IDENTITIES INVOLVING SUM OF DIVISORS, INTEGER PARTITIONS AND
COMPOSITIONS

MATEUS ALEGRI

ABSTRACT. In this paper we show some identities come from the g-identities of Euler,
Jacobi, Gauss and Rogers-Ramanujan. Some of these identities relating the function sum
of divisor of a positive integer n and the number of integer partitions of n. One of the
most intriguing result found here is given by the next equation, for n > 0.

zéll' ) o1 (w)o (wp) - -- o1 (wy) _ p1(n),

: w1+w2+...+w1€C(n) wle o wl

where ¢q(n) is the sum of all positive divisors of n, pj(n) is the number of integer
partitions of n, and C(n) is the set of integer compositions of n. In the last section we
show seven applications, one of them is a series expansion for

(474" )oo (329" )oo - - - (473 9% ) oo

(999M) 00 (3254920 -+ (37 97 ) oo
where ay,...,a,,by, ..., b, c1,...,0,d1,...d, are positive integers, and |g| < 1.

4

1. INTRODUCTION

In Alegri [1], the authors found some new identities as

y (=1)"pa(wy —2) - - - pa(wm —2) _ L’fJ (—1)*por(n — 2k)
w1 +...4wy €C(n) (Zm + 1)' k=1 (2k + 1)'
w,-ZZ

where py(n) is the number of k-colored partitions of 1, and C(n) is the set of the integer
compositions of n. This and other identities were obtained by a simple technique that
the authors employed which is based on obtaining the coefficient of 4" on an infinite
product. In this work, we use related techniques to find some identities coming from
g-hypergeometric series, as defined in Bailey [9], which are expressed as an infinite
product.
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2 M. ALEGRI

As the title of the paper suggests, an important function for our purposes is the sum
of positive divisors function oy (1), for a complex x, is an arithmetic function given by:

ox(n) =Y d*.
d|n
a>0

In section 2 we obtain results involving the function that counts the number of integer
partitions in at most k colors. This function is widely studied as in recent articles like
Chern and Fu [12] and Fu and Tang [14].

An integer partition' of n is a non-increasing sequence of natural numbers whose
sum is n. The partitions of n = 4 are given next: 4,3+1,2+2,2+1+1and 1+1+
1+ 1. A k-colored partition of n is an integer partition of n wherein each part appear
colored with one of k available colors. For example, if k = 2, and the colors are black
and red, the 2-colored partitions of n = 4 are: 4, 4,3+1,3+1,3+1,3+1,242,
242,2+2,2+1+1,24+1+1,24+1+1,24+14+1,241+1,24+14+1,14+14+1+1,
I1+1+1+1L,1+1+1+L,1+1+1+1and1+1+1+1.

Let px(n) denote by the number of k-colored partition of an integer n. The generating
function for py(n) is given by the next infinite product.

.
L " = oo

where the g-Pochhammer symbol is defined by:

(0,q) = (1—a)(1—aq)(1—ag?)--- (1 —ag"1), ifn>0;
A, if n=0.

Taking the limit n — oo, we have:
(@,q)eo = lim (a, ).

One result involving colored integer partitions found here is the next, for n > 1.

o (_1)mmtl m oy (n
Z( D Z(_l)k( :1>Pm+1—k("): 1)

=0 m+1 =0 n

Another useful concept here is the integer compositions. An integer composition of
a positive integer n is an ordered collection of positive integers whose sum is n. The
set of compositions of # is denoted by C(n). There are 8 integer compositions of 4:

C4)={43+1,1432+224+1+1,1+2+1L,1+14+21+1+1+1}.

One of the first mathematicians who made extensive use of integer compositions was
Major Percy A. MacMahon as in [24, 25]. More recent results involving integer compo-
sitions can be found in Heubach [21] and Sills [32].

IMore information about integer partitions can be found in Andrews [2, 3, 4, 6]
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In this paper, some of our results were obtained using identities of Euler, Gauss,
Jacobi and Rogers-Ramanujan. The first three ones are particular cases of the triple
product identity as given next.

Theorem 1 (The Triple Product Identity). For |q| < 1and x € C — {0},

o0

(% D)oo (q/ % oo (@00 = Y (—1)fg V724K,

k=—o0

The proof of this theorem can be found in Andrews [4]. For our purposes it is
important to find the coefficient of 4" in

(o)

for a positive integer I and a sequence of non-zero complex numbers (a,),>1. The
multinomial coefficients is

l B !
(kl,...,kn_1> o kilka!e k!
where k, =1 — (k1+k2—|—...—|—kn_1),0§ki <L1<i<n.

This number is found in the expansion of (x; 4+ x + ...+ x;)!, as in theorem 3.7 of
Charalambides[11], but our problem is quite different, because we have an infinite
series instead of a polynomial one. For this intent, we will use integer compositions of
n and we have the next result.

