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Abstract

In [Fr2,Skr], Frolov and Skriganov showed that low discrepancy point sets in the
multidimensional unit cube [0, 1)s can be obtained from admissible lattices in Rs. In
this paper,we get a similar result for the case of (Fq((x−1)))s. Then we combine this
approach with Halton’s construction of low discrepancy sequences.
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1 Introduction.

1.1. Let (βn)n≥0 be an infinite sequence of points in an s-dimensional unit cube [0, 1)s.
The sequence (βn)n≥0 is said to be uniformly distributed in [0, 1)s if for every box V =
[0, v1)× · · · × [0, vs) ⊆ [0, 1)s

∆(V, (βn)N−1
n=0 ) = #{0 ≤ n < N | βn ∈ V } −Nv1 . . . vs = o(N), N →∞.

We define the L∞ and L2 discrepancy of a N -point set (βn,N)N−1
n=0 as

D((βn,N)N−1
n=0 ) = sup

0<v1,...,vs≤1
| 1
N

∆(V, (βn,N)N−1
n=0 )|,

D2((βn,N)N−1
n=0 ) =

(∫
[0,1]s
| 1
N

∆(V, (βn,N)N−1
n=0 )|2dv1 . . . dvs

)1/2

.

It is known that a sequence (βn)n≥0 is uniformly distributed if and only if
D((βn)N−1

n=0 )→ 0 for N →∞.
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In 1954, Roth proved that there exists a constant C1 > 0, such that

ND2((βn,N)N−1
n=0 ) > C1(lnN)

s−1
2 , and lim

ND2((βn)N−1
n=0 )

(lnN)s/2
> 0

for all N -point sets (βn,N)N−1
n=0 and all sequences (βn)n≥0. According to the well-known

conjecture (see, for example, [BC, p.283] and [Ni, p.32]), there exists a constant C2 > 0,
such that

ND((βn,N)N−1
n=0 ) > C2(lnN)s−1, and lim

ND((βn)N−1
n=0 )

(lnN)s
> 0

for all N -point sets (βn,N)N−1
n=0 and all sequences (βn)n≥0.

Definition 1. A sequence (βn)n≥0 is of low discrepancy (abbreviated l.d.s.) if D((βn)N−1
n=0 ) =

O(N−1(lnN)s) for N →∞.
Definition 2. A sequence of point sets ((βn,N)N−1

n=0 )∞N=1 is of low discrepancy (abbreviated
l.d.p.s.) if D((βn,N)N−1

n=0 ) = O(N−1(lnN)s−1), for N →∞.
1.2. Brief review of multidimensional (s ≥ 2) low discrepancy sequences (for a
complete review, see [BC], [DrTi], [Mat], and [Ni]).

1.2.1. Halton’s sequences. The existence of multidimensional l.d.s. was discovered
by Halton in 1960: Let b ≥ 2 be an integer,

n =
∑
i≥0

ei,b(n)bi, with ei,b(n) ∈ {0, 1, . . . , b− 1} (1.1)

the b-expansion of the integer n, and

ϕb(n) =
∑
i≥0

ei,b(n)b−i−1

the radical inverse function. Let b1, . . . , bs ≥ 2 be pairwise coprime integers. Then
(ϕb1(n), . . . , ϕbs(n))n≥0 is a l.d.s. The main tool here is the Chinese Remainder Theorem.
In 1960, Hammersley proved that (ϕb1(n), . . . , ϕbs(n), n

N
)N−1
n=0 is an s+1-dimensional l.d.p.s.

1.2.2. (t, s) sequences, and (t,m, s) point sets. A subinterval E of [0, 1)s of the
form

E =
s∏
i=1

[aib
−di , (ai + 1)b−di),

with ai, di ∈ Z, di ≥ 0, 0 ≤ ai < bdi for 1 ≤ i ≤ s is called an elementary interval in base
b ≥ 2.

Definition 3. Let 0 ≤ t ≤ m be an integer. A (t,m, s)-net in base b is a point set
x1, ..., xbm in [0, 1)s such that #{n ∈ [1, bm]|xn ∈ E} = bt for every elementary interval E
in base b with vol(E) = bt−m.

Let t ≥ 0 be an integer. A sequence x0, x1, ... of points in [0, 1)s is a (t, s)-sequence
in base b if, for all integers k ≥ 0 and m ≥ t, the point set consisting of xn, (n ∈
[kbm, (k + 1)bm) is a (t,m, s)-net in base b.
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The theory of (t, s)-sequences was developed by Sobol [So1], [So2] for the case of
b = 2. In 1981, Faure constructed (t, s)-sequences for prime p > 2. The general case was
considered by Niederreiter (see [Ni], [NiXi]). For the proof of low discrepancy property of
(t, s) sequences, see e.g., [Ni, pp. 54-60].

Let q be an arbitrary prime power, Fq a finite field with q elements, Fq[x] a polynomial
ring, Fq(x) the quotient field of Fq[x] (i.e. the field of all formal rational functions of x
over Fq), K/Fq(x) a finite extension of Fq(x), and let N (K) be the number of rational
places of K. By a rational place of K we mean a place of K of degree 1.

In [Te], Tezuka proved that the above constructions of (t, s)-sequences can be obtained
by Halton’s (Chinese Remainder Theorem) method, applied to Fq(x). Niederreiter and
Xing use a similar approach, applied to the field K. In this way, they obtained a (t, s)-
sequence with smallest parameter t for s ≤ N (K) (see [NiXi, p. 204]):

t = g (1.2)

where g is the genus of K. Niederreiter and Xing [NiXi] used s distinct places (instead of
s coprime integers as in Halton’s construction) and also some nonspecial divisor. In this
paper, we obtain the same estimate (1.2). But we do not use an additional nonspecial
divisor.

1.2.3. Lattice nets. In this subsection, we consider l.d.p.s. in [0, 1)s+1 and l.d.s.
in [0, 1)s based on lattices in Rs+1. Let K be a totally real algebraic number field
of degree s+ 1, and σ the canonical embedding of K in the Euclidean space Rs+1,
σ : K 3 ξ → σ(ξ) = (σ1(ξ), . . . , σs+1(ξ)) ∈ Rs+1, where {σj}s+1

j=1 are s+ 1 distinct
embeddings of K in the field R of real numbers. Let λ ∈ K be an algebraic integer,
λi = σi(λ) (i = 1, . . . , s+ 1), f(x) the minimal polynomial of λ; λ is of degree s+ 1 over
Q; E = (λj−1

i )s+1
i,j=1; Λ = diag(λ1, ..., λs+1); and H = EΛE−1 the companion matrix of

f(x).
In 1976, Frolov introduced the point set Fr(s+ 1, t) = 1

t
EZs+1 ∩ [0, 1)s+1 (t → ∞)

with the best possible estimate for the order of magnitude of the integration error on the
Sobolev and Korobov class functions (see [Fr1],[By1],[By2]). In 1980, Frolov [Fr2] proved
that Fr(s+ 1, t) is a L2 low discrepancy point set (i.e., D2(Fr(s+ 1, t)) = O(t−1(ln t)s/2)
for t→∞).

In 1994, Skriganov [Skr] proved that Fr(s+ 1, t) is a l.d.p.s. He also proved the
following more general result:

Let V ⊂ Rs+1 be a compact region, vol(V ) the volume of V , tV the dilatation of V
by a factor t > 0, and let tV + X be the translation of tV by a vector X ∈ Rs+1. Let
Γ ⊂ Rs+1 be a lattice, i.e., a discrete subgroup of Rs+1 with a compact fundamental set
F(Γ) = Rs+1/Γ, detΓ = vol(F(Γ)). Let

N(V,Γ) = card(V ∩ Γ) =
∑
γ∈Γ

χ(V, γ)

be the number of points of the lattice Γ lying inside the region V , where we denote by
χ(V,X), X ∈ Rs+1, the characteristic function of V . We define the error R(V +X,Γ) by
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setting

N(V +X,Γ) =
vol(V )

detΓ
+ R(V +X,Γ). (1.3)

Definition 4. The lattice Γ ⊂ Rs+1 is an admissible if

NmΓ = inf
γ∈Γ\{0}

|Nmγ| > 0, (1.4)

where Nmx = x1x2 . . . xs+1, x = (x1, . . . , xs+1).
For example, Γ = EZs+1 (in Frolov’s net) is the admissible lattice. The set of all

admissible lattices is dense in SL(s+ 1,R)/SL(s+ 1,Z), but its invariant measure is
equal to zero. Let Ks+1 = [−1

2
, 1

2
]s+1, T = (t1, . . . , ts+1) and T �V = {(t1x1, . . . , ts+1xs+1) |

(x1, ..., xs+1) ∈ V }.
Theorem A. (see [Skr, Theorem 1.1]) If Γ ⊂ Rs+1 is an admissible lattice, then for

all T ∈ Rs+1, one has the bound

sup
X∈Rs+1

|R(T �Ks+1 +X,Γ)| < C(Γ)(ln(2 + |NmT |))s. (1.5)

The constant in (1.5) depends upon the lattice Γ only by means of the invariants detΓ and
NmΓ.

In [L], we constructed l.d.s. based on Frolov-Skriganov’s approach. In this paper, we
show that a similar approach can be applied to admissible lattices in (Fq((x−1)))s+1.

