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Abstract. The notion of length spectrum for natural numbers was introduced by Pong
in [5]. In this article, we answer the question of how often one can recover a random
number from its length spectrum. We also include a quick deduction of a result of
LeVeque in [4] on the average order of the size of length spectra.

1. Length Spectra

Let m be a natural number. The length spectrum or simply the spectrum of m, denoted
by lspec(m), is the set of lengths of sequences of consecutive natural numbers that sum
to m. For example, the number 9 can be written as sum of consecutive natural numbers
in three different ways: 9, 4+ 5 and 2+ 3+ 4. Hence, lspec(9) = {1, 2, 3}. It was shown
in [5, Theorem 1.2] that lspec(m) is

(1.1) {k : k | m, k odd, k2 < 2m} ∪ {2m/k : k | m, k odd, k2 > 2m}.
Two numbers are spectral equivalent if they have the same spectrum. We write L(m)
for the spectral class of m (the equivalence class of m under spectral equivalence). An
algorithm for computing L(m) from lspec(m) was given in [5] and since lspec(m) is
computable from m via (1.1), so L(m) is computable from m. For instance, L(1) =
{2k : k ≥ 0}, L(9) = {9} and L(175) = {175, 245}. Surprisingly, the sizes of these
spectral classes are all that possible:

Theorem 1 (Theorem 4.6 [5]). A spectral class has either 1,2 or infinitely many numbers.

In other words, X1, X2, Xω, where Xk is the set of numbers with spectral class of size
k, form a partition of N. Clearly, the chance of recovering a number in Xk from its
spectrum is 1-in-k (with 1-in-ω understood to be 0). We go one step further and ask:

What is the chance of guessing a randomly chosen number from its spectrum?
To be precise, we fix a notion of probability. For X ⊆ N, let X(n) denote the set of
elements of X not exceeding n. The natural density of X is the limit, if exists, δ(X) :=
limn→∞ |X(n)|/n. We regard δ(X) as the probability 1 of a random number being in X.
If each δ(Xk) exists (k = 1, 2, ω), then the answer to our question would be

1 · δ(X1) +
1
2
· δ(X2) + 0 · δ(Xω).

Date: September 8, 2022.
1Natural density can be extended to a finitely additive probability measure on the power set of N [3,

Theorem 3].
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2. Spectral Classes

For A, B ⊆ N, let AB denote the set {ab : a ∈ A, b ∈ B}. We write aB for {a}B
and A2 for AA. We use A0 and A1 to denote the set of even and odd elements of A,
respectively. A spectrum S is

• unmixed if |S0| = 0;
• balanced if |S0| = |S1|; and
• lopsided if it is neither unmixed nor balanced.

For convenience, let us call an odd factor k of m small (resp. large) if k2 < 2m (resp.
k2 > 2m). It is clear that every number must have at least half of its odd factors being
small. So according to (1.1), we always have |S1| ≥ |S0|. Thus, a spectrum S is lopsided
if and only if |S1| > |S0| > 0. Again, it follows readily from (1.1) that a balanced
spectrum S = lspec(m) must be of the form S1 ∪ 2α+1S1 where α is the exponent of
2 in the prime factorization of m. Moreover, m1 ≤ 2αm1 = m0/2 where mi = max Si
(i = 0, 1) and it follows from (1.1) that factors of m1 are in S1. Because of that we call
a balanced spectrum S non-excessive if S1 is precisely the set of factors of m1, otherwise
we call S excessive. The exceptional set of S is defined to be

E(S) = {a ∈ S2
1 : a > m0, F<a(m1a) = S1}

where F<b(c) denotes the set of factors of c which are strictly less than b.

Example 2. A few examples should clarify these notions:
• The spectrum of 1, namely {1}, is an unmixed spectrum. The spectrum of 6,
{1, 3}, is also unmixed.
• The spectrum of 9 is {1, 2, 3} which is a lopsided spectrum.
• The spectrum of 3 is {1, 2} = {1} ∪ 2{1} which is a balanced spectrum. It is

non-excessive with an empty exceptional set.
• The spectrum of 21 is {1, 2, 3, 6} = {1, 3} ∪ 2{1, 3} which is again non-excessive.

