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Abstract

We present analytical properties of a sequence of integers related to the evaluation of a rational
integral. We also discuss an algorithm for the evaluation of the 2-adic valuation of these integers that
has a combinatorial interpretation.

1 Introduction

The sequence of positive integers

bl,m =

m∑
k=l

2k

(
2m − 2k

m − k

)(
m + k

m

)(
k

l

)
(1.1)

for m ∈ N and 0 ≤ l ≤ m appeared in the process of evaluating the definite integral

N0,4(a; m) =

∫ ∞

0

dx

(x4 + 2ax2 + 1)m+1
. (1.2)

The author has shown in [7] that the polynomial

Pm(a) := 2−2m

m∑
l=0

bl,mal (1.3)

satisfies

Pm(a) :=
1

π
2m+3/2(a + 1)m+1/2N0,4(a; m). (1.4)

The coefficients bl,m do not have a natural combinatorial interpretation, but they have some
combinatorial flavor. The goal of this work is to present several conjectures that illustrate
this. For instance, in Section 3 we discuss a criteria developed in order to establish the
unimodality of {bl,m : 0 ≤ l ≤ m}. We have conjectured that bl,m are logconcave, that is,
b2
l,m ≥ bl−1,mbl+1,m. We present several of our attempts to establish this conjecture. In the

last section we discuss arithmetical properties of bl,m. In particular we describe an algorithm
to evaluate their 2-adic valuation. Based on extensive numerical data, we have conjectured
that this valuation can be determined in terms of two natural operators acting on sequences:
the first one simply repeats the initial element of a sequence, that is,

F ({a1, a2, a3, · · · }) := {a1, a1, a2, a3, · · · }, (1.5)
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and the second one picks every other term:

T ({a1, a2, a3, · · · }) := {a1, a3, a5, a7, · · · }. (1.6)

The algorithm involves the operator

Ll :=

ω(l)∏
j=1

F [T nj − c] (1.7)

where ω(l) ∈ N, c is defined by

c := {ν2(m) : m ≥ 1} = {0, 1, 0, 2, 0, 1, 0, 3, 0, · · · }, (1.8)

and the exponents nj are (conjecturally) related to the distinct compositions of a binary
sequence of fixed length. Conjecture 4.8 presents all the details. We conclude that the
combinatorics of bl,m is hidden in their arithmetic properties.

Section 2 presents a hypergeometric evaluation of (1.2). Section 3 discusses the unimodal-
ity of the sequence bl,m and describes our work on the conjectured logconcavity. Section 4
presents an alternative expression for bl,m that is used to discuss their divisibility properties
and to state our main conjecture.

2 A hypergeometric evaluation of the integral

The integral (1.2) is now evaluated by standard methods in terms of the hypergeometric
function

2F1[a, b; c; z] =
∞∑

k=0

(a)k (b)k

(c)k k!
zk. (2.1)

Here a ∈ R, k ∈ N, and (a)k = a(a + 1)(a + 2) · · · (a + k − 1) is the Pochhammer symbol,
with the usual convention (a)0 = 1. The reader will find in [3] detailed information about
this function. In particular, the integral representations

2F1[a, b; c; z] =
Γ(c)

Γ(b) Γ(c − b)

∫ 1

0

tb−1(1 − t)c−b−1(1 − tz)−a dt (2.2)

and

2F1[a, b; c; z] =
Γ(c)

Γ(b) Γ(c − b)

∫ ∞

0

sb−1(1 + s)a−c(1 + sz)−a ds (2.3)

appear there. The gamma function in (2.2) and (2.3) is given by

Γ(z) =

∫ ∞

0

tz−1e−t dt (2.4)

for z > 0. This function has a meromorphic extension to C with simple poles at the negative
integers. The special values

Γ(n) = (n − 1)! and Γ(n + 1
2
) =

√
π

22n

(2n)!

n!
(2.5)
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for n ∈ N, will be used throughout.

The reader will find in [7, 9] alternative proofs of the value of N0,4(a; m). The latter
establishes a connection between N0,4(a; m), the Taylor expansion around c = 0 of the

function
√

a +
√

1 + c and some results of Ramanujan. This was quite a tour de force.

