=0

anqn
2

αn(a2, q2). (3.20)

Corollary 3.9.

1 +

∞∑
n=1

qn
2

(−1)n

(1 + q2n−1)(−1; q)n−1(q; q)n
=

1 + (q4; q4)∞
(−1; q)∞

. (3.21)

1 +

∞∑
n=1

(q;−q2)nq
n2

(−1)b(n+1)/2c

(1− q4n−2)(−1;−q2)n−1(−q2;−q2)n
=

(q,−q3; q4)∞
(−1, q2; q4)∞

[
1 + (−q4,−q12, q16; q16)

]
. (3.22)
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∞∑
n=0

q(n
2+n)/2(−1)n

(1− q2n+1)(q; q)n
= (−q3,−q5, q8; q8)∞. (3.23)

∞∑
n=0

q(n
2+3n)/2(−1)n

(1− q2n+1)(q; q)n
= (−q,−q7, q8; q8)∞. (3.24)

1 + q3

(1− q)(1− q2)
+

1− q4

1− q

∞∑
n=1

qn
2+3n(−q2; q2)n−1

(q; q)2n+2
=

1

(q; q)∞

×
[
(−q18,−q30, q48; q48)∞ + q3(−q10,−q38, q48; q48)∞

− q6(−q2,−q46, q48; q48)∞ − q3(−q6,−q42, q48; q48)∞

]
(3.25)

Proof. Let d = q2 and a = −1 in the Bailey pair at (2.47). The identity at (3.21) follows upon substituting the
resulting pair into (3.19) and simplifying.

For (3.22), set d = q2 and a = i in the pair at (2.47), substitute the resulting pair into (3.20), replace q with iq,
and rearrange.

If we set a = −q and d = q2 in the pair at (2.48), we get (3.23) when this pair is inserted in (3.20), after replacing
q with q1/2.

The identity at (3.24) follows upon inserting the pair formed by setting a = −q and d = q2 in the Bailey pair at
(2.49) into (3.20), and then once again replacing q with q1/2.

Let v → ∞ and set u = iq3/2 in the Bailey pair at (2.59). This gives the Bailey pair (with respect to a = q2),
α0 = β0 = 1,

α4r =
1 + q8r+3

1 + q3
q8r

2−2r

α4r+1 = −1 + q8r+3

1 + q3
q8r

2+6r+3 − 1 + q8r+5

1 + q3
q8r

2+2r

α4r−1 = 0

α4r−2 =
1 + q8r−3

1 + q3
q8r

2−6r+3

βn =
qn(1 + q)(1 + q2)(−q2; q2)n−1

(1 + q3)(q3; q)2n
.

Note that the expression for βn follows from the fact that, with the stated values for u and v,

K8(n) =
(1 + q)

(
1 + q2

)
qn

(1 + q3) (1 + q2n)
.

The identity at (3.25) follows upon inserting this Bailey pair in (3.19), and using the Jacobi Triple Product identity
to sum pairs of series.

3.5 Theta-False Theta “hybrid” identities.

Rogers [13] referred to a series of the form

∞∑
n=−∞

(±1)nqrn
2+sn =

∞∑
n=0

(±1)nqrn
2+sn +

∞∑
n=1

(±1)nqrn
2−sn (3.26)

as a theta series of order r, where r ∈ Q+ and s ∈ Q. Due to the Jacobi triple product identity, the series (3.26) may
be expressed as the infinite product (

∓qs,∓q2r−s, q2r; q2r
)
∞ .

Rogers also took interest in series of the form

∞∑
n=0

(±1)nqrn
2+sn −

∞∑
n=1

(±1)nqrn
2−sn =

∞∑
n=0

(±1)nqrn
2+sn(1− q2(r−s)n+(r−s)) (3.27)
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which he called a theta series of order r. False theta series are not representable as infinite products, but nonetheless
may have representations as Rogers-Ramanujan type q-series, and Rogers gave a number of examples of identities of
false theta series. See [10, §5, p. 35 ff] for further discussion and numerous examples of false theta series identities.

Here we give several examples of identities where one side is a basic hypergeometric series and the other side
comprises a theta product multiplied by a false theta series. We believe this type of identity is new.

Corollary 3.10.

