INFINITE LOG-CONVEXITY

TEWODROS AMDEBERHAN AND VICTOR H. MOLL

Abstract

Аbstract. A criteria to verify log-convexity of sequences is presented. Iterating this criteria produces infinitely log-convex sequences. As an application, several classical examples of sequences arising in Combinatorics and Special Functions are presented. The paper concludes with a conjecture regarding coefficients of chromatic polynomials.

1. Introduction

Questions about the ordering of a sequence of non-negative real numbers $\mathrm{a}=\left\{a_{k}\right\}_{k}$, for $0 \leq k \leq n$, have appeared in the literature since Newton. He established that if $P(x)$ is a polynomial, all of whose zeros are real and negative, then the sequence of its coefficients $\mathrm{a}=\left\{a_{k}\right\}_{k}$ is log-concave; that is, $a_{k}^{2}-a_{k-1} a_{k+1} \geq 0$ for $1 \leq k \leq n-1$. A weaker condition on sequences is that of unimodality: that is, there is an index r such that $a_{0} \leq a_{1} \leq \cdots \leq a_{r} \geq a_{r+1} \geq \cdots \geq a_{n}$. An elementary argument shows that a log-concave sequence must be unimodal. A sequence $\mathrm{a}=\left\{a_{k}\right\}_{k}$ is called log-convex if $a_{k}^{2}-a_{k-1} a_{k+1} \leq 0$ for $1 \leq k \leq n-1$.

These concepts can be expressed in terms of the operator a $\mapsto \mathcal{L}(\mathrm{a})$ defined by $\mathcal{L}(\mathrm{a})_{k}=a_{k}^{2}-a_{k-1} a_{k+1}$. In this notation, the sequence $\mathrm{a}=\left\{a_{k}\right\}_{k}$ is log-concave if it satisfies $\mathcal{L}(\mathrm{a})_{k} \geq 0$ for $k \geq 1$. Similarly, the sequence is log-convex if $\mathcal{L}(\mathrm{a})_{k} \leq 0$. Iteration of \mathcal{L} leads to the notion of ℓ-log-concave sequences, defined by the property that the sequences $\mathcal{L}^{j}($ a) are all non-positive for $1 \leq j \leq \ell$ and a is infinitely log-convex if it is ℓ-log-convex for every $\ell \in \mathbb{N}$. The definitions of ℓ-log-concave and infinitely log-concave are similar.

The results presented here originate with the sequence of coefficients $\left\{d_{i}(n)\right\}_{i}$ of the polynomial

$$
\begin{equation*}
P_{n}(a)=\sum_{i=0}^{n} d_{i}(n) a^{i}, \tag{1.1}
\end{equation*}
$$

defined by

$$
\begin{equation*}
d_{i}(n)=2^{-2 n} \sum_{k=i}^{n} 2^{k}\binom{2 n-2 k}{n-k}\binom{n+k}{n}\binom{k}{i} . \tag{1.2}
\end{equation*}
$$

Date: December 30, 2023.
2020 Mathematics Subject Classification. Primary 05, Secondary 11.
Key words and phrases. log-convexity, log-concavity, combinatorial sequences, chromatic polynomials.

This polynomial appears in the evaluation of a definite integral. More details are presented in Section 5.

The goal of the present work is to develop a criteria which verifies the log-convexity of a variety of classical sequences. We record an elementary observation of independent interest.

Lemma 1. A positive sequence $\mathrm{a}=\left\{a_{k}\right\}_{k}$ is log-convex if and only if
$\mathrm{a}^{-1}=\left\{1 / a_{k}\right\}_{k}$ is log-concave.
Proof. Simply observe that

$$
\begin{equation*}
\mathcal{L}\left(\frac{1}{a_{k}}\right)=\frac{1}{a_{k-1} a_{k+1}}-\frac{1}{a_{k}^{2}}=\frac{\mathcal{L}(\mathrm{a})_{k}}{a_{k-1} a_{k}^{2} a_{k+1}} . \tag{1.3}
\end{equation*}
$$

Remark 1. This does not extend to k-log-concavity for $k \geq 2$. For instance, the sequence $\left\{1, \frac{1}{4}, \frac{1}{8}, \frac{1}{16}, \frac{1}{31}\right\}$ is 2-log-convex but the sequence of reciprocals is not $2-\log$-concave.