Proposition 1. For n > [, the coefficient of q" in the expansion of
o !
< Z anqn)
n=1

Z awlawz c awl
wy+wy+...+w;€C(n)

is equal to

Two of the most famous g-hypergeometric identities are the first and second
Rogers-Ramanujan identities, which are respectively:

2

o) qn 1
1.1 _ ,
b n;) (@D)n  (30°)(9%0%)eo
0 (I’lerYZ) 1
q
(1.2 _ ,
) ; (@a)n  (0%0°)(9% 0%

for |q| < 1.
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The two last theorems of the penultimate section of this paper make use of these
identities. Analytical proofs and combinatorial interpretations for the first and second
Rogers-Ramanujan identities can be found in Andrews [6], Ramanujan [28], Rogers [29,
30] and Sills [33].

In the papers of Heim et al, [17, 18, 19], the authors obtained results involving the
function

1 -z 2 _
(775m(m) =TI0-497%
n=1
for t € H = {b € C|Im{b} > 0}, z € C, and the 7 function as given in Ono [27].
Considering the Fourier expansion of the function above, we get

(7 %n(0) = éPn(ZM”-

As explained in [17], closed formulas for the polynomials P,(z) are not yet known.
In the second section of this paper we will exhibit a formula for these polynomials
depending on integer compositions, z € C, and sum of divisors function, ;7. This
formula is, for n > 0,

O D D

I=1 """ wy+wy+...+w;eC(n) Wy -~y

The problem of finding these polynomials is posed by Morris Newman in [26]. Prop-
erties of P,(z) are explored in [26], as well as by S. Ramanujan (see [20]). For z =k, a
positive integer, we have a very interesting combinatorial interpretation. In fact, P, (k)
is equal to the number of colored partitions of n where each part can be colored in up
to k colors. Results for this class of partitions can be found in Chern and Fu, [12], [14],
respectively.

Since for Im{z} > 0, ¢ = ¢*™* and |q| < 1, we can write the Dedekind eta function,
as found in Ono [27], Bailey [9], Apostol [8] and Berndt [10], as

P 3 =y (=1 o1 (w1)or(wy) - - - o1 (wy)
n(z) =q# ] 1 = ) Ba(=)q"=1+) ), )y q
n= L—g" n=0 n=1I1=1 I w1 +wy+--+w;C(n) Wiz - - W
By the Euler pentagonal number theorem,
(1'3) Z (_1)nqn(3n+1)/2 _ H(l . 0]”),
n=-—oo n=1

for |q| < 1, we can write, for n > 0:

i (—1)! y 01 (w1) o (wp) - - 01 (w)) _ {(—1)k, if n =k(3k+1)/2

wiwyz - - - wy 0, elsewhere

=1 : w1+w2+-~~+wleC(n)
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In the last section we will show that

NlH

77(2 ZLIO—O[HQ"”:% jiZ

17( Z dwlde e dwlqnz

W1+wZ+"'+wl€C(H)

wherein o
—1)4+
in= T U
|n, d>0
It is evident that the previous quotient is related to integer partitions into distinct
parts. In this paper we will obtain some results for this class of integer partitions. Still
in this article we will obtain an expansion for Gaussian polynomials

[n} _ 1-q)(1-4>)---(1-q")
kl, (1-91-¢*)-(1-g)1-9)1—-¢*) - (1—g"F)

defined for |g| < 1 and k < n. A nice expansion for these is well known:

[ Z ] =Y p(j| < kparts,each < n—k)q,
q j=0

ours is given by

o ]
n 1 '
{k} =1+22ﬁ Y. Swi 8w+ Sy 9
q J=11=1 " wi+wy+---+w;€C(n)
where
1 1
8= 2 i )3 o
dlj, d>0 e|j, e>0
[<k I>n—k+1

In the paper “Some new infinite families of 17 -function identities Leininger and
Milne [23], found beautiful expansions for (q,q)k *+2 (Section 2), (g; ) (Section 3) and

a conjecture for (g; q)k2 =2 (Section 4).
For the first product we have

Gl =1+Y ). (_1)l(lk!2 2Ly alatw),

n=11=1 wi+wy+--w;eC(n) Rt

For the second and third products, the expansions are:

(G =1+ i i (—]i?ZkZZ y o1 (wy) - - 'Ul(wl)qn’

n=1I[=1 : w1+w2+"‘WZEC(Tl) (£ wl

Online Journal of Analytic Combinatorics, Issue 17 (2022), #03
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(2:9) i i —2)! > op(wy) - - 'Ul(wl)qn

wi+wy+--w;€C(n) Wy
In this article we will find more general expansions than the previous ones. We will
deal with expansions like (g% g*)~?, where a and b are positive integers and z,q € C,
|g| < 1. In this case, we will show that

(49" =1+ Z Z - Y Pa,p(W1)Pap(w2) - - - 0ap(wr)q",

n=1I= ! wytwy+---+w;C(n)

where .
Pa,b(n) = Z 5

dn, d>0

d_umodb

In the ante-penultimate result of this paper, we will prove next the equation

(9 4") 0 (9% 4") oo - - - (9% 4™

=1+ — H(wy)H(wy) - - - H(w;)q",
(qcl;qdl)oo(q”; qdz) - (g% qdr nzllZ ! w1+w2+...Z+wl€C(n) : i
where

H(Tl) = pﬂll,b1 (1’1) - paz,bz(n) e 'pﬂkrbk (Tl) + pClzcl (Tl) + pcz,dz (1’[) +.o+ pr,dy (Tl)
2. JACOBI

The g-identity utilized here, due to Jacobi, is the following.

oo o0

2.1) 2 "(2n+1)g" V2 = TT(1 - ¢")°

= n=1
for |q| < 1. This identity can be found in Jacobi [22] and Andrews [4]. Using the
previous equation, we can state the following result.