∞∑
n=0

(−q; q2)nq
n2

(1− q2n+1)(q2, q2; q2)n
=

(−q; q2)∞
(q2; q2)∞

(
1 +

∞∑
r=0

q8r
2+4r+1(1− q8r+4)

)
. (3.28)

∞∑
n=0

qn
2+n

(1− q2n+1)(q, q; q)n
=

∑∞
r=0 q

6r2+2r(1− q8r+4)

(q; q)∞
. (3.29)

∞∑
n=0

qn
2+2n

(1− q2n+1)(q, q; q)n
=

∑∞
r=0 q

6r2+4r(1− q4r+2)

(q; q)∞
. (3.30)

∞∑
n=0

(−q; q)nq(n
2+n)/2

(1− q2n+1)(q, q; q)n
=

(−q; q)∞
(q; q)∞

∞∑
r=0

q4r
2+r(1− q6r+3). (3.31)

∞∑
n=0

(−q; q)nq(n
2+3n)/2

(1− q2n+1)(q, q; q)n
=

(−q; q)∞
(q; q)∞

∞∑
r=0

q4r
2+3r(1− q2r+1). (3.32)

∞∑
n=0

qn
2+2n

(1− q2n+1)(q2; q2)n
= (−q; q2)∞

∞∑
r=0

(−1)rq6r
2+4r(1− q4r+2). (3.33)

∞∑
n=0

(−q; q2)n+1q
n2−2n

(q2; q2)n(q2; q2)n+1
=

(−q; q2)∞
(q2; q2)∞

[
1 + q + q2 + q3 +

∞∑
r=0

qr
2

(q−2r − q2r)

]
. (3.34)

Proof. The identity at (3.28) follows upon setting d = q2 and a = q in the pair at (2.48), substituting the resulting
pair (Slater’s pair I(10)) into (3.14) (with a = q), replacing q with q2, and finally q with −q.

The identity at (3.29) follows from setting d = q2 and a = q in the Bailey pair at (2.48), and substituting the
resulting pair into (3.19), while the identity at (3.31) follows from substituting the same pair in (3.20), and replacing
q with q1/2.

Likewise, the identity at (3.30) follows as a consequence setting d = q2 and a = q in the Bailey pair at (2.49),
and substituting the resulting pair into (3.19), while for (3.33) we proceed similarly, after creating a Bailey pair by
instead setting a = −q (and keeping d = q2).

The identity at (3.32) follows upon inserting the pair used in the proof of (3.30) into (3.20), after replacing q with
q1/2.

For (3.34), insert Slater’s pair H(12) (a = q, c = q and b → 0 in (2.4)) into (3.14) (with a = q), replace q with
q2, and rearrange.

4 Concluding Remarks

In a paper by the second author [15], it was shown that more than half of Slater’s identities could be derived from
just three general Bailey pairs together with several limiting cases of Bailey’s lemma and an associated family of
q-difference equations. Here, we attempt to put Slater’s work in a broader context via general Bailey pairs, but
without the use of q-difference equations. Both approaches have their merits, and both yield new identities. It may
well be worth exploring the combinatorial consequences of the new identities presented here.

We also note that we have given just a sample of the identities that may be produced by the methods used in
Corollaries 3.6 - 3.10, and that it is likely that many similar identities may be produced by employing other Bailey
pairs.

Lastly, many of the identities presented can be interpreted combinatorially via elementary methods. As an
example, we consider (3.12). We first recall that the union of the partitions π and λ, denoted π ∪ λ, is the partition
whose parts are those of π and λ together, arranged in non-increasing order. For example,

{4, 3, 3, 2, 2, 1} ∪ {5, 4, 3, 2, 2, 1, 1} = {5, 4, 4, 3, 3, 3, 2, 2, 2, 2, 1, 1, 1}.

A bipartition of a positive integer n is an ordered pair of partitions (π, λ) such that π ∪ λ is a partition of n. Note
that π or λ may be empty.
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Theorem 4.1. For a positive integer n, let A(n) denote the number of partitions of n into parts 6≡ 0,±4,±6,±10, 16
( mod 32).

Let B(n) denote the number of bipartitions (π, λ) of n, where π is a partition into odd parts such that

• all parts greater than 1 are distinct,

• the largest part in π is at most 1 more than twice the total number of parts in π,

and λ is a partition into (possibly repeating) even parts, such that the largest part in λ is at most 2 more than twice
the total number of parts in π.

Then
A(n) = B(n).

Proof. Manipulation of the right side of (3.12) shows that it is equal to

(q4, q6, q10, q16, q22, q26, q28, q32; q32)∞
(q; q)∞

,

and thus is the generating function for partitions into parts 6≡ 0,±4,±6,±10, 16( mod 32).
On the left side of (3.12), (−q2; q2)nq

n = (−q2; q2)nq
1+1+···+1 is the generating function for partitions into

exactly n odd parts, with odd parts greater than 1 being distinct and the largest odd part being at most 2n + 1,
while 1/(q2; q2)n+1 is the generating function for partitions into even parts, with the largest even part being at most
2n+ 2.

The result now follows.

A similar analysis could be performed on many of the other identities.
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