2. The criteria

In this section we establish the basic criteria used to establish infinite log-convexity of sequences.
Proposition 1. Let $\mathrm{a}=\left\{a_{k}\right\}_{k}$, with $a_{k}=\int_{X} f^{k}(x) d \mu(x)$ for a certain positive function f on a measure space (X, μ). Then $\mathrm{a}=\left\{a_{k}\right\}_{k}$ is infinitely log-convex.

Proof. It suffices to prove that $\mathcal{L}(\mathrm{a})_{k} \leq 0$. The general statement follows by iteration of the argument. The initial step is a consequence of

$$
\begin{aligned}
-\mathcal{L}(\mathrm{a})_{k} & =a_{k-1} a_{k+1}-a_{k}^{2} \\
& =\int_{X \times X} f^{k-1}(x) f^{k+1}(y) d \mu(x) d \mu(y)-\int_{X \times X} f^{k}(x) f^{k}(y) d \mu(x) d \mu(y) \\
& =\frac{1}{2} \int_{X \times X} f^{k}(x) f^{k}(y)\left(\frac{f(x)}{f(y)}+\frac{f(y)}{f(x)}-2\right) d \mu(x) d \mu(y) \\
& =\frac{1}{2} \int_{X \times X} f^{k-1}(x) f^{k-1}(y)(f(x)-f(y))^{2} d \mu(x) d \mu(y) .
\end{aligned}
$$

To iterate this argument, observe that \mathcal{L} a also satisfies the hypothesis of this proposition.

3. Examples of combinatorial sequences

This section presents a list of examples of log-convex sequences using Proposition 1. Example 2. The central binomial coefficients $\left\{\binom{2 k}{k}\right\}_{k}$ are infinitely log-convex.

Proof. This follows directly from Wallis' formula [6, Theorem 6.4.1] written in the form

$$
\begin{equation*}
\binom{2 k}{k}=\frac{2}{\pi} \int_{0}^{\pi / 2}(2 \sin x)^{2 k} d x \tag{3.1}
\end{equation*}
$$

Example 3. The Catalan numbers $C_{k}=\frac{1}{k+1}\binom{2 k}{k}$ are infinitely log-convex.
Proof. Applying the Wallis' integral formula for $\binom{2 k}{k}$ in (3.1), we obtain

$$
\begin{equation*}
C_{k}=\frac{2}{\pi} \int_{0}^{\pi / 2} \int_{0}^{1}\left(4 t \sin ^{2} x\right)^{k} d x d t \tag{3.2}
\end{equation*}
$$

Example 4. Let $\left\{F_{k}\right\}_{k}$ be the sequence of Fibonacci numbers. Then $\left\{F_{2 k} / k\right\}$ is infinitely log-convex.
Proof. This follows from the integral representation [11, eqn. (10.2)] written in the form

$$
\begin{equation*}
\frac{F_{2 k}}{k}=\frac{1}{2} \int_{0}^{\pi}\left(\frac{3}{2}+\frac{\sqrt{5}}{3} \cos x\right)^{k-1} d \mu(x) \quad \text { with } d \mu(x)=\sin x d x \tag{3.3}
\end{equation*}
$$

Example 5. The reciprocals of the binomial coefficients $\mathrm{a}_{\text {row }}=\left\{\binom{n}{k}^{-1}\right\}_{k}$ form an infinitely log-concave sequence. The same holds for the sequence $\mathrm{a}_{\mathrm{col}}=\left\{\binom{n}{k}^{-1}\right\}_{n}$.
Proof. Fix n and consider the expression $a_{k}=\binom{n}{k}^{-1}$. Using the integral representation of Euler's beta function

$$
B(n, m)=\frac{\Gamma(n) \Gamma(m)}{\Gamma(n+m)}=\int_{0}^{1} t^{n-1}(1-t)^{m-1} d t
$$

we have

$$
\begin{equation*}
a_{k}=\int_{0}^{1}\left(\frac{x}{1-x}\right)^{k} d \mu(k) \quad \text { with } d \mu(x)=(n+1)(1-x)^{n} d x \tag{3.4}
\end{equation*}
$$

Proposition 1 and (3.4) yield the infinite log-convexity of $\mathrm{a}_{\text {row }}=\left\{a_{k}\right\}_{k}$.
The second assertion follows from the representation

$$
\begin{equation*}
\binom{n}{k}^{-1}=\int_{0}^{1}(n+1)(1-x)^{n} d \eta(x) \quad \text { with } d \eta(x)=\left(\frac{x}{1-x}\right)^{k} d x \tag{3.5}
\end{equation*}
$$