Theorem 2. For n > 1, we have

i (-1)'8’ y o1 (wy)oy(wy) - - - o1 (wy)

I=1 I wi+wy+...+w;€C(n) 0wz - - W
CJ(-Dk2k+1), ifn=k(k+1)/2
o, elsewhere

Proof. For g € R, |q| < 1, we have

m(ﬁ(l— >—3Zln (1—¢

n=1

and expanding In(1 — g") into Taylor series, we get
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- m+1 n(n+1)/2 _ _ - qnm
Z:: 7 B mz_:l m -
Thus,
00 00 00 2n 3n 4n
ln(H(l— ):_322’4 3(zqn+‘7—+‘7—+‘7—+...>
n=1 n=1m n=1 2 3 4

We are interested in finding the coefficient of 4" in

00 2n 3n n
T I N
nz_lq+2+3+4+...

One may note that

& g3 1 1 1.1 1 1.1 1
g e =g GNP GADP+ G DI+ G+ G+ D+

3 3 2 4
and generally the coefficient of 4" in this sum is given by the sum of reciprocals of the
positive divisors of 7. It is well-known that this sum is given by = ( ), and then
In (H(l - > Z
n=1

so that the identity of Jacobi, (2.1), can be rewritten

Z "(2n +1)g" " +D/2 = exp ( -3 Z a(n )

wherein exp(z) = e*. By the Taylor expansion of the complex exponential function of

the previous equation, we have

l
5 (o pgeenn - £ G (F ol

n=0 I=0 n=1
Using the proposition 1, the following equation is true.

(ee]

© N Inl
_1\n n(n+1)/2 _ (_1) 3 Uw Tw, * Oy n

n=0 w1+w2+...+w,€C(n)

We conclude the proof of the theorem by comparing the coefficient of 4" in both sides
of the previous equation.

[l

Online Journal of Analytic Combinatorics, Issue 17 (2022), #03
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For the next result, we shall consider the derivative of the equation (2.1) regarding
the variable g as given next.

i(_l)nn(n - 1)2(2n + 1)qn(n+1)/2—1 exp ( 3 i 01 > diq [_3 i alr(zn)qn]

n=1 n=1 =l
- (i( 1) (20 + 1)g" 0+ ) ( IHAD )
n=0
= _3 (i(—l)”(ZnJrl)q n(n+1)/ ) (Z o1(n+1)q" >
n=0 n=0
Writing
L (1) 2+ g = 3 g’
n=0
where

(—D)1302k+1), ifn=k(k+1)/2
Cp =
0, elsewhere

we have

S - nn+1)2n+1 -
Z Z o (I +1)q" = Z(_1)n ( )2( )qn(n+1)/2 1
n=1k+Il=n n=1
Comparing the coefficient of 4" in both sides of the previous equation, we can state
the next result.

Theorem 3. For n > 1, we have

=DMk +1)(2k+1) /2, ifn=k(k+1)/2—-1
kan (1) = {O, elsewhere

3. EULER

One equation useful to obtain the next result is the well-known Euler identity as
given next.
Forg e R, |q| <1,

Zm VD DR Sy | L
=0 (@q)n o 1—g"
This equation can be found in Euler [13], Weil [34] and Andrews and Eriksson [6],
in the latter, a proof with combinatorial arguments is provided. The first result in this
section is the following.




SUM OF DIVISORS, INTEGER PARTITIONS AND COMPOSITIONS 9

Theorem 4. For n > 1, we have

il > o1 (w1)oy (wa) - - - oy (wy) p1 (n)
I=1 I wy+wy+...+w€C(n) w1wz wi
Proof. Since g € R, |q| < 1, we have
[} 1 o0 oo o0 nm o o (n
n=1 n=1 n=1m=1 n=1

Thus, we can rewrite this Euler identity as

)
£ ) - (£ 2]

n=1

i p1(n)q" = exp (

n=0
As we known,

N r(w)ar(ws) o (w) |
( . q) =3 )3 T

therefore,

- R o1 (wy)or(w) - - o1 (wy) ,
r;lpl(n)q _,12_1;1_' y 1(wy)oq (wy @) o

17" wyi+wo+... 4w eC(n) Wz - -~ W
and the conclusion of the proof coming from comparing the coefficient 4" in both sides
of the last equation. d

For example, if n =5, we have 07(1) =1, 1(2) =3, 1(3) =4, n(4) =7, 1(5) = 6
and then,

ill > o (w)or(wz) - on(wy)  1ey(5) 1 (2(71 (4)

| |
W1+wy+...4+w,€C(5) wwy - - - Wy 1 5 2!