Theorem 2.1. Let a > −1 and m ∈ N. Define

Pm(a) =
1

π
2m+3/2(a + 1)m+1/2N0,4(a; m). (2.6)

Then Pm(a) is a polynomial in a given by

Pm(a) = 2−2m
m∑

k=0

2k

(
2m − 2k

m − k

)(
m + k

m

)
(a + 1)k. (2.7)

Proof. The change of variable t = x2 yields

N0,4(a; m) =
1

2

∫ ∞

0

t−1/2(t + t+)−m−1(t + t−)−m−1 dt

where t± = −a±√
a2 − 1 are the roots of t2 + 2at + 1 = 0. The representation (2.2) and the

identity t+t− = 1 show that N0,4(a; m) is given by

N0,4(a; m) =
π

24m+3/2

(
4m + 2

2m + 1

)√
a −

√
a2 − 1 ×

2F1

[
m + 1, 1

2
; 2m + 2; 2

(
1 − a2 + a

√
a2 − 1

)]
.

This can now be simplified using Kummer’s formula

2F1

[
α, β; 2β;

4z

(1 + z)2

]
= (1 + z)2α

2F1

[
α, α + 1

2
− β; β + 1

2
; z2
]
,

described in [3]. Apply it with z =
√

a − 1/
√

a + 1, α = 1
2

and β = m + 1 and use√
a −√

a2 − 1 = 1√
2

(√
a + 1 −√

a − 1
)

to obtain

N0,4(a; m) =
π

24m+5/2

(
4m + 2

2m + 1

)
1√

a + 1
2F1

[
1
2
,−m; m + 3

2
; a−1

a+1

]
.

This can be simplified further using the relation

2F1 [a, b; c; z] =
Γ(c)Γ(c − a − b)

Γ(c − a)Γ(c − b)
2F1 [a, b; a + b − c + 1; 1 − z] +

+ (1 − z)c−a−b Γ(c)Γ(a + b − c)

Γ(a)Γ(b)
2F1 [c − a, c − b; c − a − b + 1; 1 − z] ,

that in the case b = −m ∈ N reduces to

2F1 [a,−m; c; z] =
Γ(c)Γ(c − a + m)

Γ(c − a)Γ(c + m)
2F1 [a,−m; a − m − c + 1; 1 − z] ,
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in view of 1/Γ(−m) = 0. The resulting expression for the quartic integral is

N0,4(a; m) =
π

22m+3/2
√

a + 1

(
2m

m

)
2F1

[
1

2
,−m;−2m;

2

a + 1

]
. (2.8)

The second argument of the 2F1 is a negative integer so the hypergeometric series termi-
nates. This proves that Pm, defined by (2.6), is a polynomial given by

Pm(a) =
m∑

k=0

(
m

k

)(
2k

k

)(
2m

m

)(
2m

k

)−1

2−m+k(a + 1)k.

It is elementary to check that this form is equivalent to (2.7). The proof is complete.

We now define dl(m) to be the coefficient of al in Pm(a).

Corollary 2.2. For m ∈ N and 0 ≤ l ≤ m, we have dl(m) = 2−2mbl,m, that is,

Pm(a) = 2−2m
m∑

l=0

bl,mal. (2.9)

Proof. Expand the term (a + 1)k in (2.7).

3 Unimodality and logconcavity

A finite sequence of numbers {d0, d1, · · · , dm} is said to be unimodal if there exists an index
0 ≤ j ≤ m such that d0 ≤ d1 ≤ · · · ≤ dj and dj ≥ dj+1 ≥ · · · ≥ dm. The sequence
{d0, d1, · · · , dm} with dj > 0 is said to be logarithmically concave (or logconcave for short) if
dj−1dj+1 ≤ d2

j for 1 ≤ j ≤ m − 1. It is easy to see that if a sequence is logconcave then it
is unimodal [22]. We say that a polynomial is unimodal (logconcave) if the sequences of its
coefficients is unimodal (logconcave).

Unimodal sequences arise often in combinatorics, geometry, and algebra, and have been
the subject of considerable research. The reader is referred to [11, 18] for surveys of the
diverse techniques employed to prove that specific sequences are unimodal. Aside from
establishing the unimodality (or logconcavity) of a specific sequence, it is desirable to produce
a combinatorial proof. The reader will find in [23] an account of Kathy Ohara’s proof of the
unimodality of gaussian polynomials. A combinatorial proof of the logconcavity of i(n, k),
the number of permutations of n letters with k inversions, appears in [4].