Now we describe the structure of the paper. In §2, we construct l.d.s. applying
Halton’s (adelic) method to the case of admissible lattices in Rs+1. In §3, we obtain a
similar result for the case of (Fq((x−1)))s+1. In §4, we give examples of (t, s)-sequences
obtained from a global function field over Fq(x) without additional nonspecial divisors.

2 Admissible lattices in Rs+1.

2.1. The general case.
In [L], we proposed the following constructions of l.d.s. based on Frolov’s and Skrig-

anov’s nets.
Let s ≥ 1 be an integer, Γ = HZs+1 an admissible lattice, where H is an (s+1)×(s+1)

nonsingular matrix with real coefficients. Let

W = Γ ∩ [0, 1)s × (0,+∞).

By Theorem A and (1.3), the set W is infinite. Let (ui, ui,s+1) ∈ W with ui ∈ Rs and
ui,s+1 ∈ R, i = 1, 2. Applying (1.4) to the lattice point (u1 − u2, u1,s+1 − u2,s+1), we have
that u1,s+1 6= u2,s+1. Hence W can be enumerated by a sequence (z(n), zs+1(n))∞n=0 in the
following way:

z(0) = (0, ..., 0), zs+1(0) = 0, z(n) ∈ [0, 1)s and

zs+1(n) < zs+1(n+ 1) ∈ R, for n = 0, 1, .... (2.1)
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According to [L] (z(n))∞n=0 is a l.d.s. in [0, 1)s and (z(n), zs+1(n)/zs+1(N))N−1
n=0 ) is a l.d.p.s.

in [0, 1)s+1. By Theorem A and (1.3),

|N − zs+1(N − 1)/det(Γ)| < C(Γ)(ln(2 + zs+1(N − 1)))s.

Hence there exists a real N1 such that

|N − zs+1(N − 1)/det(Γ)| < 2C(Γ)(ln(N))s < N, for N > N1. (2.2)

Thus
zs+1(N − 1) = NdetΓ +O((ln(N))s). (2.3)

By definition of the lattice Γ, there exists y(n) = (y1(n), ..., ys+1(n)) ∈ Zs+1 such that
(z(n), zs+1(n)) = Hy(n).

Let b1, . . . , bd ≥ 2 be pairwise coprime integers. Using notations from (1.1), we define

φbj(n) =
∑
i≥0

∑
1≤m≤s+1

ei,bj(ym(n))b
−(s+1)(i+1)+m−1
j (2.4)

and
ζ(n) = (φb1(n), ..., φbd(n), z(n)).

Theorem 2.1. With the above notations, (ζ(n))n≥0 is a l.d.s. in [0, 1)s+d, and
(ζ(n), zs+1(n)/zs+1(N))N−1

n=0 is a l.d.p.s. in [0, 1)s+d+1.
Proof. We will prove the low discrepancy properties of the sequence (ζ(n))n≥0. The

proof of the low discrepancy properties of the set (ζ(n)), zs+1(n)/zs+1(N))N−1
n=0 is com-

pletely similar. Let

S = [0, v1)× ...× [0, vd+s) with vi ∈ (0, 1], i = 1, ..., d+ s.

We need to prove that

#{0 ≤ n < N | ζ(n) ∈ S} = Nv1....vs+d +O((ln(N))s+d). (2.5)

Let
S1 = I1 × ...× Id × [0, vd+1)× ...× [0, vd+s),

where

Ij = [aj/b
(s+1)kj
j , (aj + 1)/b

(s+1)kj
j ), with kj ≥ 0, aj ∈ Z, j = 1, ..., d,

and let

I
′

j(m) = [0, dj/b
(s+1)m
j ), I

′′

j (m) = [dj/b
(s+1)m
j , vj] with dj = [vjb

(s+1)m
j ], j ≤ s,

Vj = I
′

1(m)× ...× I ′j−1(m)× I ′′j (m)× [0, vj+1)× ...× [0, vd+s), (2.6)

with m = max1≤j≤d [3 + 2detΓ + (s+ 1)−1 logbj(N/Nm(Γ))].
Suppose

∃n1, n2 ∈ [0, N − 1], j ∈ [1, d] with (ζ(ni), zs+1(ni)/zs+1(N)) ∈ Vj × [0, 1)
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for i = 1, 2, N > N1 . By (2.4) we have

γ = (z1(n1)− z1(n2), ..., zs+1(n1)− zs+1(n2)) ∈ bmj Γ and |Nmγ| ≤ zs+1(N − 1).

Bearing in mind (2.2) and that

|Nmγ| ≥ Nmbmj Γ = b
(s+1)m
j NmΓ ≥ 2N(1 + detΓ),

we have a contradiction. Hence the box Vj × [0, 1) contains at most one point of the
sequence (ζ(n), zs+1(ni)/zs+1(N))N−1

n=0 for N > N1. Similarly to the proof of Halton’s
theorem (see [BC], [Mat] or [Ni]), we obtain from here that the box S can be expressed
as a disjoint union of at most (b1...bd)

s+1[3 + 2detΓ + log2(N/Nm(Γ))]d boxes of the kind
S1, plus a set

V = V1 ∪ ... ∪ Vd ∈ [0, 1)s+d with #V ∩ (∪0≤n<Nζ(n)) ≤ d.

From (2.6) we get

vol(Vj) ≤ |I
′′

j (m)| < Nm(Γ)/N and vol(V) ≤ dNm(Γ)/N.

Hence to obtain (2.5), it is sufficient to prove that

#{0 ≤ n < N | ζ(n) ∈ S1} = Nb
−(s+1)k1
1 b

−(s+1)kd
d vd+1....vd+s +O((ln(N))s). (2.7)

By (2.4), we have

φbj(n) ∈ Ij ⇐⇒ y(n) ≡ wj (mod b
kj
j Zs+1) j = 1, ..., d

for some wj ∈ Zs+1, j = 1, ..., d.
By the Chinese Remainder Theorem, there exists w0 ∈ Zs+1 such that

(φb1(n), ..., φbd(n)) ∈ I1 × ...× Id ⇐⇒ y(n) ≡ w0 (mod bk11 ...b
kd
d Zs+1).

Thus

(φb1(n), ..., φbd(n)) ∈ I1 × ...× Id ⇐⇒ (z(n), zs+1(n)) ≡ Hw0 (mod bk11 ...b
kd
d Γ).

Hence

ζ(n) ∈ S1 ⇐⇒ (z(n), zs+1(n)) ≡ Hw0 (mod bk11 ...b
kd
d Γ)

and z(n) ∈ [0, vd+1)× ...× [0, vd+s).

Applying (2.1), we obtain

#{0 ≤ n < N | ζ(n) ∈ S1} = #
{

(γ1, ..., γs+1) ∈ bk11 ...b
kd
d Γ | γi ∈ [−(Hw0)i,

vi − (Hw0)i), i = 1, ..., s, γs+1 ∈ [−(Hw0)s+1, zs+1(N − 1)− (Hw0)s+1]
}

= #
{

(γ1, ..., γs+1) ∈ Γ | γi ∈ [−b−k11 ...b−kdd (Hw0)i, b
−k1
1 ...b−kdd (vi − (Hw0)i)),
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i = 1, ..., s γs+1 ∈ [−b−k11 ...b−kdd (Hw0)s+1, b
−k1
1 ...b−kdd (zs+1(N − 1)− (Hw0)s+1)]

}
.

Now by Theorem A and (2.2), we obtain the assertion (2.7), hence Theorem 2.1 is proved.

2.2. The case of algebraic lattices.
Let K be a totally real algebraic number field of degree s + 1, O the ring of integers

in K. Denote by A the set of integer divisors of K. For b ∈ A, we denote by L(b) = {α ∈
O | α ≡ 0 (mod b)} the O-ideal associated with b.

Let M ⊂ K be an arbitrary Z-module of rank s+ 1. Then the image

Γ(M) = σ(M) ⊂ Rs+1 (2.8)

of M under the embedding σ (see §1.2.3.) is the admissible lattice in Rs+1. Since every
ideal of the field K is a Z-module of rank s + 1, (2.8) determines a lattice Γ(L(b)) =
σ(L(b)) ⊂ Rs+1 corresponding to the ideal L(b).

Now let bi ∈ A, i = 1, ..., d, be pairwise coprime divisors in K, and let bi = N(bi),
where N is the norm of the extension K/Q. It is easy to see that

#{O/L(bji )} = bji and #{L(bji )/L(bj+1
i )} = bi (j = 0, 1, 2, ...),

where L(b0
i ) = O (i = 1, ..., d).

Let i ∈ [1, d], j ≥ 0. A digit set Di,j ∈ L(bji ) ∈ O is any complete set of coset
representatives for L(bji )/L(bj+1

i ). We have that, for any α ∈ O, and every m ≥ 1

α = di,0 + di,1 + ...+ di,m−1 + xm

where di,j ∈ Di,j, xm ∈ L(bmi ). So for each α ∈ O, we can associate a unique sequence
(di,0, di,1, di,2, ...). Let ηi,j be a one to one map from Di,j to {0, 1, ..., bi − 1}, and let

φbi(α) =
∑
j≥0

ηi,j(di,j)/b
j+1
i . (2.9)

Consider the sequences (z(n)n≥0 defined in (2.1) with Γ = Γ(L(O)). Let

ζ(n) = (ϕb1(n), ..., ϕbd(n), z(n)),

where ϕbi(n) = φbi((z(n), zs+1(n)).