+s%! (3‘71:23) 1+302) 01(2)> o (401(2)> A (@ (1)) =7 = ;(5).

2 2 4! 2

In the other hand, for |gq| < 1/10, we have | Y, ,p1(n)g"| < 1. Actually, for |g| <
1/10 it is a fact that | Y_;~(p1(n)g"| < 0,2. Thus, we can consider the Taylor series
expansion of In(Y ;_op1(n)q") = In(1+ Y1 p1(n)q"). Here we get:

0o 0o m—+1
ln<1+2p1(n)q”>:z(m+1 <1+Zp1 )

n=1

Online Journal of Analytic Combinatorics, Issue 17 (2022), #03
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Particularly,

m+1
3 n AR A S = A o
(1+n§1p1(n)q ) = ((q;q)m 1> - kg)( ! >(q,q)m+1 y

W}qw is the generating function for the number of col-

ored partitions of an integer n into at most m + 1 — k colors, we can write

Since the infinite product

_1\k m+1 m 0 o m4+1 "
o= L) B = &L 0" ) pusasto

(4:9 k=0 n=0 n=0 k=0
So we get

o © o0 ( q\m (_1\m m+l m
n (Zom(n)q”> =) ) (mi)1 (m—li—)l (_1)k( Zl)pm+1‘k(")qn

By the previous theorem, we know that

Therefore, the next result is valid.

¢
=
=
X

Theorem 5.

0 (_1ym m+l
R ()

m=0

O
The last two theorems in this section making use of equation (1.3). The first one is
given next.

Theorem 6. For n > 0, we have

D e a@a)aw) {(—1)’2 ifn = K(3k+1)/2

[ e
I=1 I wy+wy+...+w; €C(n) W12 wi 0, elsewhere

Proof. Since for g € R, |q| < 1, we have

In <10—OI(1 - q”)) =y 2

n=1

then

I
Z(_l)nqn(3n+1)/2 = exp <_ Z Ulr(ln)qn> _ Z% <_ Z 0'11(17”1)[711) )
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As we know

(— i (Tlr(l—n)q”>l = i(—l)l Z o1 (wy)or(w2) - "Ul(wl)qn’
n=1

n=1 w1 +wy+...+w eC(n) s - - W
we have
i( 1)n n(3n+1)/ i i (_ Z 0'1(ZU1)0'1(Z02) o '0'1(201) n
q w w o .. w q
n=0 n=11=1 wy+wy+...+w;C(N) 1972 !

Comparing the coefficient o 4" in both sides of the previous equation, we have the
expected result.

O

Deriving both sides of equation (1.3), we have

o B+l iy d

n=—oo

_ ( i (_1)n+1qn(3n+1)/2> (i(ﬁ(n—l-l)q”) )

n=-—oo n=0

< Z ( 1)n+1qn (3n+1)/ ) Zdnq ,
n
where

i {(—1)k+1, if n =k(3k+1)/2

0, elsewhere

the coefficient of g", n > 0 in

(i dn‘?”) (i o1(n + 1)(7")
n=0 n=0

Y. dn(l+1) = {(—1)f(3f+1>/2, ifn=j(3j+1)/2-1

0, elsewhere

is

k+Il=n
The last theorem of this section is a formula for the polynomials P,(z), z € R, as
considered in Newman [26] and Heim [17]. These polynomials are found in

Online Journal of Analytic Combinatorics, Issue 17 (2022), #03
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(q 5y (7) ) ]o—:oI = él’n(zm”

Theorem 7. For n > 0, we have

_ i Z y o1 (wr)or(w2) - - - o1 (wy)
I=1 l w1+w2+...+wl€C(n) Wiz - -~ W

Proof. For q € R, |q| < 1, we have

zn<]o’o[(1— Z) ——zZln (1—9¢

n=1
opening /n(1 — ¢") as made before, we get

In (ﬁ(l . qn)z) — 5 i Ulfln)qn,

and then

£ oo (- £ 20 ) - F 2 (£ 0ty

Using the proposition 1 for

we get

[

n=1 n=11=1wy+wy+...+w;€C(n) W -~ - Wy

and comparing the coefficient of 4" in the previous equation, we have the expected

result.
O

For instance,

_ ill y Ul(wl)ffl(wz) or(wr) _ — (),

| ..
17" wiwy+...+w;eC(n) w1w2 wi

forall n > 0, and

wiwy - W 0, elsewhere

Pa(—1) = f (—'1)1 y o1 (wy)oq (wy) - - -lﬁl(wz) _ {(—1)", if n =k(3k+1)/2k

=1 : w1+w2+...+wleC(n)
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4. GAuUss

The main equation of this section is, for |g| < 1,

[o¢]

(41) Z IO—OI 1+q27’l 1)2

n=—oo

The equation (4.1) is due to Gauss and can be found in Gauss [15, 16] and An-
drews [4]. Using this equation, we can state the next result.