We first established the unimodality of the sequence {bl,m} in [8] by a complicated argu-
ment. The proof of Theorem 3.1 given in [6] is completely elementary. The identity (2.7)
shows that the unimodality of bl,m follows from it.

Theorem 3.1. If P (x) is a polynomial with positive nondecreasing coefficients, then P (x+1)
is unimodal.
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The theorem can be improved to conclude the unimodality of the polynomial P (x + d),
with arbitrary d > 0. The case d ∈ N appears in [2] and [20] treats arbitrary d ∈ R+.

We now turn to the question of logconcavity of the sequence {bl,m}. Based on extensive
numerical evidence, we propose

Conjecture 3.2. For each m ∈ N, the sequence {bl,m : 0 ≤ l ≤ m} is logconcave.

We now describe our (failed) attemps to setteled this question.

(A). The first attempt is based on a result of F. Brenti [11] that is in the same spirit as
Theorem 3.1:

Theorem 3.3. Let Q(x) be a logconcave polynomial. Then so is Q(x + 1).

The hypothesis of this theorem do not hold in our case. Define

Q(x) = 2−2m
m∑

k=0

2k

(
2m − 2k

m − k

)(
m + k

m

)
xk ≡

m∑
k=0

akx
k. (3.1)

Then Pm(a) = Q(a + 1). But the polynomial Q(x) is not unimodal. Indeed,

24m−2k
(
a2

k − ak−1ak+1

)
=

(
2m

m − k

)2(
m + k

m

)2

×(
1 − k(m − k)(2m − 2k + 1)(m + k + 1)

(k + 1)(m + k)(2m − 2k − 1)(m − k + 1)

)

could be negative. Symbolic experiments show that roughly
√

m terms are negative.

(B) The WZ-method developed by H. Wilf and D. Zeilberger can be used to produce a
recurrence for the numbers bl,m. Details on this procedure can be found in [17]. One finds
that bl,m satisfies

bl+1(m) =
2m + 1

l + 1
bl,m − (m + l)(m + 1 − l)

l(l + 1)
bl−1,m. (3.2)

Therefore the sequence {bl,m} is logconcave provided

(m + l)(m + 1 − l)b2
l−1,m + l(l + 1)b2

l,m − l(2m + 1)bl−1,mbl,m ≥ 0. (3.3)

We have extensive numerical evidence to support the next conjecture:

Conjecture 3.4. The left-hand side of (3.3) attains its minimum at l = m with value

22mm(m + 1)
(
2m
m

)2
.

The inequality (3.3) can be written in terms of u = bl,m/bl−1,m as

l(l + 1)u2 − l(2m + 1)u + (m + l)(m + 1 − l) ≥ 0. (3.4)
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Unfortunately, the discriminant of the quadratic form, is

disc = l(4l3 − 4m2 − 4m − 3l), (3.5)

that is not strictly negative.

(C) A useful criterion to establish the logconcavity of a sequence {aj} is provided by the
zeros of the polynomial P (x) = a0 + a1x + · · · + amxm.

Theorem 3.5. If the polynomial P has only real roots, then it is logconcave.

The reader will find in [5] a proof and several examples.

The analysis of the zeros of Pm(a) was discussed in [7] and [8]. It turns out that Pm(a) is

part of the family of Jacobi polynomials P
(α,β)
m (z) defined by

P (α,β)
m (z) =

m∑
k=0

(−1)m−k

(
m + β

m − k

)(
m + k + α + β

k

)(
z + 1

2

)k

. (3.6)

The special values α = m+ 1
2
, β = −(m+ 1

2
) produce Pm(a). The zeros of Jacobi polynomials

are studied in detail in [19] (see page 145ff). We concluded that Pm(a) has at most one real
zero.

The zeros of Pm(a) have interesting properties. Dimitrov [12] recently established our
conjecture that, when scaled appropriately, the limit curve of these zeros is the left half of
Bernoulli’s lemniscate

L = {z ∈ C : |z2 − 1| = 1, Re z < 0}. (3.7)

A generalization. The coefficients {bl,m} seem to have a property much stronger than the
logconcavity stated in Conjecture 3.2. Introduce the operator L on the space of sequences,
via

L (al) := a2
l − al−1al+1. (3.8)

The finite sequence {a1, · · · , an} is replaced by {. . . , 0, 0, a1, · · · , an, 0, 0, . . .} before apply-
ing L. Thus, {al} is logconcave if L(al) is nonnegative. We say that {al} is r-logconcave if
L(k) (al) ≥ 0 for 0 ≤ k ≤ r. The sequence {al} is ∞-logconcave if it is r-logconcave for every
r ∈ N.