Example 6. The derangement sequence d_{k} is defined as the number of permutations in \mathfrak{S}_{k} without fixed points. The integral representation of the even-indexed subsequence $d_{2 k}$ [17, page 313]

$$
\begin{equation*}
d_{2 k}=\int_{0}^{\infty}(x-1)^{2 k} d \mu(x) \quad \text { with } \quad d \mu(x)=e^{-x} d x \tag{3.6}
\end{equation*}
$$

Online Journal of Analytic Combinatorics, Issue 17 (2022), \#06
shows that $\left\{d_{2 k}\right\}_{k}$ is infinitely log-convex.
Example 7. A permutation $\pi=\pi_{1} \pi_{2} \ldots \pi_{n}$ in the symmetric group \mathfrak{S}_{n} is called alternating if its entries alternately rise or descend. The Euler number E_{n} counts the number of alternating permutations in \mathfrak{S}_{n}. Since $E_{2 k}=(-1)^{k} \widetilde{E}_{2 k}\left(\widetilde{E}_{2 k}\right.$ denotes the Eulerian numbers) and by the integral representation of $\widetilde{E}_{2 k}$ (see [3, eqn. (1)]), we have

$$
\begin{equation*}
E_{2 k}=\frac{2}{\pi} \int_{0}^{\infty}\left(\frac{2 \log x}{\pi}\right)^{2 k} d \mu(x) \quad \text { with } \quad d \mu(x)=\frac{d x}{1+x^{2}} \tag{3.7}
\end{equation*}
$$

Proposition 1 and (3.7) together imply that $\left\{E_{2 k}\right\}_{k}$ is infinitely log-convex.
Example 8. The large Schröder numbers S_{k} count the number of paths on a $k \times k$ grid from the southwest corner $(0,0)$ to the northeast corner (k, k) using only single steps north, northeast or east that do not rise above the southwest-northeast diagonal. Proposition 1 and the integral representation (see [19, eqn. (1.10)])

$$
\begin{equation*}
S_{k}=\frac{1}{2 \pi} \int_{3-2 \sqrt{2}}^{3+2 \sqrt{2}} \frac{1}{x^{k+2}} d \mu(x) \quad \text { with } \quad d \mu(x)=\sqrt{-x^{2}+6 x-1} d x \tag{3.8}
\end{equation*}
$$

show that $\left\{S_{k}\right\}_{k}$ is infinitely log-convex.
Example 9. The Motzkin numbers M_{k} count the number of lattice paths from $(0,0)$ to (k, k), consisting of steps $(0,2),(2,0)$ and $(1,1)$ subject to never rising above the diagonal $y=x$. Apply the integral representation [15, Corollary 12 (e)]

$$
\begin{equation*}
M_{2 k}=\frac{2}{\pi} \int_{0}^{\pi}(1+2 \cos x)^{2 k} d \mu(x) \quad \text { with } d \mu(x)=\sin ^{2} x d x \tag{3.9}
\end{equation*}
$$

reveals that the even-indexed Motzkin sequence $\left\{M_{2 k}\right\}_{k}$ is indeed infinitely log-convex.
Example 10. Let h_{k} be the number of lattice paths from $(0,0)$ to $(2 k, 0)$ with steps $(1,1),(1,-1)$ and $(2,0)$, never falling below the x-axis and with no peaks at odd level. These numbers also count the number of sets of all tree-like polyhexes with $k+1$ hexagons. This is sequence A002212 in OEIS. The integral representation

$$
\begin{equation*}
h_{k}=\frac{1}{2 \pi} \int_{1}^{5} x^{k-1} d \mu(x) \quad \text { with } d \mu(x)=\sqrt{(x-1)(5-x)} d x \tag{3.10}
\end{equation*}
$$

and Proposition 1 show that $\left\{h_{k}\right\}_{k}$ is infinitely log-convex.
Example 11. Let w_{k} be the number of walks on a cubic lattice with k steps, starting and finishing on the $x y$-plane conditioned to never going below it. This is sequence A005572 in OEIS. These numbers have the integral representation

$$
\begin{equation*}
w_{k}=\frac{1}{2 \pi} \int_{2}^{6} x^{k} d \mu(x) \text { with } d \mu(x)=\sqrt{4-(4-x)^{2}} \tag{3.11}
\end{equation*}
$$

The usual argument shows that $\left\{h_{k}\right\}_{k}$ is infinitely log-convex.