Theorem 8. For n > 0, and

( 2
) 5 ifn is odd
dn
) disodd
fo= 2 .
Y. —— +01(n/2), ifnis even
F dx
x|n
 d is the greatest power of 2 such that d|n, x is odd

we have

NlH

)

I=1 wl—l—wz—i—...—i—w,EC(n)

2, if nis a perfect square
2: ﬂﬁszn'f@l: { f P f 1

0, elsewhere

Proof. Since q € R, |q| < 1, we get

~—
=

(ﬁ(l_an)(lJqun 1 ) i [ln (1—g*) +2In(1+ g*"~ 1)}
n=1 n=1

00 00 2nm 00 —
= Z:l [_ Zlq 21 o m(2n— 1)]
n= m= =
[ 00 m—l
— Z 0.1(”_1_ 2n+2+2 Z Z q m(2n—1)
n=0 n=1m=1

Now, we will analyze the last term of the previous equation.

Online Journal of Analytic Combinatorics, Issue 17 (2022), #03
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_1_1 6 1 7_18 1 1 9 _l_l 10
+( > )q +<1+7)q g4 +<1+3+9>q+ 5 10/ 7
1 1

n=1m=1 m
wherein
( 1
Z = ifn is odd
dn
d is odd
en = 1 ..
Y. ——, ifnis even
dx
dx|n
 d is the greatest power of 2 such that d|n, x is odd
Thus, considering
( 2
Y. =, ifn is odd
™ d
|n
) disodd
fn= 2 Lo
) ——+0(n/2), ifnis even
F dx
x|n
d is the greatest power of 2 such that d|n, x is odd
\

y q”2=1+i2q”2=exzﬂ(ifnq”) =1+ii;—, B fwrfwr - fur”

n=11=1"" wi4+wy+...4+w,eC(n)

and the result of the theorem is valid.
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5. ROGERS-RAMANUJAN

For the first theorem we use the equation (1.1), and we denote by r; (1) the number
of partitions of n, whose difference for consecutive parts is at least 2 (= equal to the
number of partitions of n into parts congruent to £1 mod 5).

Theorem 9. For n > 0, and

1
T, = -
=L

x|n
%EilmodS
we have
"1
= Z I )3 Twy Twy ** * Ty

wy+wy+...+w;€C(n)

Proof. Since,

0o 1 1 m=1 q(5n+1)m q(5n+4)m . I A 9 u
In H(an—H) <q5n+4) =) T =(@@+tq+qg +..)+@ +q +q" +.

n=0 n=0

1 1
= 5@+ g )+ g g )

1 1
+§(q3+q18+q33+...)+§(q12+q27+q42+...)+...,

it is easy to confirm that the coefficient of 4", n > 0, in the previous infinite sum is

1
Tn = Z .
x|n *
t=41mod5

Thus,

NlH

Zﬁ q—exzﬂ(ZTnﬂ/) i

=1

[ee] [e0] n 1
<Z:1 ann> Z Z I Z Twy Twy ** - Twzan
n= n=1I[=1

wy+wy+...+w;C(n)

the conclusion of the proof comes from the comparison of the coefficient of 4" in the
previous equation. U

For the last theorem of this section we use the equation (1.2), and we denote by (1)
the number of partitions of 1, whose difference for consecutive parts is at least 2, and
the small part is greater than 1 (= equal to the number of partitions of n into parts
congruent to £2 mod 5).

Online Journal of Analytic Combinatorics, Issue 17 (2022), #03
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Theorem 10. For n > 0, and

x|n
&==42mod5

we have

Z Yoo, Y, - - Y,
w1+zvz+...+wl€C(n)

=3
The proof of this theorem is similar to the theorem (9), and it is omitted here.

6. DEDEKIND ETA FUuNCTION, GAUSSIAN POLYNOMIALS AND MORE

Let denote by p,;(n) the number of integer partitions of a non-negative integer n into
distinct parts. The generating function for the sequence (p;(n))n>0 is

Y pa(n)g H 1+4")
n=0 n=1

for |q| < 1and p;(0) = 1.
Considering the logarithm of the previous infinite product, we have

In (ﬁ(l-ﬁ-q”)) = illn(l-l—q").

Since |g| < 1, using the Taylor expansion of In(1 4 4"), we can wright the previous
series as

m+1 00 2n

Zln(l—l—q”)zzz ”:Zq”—%Jr%—qTJr....
=1 m= n=1

n=1 n =
It is easy to see that the coeff1c1ent of g" in the last series is

(_1)d+1

(6.1) dy = ;.

d|n, d>0
n

That way, Y ;" o pa(n)g" = exp(Xo1dng"), where exp(z) = €%, and expanding this
exponential function into Taylor series around zp = 0, we have:

)
(e °] (] 1 (o]
Y pa(mq" =) 5 (Z dw”) :
n=0 I=0"" \n=1

Using Proposition 1, we can expand (Y%, d,q")’, for I a positive integer like
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l
o0 " (o] n 1 "
(;d”q> :Z ZT Z dw1dw2"'dwz q.

n=1 \I=1" witwy+--+w;eC(n)
Comparing the coefficients of 4" in the previous equation, we get:

n
1
6.2) paln) = Y- & y ooy ey -+~
I=

17" wy+wy+--4weC(n)