Conjecture 3.6. For each m ∈ N, the sequence {bl,m : 0 ≤ l ≤ m} is ∞-logconcave.

The binomial coefficients is the canonical sequence on which these issues are tested. The
solution of the next conjecture should provide guiding principles on how to approach Con-
jecture 3.6.

Conjecture 3.7. For m ∈ N fixed, the sequence of binomial coefficients {(m
l

)} is ∞-
logconcave.

A direct calculation proves the existence of rational functions Rr(m, l) such that

L(r)

(
m

l

)
=

(
m

l

)2r

Rr(m, l). (3.9)
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Moreover Rr satisfy the recurrence

Rr+1(m, l) = R2
r(m, l) −

[
l(m − l)

(l + 1)(m − l + 1)

]2r

× Rr(m, l − 1)Rr(m, l + 1).

Therefore we only need to prove that Rr(m, l) ≥ 0. This could be difficult.

Note. Conjecture 3.2 has been established by Manuel Kauers and Peter Paule. The preprint
A computer proof of Moll’s logconcavity conjecture established the conjecture using the RISC
package MultiSum.

4 Divisibility properties of bl,m

The original expression for bl,m (1.1), written in the form

bl,m = 2l

m∑
k=l

2k−l

(
2m − 2k

m − k

)(
m + k

m

)(
k

l

)
(4.1)

shows that the power of 2 that divides bl,m is at least l. A more detailed study of this power
requires the alternative representation of bl,m discussed in this section.

The evaluation of bl,m using (4.1) is efficient if l is close to m. Indeed,

bm,m = 2m

(
2m

m

)
and bm−1,m = 2m−1(2m + 1)

(
2m

m

)
.

The formulas described below are efficient for l small.
A direct computation of the (finite) Taylor series of the polynomial Pm yields its coeffi-

cients in terms of definite integrals related to (1.2). The details of the next theorem appear
in [10].

Theorem 4.1. There exist polynomials αl(m) and βl(m), with positive integer coefficients,
such that

bl,m =
2m−l

l!m!

(
αl(m)

m∏
k=1

(4k − 1) − βl(m)

m∏
k=1

(4k + 1)

)
. (4.2)

The degrees of αl and βl are l and l − 1 respectively. For instance

b0,m =
2m

m!

m∏
k=1

(4k − 1) (4.3)

b1,m =
2m−1

m!

(
(2m + 1)

m∏
k=1

(4k − 1) −
m∏

k=1

(4k + 1)

)
(4.4)

Numerical calculations on the roots of these polynomials, lead us to conjecture the location
of these roots. The next theorem was established by J. Little in [15].

Theorem 4.2. For every m ∈ N, all the zeros of the polynomials αl, βl lie on the vertical
line Re m = −1

2
.
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The proof is based on the fact that the auxiliary polynomials αl(u), βl(u), with u =
(s − 1)/2, satisfy the three-term recurrence

pl+1(s) = 2spl(s) − (s2 − (2l − 1)2)pl−1(s). (4.5)

A generalization of the classical Sturm separation theorem (see [16] for proofs) is then used
to establish the result.

The valuations. Arithmetic properties of numbers appearing in combinatorics have always
been of interest. The reader will find in [1] information about the prime decomposition of
Catalan numbers and [21] describes divisibility by 2 of the Stirling numbers of second kind.

We now describe divisibility properties of the sequence {bl,m}. We recall first some basic
definitions on valuations. Given a prime p and a rational number r, there exist unique
integers a, b, m with a and b not divisible by p such that

r =
a

b
pm (4.6)

The integer m is the p-adic valuation of r and we denote it by νp(m). Observe that we depart
from the usual convention m = −νp(m).