Theorem 2.2. With the above notation (ζ(n))n≥0 is a l.d.s. in [0, 1)s+d,
and (ζ(n)), zs+1(n)/zs+1(N))N−1

n=0 is a l.d.p.s. in [0, 1)s+d+1.
Proof. Let

S1 = I1 × ...× Id × [0, vd+1)× ...× [0, vd+s), where vd+i ∈ (0, 1], i = 1, ..., s,

and Ij = [aj/b
lj
j , (aj + 1)/b

lj
j ), lj ≥ 0, aj ∈ Z, j = 1, ..., d.

Similarly to (2.5)-(2.7), it is sufficient to prove that

#{0 ≤ n < N | ζ(n) ∈ S1} = Nb−l11 b−ldd vd+1....vd+s +O((ln(N))s). (2.10)
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The lattice Γ = Γ(L(O)) is admissible. By (2.9) and (2.3), we have

ϕbj(n) ∈ Ij ⇐⇒ σ−1((z(n), zs+1(n))) ≡ a(j) (mod b
lj
j )

for some a(j) ∈ O, j = 1, ..., d.
Applying the Chinese Remainder Theorem, we conclude that there exists r ∈ O such that

(ϕb1(n), ..., ϕbd(n)) ∈ I1 × ...× Id ⇐⇒ σ−1(z(n), zs+1(n)) ≡ r (mod bl11 ...b
ld
d )

or

(ϕb1(n), ..., ϕbd(n)) ∈ I1 × ...× Id ⇐⇒ (z(n), zs+1(n))− σ(r) ∈ Γ(L(bl11 ...b
ld
d )).

Therefore

{(z(n), zs+1(n)) | ζ(n) ∈ S1, 0 ≤ n < N} = {γ ∈ Γ(L(bl11 ...b
ld
d )) |

γ ∈ [−r1,−r1 + vd+1)× ...× [−rs,−rs + vd+s)× [−rs+1,−rs+1 + zs+1(N − 1)]}, (2.11)

where ri = σi(r), i = 1, ..., s+ 1.
We cannot apply Theorem A directly to prove (2.10) because the constant in (1.5)

depends on the lattice Γ(L(bl11 ...b
ld
d )). To prove (2.10), we will use the following idea from

[NiSkr]: Let {M1, ...,Mh} be a fixed set of representatives of the ideal class group, and
let h be the class number of the field K. Hence there exists an element θ ∈ K such that
θL(bl11 ...b

ld
d ) = Mj for some j ∈ [1, h]. Therefore

det(Γ(Mj)) = θ1...θs+1det(Γ(L(bl11 ...b
ld
d ))) = θ1...θs+1b

l1
1 ...b

ld
d det(Γ), (2.12)

with θi = σi(θ), i = 1, ..., s+ 1.
By (2.11), we get

{0 ≤ n < N | ζ(n) ∈ S1} = Γ(Mj)
⋂

V, (2.13)

where

V = [−θ1r1, θ1(−r1 + vd+1))× ...× [−θsrs, θs(−rs + vd+s))

×[−θs+1rs+1, θs+1(−rs+1 + zs+1(N − 1))].

Using (2.12), we have

vol(V )/det(Γ(Mj)) = v1...vszs+1(N − 1)b−l11 ...b−ldd /det(Γ).

According to (1.3), we obtain

R(V,Γ(Mj)) = #Γ(Mj)− v1...vsb
−l1
1 ...b−ldd zs+1(N − 1)/det(Γ). (2.14)

By Theorem A, we obtain

|R(V,Γ(Mj))| < max
1≤j≤h

C(Γ(Mj))(ln(2 + zs+1(N − 1)))s.

Now by (2.3), (2.13) and (2.14), we obtain the assertion (2.10). Theorem 2.2 is proved.
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3 Uniformly distributed sequences obtained from

lattices in (Fq((x−1)))s+1.

First, we describe Mahler’s variant of Minkowski’s theorem on a convex body in a field of
series for the following special case:

3.1. Mahler’s theorem. Let q be an arbitrary prime power, Fq a finite field with
q elements, k = k(x) = Fq(x) the rational function field over Fq, and k[x] = Fq[x] the
polynomial ring over Fq. For α = f/g, f, g ∈ k[x], let

ν(α) = degg − degf (3.1)

be the degree valuation of k(x). We define an absolute value ‖.‖ of k(x) by

‖α‖ = q−ν(α). (3.2)

We denote by k̂ = Fq((x−1)) the perfect completion of k with respect to this valuation.
Every element α of k̂ has a unique expansion into the field of formal Laurent series with
coefficients from Fq

α =
∞∑

k=−w

akx
−k (3.3)

with an integer w and all ak ∈ Fq. The degree valuation ν on k̂ is defined by ν(α) = −∞
if α = 0 and ν(α) = w if α 6= 0 and (3.3) is written in such a way that aw 6= 0.

We will be working in the s+ 1 dimensional vector space over k̂. A lattice Γ in k̂s+1 is
the image of (k[x])s+1 under an invertible k̂-linear mapping A of the vector space k̂s+1 into
itself. The points of Γ will be called lattice points. The absolute value (in the sense of
(3.2)) of the determinant of A will be denoted by det(Γ). We introduce on k̂s+1 the Haar
measure µ such that the set {x = (x1, ..., xs+1) | ‖xi‖ ≤ 1} has measure 1. A distance
function in k̂s+1 is a function F : k̂s+1 → R such that

F (o) = 0, F (y) 6= 0 if y 6= o,

F (λy) = ‖λ‖F (y) for λ ∈ k̂,

F (y − z) ≤ max(F (y), F (z)).

An inequality of the form F (y) ≤ qr, defines a convex body, VF,r = Vr. Let

MF (r) = #{(k[x])s+1 ∩ VF,r} = #{k[x]s+1 ∩ xrVF,0}. (3.4)

A convex body V0 has a volume [Ma, eq. 20]

vol(V0) = lim
r→∞

MF (r)q−(s+1)(r+1). (3.5)

In particular, if F (y) = ‖y‖, then vol(V0) = µ(V0) = 1 (see [Ma, p.505] and [DuLu,
p.330]). Let

F (c, y) = max(q−c1 ‖y1‖ , ..., q−cs+1 ‖ys+1‖), (3.6)
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where c = (c1, ..., cs+1). We define the corresponding convex body by VF (c),0. We see

V(c) := VF (c),0 = {(y1, ..., ys+1) ∈ k̂s+1 | ‖yi‖ ≤ qci , i = 1, ..., s+ 1}. (3.7)

Let A be (s+ 1)× (s+ 1) invertible matrix with elements in k̂. The linear transformation
u = A−1y changes F (y) into the new distance function F

′
(u) = F (y) = F (Au). According

to [Ma, eq. 21],
vol(VF ′ ,r) = vol(VF,r)(detA)−1. (3.8)

In particular,
vol(V(c)) = qc1+...+cs+1 . (3.9)

Let Γ = A(k[x])s+1. Consider the distance function (3.6). Using (3.4), we obtain

#{Γ ∩ xrVF (c),0} = #{γ ∈ Γ | ‖γi‖ ≤ qr+ci}
= #{u ∈ (k[x])s+1 | ‖(Au)i‖ ≤ qr+ci} = #{(k[x])s+1 ∩ xrVF ′ (c),0} = MF ′ (c)(r). (3.10)

By (3.5) and (3.8), we get

lim
r→∞

MF ′ (c)(r)q
−(s+1)(r+1) = vol(VF ′ ,0) = vol(VF,0)(detΓ)−1.

Hence by (3.9) and (3.10), we have

lim
r→∞

#{Γ ∩ xrV(c)}q−(s+1)(r+1) = qc1+...+cs+1/detΓ. (3.11)

Mahler [Ma] proved that there exists s+ 1 k̂-independent lattice points γ1, ..., γs+1 ∈ Γ
such that:

a) F (γ1) is the minimum of F (γ) in all lattice points γ 6= o;
b) for j ≥ 2, F (γj) is the minimum of F (γ) in all lattice points independent on

γ1, ..., γj−1;
c) the points γ1, ..., γs+1 are a basis for Γ over k[x];
d) the number σj = F (γj) , 1 ≤ j ≤ s+ 1, (the successive minima of V0) depend only

on F (y) and Γ, and satisfy

0 < σ1 ≤ σ2 ≤ ... ≤ σs+1, and σ1σ2...σs+1 = det(Γ)/vol(V0). (3.12)

Now let < y, z > be a standard inner product ( < y, z >= y1z1 + ... + ys+1zs+1 for
y = (y1, ..., ys+1) and z = (z1, ..., zs+1)). If Γ is a lattice with basis β1, ..., βs+1, then the
polar body V⊥0 and the polar (dual) lattice Γ⊥ are defined exactly as in the Rs+1 case.
Thus Γ⊥ is the lattice with basis β⊥1 , ..., β

⊥
s+1, where < βi, β

⊥
i >= 1 and < βi, β

⊥
j >= 0 if

i 6= j. We define the polar function to F (y) by G(o) = 0 and for z 6= o by

G(z) = sup
y 6=o

‖< y, z >‖
F (y)

.

Then G(z) is a distance function and V⊥0 is the convex body defined by G(z) ≤ 1. It is
easy to see that V⊥0 consists of all points z of k̂s+1 for with ‖< y, z >‖ ≤ 1 for all y ∈ V0.
Moreover

det(Γ)det(Γ⊥) = 1, vol(V⊥0 ) = (vol(V0))−1, (3.13)
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and if τj are the corresponding successive minima with respect to polar lattice Γ⊥, then

σjτs−j+2 = 1 (1 ≤ j ≤ s+ 1). (3.14)

By (3.7), we have

V(c)⊥ = {(y1, ..., ys+1) ∈ k̂s+1 | ‖yi‖ ≤ q−ci , i = 1, ..., s+ 1}. (3.15)

3.2. Construction of uniformly distributed sequences. We will consider lat-
ices in s + 1-dimensional space k̂s+1 = (Fq((x−1)))s+1 to construct uniformly distributed
sequences in [0, 1)s.