We know that the number of partitions of n into odd parts is equal to the number
of partitions of n into odd parts. Writing this fact in terms of generating functions we
have:

Y pun) = ¥ s

n=1

Considering the logarithm ln(Hn 1 “IT) for |g| < 1, we get:

In 1°_°I SR 2 In(1 —¢*"1) i i —q(anl)m
e 1— q2n—1 m

o0 2(2n—1) - -
_ on-1_ 4 q q
= ; e B e e R

One may note that if n is a power of 2, the coefficient of 4" in the last series is % If n

is odd, such coefficient is ( 9t For the case where 1 = 2/ a0 - - - &y, where 2 1 a;, the
coefficient of " is

1

2Jd"”

d'|eqag-oy

Summarizing, we have

1) 1 1)
Hm = exp (Z qu”> ’
n=1

n=1
where
4 if n is a power of 2
6.3) - ‘717”), if n is odd
: n =

1 .
) ST ifn =2 -am, 210

d'|eqog oy

Again, using proposition 1, we get
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[e9) 1 o0 n 1
(6.4) H jl_qT = 1 + Z Z ﬂ 2 Cwlcwz o .. Cwlqn
n=1 n=11=1"" w1+w2+-~-—|—wleC(n)
Comparing the coefficients of 4", n > 0 in (6.2) and (6.4), we can establish the follow-
ing result.

Theorem 11.
| "1
Z _' Z Cw1Cw2 : Z _' Z dwlde e dZU[I
I=1"" wiHwy+--+w;eC(n) I=1"" wi4wy+--+w;eC(n)

where ¢, and d,, are as given in (6.3) and (6.1).

[
The next result we use an expansion for #(t), where Im{t} > 0, g = ¥, and

lg| < 1. Since q_zlin(r) = (4; 9) oo, by the same procedure done in the previous theorem,
we have

0o 00 m+1
g 1 (t —€XP<Z Yy )
n=1

m=1

and we can write

= g% + i i 5 o1 (w1)oa(ws) - "Ul(wl)qn—ﬁ—i
n=11=1 wy+wy+---+w;eC(n) w1z - - W
For a € C — {0}, we have
n(a g%+ i i (= 5 o1 (w1)oa(ws) - "Ul(wl)qan+2”—4.
ST= Wy +wy+-+w €C(n) w1z - - W

3

By the definition of the Dedekind eta function, the next quotient is

17(25”') ot - an
= 1+ g™).
) g( q"")
Since |gq| < 1, considering the expansion of In(TT;_;(1 + g*")) in Taylor series, we
have

00 m+1qanm
In ( (14 4™) ) Z Z :
n=1

n=1m=1

The coefficient of 4" in the previous series is
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_1)d+1
(6.5) dn= ) ( 1(1) .

Thus, the next result is true.

Theorem 12.
17(2(1"() — g o = = 1 d. d d an
n(at) =g ) Zﬁ L wnfhw " Gy [
n=1 \I=1" wi+wy+---+w;eC(n)
U

For instance, if a = 4,

8T 1 1 & "1
1754’(; =q°+q° Z Z[_l Z A, dw, - - - du q4n/
U n=1 \I=1" wi+wy+---+w,;€C(n)
and
1 1 [} n 1 in
n8T) =qen(dt) +q0 ) | L )y S e (G
n=1 I=1"° w1+w2+---+w,6C(n)
Considering
_1\! ...
Z ( l'l) Z o1 (wy)oz(w2) Ul(wl)’ ifn>0
an = § I=1 T witwy++weC(n) RE LAY
1, ifn=0
and
| .
Zﬁ 2 dwldwz"'dwlf ifn>0
by =< i=1 " witwy+---+w eC(n)

1, ifn=20
we have

1n(87) = (Z bnq4n+},> (Z anq4n+},> )

n=0 n=0
and since
7(87) =45 Y aug™,
n=0
we get
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(2 bnq4”) (Z anq4n> — Z anan,
n=0 n=0 n=0
thus

Z bia]' = dy.

i+jeC(8n)
i,j=0(mod4)

More generally, we can state the next corollary.
Corollary 1. If k is a positive integer, then
Z bia]- = dy.
i+jeC(2kn)
i,j=0(modk)

The next result is a Taylor expansion for the Gaussian polynomials. For k < n, and
|| < 1, we have

The coefficient of ¢/ in the previous series is

1 1

(6.6) =1 7= L
d\j,d>0 4 elj,e>0

1<k L>n—k+1

Thence,

[+, o (Boe)

and by the Proposition 1, we have the next theorem.