Example 12. The central Delanoy numbers D_{k} enumerate the number of king walks on a $k \times k$ grid, from the $(0,0)$ corner to the upper right corner (k, k). The integral representation due to F. Qi et. al. [20, Theorem 1.3]

$$
\begin{equation*}
D_{k}=\frac{1}{\pi} \int_{3-2 \sqrt{2}}^{3+2 \sqrt{2}} \frac{1}{x^{k+1}} d \mu(x) \quad \text { with } d \mu(x)=\frac{d x}{\sqrt{-x^{2}+6 x-1}} \tag{3.12}
\end{equation*}
$$

shows that $\left\{D_{k}\right\}_{k}$ is infinitely log-convex.
Example 13. The Narayana numbers $N(n, k)$ count the number of lattice paths from $(0,0)$ to $(2 n, 0)$, with k peaks, not straying below the x-axis and using northeast and southeast steps. Applying the integral formula for the Euler's beta function, the infinite log-convexity of the reciprocals of $N(n, k)=\frac{1}{n}\binom{n}{k-1}\binom{n}{k}$ follows from the integral representation

$$
\begin{equation*}
\frac{1}{N(n, k)}=\int_{0}^{1} \int_{0}^{1}\left(\frac{x}{1-x}\right)^{k}\left(\frac{y}{1-y}\right)^{k-1} d \mu(x, y) \tag{3.13}
\end{equation*}
$$

where $d \mu(x, y)=n(n+1)^{2}(1-x)^{n}(1-y)^{n} d x d y$.

4. A variety of examples from special functions

This section presents a selection of sequences related to classical special functions.
Example 14. The sequence of factorials $\{k!\}_{k}$ is infinitely log-convex.
Proof. Apply the representation

$$
\begin{equation*}
k!=\int_{0}^{\infty} x^{k} d \mu(x) \quad \text { with } \quad d \mu(x)=e^{-x} d x \tag{4.1}
\end{equation*}
$$

Example 15. The classical Eulerian gamma and beta functions are defined by integral representations

$$
\begin{equation*}
\Gamma(a)=\int_{0}^{\infty} t^{a-1} e^{-t} d t \tag{4.2}
\end{equation*}
$$

and

$$
\begin{equation*}
B(a, b)=\int_{0}^{1} t^{a-1}(1-t)^{b-1} d t \tag{4.3}
\end{equation*}
$$

Specialization of these formulas and Proposition 1 give infinitely log-convex sequences. Example 14 corresponds to the special value $\Gamma(k+1)=k!$. Another infinitely logconvex sequence arising in this manner is $\left\{a_{k}\right\}_{k}$, with

$$
\begin{equation*}
a_{k}=\frac{(2 k)!}{2^{2 k} k!}=\frac{1}{\sqrt{\pi}} \Gamma\left(k+\frac{1}{2}\right) . \tag{4.4}
\end{equation*}
$$

Online Journal of Analytic Combinatorics, Issue 17 (2022), \#06

Naturally, the specialization of (4.3) gives a double-indexed log-convex sequence (symmetric in m and n)

$$
\begin{equation*}
B(n, m)=\frac{\Gamma(n) \Gamma(m)}{\Gamma(n+m)}=\frac{(n-1)!(m-1)!}{(n+m-1)!} \tag{4.5}
\end{equation*}
$$

Clearly, many other examples can be produced in this manner.
Example 16. The integral representation of the Riemann zeta function (see [21, eqn. (2.4.1)])

$$
\begin{equation*}
\zeta(s)=\frac{1}{\Gamma(s)} \int_{0}^{\infty} \frac{x^{s-1} d x}{e^{x}-1} \quad \text { with } \operatorname{Re}(s)>1 \tag{4.6}
\end{equation*}
$$

gives for $k \in \mathbb{N}$,

$$
\begin{equation*}
\Gamma(k) \zeta(k)=\int_{0}^{\infty} x^{k} d \mu(x) \quad \text { with } d \mu(x)=\frac{d x}{x\left(e^{x}-1\right)} \tag{4.7}
\end{equation*}
$$