Let Ä ⊂ k̂s+1, r ∈ Z and z ∈ k̂s+1. We define Ä + z = {y + z | y ∈ Ä} and
c− r = (c1 − r, ..., cs+1 − r).

Lemma 3.1. Let c0, c1, ..., cs+1 be integers, c = (c1, ..., cs+1), Γ ⊂ k̂s+1 an arbitrary
lattice with det(Γ) = qc0, let z = (z1, ..., zs+1) ∈ k̂s+1, and let V(c) contain a basis βi =
(βi,1, ..., βi,s+1), i = 1, ..., s + 1 of Γ. Then the shifted box V(c − 1) + z contains exactly
qc1+...+cs+1−c0−s−1 lattice points.

Proof. We see that there exists αi ∈ k̂ with

z = α1β1 + ...+ αs+1βs+1.

We consider expansions of αi of the form (3.3). Let ai,j (i = 1, ..., s+ 1) be corresponding
elements,

Qi =
∑
j≤0

ai,jx
−j ∈ k[x], i = 1, ..., s+ 1,

and let
z
′
= (z

′

1, ..., z
′

s+1) = Q1β1 + ...+Qs+1βs+1.

By (3.7), we have

‖zi − z
′

i‖ ≤ max
j=1,...,s+1

‖(αi −Qi)βi,j‖ ≤ q−1 max
j=1,...,s+1

‖βi,j‖ ≤ qci−1.

Now let y = (y1, ..., ys+1) ∈ V(c− 1) + z. We see that

‖yi − z
′

i‖ = ‖yi − zi + zi − z
′

i‖ ≤ max(‖yi − zi‖, ‖zi − z
′

i‖) ≤ qci−1.

Hence y ∈ V(c− 1) + z
′
. Similarly, we get that if y ∈ V(c− 1) + z

′
, then y ∈ V(c− 1) + z.

Thus the box V(c − 1) + z coincides with the box V(c − 1) + z
′
. Bearing in mind that

z
′ ∈ Γ, we obtain

#{Γ ∩ (V(c− 1) + z)} = #{Γ ∩ V(c− 1)}.

By (3.3) and (3.7), we get that xrV(c− 1) can be decomposed as follows:

xrV(c− 1) =
⋃

‖Qi‖≤qr−1, Qi∈k[x], 1≤i≤s+1

(V(c− 1) + (xc1Q1, ..., x
cs+1Qs+1)).

Therefore
#{Γ ∩ xrV(c− 1)} = qr(s+1)#{Γ ∩ V(c− 1)}.
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We have from (3.11) that

#Γ ∩ V(c− 1) = lim
r→∞

#{Γ ∩ xrV(c− 1)}q−r(s+1) = qc1+...+cs+1−s−1/detΓ,

and Lemma 3.1 is proved.

Let y = (y1, ..., ys+1) ∈ k̂s+1,

yi =
∞∑

k=−wi

yi,kx
−k

with yi,k ∈ Fq, ηi,k be a one to one map from Fq to {0, 1, ..., q − 1}, and let

ξ(y) = (ξ(y1), ..., ξ(ys+1))

with
ξ(yi) =

∑
k≥−wi

ηi,k(yi,k)q
−k.

Let ξ(Γ) = {ξ(γ) | γ ∈ Γ},

W = ξ(Γ) ∩ [0, 1)s × [0,+∞).

By the definition of a lattice Γ it follows that for all v ∈ Rs+1, the set ξ(Γ)∩([0, 1]s+1+v) is
finite. The setW can be finite or infinite. We see that (0, ...., 0) ∈ W , and #W ≥ 1. Hence
the set W can be enumerated by a sequence (z1(n), ..., zs+1(n))0≤n<#W in the following
way:

zi(n) ∈ R, zi(0) = 0, i = 1, ..., s+ 1, zs+1(n) ≤ zs+1(n+ 1),

and (z(n), zs+1(n)) 6= (z(j), zs+1(j)) for n 6= j, where z(n) = (z1(n), ..., zs(n)).

Theorem 3.1. Let Γ ⊂ k̂s+1 be an arbitrary lattice. Then the sequence (z(n))n≥0 is
uniformly distributed in [0, 1)s if and only if

@γ⊥ = (γ⊥1 , ..., γ
⊥
s+1) ∈ Γ⊥ \ {0} with γ⊥s+1 = 0. (3.16)

Proof. First, we consider the case that (3.16) is not valid. Hence there exists γ⊥0 =
(γ⊥0,1, ..., γ

⊥
0,s+1) ∈ Γ⊥ \ {0} with γ⊥0,s+1 = 0. Let

qm = max
1≤i≤s

∥∥γ⊥0,i∥∥ , r = max(0,m),
∥∥γ⊥0,j∥∥ = qm, for some j ∈ [1, s], (3.17)

and let
V = [0, q−r−2)j−1 × [q−r−1, q−r)× [0, q−r−2)s−j × [0,∞).

Suppose that there exist n ≥ 1 with (z(n), zs+1(n)) ∈ V . Let

α :=< ξ−1(z(n), zs+1(n)), γ⊥0 >= ξ−1(z1(n))γ⊥0,1 + ...+ ξ−1(zs+1(n))γ⊥0,s+1.
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We see that ‖ξ−1(zi(n))‖ ≤ q−r−2 for i ∈ [1, s], i 6= j, and ‖ξ−1(zj(n))‖ = q−r−1. Bearing
in mind that γ⊥0,s+1 = 0, we obtain from (3.17) ‖α‖ = qm−r−1 < 1. On the other hand,
α ∈ k[x], and by (3.1), (3.2), ‖α‖ ≥ 1. Thus there are no points (z(n), zs+1(n)) in V for
n ≥ 1. We have that the sequence (z(n))n≥0 is not uniformly distributed.

Now let (3.16) be valid. Take any ε > 0, and choose m ≥ 1 such that q−m < ε.
Consider the convex body V(c)⊥ with c = (−m, ...,−m, r). By (3.15) and (3.16), there
exists r such that there are no lattice points of Γ⊥ \ {o} in V(c)⊥. Using (3.12)-(3.14),
we get τ1 > 1. From (3.14), we obtain σs+1 < 1. Therefore, V(c) contains a basis of
Γ. According to Lemma 3.1 for every z ∈ k̂s+1 the box V(c − 1) + z contains exactly
qr−ms−s−1(det(Γ))−1 lattice points.

Let

V =
s∏
i=1

[Giq
−m, (Gi + 1)q−m)× [Bqr, (B + 1)qr) = [0, q−m)s × [0, qr) + y

with integers G1, ..., Gs, B, and y = (G1q
−m, ..., Gsq

−m, Bqr) ∈ [0, 1)s × [0,∞).
It is easy to see that

ξ−1(V ) = V(c− 1) + z

for some z. Hence the box V contains exactly qr−ms−s−1(det(Γ))−1 points of the sequence
(z(n), zs+1(n))n≥0. In particular, for every integer B ≥ 0

#{n ≥ 0 | zs+1(n) ∈ [Bqr, (B + 1)qr)} = qr−s−1(det(Γ))−1 =: ql.

Hence
zs+1(n) ∈ [Bqr, (B + 1)qr)⇐⇒ n ∈ [Bql, (B + 1)ql).

We see that

#{Bql ≤ n < (B + 1)ql | z(n) ∈
s∏
i=1

[Giq
−m, (Gi + 1)q−m) = ql−ms.

We now consider a subinterval V
′

of [0, 1)s of the form

V
′
=

s∏
i=1

[Giq
−m, (Gi +Hi)q

−m)

with integers Gi, Hi satisfying 0 ≤ Gi < Gi + Hi ≤ qm for 1 ≤ i ≤ s. Let Mql ≤ N <
(M + 1)ql for some integer M ≥ 1. Then

Mql−msH1...Hs ≤ |#{0 ≤ n < N | z(n) ∈ V ′}| ≤ (M + 1)ql−msH1...Hs.

Therefore

|#{0 ≤ n < N | z(n) ∈ V ′}/N − vol(V
′
)| ≤ H1...Hsq

−msM−1 ≤M−1 < ε

if N is large enough. Since for every subinterval V of [0, 1)s we can find subinterval V1, V2

of the above type with V1 ⊆ V ⊆ V2 and vol(V2 \ V1) ≤ 2sε , it follows that (z(n))n≥0 is
uniformly distributed in [0, 1)s. Theorem 3.1 is proved.
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Remark. For the case of Γ = {(Qα1−Q1, ..., Qαs−Qs, Q)) | (Q1, ..., Qs, Q) ∈ k[x]s+1},
we obtain a Kronecker lattice (and a Kronecker sequence: (z(k))k≥1 (see [LaNi], [La])).
It is proved in [La] that D((z(n))Nn=1) = O(N−1(ln(N))s−1)(ln ln(N))2+ε) for almost all
(α1, ..., αs) ∈ k̂s.

Conjecture. We conjecture that this estimate is also true for almost all lattices Γ
with respect to the Haar measure on SL(s, k̂)/SL(s, k[x]).