A basic result of number theory states that

νp(m!) =
∞∑

k=1

�m

pk
�. (4.7)

Naturally the sum is finite and we can end it at k = �log2 m�. There is a famous result of
Legendre [13, 14] for the p-adic valuation of m!. It states that

νp(m!) =
m − sp(m)

p − 1
, (4.8)

where sp(m) is the sum of the base-p digits of m. In particular

ν2(m!) = m − s2(m). (4.9)

The 2-adic value of b0,m follows directly from (4.3). It follows that

ν2(b0,m) = m − ν2(m!)

and Legendre’s result (4.9) reduces this to

ν2(b0,m) = s2(m). (4.10)

The next coefficient b1,m given in (4.4) was analyzed in [10]. The main result there is:

Theorem 4.3. The 2-adic valuation of b1,m is given by

ν2(b1,m) = s2(m) + ν2(m(m + 1)). (4.11)

The key element of the proof is to express the products in the definition of b1,m in terms
of the Stirling numbers of the first kind

x(x + 1)(x + 2) · · · (x + r − 1) =
r∑

k=0

[
r
k

]
xk (4.12)
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and the representation [
r

r − k

]
=

k−1∑
i=0

(
r

2k − i

)
Ck,i (4.13)

for some integers Ck,i.

We now present some conjectures about the functions ν2(bl,m) for l ≥ 2. Introduce the
notation

Al,m = αl(m)

m∏
k=1

(4k − 1) − βl(m)

m∏
k=1

(4k + 1), (4.14)

so that Theorem 4.1 states that

Al,m = l!m!2−m+lbl,m, for m ≥ l. (4.15)

For example,
A1,m = m!2−m+1b1,m (4.16)

and Theorem 4.3 implies that

ν2(A1,m) = ν2(2m(m + 1)). (4.17)

The first few values of ν2(A1,m) are given by

ν2(A1,m) = {2, 2, 3, 3, 2, 2, 4, 4, 2, 2, · · · } (4.18)

and we observe that this set consists of blocks of length 2, starting at odd integers, on which
the function A1,m has the same value. The explicit formula (4.17) can be used to chek this
property. Indeed, for m odd, we have

ν2(A1,m) = ν2(2m(m + 1)) = 1 + ν2(m + 1),

and
ν2(A1,m+1) = ν2(2(m + 1)(m + 2)) = 1 + ν2(m + 1).

This type of block structure it is conjectured to remains valid for l ≥ 2.

Definition 4.4. Let s ∈ N, s ≥ 2. We say that a sequence {aj : j ∈ N} is simple of length
s, or just s-simple if, for each t ∈ {0, 1, 2, · · · }, we have

ast+1 = ast+2 = · · · = as(t+1). (4.19)

For example, the sequence {ν2(A1,m), m ∈ N} is 2-simple.

The function A2,m is given by

A2,m = 2(2m2 + 2m + 1)

m∏
k=1

(4k − 1) − 2(2m + 1)

m∏
k=1

(4k + 1). (4.20)

and its 2-adic values are

ν2(A2,m) = {5, 5, 5, 5, 6, 6, 6, 6, 5, 5, 5, 5, · · · }.
Similarly

ν2(A3,m) = {7, 7, 9, 9, 8, 8, 9, 9, 7, 7, 10, 10, · · · }.
Therefore ν2(A2,m) is 4-simple and ν2(A3,m) is 2-simple.
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Conjecture 4.5. Let l ∈ N be fixed. Then the set {ν2(Al,m) : m ≥ l} is an s-simple sequence
with s = 21+ν2(l).

A recurrence. The recurrence (3.2) for the numbers bl,m and (4.15) yield

Al+1,m = 2(2m + 1)Al,m − 4(m + l)(m + 1 − l)Al−1,m. (4.21)

Using the WZ-method, now in the variable m, automatically produces the recurrence

bl,m+2 =
2(8m2 − 4l2 + 24m + 19)

(m + 2)(m − l + 2)
bl,m+1 − 4(4m + 5)(4m + 3)(m + l + 1)

(m + 2)(m + 1)(m − l + 2)
bl,m

that yields

Al,m+2 =
8m2 − 4l2 + 24m + 19

m − l + 2
Al,m+1 − (4m + 5)(4m + 3)(m + l + 1)

m − l + 2
Al,m.

In particular, for l = 1 we obtain

(4.22)

A1,m+2 =
8m2 + 24m + 15

m + 1
Al,m+1 − (4m + 5)(4m + 3)(m + 2)

m + 1
A1,m.

Some partial results on Conjecture 4.5 can be obtained from this recurrence. To illustrate
this, let m = 2k − 1 and as induction hypothesis we assume

ν2(A1,2k−1) = ν2(A1,2k) := t. (4.23)

To establish the conjecture we need to prove that

ν2(A1,2k+1) = ν2(A1,2k+2). (4.24)

We write A1,2k−1 = 2tx and A1,2k = 2ty, with x, y odd integers. Then m = 2k − 1 in (4.22)
yields

kA1,2k+1 = 2t−1
[
(32k2 + 16k − 1)y − (128k3 + 64k2 − 2k − 1)x

]
.