Proposition 1 shows that the sequence $\{\Gamma(k) \zeta(k)\}_{k}$ is infinitely log-convex.
Example 17. The values of the Riemann zeta function at even integers is given in terms of the Bernoulli numbers $B_{2 k}$ defined by the generating function

$$
\begin{equation*}
\operatorname{coth} x=\frac{1}{x} \sum_{k=0}^{\infty} \frac{B_{2 k}}{(2 k)!}(2 x)^{2 k} \tag{4.8}
\end{equation*}
$$

The aforementioned relation and taking the logarithmic derivative of the function $\sin z=z \prod_{n=1}^{\infty}\left(1-\frac{z^{2}}{n^{2} \pi^{2}}\right)$ with the substitution $z \mapsto i x$, it follows that

$$
\begin{equation*}
B_{2 k}=\frac{(-1)^{k+1} 2(2 k)!}{(2 \pi)^{2 k}} \zeta(2 k) . \tag{4.9}
\end{equation*}
$$

The integral representation (4.6) yields

$$
\begin{equation*}
\frac{B_{4 k+2}}{4 k+2}=\int_{0}^{\infty} 2\left(\frac{x}{2 \pi}\right)^{4 k+2} d \mu(x) \quad \text { with } d \mu(x)=\frac{d x}{x\left(e^{x}-1\right)} \tag{4.10}
\end{equation*}
$$

From here it follows that the sequence $\left\{\frac{1}{4 k+2} B_{4 k+2}\right\}_{k}$ is infinitely log-convex.
The next example emerges from a multi-dimensional integral:
Example 18. Fix $d \in \mathbb{N}$. Then the sequence $\left\{\frac{1}{(k+1)^{d}}\right\}_{k}$ is infinitely log-convex.
Proof. Apply the representation

$$
\begin{equation*}
\frac{1}{(k+1)^{d}}=\int_{0}^{1} \cdots \int_{0}^{1}\left(x_{1} x_{2} \cdots x_{d}\right)^{k} d \mu(\mathbf{x}) \tag{4.11}
\end{equation*}
$$

with $d \mu(\mathbf{x})=d x_{1} d x_{2} \cdots d x_{d}$.
The final example in this section is a generalization of Example 3.

Example 19. The generating function of the Catalan numbers C_{k} is

$$
\begin{equation*}
G(x)=\frac{2}{1+\sqrt{1-4 x}}=\sum_{k=0}^{\infty} C_{k} x^{k} . \tag{4.12}
\end{equation*}
$$

Li et al. [14, eqn. (1.10)] considered the function

$$
\begin{equation*}
G_{a, b}(x)=\frac{1}{a+\sqrt{b-x}}=\sum_{k=0}^{\infty} \mathcal{C}_{k}(a, b) x^{k} \tag{4.13}
\end{equation*}
$$

as a generalization of (4.12). The coefficients $\mathcal{C}_{k}(a, b)$ admit the integral representation [14, Theorem 3.1, eqn. (3.2)]

$$
\begin{equation*}
\mathcal{C}_{k}(a, b)=\frac{2}{\pi} \int_{0}^{\infty} \frac{s^{2} d s}{\left(a^{2}+s^{2}\right)\left(b+s^{2}\right)^{n+1}} \tag{4.14}
\end{equation*}
$$

(see [18, 7.4.1]. Proposition 1 shows that, for fixed a and b, the sequence $\left\{\mathcal{C}_{k}(a, b)\right\}_{k}$ is infinitely log-convex.

Among the expressions for $\mathcal{C}_{n}(a, b)$ one finds the finite sum [14, Theorem 2.1]

$$
\begin{equation*}
\mathcal{C}_{n}(a, b)=\frac{1}{(2 n)!!b^{n+1 / 2}} \sum_{k=0}^{n}\binom{2 n-k-1}{2(n-k)} \frac{k![2(n-k)-1]!!}{(1+a / \sqrt{b})^{k+1}} \tag{4.15}
\end{equation*}
$$

the hypergeometric representation

$$
\mathcal{C}_{n}(a, b)=C_{n} \frac{\pi}{(2 \sqrt{b})^{n}} \frac{1}{(a+\sqrt{b})^{n+1}} 2 F_{1}\left(\begin{array}{cc|c}
1-n & n & \frac{\sqrt{b}-a}{n+2} \tag{4.16}
\end{array}\right)
$$

and an expression in terms of the Jacobi polynomials $P_{n}^{(\alpha, \beta)}$ (see [2]):

$$
\begin{equation*}
\mathcal{C}_{n}(a, b)=\frac{\pi}{n(2 \sqrt{b})^{n}} \frac{1}{(a+\sqrt{b})^{n+1}} P_{n-1}^{(n+1,-n-1)}\left(\frac{a}{\sqrt{b}}\right) . \tag{4.17}
\end{equation*}
$$