Theorem 13. For k < n,|q| < 1, and gjas in (6.6),

j=1 wy+wy+-+w €C(n)

N ,
] =1+z(zl—, 3 gwlng---gw,) /
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O
Obviously, we get:

/1
p(j| < kparts,each <n —k) = Zl_' Z 8w 8wy~ wy-
1=1 """ wi4wy+--+w eC(n)

In the next result, we get an expansion for infinite products like (g% g*)=?, for a and b
positive integers, z € C and |g| < 1. In fact, these expansions generalize the expansion
of 17(7), as seen earlier in this article. Here,

o o _(at+nb)m 0 2(a+nb) 3(a+nb) 4(a+nb)
In (qa;qb)goz — 5 9 — 5 qu+nb_|_q +q +q +...,
( ) yg mZ_:l m 1;1 2 3 4
thus, the coefficient of 4" in the previous series is
1
(6.7) Pab (n) = Z d
d|n,d>0
L=a(modb)
By using the Proposition 1, we have proved the next result.
Theorem 14.
) o0 n Zl
(@50)e =1+ (L ) Pap(W1)pap(w2) -+ pap(wr) | 4"
n=1 =1 " w1+w2+-~+w,€C(n)
[

For instance, by a = 1, b = 5 and z = 1, we have that the number of partitions of n
into parts = 1(mod5) is equal to

i % B p15(w1)p15(w2) - - - p1,5(wy).
I=1""

w1 +wy+---+w eC(n)

In next result, we will obtain a Taylor expansion for

(754" )00 (4 4") o0 - - - (4% 4% )0
(759700 (92 3% )00 -+ (47397 ) oo
where ay,...,ax,by,..., by, c1,...,¢r,dq,...d, are positive integers, and |g| < 1. Obvi-

ously, we can obtain such expansion applying k + r times the previous theorem, but we
believe that the expansion obtained here is more simple. As usual,

Online Journal of Analytic Combinatorics, Issue 17 (2022), #03



22 M. ALEGRI

(979" ) oo (92 7)o - - (47347 ) oo
(9,97 ) 0 (32 9%2 )0 - - - (45 47 ) oo

0 m(ay+nby) m(ax-+nby) m(cy+ndy) m(cy+ndy)
£ [ff_+...+q_]+[q_+...+q_
m m

1 m=1 m m

=

i H(n
wherein

H(n) = 0cy,a, (1) + Pepd. (1) + - -+ Pcy,d, (1) = Pay by (1) = Pay by (1) = . = Pa (1),
and p, ;(n) as in (6.7). In this way, we get the following result.

Theorem 15. For ay,...,ax, by, ..., by, c1,..., ¢, d1, ... d, positive integers, and |q| < 1,

e (g% gbx o0 n
):...(q dergz =1+ 21 (Z% ). H(wl)H(wz)---H(wz)> q

I=1"" wiwy+---+w,;eC(n)

The first Rogers-Selberg identity is given as follows.
) 2
(7%9 )e0(d*97)eo(07597 )0 _ 5 g
(7% 4%) oo a0 (4% 3 )n(=;9)2n
This equation and others of the “sum=product” type are compiled in the paper of
Slater [31] in 1952. Using our last theorem, we can write

(%0 )oo(059) o (0750 oo & l

(4% 9%) o ;0 (4% 9%)n(=4;9)2n

1+i<f% 3 H(wl)H(wz)"'H(wl))an

n=1 \I=1" wy+wy+--+w;eC(n)

where in the coefficient of 4" the H(n)'s are given by

1 1 1 1

Hw= ¥ - o loopio ¢ L
d|n,d>0 aln,a>0 a b|n,b>0 c|n,c>0
£=0(mod2) 2=3(mod7) F=4(mod7) 1=0(mod7)

Another example, in Entry 11.3.1 (pp. 6,16) of the Ramanujan’s Lost Notebook (Part
I), available in [5].
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[ee]

3 Ceeha” _ (@050

im0 (49)n (4:4) 0
This identity was first proved by Sister Slater [31], and appears in her list as identity
(29). A combinatorial interpretation for the previous identity and more similar identi-
ties can be found in Andrews and Lewis, [7]. Using the aforementioned identity, we
can assert that the coefficient of 4" in this identity is equal to

1
l_' Z ﬂwl e aw;;
S wi+-4weC(n)

Cn:

I M:
—_

where
' 2
w="0- T - T
o d]j el
1=6(mod12) L=0(mod12)

Let consider the first Rogers-Ramanujan identity as given in equation (1.1).

As we know, the coefficient of 4" in equation (1.1) is equal to the the number of par-
titions of n, whose difference for consecutive parts is at least 2 (= number of partitions
of n into parts congruent to +1(mod5)). Let denote by 1 (n) this number. For |q| < £,
is a fact that | Y, ; p(n)g"| < 1. Since r1(n) < p(n), we have | Y_;> ; r1(n)q"| < 1. Thus
we can consider the Taylor expansion for In(1+ ;> ;71(n)g"). As we did before, we
will find the coefficient of 4" in the expansion of the aforementioned logarithm.

00 0 (_1)m+l 00 n
In <1 +) rl(n)q”> =) —— (Z rl(n)q”> ,
n=1 m=1 m n=1
for |q| < {5. The coefficient of ¢" in (Y r1(n)gq")" is equal to the number of parti-
tions of n, whose difference for consecutive parts is at least 2 and those parts appears
colored up to m colors (= number of partitions of n into colored parts, up to m colours,
congruent to +1(mod5) ). We denote this number by r{"(n). That way we can rewrite
the previous equation as

= n = (_1)m+1 - m n
In <1+ ;rl(n)q > = Z_:l— ;rl (n)q",

_1\ym+1,m
and thus the coefficient of 4" in this logarithm is )~ w

we know that the coefficient of 4" in

. On the other side,

In ( ! >
(0 9%)e0 (9% 4%) 0
is p1,5(1) + pas(n), in which p, ,(n) is as in (6.7). Thus we have
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00 (_1)m+1

)3

m=1

More generally, considering an identity of type “sum-product”, as

11 (1) = p5(n) + pas(n).