3.3. Admissible lattices in (Fq((x−1)))s+1 and (t, s) sequences. We will consider
the s+ 1-dimensional space k̂s+1 = (Fq((x−1)))s+1 to construct (t, s) sequences.

Lemma 3.2. Let c0, c1, ..., cs+1 be integers, c = (c1, ..., cs+1), Γ ⊂ k̂s+1 be an arbitrary
lattice with det(Γ) = qc0, z = (z1, ..., zs+1) ∈ k̂s+1, and let V(c)⊥ ∩ Γ⊥ \ {o} = ∅. Then

#{Γ ∩ (V(c− 2) + z)} = qc1+...+cs+1−c0−2s−2.

Proof. Consider the box V(c)⊥ and the lattice Γ⊥. We see that τ1 > 1, and by (3.14)
σs+1 < 1. Therefore, V(c− 1) contains a basis of the lattice Γ. Now applying Lemma 3.1,
we get the assertion of the lemma.

Definition 5. The lattice Γ ⊂ k̂s+1 is admissible if

NmΓ = inf
γ∈Γ\{o}

‖Nmγ‖ > 0, (3.18)

where Nmγ = γ1γ2 . . . γs+1, γ = (γ1, . . . , γs+1).
Examples of such lattices are proposed by Armitage [Arm1, Arm2] (see §4).
Let s1 ∈ {1, ..., s}, s2 = s+ 1− s1, H1, ..., Hs2 , r1, ..., rs2 ≥ 0 be integers, and let

W (H, r) = ξ(Γ) ∩ [0, 1)s1 × [H1q
r1 , (H1 + 1)qr1)× ...× [Hs2q

rs2 , (Hs2 + 1)qrs2 ).

Theorem 3.2. Let Γ ⊂ k̂s+1 be an admissible lattice with

det(Γ⊥) = q−c0 and Nm(Γ⊥)/det(Γ⊥) = q−u−s. (3.19)

Then (z(n))n≥0 is a (t, s) sequence with t = u, and W (H, r) is a (t,m, s1) net with t = u

and m = r1 + ...+ rs2 − c0.
Proof. Let G1, ..., Gs1 , l1, ..., ls1 ≥ 0 be integers, Gi < qli (1 ≤ i ≤ s1), and let

S = [
G1

ql1
,
G1 + 1

ql1
)× ...× [

Gs1

qls1
,
Gs1 + 1

qls1
)× [H1q

r1 , (H1 +1)qr1)× ...× [Hs2q
rs2 , (Hs2 +1)qrs2 ).

To obtain the (t,m, s1) property of the set W (H, r), we need to prove

#W (H, r) = qm and #{ξ(Γ) ∩ S} = qt (3.20)

for l1 + ...+ ls1 = m− t with t = u. For the case of s1 = s, we obtain from here the (t, s)
property of the sequence (ζ(n))n≥0.

Let c = (−l1 + 1, ...,−ls1 + 1, r1 + 1, ..., rs2 + 1). It is easy to see that

ξ−1(S) = V(c− 2) + z (3.21)
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for some z.
Let γ ∈ Γ⊥ \ {o}. By (3.18) and (3.19), we have ‖Nmγ‖ ≥ q−u−c0−s. If γ ∈ V(c)⊥,

then
‖Nmγ‖ ≤ ql1+...+ls1−r1−...−rs2−s−1 = qm−u−(m+c0)−s−1 = q−u−c0−s−1.

Hence γ /∈ V(c)⊥. Applying Lemma 3.2, we obtain

#Γ∩(V(c−2)+z) = q(−l1−...−ls1+r1+...+rs2+s+1)−c0−2s−2 = q(u+c0+2s+2)−c0−2s−2 = qt. (3.22)

Taking c = (1, ..., 1, r1 + 1, ..., rs2 + 1), we obtain similarly that

#ξ−1(W (H, r)) = q(r1+...+rs2+s+1)−c0−2s−2 = q(m+c0+2s+2)−c0−2s−2 = qm.

Now by (3.21), we obtain (3.20). Theorem 3.2 is proved.

Using lattices from [Arm1] (see Example 1 below), we obtain (0, s) sequences.
Now let (β1, ..., βs+1) be a basis of Γ. For all γ ∈ Γ, there exists polynomialsQ1, ..., Qs+1 ∈

k[x] with
γ = Q1β1 + ...+Qs+1βs+1.

Let b ∈ k[x] with deg(b) ≥ 1, D any complete set of coset representatives for k[x]/bk[x],

Q =
∑
i≥0

ei,b(Q)bi, with ei,b(Q) ∈ D,

the b-expansion of the integer polynomial Q, ηi,j,b a one-to-one map from D to
{0, 1, ..., qdeg(b) − 1} and let

φb(γ) =
∑
i≥0

∑
1≤j≤s+1

ηi,j,b(ei,b(Qj))q
(−(s+1)(i+1)+j−1)deg(b). (3.23)

Let b1, . . . , bd ∈ k[x] be pairwise coprime polynomials with bi = deg(bi) ≥ 1 (i = 1, ..., d)
and let

ζ(n) = (ϕb1(n), ..., ϕbd(n), z(n)),

where ϕbi(n) = φbi(ξ
−1(z(n), zs+1(n))).

Theorem 3.3. With the notation above and the assumptions made in Theorem 3.2
(ζ(n))n≥0 is a (t, s+ d) sequence with t = u+ s(b1 + ...+ bd)− d.

Proof. Let G1, ..., Gd+s+1, l1, ..., ld+s+1 ≥ 0 be integers, Gi < qli (1 ≤ i ≤ d + s),
ld+s+1 = l1 + ...+ ld+s + t, and let

S = [
G1

ql1
,
G1 + 1

ql1
)× ...× [

Gd+s

qld+s
,
Gd+s + 1

qld+s
)× [Gd+s+1q

ld+s+1 , (Gd+s+1 + 1)qld+s+1).

To obtain the assertion of the theorem, we need to prove

#{n ≥ 0 | (ζ(n), n) ∈ S} = qt. (3.24)

15



Let
li = (s+ 1)biki − ri, with 0 ≤ ri < (s+ 1)bi, 1 ≤ i ≤ d,

G
′

i = Giq
ri , G

′′

i = (Gi + 1)qri 1 ≤ i ≤ d,

and let
S(H) = I1 × ...× Id × S1 × [Gd+s+1q

ld+s+1 , (Gd+s+1 + 1)qld+s+1),

where

Ij = [
Hj

q(s+1)bjkj
,
Hj + 1

q(s+1)bjkj
), 1 ≤ j ≤ d, S1 = [

Gd+1

qld+1
,
Gd+1 + 1

qld+1
)× ...× [

Gd+s

qld+s
,
Gd+s + 1

qld+s
).

We see that
S =

⋃
G
′
1≤H1<G

′′
1

...
⋃

G
′
d+h≤Hd<G

′′
d

S(H). (3.25)

Hence to obtain (3.24), it is sufficient to prove that

#{n ≥ 0 | (ζ(n), n) ∈ S(H)} = qt1 (3.26)

with t1 = t− r1 − ...− rd. Let

S
′
(H) = I1 × ...× Id × S1 × [Gd+s+1q

r, (Gd+s+1 + 1)qr), (3.27)

where r = ld+s+1 + c0 + s+ 1.
It is easy to see that (3.26) follows from the following assertion

#{n ≥ 0 | (zs+1(n) ∈ [Bqr, (B + 1)qr)} = qld+s+1 , B = 0, 1, ... (3.28)

and #{(ζ(n), zs+1(n)) ∈ S ′(H)} = qt1 .

According to (3.23),

ϕbi(n) ∈ Ij ⇐⇒ ξ−1((z(n), zs+1(n))) ≡ wj (mod b
kj
j Γ)

for somes wj ∈ Γ, j = 1, ..., d. By the Chinese Remainder Theorem there exists w0 ∈ Γ
such that

(ϕb1(n), ..., ϕbd(n)) ∈ I1 × ...× Id ⇐⇒ ξ−1((z(n), zs+1(n))) ≡ w0 (mod bk11 ...b
kd
d Γ).

Using (3.27), we get

(ζ(n), zs+1(n)) ∈ S ′(H)⇐⇒ ξ−1((z(n), zs+1(n))) ≡ w0 (mod bk11 ...b
kd
d Γ) (3.29)

and ξ−1((z(n), zs+1(n))) ∈ V(c− 2) + ξ−1(Gd+1/q
ld+1 , ..., Gd+s/q

ld+s , Gd+s+1q
r),

where c = (−ld+1 + 1, ...,−ld+s + 1, r + 1). By the assumptions made in (3.19) we have

det(bk11 ...b
kd
d Γ) = q(s+1)(b1k1+...+bdkd)det(Γ) = qc0+(s+1)(b1k1+...+bdkd)

and Nm((bk11 ...b
kd
d Γ)⊥) = q−(s+1)(b1k1+...+bdkd)Nm(Γ)⊥ = q−u−s−c0−(s+1)(b1k1+...+bdkd).
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Hence
Nm((bk11 ...b

kd
d Γ)⊥)/det((bk11 ...b

kd
d Γ)⊥) = q−u−s.