5. The motivating example

As mentioned in the Introduction, the sequence that lead the authors to the present work results from the evaluation of the quartic integral

$$
\begin{equation*}
N_{0,4}(a ; n)=\int_{0}^{\infty} \frac{d x}{\left(x^{4}+2 a x^{2}+1\right)^{n+1}} \tag{5.1}
\end{equation*}
$$

The main result of [7] is that the expression

$$
\begin{equation*}
P_{n}(a)=\frac{1}{\pi} 2^{n+3 / 2}(a+1)^{n+1 / 2} N_{0,4}(a ; n) \tag{5.2}
\end{equation*}
$$

is a polynomial in a, of degree n, with the coefficient of a^{i} given by

$$
\begin{equation*}
d_{i}(n)=\sum_{k=i}^{n} 2^{k-2 n}\binom{2 n-2 k}{n-k}\binom{n+k}{k}\binom{k}{i} . \tag{5.3}
\end{equation*}
$$

Online Journal of Analytic Combinatorics, Issue 17 (2022), \#06

Properties of these coefficients are studied in [16]. In particular, for fixed n, the sequence $\left(d_{i}(n)\right)_{i}$ was shown to be unimodal in [1, 5, 8]. Its log-concavity was established in [13] and its 2-log-concavity appeared in [10]. The question about the infinite log-concavity of $\left\{d_{i}(n)\right\}_{i}$ remains open. The next statement follows from Proposition 1 :

Proposition 2. For fixed $r \in \mathbb{N}$, the sequence $\left\{P_{n}(r)\right\}_{n}$ is infinitely log-convex.
Proof. Proposition 1 and the integral representation

$$
\begin{equation*}
P_{n}(r)=\frac{2^{3 / 2} \sqrt{r+1}}{\pi} \int_{0}^{\infty}\left(\frac{2(r+1)}{x^{4}+2 r x^{2}+1}\right)^{n} d \mu(x) \tag{5.4}
\end{equation*}
$$

with $d \mu(x)=\frac{d x}{x^{4}+2 r x^{2}+1}$, yield the result.

6. Chromatic polynomials

This last section discusses properties of chromatic polynomials of graphs. Recall that given an undirected graph G and x distinct colors, the number of proper colorings (adjacent vertices having distinct colors) is a polynomial in x, called the chromatic polynomial of G and denoted by $\kappa_{G}(x)$.

Examples of chromatic polynomials include

- If G is a graph with n vertices and no edges, then $\kappa_{G}(x)=x^{n}$;
- If G is a tree with n vertices, then $\kappa_{G}(x)=x(x-1)^{n-1}$;
- If G is the complete graph with n vertices, then

$$
\kappa_{G}(x)=x(x-1) \cdots(x-n+1) .
$$

In these examples, the chromatic polynomials have only real roots. The log-concavity of the coefficients follows from a work of P. Bränden [9].

Other examples of chromatic polynomials include

- For a cycle G with n vertices, $\kappa_{G}(x)=(x-1)^{n}+(-1)^{n}(x-1)$;
- If G is the bipartite graph $K_{n, m}$, then

$$
\kappa_{G}(x)=\sum_{j=0}^{m} S(m, j)(x)_{j}(x-j)^{n}
$$

where $S(m, k)$ is the Stirling number of the second kind and $(x)_{k}=x(x-$ 1) $\cdots(x-k+1)$ is the falling factorial.

- If G is the cyclic ladder graph with $2 n$ vertices, then

$$
\begin{equation*}
\kappa_{G}(x)=\left(x^{2}-3 x+3\right)^{n}-(1-x)^{n+1}-(1-x)(3-x)^{n}+\left(x^{2}-3 x+1\right) . \tag{6.1}
\end{equation*}
$$

- If G is the signed book graph $B(m, n)$, then

$$
\begin{equation*}
\kappa_{G}(x)=(x-1)^{m} x^{-n}\left((x-1)^{m}+(-1)^{m}\right)^{n} . \tag{6.2}
\end{equation*}
$$

These examples, as well as many more from the long list given by Birkhoff and Lewis [4], have been tested to be infinitely log-concave.