Writing
A1,2k+1 = 2wz

with z odd and using m = 2k in (4.22) yields

(2k + 1)A1,2k+2 = 2w(32k2 + 48k + 15)z − 2t+1(k + 1)(8k + 3)(8k + 5)y.

In particular, if w < t + 1 we have

(2k + 1)A1,2k+2 = 2w
[
(32k2 + 48k + 15)z − 2t+1−w(k + 1)(8k + 3)(8k + 5)y

]
,

so that ν2(A1,2k+2) = ν2(A1,2k+1)(= w) as required. It is unlikely that these elementary
arguments will produce a full proof of the conjecture.

A geometrical interpretation. The graphs of the function ν2(Al,m), where we reduce the
repeating blocks to a single value, are shown in the next figures.
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Figure 1: The 2-adic valuation of d1(m)

The main experimental result is that these graphs have an initial segment from which the
rest is determined by adding a central piece followed by a folding rule. For example, in the
case l = 1, the first few values of the reduced table are

{2, 3, 2, 4, 2, 4, 2, 3, 2, 5, . . .}.
The ingredients are:

initial segment: {2, 3, 2},

central piece: the value at the center of the initial segment, namely 3.

rules of formation: start with the initial segment and add 1 to the central piece and reflect.

This produces the sequence

{2, 3, 2} → {2, 3, 2, 4} → {2, 3, 2, 4, 2, 3, 2} → {2, 3, 2, 4, 2, 3, 2, 5} →
→ {2, 3, 2, 4, 2, 3, 2, 5, 2, 3, 2, 4, 2, 3, 2}.

The details are shown in Figure 1.

The difficulty with this procedure is that, at the moment, we have no form of determining
the initial segment nor the central piece. Figure 2 shows the beginning of the case l = 9.
From here one could be tempted to predict that this graph extends as in the case l = 1.
This is not correct as it can be seen in Figure 3. The new pattern described seems to be the
correct one as shown in Figure 4.

The initial pattern could be quite elaborate. Figure 5 illustrates the case l = 53.
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Figure 2: The beginning for l = 9

An algorithm and the main conjecture. We now present an algorithm that we hope
will lead to the derivation of an analytic expression for ν2(Al,m). The algorithm requires two
operators defined on sequences:

F ({a1, a2, a3, · · · }) := {a1, a1, a2, a3, · · · },
and

T ({a1, a2, a3, · · · }) := {a1, a3, a5, a7, · · · }.
Now recall the sequence c defined in (1.8):

c := {ν2(m) : m ≥ 1} = {0, 1, 0, 2, 0, 1, 0, 3, 0, · · · }.

We begin the description of the algorithm with the example l = 12. The sequence

X1(12) := {ν2(A12(m)) : m ≥ 1 }
begins with

X1(12) = { 34, 34, 34, 34, 34, 34, 34, 34, 36, 36, 36, 36, 36, 36, 36, 36,

35, 35, 35, 35, 35, 35, 35, 35, 36, 36, 36, 36, 36, 36, 36, 36,

34, 34, 34, 34, 34, 34, 34, 34, 37, 37, 37, 37, 37, 37, 37, 37, · · · }.
This is 8-simple, illustrating Conjecture 4.5, in view of 21+ν2(12) = 8.

The first step in the algorithm is to replace X1(12) by Y1(12) = T 3(X1(12)). This sequence
contains every eight element of X1(12) and it begins with

Y1(12) = { 34, 36, 35, 36, 34, 37, 36, 37, 34, 36, 35, 36, 34, 38, 37, 38,

34, 36, 35, 36, 34, 37, 36, 37, 34, 36, 35, 36, 34, 39, 38, 39,

34, 36, 35, 36, 34, 37, 36, 37, 34, 36, 35, 36, 34, 38, 37, 38, · · · }.
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Figure 3: The continuation of l = 9

The next step is to define Z1(12) := Y1(12) − c, with c as above. This sequence begins
with