Similarly to (3.22), from (3.29) we get

#{(ζ(n), zs+1(n)) ∈ S ′(H)} = q(−ld+1...−ld+s+r+s+1)−c0−(s+1)(b1k1+...+bdkd)−2s−2

= q(c0+t+s+1+l1+...+ld)−c0−(s+1)(b1k1+...+bdkd)−s−1 = qt−r1−...−rd = qt1 . (3.30)

Taking c = (1, ..., 1, r + 1), we obtain

#{n ≥ 0 | (zs+1(n) ∈ [Bqr, (B + 1)qr)} = #(Γ ∩ (V(c− 2) + ξ−1((0, ..., 0, Bqr)))

= q(r+s+1)−c0−2s−2 = q(ld+s+1+c0+2s+2)−c0−2s−2 = qld+s+1 ,

hence the assertion (3.28) and Theorem 3.3 are proved.

4 Constructions of (t, s) sequences from global func-

tion fields.

In [Arm1], [Arm2], Armitage gave examples of admissible lattices by constructing a special
algebraic extension K of Fq(x) (see Example 1 and Example 2 below). According to §3.3
we get (0, s) sequences from the lattices described in Example 1, and (g, s) sequences from
the lattices described in Example 2, where g is the genus of K.

In [Arm3], Armitage constructed a lattice Γ from an arbitrary algebraic extension of
Fq(x) (see Example 3). In this section, we use this lattice Γ to obtain a (t, s) sequence
without additional nonspecial divisors (compare with [NiXi, p. 204, 213]).

4.1. Armitage’s examples:
Example 1. [Arm1] Case s ≤ q. The field Fq contains at least s distinct elements,

say β1, ..., βs. Let f(y) = (y − x)(y − β1)...(y − βs) − 1. It is proved in [Arm1] that the
polynomial f(y) is irreducible over k(x), and the equation f(y) = 0 has s + 1 roots in k̂,
say λ1, ..., λs+1. We consider linear forms Li = u1 +u2λi+ ...+us+1λ

s
i (i = 1, ..., s+1) with

ui ∈ k[x]. Let D be the determinant of these forms. Then ‖D‖ = qs, and ‖L1...Ls+1‖ ≥ 1
for all u1, ..., us+1 not all 0 in k[x] (see [Arm1]). Hence Γ = (L1, ..., Ls+1) is the admissible
lattice with u = 0 (see (3.19)). We note that in [Arm1] the algorithm how to find the
roots λ1, ..., λs+1 is described.

Example 2. [Arm2] Case s > q. Let K be a finite algebraic extension of k(x) with
genus g, and let s + 1 denote the number of places of K of degree 1. It follows from
Riemann-Roch’s theorem that there exists y ∈ K that has simple poles at the places
of degree 1 and no other singularities. Thus K is a ”totally reel” extension of k(x) of
degree s + 1; that is, K has an imbedding θ : K → k̂ × ... × k̂ along the diagonal,
where at each infinite place K is to be viewed as contained in k̂. If the integral closure O
of k[x] in K has an k[x]-basis (α1, ..., αs+1) and if θ(αi) = (ai,1, ..., ai,s+1) then the matrix
A = (aij) gives rise to a lattice Γ and a corresponding set of linear forms (Γ = (L1, ..., Ls+1)
with Li = u1ai,1 + ... + us+1ai,s+1). The determinant detA is D with ‖D‖ = qg+s, and
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‖L1...Ls+1‖ ≥ 1 for all u1, ..., us+1 not all 0 in k[x]. The proof of these assertions follows
easily from [Arm3]. See also Example 3 below. By (3.19), Γ is the admissible lattice with
u = g.

Example 3. [Arm3] Let k = k(x) = Fq(x), k[x] be defined as above and let K be a
finite algebraic extension of k of degree s+ 1. Let ν be the valuation of k defined in (3.1)
and let d be the prime divisor of k corresponding to ν. Let S = {B1, ...,Bh} be the set
of extensions of d to K. The corresponding normalized exponential valuations of K will
be denoted by ν1, ..., νh. Let ei, fi denote the ramification index and residue class degree,
respectively, of Bi over d. Let k̂ = Fq((x−1)), and let K̂i denote the perfect completion of
K with respect to νi. The unique extensions of Bi and νi to K̂i will be denoted by Bi and
νi. Set Kd = k̂⊗k K. Then one has a canonical homomorphism, ρ, of k̂-algebras

ρ : Kd →
h∏
i=1

K̂i

defined by a continuous extension of the canonical diagonal embedding ψ = (ψ1, ..., ψh)

ψi : K→ K̂i, 1 ≤ i ≤ h and ψ : K→
h∏
i=1

K̂i, (4.1)

([Bou], Chap. 6, §8, No. 2). By ([VS], p.137, or [Bou, Chap. 6, §8, No. 5, Th. 2, Cor.
2]) ρ is an isomorphism of k̂-algebras.

Write [K̂i : k̂] = ni. Then [VS, p.137] we have eifi = ni, n1 + ...+ nh = s+ 1.
As is known, there exists a Bi-integral basis for K̂i/k̂ ([We], p. 52, Th. 2.3.2). In

particular, such a basis is given by

ωijπ
l
i (1 ≤ j ≤ fi; 0 ≤ l ≤ ei − 1)

where ωij are integral elements at Bi, whose residue class mod Bi are linearly independent
over the residue class field of k mod d, and πi is a prime element for Bi that is, νi(πi) = 1.

Then for α ∈ K, we have

ψi(α) =

fi∑
j=1

ei−1∑
l=0

ωijπ
l
iα

(i)
lfi+j

with α
(i)
lfi+j

∈ k̂ (4.2)

and we define a k-linear injection
θi : K→ k̂ni (4.3)

by
θi(α) = (α

(i)
1 , ..., α

(i)
ni

) (α
(i)
j ∈ k̂).

These maps define a k-linear injection θ = (θ1, ..., θh)

θ : K→ k̂s+1. (4.4)

18



At the same time, one has the k̂-linear injection

ϑ :
h∏
i=1

K̂i → k̂s+1. (4.5)

For α ∈ K, we have
θ(α) = ϑ(ψ(α)). (4.6)

Let (β1, ..., βs+1) be a basis of K. By [Bou, Chap. 6, §7, No.2, Th.1; §8, No.2, Prop.2],
the set ψ(K) is everywhere dense in Kd =

∏h
i=1 K̂i. Hence the set ψ(β1), ..., ψ(βs+1)

generates Kd as a k̂ vector space. Bearing in mind that dimk̂(Kd) = s + 1, we obtain

ψ(β1), ..., ψ(βs+1) is a basis of Kd, and θ(β1), ..., θ(βs+1) is a basis of k̂s+1. In particular, ϑ
is a k̂-linear isomorphism. Let O denote the integral closure of k[x] in K. Denote by D(K)
the group of divisor of K. The group D(K) can be written as a direct sum D(K) = S⊕S
, where S and S are the groups of ”finite” and ”infinite” divisors respectively. A given
divisor U =

∏
Bκ(B,U) (with κ(B,U) = νB(U)) of K can be written in the form U = UeUu

with
Ue =

∏
B∈S

Bκ(B,U), Uu =
∏
B∈S

Bκ(B,U). (4.7)

We set
L(Ue) = L(Ue,S) = {α ∈ K | νB(α) ≥ νB(U), B ∈ S},
L(Uu) = L(Uu,S) = {α ∈ K | νB(α) ≥ νB(U), B ∈ S}. (4.8)

Now L(Ue) is an O-ideal. By ([ZS], p. 267, Th.9), L(Ue) has an k[x]-basis of s+1 elements.
Hence Γ(U) = θ(L(Ue)) is a lattice in k̂s+1. In particular, ΓO = θ(O) is a lattice in k̂s+1.
Let Γ(U) be the lattice defined by L(Ue).

By ([Arm3], eq. (38)-(40) and (44)), we have

‖detΓ(U)‖ = qg+s+δ(U) with δ(U) =
∑
B∈S

deg(B)νB(U), (4.9)

where g is the genus of K. In particular,

‖detΓO‖ = qg+s.

Now let U = Ba1
1 ...B

ah
d . We define

L̂(U,S) := {α̃ = (α̃1, ..., α̃h) ∈
h∏
i=1

K̂i | νBi
(α̃i) ≥ ai = νBi

(U), i = 1, ..., h} (4.10)

and
ϑ(L̂(U),S) := Ṽ(a1, ..., ah). (4.11)

Let y = (y
(1)
1 , ..., y

(1)
n1 , ..., y

(h)
1 , ..., y

(h)
nh ) ∈ k̂s+1. We consider the isomorphism (4.5) and the

representation (4.2). We see that

y̆i =

fi∑
j=1

ei−1∑
l=0

ωijπ
l
iy

(i)
lfi+j

1 ≤ i ≤ h, y̆ = (y̆1, ..., y̆h) = ϑ−1(y).
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By (4.10) and (4.11), we have

y ∈ Ṽ(a1, ..., ah)⇐⇒ νi(y̆i) = νi(

fi∑
j=1

ei−1∑
l=0

ωijπ
l
iy

(i)
lfi+j

) ≥ ai, 1 ≤ i ≤ h. (4.12)

For some integer mi, we have ai = miei + ri, 0 ≤ ri < ei (1 ≤ i ≤ h).

Let a = (a
(1)
1 , ..., a

(1)
n1 , ..., a

(h)
1 , ..., a

(h)
nh ) ∈ Zs+1 with

a
(i)
lfi+j

=

{
mi + 1, for 0 ≤ l ≤ ri − 1

mi, for ri ≤ l ≤ ei − 1, 1 ≤ j ≤ fi, 1 ≤ i ≤ h.
(4.13)

According to [Arm3, eq. (27),(28)], (4.12) is equivalent to

y ∈ Ṽ(a1, ..., ah)⇐⇒ ν(y
(i)
lfi+j

) ≥ a
(i)
lfi+j

0 ≤ l ≤ ei − 1, 1 ≤ j ≤ fi, 1 ≤ i ≤ h.