2 (974" ) o0 (9°2 %) o0 - - - (4°; 4% ) o
(6.8) 1+ ) hug" = ,
n; 0w (079%) e - (47307 ) oo

where ay,...,ax,by,...,bg,c1,...,¢,d1,...d, are positive integers, and |q| < s < 1, in
such a way that |})” | h,q"| < 1, we can establish our penultimate result in this paper.
For this purpose, we should deal with the expansion of (Y5 ; 7,4")", in which by the
Proposition 1 is

m
n=1

n=1w;+wy+--+wmeC(n)
We denote by h the coefficient of 4" in the last series.

6.9) - y Heoy oy - - B,
witwy+---+wyr €C(n)

Thus we have just proved the result as follows.

Theorem 16.
= (<1)" g

D

m=1

where h}}! is as in (6.9), hy, as in (6.8) and p, ,(n) as in (6.7).

m

In our last result we will obtain an expansion to
o z
f(zrq) = (1 + Z anﬁ”) ,
n—=

1
where z € C, and the series

1+ Z anq"
n=1

is convergent for |g| < r < 1, in order that

<1

o
Y ang"
n=1

Under the above conditions, we have

= pCl,dl (Tl) +pC2,dc(n) + cc +pCr,dr (n) _ptll,bl (7’1) _pﬂzlbz(n) e _pﬂk,bk(n)’
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00 (_1)m+1 00 , n
In(f(z,q) =z Y, —— <1+ Y- aud ) ,

where, by Proposition 1, we can write

= (_1)m+1 n
ln(f(z,q)):zZT; ( Y ()ﬂw1'~~awm)q

I
N
3
N
Sl
JF
+
1=
S

£ e
(n)

w1+ Fwyr €C

we get

I
o) 00 Zl 00
f(z,9) = exp (Z bnq”> =1+ T (Z bnq”> .
n=1 I=1"" \n=1
Using Proposition 1 again, we conclude that

n

" wy++weC

00 Zl
f<z,q>1+z( r bb) 7
n=1 \I=1 (n)

Summarizing what has been proposed so far, we can establish the following theorem.

Theorem 17. Considering the series
[e9)
), "
n=1

convergent to |q| < r < 1, in order that

<1,

o0
Y ang”
n=1

we have for all z € C the following expansion:
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w1 (_1)m+1

00 z © n
(1+far) e EE5 X (27 y )
n=1 n=11=1"" wi+--4w;eC(n) \m=1 1+ +uy €C(wy)
wy -1 m—+1
.(ZL > )q
(wy)

m=1 m uy+-+uyeC

For example, consider a, = r;n—(fl), where (F,11),5( is the sequence of Fibonacci.
In Andrews and Eriksson, [6], in Chapter 3, the authors prove using combinatorial
arguments that p(n) < F,41. Thus a, <1, Vn > 0, and for |q| < 11—0 the power series
Yo anq" is convergent and yet | Y7 ;a,q"| < 1. By the previous theorem, we have:

<1+iqu) :1+ii?_: Y. (%leiﬂ y P1(M1)”_p1(um)>

n=11=1"" wi+--+w;eC(n) \ m=1 U+ +uyeC(wy) P”1+1 F”*”Jrl

| (2 el ,,,m(um) ;

m=1 m g+ +um €C(wy) Fu1+1 Fum+1

In another specific case, for a(n) = pi(n), n > 0, for z = k, where k is a positive
integer, and |q| < %, we have that the coefficient of 4" in

k
(q/ (1+ZP1 ) ’

is equal to py(n), the number of partitions of n in up to k colors. Using the previous
theorem, we can establish that

.~|»

n w1 (_1)m+1
-Lh T (ZT 3 p1<u1>---m<um>)

w1+-~-+w1€C(ﬂ) m=1 u1+--~+um6C(w1)
w; -1 m+1
. 2 L 2 Pl(ul)"'Pl(um)

m=1 m u1+~--+um€C(w1)

As we known,

e

Z o1 (wy)o (wy) - - - ‘Tl(wl).

wLwy - - - Wy

pi(n) i

Thus, we can establish the following corollary.

w1 +wy+--+w;€C(n)
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Corollary 2.

- Z p1(u1) - - p1(um)
I=1"" wy+--4weC(n) \ m=1 up+-+un €C(wy)
wy -1 m+1
% p1(u1) - p1(um)
m=1 ur+-+uy eC(w;)
_ i K y o1 (ws)or(ws) - - - o1 (wy)

wLwy - - - Wy

I=1 """ wytwy+-+weC(n)

As a final comment, we believe that many identities like the ones described by Slater
in [31] can reveal new identities involving sums of reciprocals of divisors as those found
here.
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