Z1(12) = { 30, 31, 31, 30, 30, 33, 33, 31, 31, 32, 32, 31, 31, 33, 33, 30,

30, 31, 31, 30, 30, 34, 34, 32, 32, 33, 33, 32, 32, 34, 34, 30,

30, 31, 31, 30, 30, 33, 33, 31, 31, 32, 32, 31, 31, 33, 33, 30, · · · },
that is almost 2-simple, except that the first element appears only once. This motivates the
map F . The last step is to define W1(12) := F (Z1(12)), that produces

W1(12) = { 30, 30, 31, 31, 30, 30, 33, 33, 31, 31, 32, 32, 31, 31, 33, 33,

30, 30, 31, 31, 30, 30, 34, 34, 32, 32, 33, 33, 32, 32, 34, 34,

30, 30, 31, 31, 30, 30, 33, 33, 31, 31, 32, 32, 31, 31, 33, 33, · · · }.

This new sequence is 2-simple and the first loop is completed.

Algorithm.

1) Start with the sequence X1(l) := {ν2(Al(m)) : m ≥ 1 } .

2) Find n1 ∈ N so that the sequence X1(l) is 2n1-simple. Define Y1(l) := T n1 (X1(l)). We
conjecture that n1 = 1 + ν2(l).

3) Introduce the constant shift Z1(l) := Y1(l) − c.

4) Define W1(l) := F (Z1(l)).

The sequence W1 is 2n2-simple. Then return to step 1) with W1 instead of X1.

Conjecture 4.6. After a finite number of steps, the algorithm yields a constant sequence of
the form {a, a, a, a, a, a, · · · }. The constant term will be denoted by a∞(l).
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10 20 30 40 50 60 70
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Figure 5: The initial pattern for l = 53
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Definition 4.7. Let ω(l) be the number of steps required in the previous conjecture. The
sequence of integers

Ω(l) :=
{
n1, n2, n3, · · · , nω(l)

}
(4.25)

is called the reduction sequence of l.

We now present the values of the limiting constant a∞(l) and the sets Ω(l) for 1 ≤ l ≤ 32.
The data presented below was checked with tables of size 200 and validated with size 400.

l a∞(l) Ω(l)
1 2 1
2 5 2
3 7 1, 1
4 11 3
5 13 1, 2
6 16 2, 1
7 18 1, 1, 1
8 23 4
9 25 1, 3
10 28 2, 2
11 30 1, 1, 2
12 34 3, 1
13 36 1, 2, 1
14 39 2, 1, 1
15 41 1, 1, 1, 1
16 47 5

l a∞(l) Ω(l)
17 49 1, 4
18 52 2, 3
19 54 1, 1, 3
20 58 3, 2
21 60 1, 2, 2
22 63 2, 1, 2
23 65 1, 1, 1, 2
24 70 4, 1
25 72 1, 4, 1
26 75 2, 2, 1
27 77 1, 1, 2, 1
28 81 3, 1, 1
29 83 1, 2, 1, 1
30 86 2, 1, 1, 1
31 88 1, 1, 1, 1, 1
32 95 6

The main conjecture stated below provides a combinatorial interpretation of the sets
Ω(l).

Conjecture 4.8. The sets Ω(l) associated to the integers l from 2j + 1 to 2j+1 are the 2j

distinct compositions of j + 1.

To obtain the order in which the compositions appear, write all the binary sequences of
length j in lexicographic order and then preprend a 1 to each of these. For instance, for
j = 3 we obtain

1000, 1001, 1010, 1011, 1100, 1101, 1110, 1111.

Read these sequences from right to left. The first part of the set associated to l is the number
of digits up to and including the first 1 read in the corresponding binary sequence; the second
one is the number of additional digits up to and including the second 1 read, and so on. In
the case j = 3, this yields

4; 1, 3; 2, 2; 1, 1, 2; 3, 1; 1, 2, 1; 2, 1, 1; 1, 1, 1, 1

as desired.
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One last experimental conjecture. Based on observations of the values of ν2(Al,m),
Dante Manna has conjectured an analytic expression for this function:

ν2(Al,m) = ν2((m − l + 1)2l) + l. (4.26)

This is a generalization of Theorem 4.3. Expressing the Pochhammer symbol as quotients
of factorials, we can write (4.26) as

ν2(Al,m) = 3l + s2(m − l) − s2(m + l). (4.27)

It follows that the asymptotic value in Conjecture 4.6 is

a∞(l) = 3l − s2(l). (4.28)
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