Using (3.2) and (3.15), we see that

f1a1 + ...+ fhah =
∑

1≤i≤h

∑
1≤j≤fi

∑
0≤l<ei

a
(i)
lfi+j

and V(a)⊥ = Ṽ(a1, ..., ah). (4.14)

4.2. Construction of (t, s) sequences. Let

γ = (γ
(1)
1 ..., γ(1)

n1
, ..., γ

(h)
1 , ..., γ(h)

nh
) ∈ Γ⊥O

with
γ

(i)
j =

∑
k≥−wi,m(γ)

γ
(i)
m,kx

−k, and γ
(i)
m,k ∈ Fq, 1 ≤ m ≤ ni. (4.15)

Let η
(i)
m,k be a one-to-one map from Fq to {0, 1, ..., q − 1} with η

(i)
m,k(0) = 0, and let

ξ(γ) = (ξ(γ)1, ..., ξ(γ)h)

with ξ(γ)i =
∑

k≤w(i)(γ)

∑
1≤j≤fi

∑
0≤l<ei

η
(i)
fil+j,k

(γ
(i)
fil+j,k

)qeifik+fil+j−1.

where w(i)(γ) = max1≤m≤eifi wi,m(γ).
Let ξ(Γ⊥O) = {ξ(γ) | γ ∈ Γ⊥O}

W = ξ(Γ⊥O) ∩ [0, 1)h−1 × [0,+∞).

We have that for all v ∈ Rh the set ξ(Γ⊥O)∩([0, 1]h+v) is finite. We see that (0, ...., 0) ∈ W ,
and #W ≥ 1. Let (ui, ui,h) ∈ W with ui ∈ Rh−1 and ui,h ∈ R, i = 1, 2, and u1,h = u2,h.
Hence θ−1

h (ξ−1((u1, u1,h)) = θ−1
h (ξ−1((u2, u2,h)) ∈ K. Applying (4.3)-(4.4), we have that

u1 = u2. Thus W can be enumerated by a sequence (z(n), zh(n))0≤n<#W in the following
way:

z(n) = (z1(n), ..., zh−1(n)), zi(n) ∈ R, zi(0) = 0, i = 1, ..., h,

and zh(n) < zh(n+ 1) ∈ R, for n = 0, 1, ... (4.16)
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Now let b1, ..., bd be pairwise coprime integer divisors with bi = be,i (see 4.7), and
fbi = deg(bi) ≥ 2 (i = 1, ..., d). Let i ∈ [1, d]. A digit set Di,k ⊂ Γ(b−ki )⊥ associated
with bi is any complete set of coset representatives for Γ(b−ki )⊥/Γ(b−k−1

i )⊥ k ≥ 0, where
Γ(b0

i )
⊥ = Γ⊥O. By (4.9), we get

#Di,k = qfbi , k ≥ 0.

We have that, for any γ ∈ Γ⊥O and every m ≥ 1,

γ = d0 + d1 + ...+ dm−1 + xm (4.17)

where di,k ∈ Di,k, k ∈ [0,m − 1] and xm ∈ Γ(b−mi )⊥. So for each γ ∈ Γ⊥O , we can
associate a unique sequence (di,0, di,1, di,2, ...). Let ηi,k be a one-to-one map from Di,k to
{0, 1, ..., qfbi − 1},

φbi(γ) =
∑
j≥0

ηi,j(di,j)/q
(j+1)fbi , (4.18)

and let
ζ(n) = (ϕb1(n), ..., ϕbd(n), z(n)) (4.19)

where ϕbi(n) = φbi(ξ
−1(z(n), zh(n))).

Theorem 4.1. With the above notation, (ζ(n))n≥0 is a (t, h + d − 1) sequence with
t = g + f1 + ...+ fh + fb1 + ...+ fbd − h− d.

4.3. Proof Theorem 4.1. First, we need the following variant of the Chinese
Remainder Theorem :

Lemma 4.1. Let N1,N2 be pairwise coprime integer divisors, and let mi = deg(Ni),
Γi = Γ(N−1

i ), i = 1, 2. Then for all α1, α2 ∈ Γ⊥O, there exists α ∈ Γ⊥O with α ≡
αi(mod Γ⊥i ), and

{γ ∈ Γ⊥O | γ ≡ αi (mod (Γ⊥i )), i = 1, 2} = {γ ∈ Γ⊥O | γ ≡ α (mod Γ(N−1
1 N−1

2 )⊥)}.

Proof. By the Chinese Remainder Theorem, we have L(N−1
1 N−1

2 )=L(N−1
1 )∪L(N−1

2 ).
Hence Γ(N−1

1 N−1
2 ) =Γ(N−1

1 ) ∪ Γ(N−1
2 ). By (4.9), we get

#{Γi/ΓO} = ‖det(Γi)/det(ΓO)‖ = qmi , i = 1, 2, and

#{(Γ1 ∪ Γ2)/ΓO} =
∥∥det(Γ(N−1

1 N−1
2 )/det(ΓO)

∥∥ = qm1+m2 . (4.20)

It is easy to prove that
(Γ1 ∪ Γ2)⊥ = Γ⊥1 ∩ Γ⊥2 . (4.21)

In fact, let β ∈ (Γ1 ∪ Γ2)⊥. Then for all y ∈ Γ1 ∪ Γ2 we have < β, y >∈ k[x]. Hence
β ∈ Γ⊥i for i = 1, 2. Now let β ∈ Γ⊥1 ∩ Γ⊥2 . Then < β, y >∈ k[x] for all y ∈ Γi, i = 1, 2.
Thus β ∈ (Γ1 ∪ Γ2)⊥.

By (4.20), (4.21) and (3.13), we get

#{Γ⊥O/Γ⊥i } = qmi , i = 1, 2 and #{Γ⊥O/(Γ⊥1 ∩ Γ⊥2 )} = qm1+m2 .
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Let Γ3 = Γ⊥1 ∩ Γ⊥2 . Bearing in mind that Γ⊥O ⊃ Γ⊥1 ⊃ Γ3, we obtain

(Γ⊥O/Γ3)/(Γ⊥1 /Γ3) ∼= Γ⊥O/Γ
⊥
1 .

Therefore #{Γ⊥1 /Γ3} = qm2 . Now let β1, ..., βl ∈ Γ⊥1 be any complete set of coset repre-
sentatives for Γ⊥1 /Γ3 with l = qm2 . Suppose that α1 + βk ≡ α1 + βj (mod Γ⊥2 ) for some
k, j ∈ [1, l], k 6= j. Then βk ≡ βj (mod Γ⊥i ) for i = 1, 2. So βk ≡ βj (mod Γ3). We have
a contradiction. Hence α1 + β1, ..., α1 + βl is the complete set of coset representatives for
Γ⊥O/Γ

⊥
2 . Thus there exists j ∈ [1, l] with α2 ≡ α1 + βj (mod Γ⊥2 ). Lemma 4.1 is proved

We obtain immediately by induction the following assertion:
Corollary 4.1. Let k1, ..., kd ≥ 0 be integers. Then for all α1, ..., αd ∈ Γ⊥O, there exists
α ∈ Γ⊥O with α ≡ αi (mod Γ(b−kii )⊥), and

{γ ∈ Γ⊥O | γ ≡ αi (mod Γ⊥(b−kii )), i = 1, ..., d} = {γ ∈ Γ⊥O | γ ≡ α (mod Γ(b−k11 ...b−kdd )⊥)},

where b1, ..., bd are pairwise coprime integer divisors.
Lemma 4.2. Let N be an integer divisor with N = Ne, f = deg(N), z = (z1, ..., zs+1) ∈

k̂s+1, ai integers 1 ≤ i ≤ h, a ∈ Zs+1 defined in (4.13), c = (c1, ..., cs+1), cn1+...+ni−1+j ≥
a

(i)
j (1 ≤ j ≤ ni, 1 ≤ i ≤ h), and let f1a1 + ...+ fhah − f > 0. Then

Γ(N−1)⊥ ∩ {V(c− 2) + z} = qc1+...+cs+1−c0−2s−2,

where c0 = −g − s+ δ(N).
Proof. Suppose that there exists

γ ∈ V(a)⊥ ∩ Γ(N−1) \ {o}. (4.22)

By (4.14), we obtain γ ∈ Ṽ(a1, ..., ah). Let γ̆ = (γ̆1, ..., γ̆h) = ϑ−1(γ). According to (4.11)-
(4.13), we get

νi(γ̆i) ≥ ai, 1 ≤ i ≤ h.

We have θ−1(γ) ∈ K. Using (4.1) and (4.6), we obtain

ψ(θ−1(γ)) = γ̆, and ψi(θ
−1(γ)) = γ̆i, 1 ≤ i ≤ h.