J. Huh [12] proved:

Theorem 20. The absolute values of the coefficients of a chromatic polynomial $\kappa_{G}(x)$ are logconcave.

The authors will analyze chromatic polynomials by the methods presented in this paper. In the meantime, based on some experimental evidence, we invite the reader to:

Conjecture 21. The absolute values of the coefficients of any chromatic polynomial are infinitely log-concave.

Acknowledgements. The authors wish to thank a referee for a meticulous report on the original version of the paper.

References

[1] T. Amdeberhan, A. Dixit, X. Guan, L. Jiu, and V. Moll. The unimodality of a polynomial coming from a rational integral. Back to the original proof. Jour. Math. Anal. Appl., 420:1154-1166, 2014.
[2] G. E. Andrews, R. Askey, and R. Roy. Special Functions, volume 71 of Encyclopedia of Mathematics and its Applications. Cambridge University Press, New York, 1999.
[3] E. M. Beesley. An integral representation for the Euler numbers, Amer. Math. Monthly, 389-391, 1969.
[4] G. D. Birkhoff and D. C. Lewis. Chromatic polynomials. Trans. Amer. Math. Soc., 60:355-451, 1946.
[5] G. Boros and V. Moll. A criterion for unimodality. Elec. Jour. Comb., 6:1-6, 1999.
[6] G. Boros and V. Moll. Irresistible Integrals: Symbolics, Analysis and Experiments in the Evaluation of Integrals. Cambridge University Press, 2004.
[7] G. Boros and V. Moll. An integral hidden in Gradshteyn and Ryzhik. Jour. Comp. Applied Math., 106:361-368, 1999.
[8] G. Boros and V. Moll. A sequence of unimodal polynomials. Jour. Math. Anal. Appl., 237:272-287, 1999.
[9] P. Brändén. Iterated sequences and the geometry of zeros. J. reine angew. Math., 658:115-131, 2011.
[10] W. Y. C. Chen and E. X. W. Xia. 2-Log-concavity of the Boros-Moll polynomials. Proc. Edinb. Math. Soc., 56(3):701-722, 2013.
[11] K. Dilcher. Hypergeometric Functions and Fibonacci Numbers. The Fibonacci Quarterly, 38(4): 342363, 2000.
[12] J. Huh. Milnor numbers of projective hypersurfaces snd the chromatic polynomials of graphs. Journal of Amer. Math. Soc., 25(3):907-927, 2012.
[13] M. Kauers and P. Paule. A computer proof of Moll's log-concavity conjecture. Proc. Amer. Math. Soc., 135:3837-3846, 2007.
[14] W-H. Li, J. Cao, D-W. Niu, J-L. Zhao and F. Qi. An analytic generalization of the Catalan numbers and its integral representation. https://arxiv.org/pdf/2005.13515.pdf
[15] P. McCalla and A. Nkwanta. Catalan and Motzkin Integral Representations. Chapter in The Golden Anniversary Celebration of the National Association of Mathematicians, 125-134, 2020.

Online Journal of Analytic Combinatorics, Issue 17 (2022), \#06
[16] D. Manna and V. Moll. A remarkable sequence of integers. Expositiones Mathematicae, 27:289-312, 2009.
[17] R. J. Martin and M. J. Kearney. Integral representations of certain combinatorial sequences. Combinatorica, 35: 309-315, 2015.
[18] A. P. Prudnikov, Yu. A. Brychkov, and O. I. Marichev. Integrals and Series, volume 3: More Special Functions. Gordon and Breach Science Publishers, 1990.
[19] F. Qi, X-T. Shi and B-N. Guo. Integral representations of the large and little Schröder numbers. Indian J. Pure and Applied Math., 49, 23-38, 2018.
[20] F. Qi, V. Čerňanová, X-T. Shi and B-N. Guo. Some properties of central Delannoy numbers. J. Comput. and Applied Math., 328, 101-115, 2018.
[21] E. C. Titchmarsh. The Theory of the Riemann Zeta-Function. Oxford University Press, second edition, 1986.

Department of Mathematics, Tulane University, New Orleans, LA 70118
Email address: tamdeber@tulane.edu
Department of Mathematics, Tulane University, New Orleans, LA 70118
Email address: vhm@tulane.edu