Hence
νi(ψi(θ

−1(γ))) ≥ ai, 1 ≤ i ≤ h (4.23)

and
νi(θ

−1(γ)) ≥ ai, 1 ≤ i ≤ h. (4.24)

Using (4.22) and (4.8), we get

νB(θ−1(γ)) ≥ νB(N−1) for all B ∈ S. (4.25)

Let U1 = NB−a1 ...B−ah . By (4.24) and(4.25), we have

νB(θ−1(γ)) + νB(U1) ≥ 0 ∀B ∈ D.
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Thus θ−1(γ) belong the Riemann-Roch space of the divisor U1 (see, for example, [NiXi,
p. 5]). Bearing in mind that

deg(NB−a1 ...B−ah) = f − f1a1 − ...− fhah < 0,

we get that the Riemann-Roch space of the divisor U1 is empty. Hence supposition
(4.22) is false: V(a)⊥ ∩ Γ(N−1) \ {o} = ∅. Taking into account that cn1+...+ni−1+j ≥ a

(i)
j

(1 ≤ j ≤ ni, 1 ≤ i ≤ h), we obtain V(c)⊥ ⊆ V(a)⊥. Therefore

V()⊥ ∩ Γ(N−1) \ {o} = ∅.

According to (4.9),
∥∥detΓ(N−1)⊥

∥∥ = q−g−s+δ(N).Now using Lemma 3.2 with Γ = Γ(N−1)⊥,
we obtain the assertion of Lemma 4.2.

End of Proof of Theorem 4.1. Let G1, ..., Gd+h, l1, ..., ld+h ≥ 0 be integers, Gi < qli

(1 ≤ i ≤ d+ h− 1), ld+h = l1 + ...+ ld+h−1 + t, and let

S = [
G1

ql1
,
G1 + 1

ql1
)× ...× [

Gd+h−1

qld+h−1
,
Gd+h−1 + 1

qld+h−1
)× [Gd+hq

ld+h , (Gd+h + 1)qld+h).

We need to prove
#{n ≥ 0 | (ζ(n), n) ∈ S} = qt. (4.26)

Let
li = fbiki − pi, with 0 ≤ pi < fbi 1 ≤ i ≤ d,

and let

G
′

i = Giq
pi , G

′′

i = (Gi + 1)qpi 1 ≤ i ≤ d.

Now let

S(H) = I1 × ...× Id × S1 × Id+h, and S1 = Id+1 × ...× Id+h−1,

where

Ij = [
Hj

qfbj kj
,
Hj + 1

qfbj kj
), Id+i = [

Gd+i

qld+i
,
Gd+i + 1

qld+i
), Id+h = [Gd+hq

ld+h , (Gd+h + 1)qld+h),

with 1 ≤ j ≤ d, 1 ≤ i < h. We see that

S =
⋃

G
′
1≤H1<G

′′
1

...
⋃

G
′
d+h≤Hd+h<G

′′
d+h

S(H).

Hence to obtain (4.26), it is sufficient to prove that

#{n ≥ 0 | (ζ(n), n) ∈ S(H)} = qt1 (4.27)

with t1 = t− p1 − ...− pd.
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Let

−ld+i − 1 = fi(vi,1ei + vi,2) + vi,3, ld+h − g = fh(vh,1eh + vh,2) + vh,3

with 0 ≤ vi,2 < ei, 0 ≤ vi,3 < fi, 1 ≤ i ≤ h. We see that vi,1 < 0 for 1 ≤ i < h. We define

c = (c1, ..., cs+1) and a = (a
(1)
1 ..., a

(1)
n1 , ..., a

(h)
1 , ..., a

(h)
nh ) as follows:

cn1+...+ni−1+lfi+j =

{
vi,1 + 2, for 0 ≤ l ≤ vi,2 − 1 or l = vi,2 and j ≤ vi,3 + 1

vi,1 + 1, otherwise, 1 ≤ j ≤ fi, 1 ≤ i ≤ h

and

a
(i)
lfi+j

=

{
vi,1 + 2, for 0 ≤ l ≤ vi,2 − 1

vi,1 + 1, otherwise, 1 ≤ j ≤ fi, 1 ≤ i ≤ h.

It is easy to see that

a
(i)
lfi+j

≤ cn1+...+ni−1+lfi+j for 1 ≤ l ≤ ei, 1 ≤ j ≤ fi, 1 ≤ i ≤ h (4.28)

and ∑
1≤j≤fi

∑
0≤l<ei

cn1+...+ni−1+lfi+j = (vi,1 + 1)fiei + fivi,2 + vi,3 + 1, 1 ≤ i ≤ h.

Hence
c1 + ...+ cs+1 = ld+h − ld+1 − ...− ld+h−1 − g + s+ 2. (4.29)

We have similarly that ∑
1≤j≤fi

∑
0≤l<ei

a
(i)
lfi+j

= (vi,1 + 1)fiei + fivi,2.

Now we define a1, ..., ah according to (4.13). By (4.13), we have

f1a1 + ...+ fhah =
∑

1≤i≤h
∑

1≤j≤fi

∑
0≤l<ei a

(i)
lfi+j

=
∑

1≤i≤h(vi,1 + 1)fiei + fivi,2

= ld+h − ld+1 − ...− ld+h−1 − g + s+ 2− h− v1,3 − ...− vh,3

Hence

f1a1 + ...+ fhah + deg(b−k11 ....b−kdd ) = f1a1 + ...+ fhah − k1fb1 − ...− kdfbd
= ld+h − ld+1 − ...− ld+h−1 − g + s+ 2− h− v1,3 − ...− vh,3 − l1 − ...− ld − p1 − ...− pd

= t− g + s+ 2− h− v1,3 − ...− vh,3 − p1 − ...− pd ≥ s+ 2− h ≥ 1. (4.30)

Consider the decomposition (4.15). Let

γ(n) = (γ
(1)
1 (n), ..., γ

(1)
n1 (n), ..., γ

(h)
1 (n), ..., γ

(h)
nh (n)) = ξ−1(z(n), zh(n)) ∈ Γ⊥O,

z = (z
(1)
1 ..., z

(1)
n1 , ..., z

(h)
1 , ..., z

(h)
nh ) = ξ−1(Gd+1q

−l1 , ..., Gd+h−1q
−ld+h−1 , Gd+hq

ld+h).
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It is easy to verify that

(z(n), zh(n)) ∈ S1 × I
′

d+h ⇐⇒ ν(γ
(i)
lfi+j

(n)− z(i)
lfi+j

) ≥ cn1+...+ni−1+lfi+j − 2

for all 0 ≤ l ≤ ei − 1, 1 ≤ j ≤ fi, 1 ≤ i ≤ h, where

I
′

d+h = q−g+1Id+h = [Gd+hq
ld+h−g+1, (Gd+h + 1)qld+h−g+1)

(we need the factor q−g+1 to prove (4.33)). Hence

(z(n), zh(n)) ∈ S1 × I
′

d+h ⇐⇒ γ(n) ∈ V(c− 2) + z.

By (4.17)-(4.19), we have

ϕbj(n) ∈ Ij ⇐⇒ ξ−1(z(n), zh(n)) ≡ wj(mod Γ(b−kii )⊥)

for some wj ∈ Γ⊥O, j = 1, ..., d.
Using Corollary 4.1, we get

(ϕb1(n), ..., ϕbd(n)) ∈ I1 × ...× Id ⇐⇒ ξ−1(z(n), zh(n)) ≡ w0 (mod Γ(b−k11 ....b−kdd )⊥)
(4.31)

for some w0 ∈ Γ⊥O, 1 ≤ i ≤ d. By (4.31), we have

(z(n), zh(n)) ∈ I1 × ...× Id × S1 × I
′

d+h ⇐⇒ ξ−1((z(n), zs+1(n))) ≡ w0

(mod Γ(b−k11 ....b−kdd )⊥) and ξ−1((z(n), zs+1(n))) ∈ V(c− 2) + z. (4.32)

Therefore

qρ1 := #{n ≥ 0 | (ζ(n), zh(n)) ∈ I1 × ...× Id × S1 × I
′

d+h}
= #{γ ∈ Γ(b−k11 ....b−kdd )⊥ | γ − w0 ∈ V(c− 2) + z)}.

Bearing in mind (4.28) and (4.30), we get that the suppositions of Lemma 4.2 are true.
Thus

ρ1 = c1 + ...+ cs+1 − c0 − 2s− 2,

where c0 =
∥∥∥detΓ(b−k11 ....b−kdd )⊥

∥∥∥. By (4.9), we get

c0 = −g − s+ k1fb1 + ...+ kdfbd = l1 + ...+ ld + p1 + ...+ pd − g − s.

According to (4.29), we have

c1+...+cs+1−c0−2s−2 = ld+h−l1−...−ld+h−1−g+s+2−p1−...−pd+g+s−2s−2 = t1.

Therefore the assertion

#{n ≥ 0 | (ζ(n), zh(n)) ∈ I1 × ...× Id × S1 × I
′

d+h} = qt1
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is true for all l1, ..., ld+h ≥ 0 with ld+h = l1 + ...+ ld+h−1 + t. In particular, for li = 0, i =
1, ...d+ h− 1 and ld+h = t, we obtain

#{n ≥ 0 | zh(n) ∈ [Bqt−g+1, (B + 1)qt−g+1)} = qt. (4.33)

for all B ≥ 0. Hence

#{n ≥ 0 | zh(n) ∈ [Bqld+h−g+1, (B + 1)qld+h−g+1)} = qld+h

for all B ≥ 0 and ld+h ≥ t. Thus

#{n ≥ 0 | (ζ(n), n) ∈ S(H)} = qt1 .

Hence assertion (4.27) and Theorem 4.1 are proved.

Acknowledgment. I am very gratiful to twe referee for many corrections and sug-
gestions which improved this paper.
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