Its exceptional set is {9}.
• The spectrum of 75 = {1, 2, 3, 5, 6, 10} is excessive since 3 is not a factor of 5. Its

exceptional set is {15}.
• The spectrum of 175 = {1, 2, 5, 7, 10, 14} is again excessive. Its exceptional set is
{25, 35}.

We need several results from [5] for our analysis:

Theorem 3 (Theorem 2.2 [5]). The set of numbers with an unmixed spectrum is {2αk : α ≥
0, k odd, 2α+1 > k}.
Theorem 4 (Theorem 3.7 [5]). Suppose S = lspec(m) is balanced, then either

(1) L(m) = m0
2 E(S), if S is excessive; or

(2) L(m) = m0
2 (P(S) ∪ E(S)), if S is non-excessive, where P(S) is the set of primes ex-

ceeding m0.

Theorem 5 (Theorem 4.6 [5]). Let m ∈N and S = lspec(m) then
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• m ∈ X1 if and only if S is lopsided or excessive and |E(S)| = 1.
• m ∈ X2 if and only if S is excessive and |E(S)| = 2.
• m ∈ Xω if and only if S is either unmixed or non-excessive.

Theorem 6 (Theorem 4.4 [5]). A balanced spectrum S is non-excessive if and only if E(S) =
∅ or E(S) = {qµ+1} where q is the largest prime factor of m1 and µ ≥ 1 is the exponent of q
in the prime factorization of m1.

Proposition 1 (Proposition 4.5, 4.9 [5]). Let S be a balanced spectrum. Then |E(S)| ≤ 2.
Moreover, if |E(S)| = 2, then the two elements of E(S) are of the form pγ+1 < pεqβ with
γ, ε, β ≥ 1, p, q the two largest primes in S1 and pγ ∈ S1.

3. The Density of X2

For the rest of this article, p and q always stand for odd primes. As usual, [x]
denotes the largest integer not exceeding x and π(x) denotes the number of primes not
exceeding x.

We start by estimating |X2(n)|. Let m ∈ X2(n), by Theorem 5 S = lspec(m) is
excessive and |E(S)| = 2. By Theorem 4 and Proposition 1, L(m) is of the form
{`pγ+1, `pεqβ} where ` = m0/2 and `pγ+1 < `pεqβ. In particular, `pγ+1 ≤ m. Since
pγ ∈ S1, pγ ≤ m1 ≤ ` and since pγ+1 ∈ E(S), 2` = m0 < pγ+1. Thus, the smaller of the
two elements of L(m) must belong to the following set

Y(n) :={`pγ+1 ≤ n : `, γ ≥ 1, 2pγ ≤ 2` ≤ pγ+1}

=

{
`pγ+1 : `, γ ≥ 1, pγ ≤ ` ≤ min

{
pγ+1

2
,

n
pγ+1

}}
.

Note that p3 ≤ p2γ+1 ≤ `pγ+1 ≤ n. So, 3 ≤ p ≤ 3
√

n and for each such p, the possible
values of γ are 1, 2, . . . , (

[
logp n

]
− 1)/2. Therefore, the number of pairs (p, γ) such

that `pγ+1 ∈ Y(n) for some ` is at most π( 3
√

n)([logp n]− 1)/2) ≤ π( 3
√

n)(log3 n)/2)
which is in O( 3

√
n) by Chebyshev’s upper estimate of π(x) [6, Ch. 1 §7 Corollary

2]. For each possible pair of (p, γ), the number of possible `’s is bounded above by
min{pγ+1/2, n/pγ+1} ≤

√
(pγ+1/2)(n/pγ+1) =

√
n/2. Thus, we conclude that

(3.1) |Y(n)| = O(
√

n)O( 3
√

n) = O(n5/6).

Since X2(n) ⊆
⋃{L(m) : m ∈ X2(n)} and each such L(m) has size 2,

|X2(n)| ≤
∣∣∣⋃{L(m) : m ∈ X2(n)}

∣∣∣ ≤ 2|Y(n)|.

Therefore, it follows from (3.1) that δ(X2) = 0.
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4. The Density of X1

Since N is the disjoint union of X1, X2, Xω and δ(X2) = 0, if δ(Xω) exists then so
does δ(X1), moreover δ(X1) = 1− δ(Xω). By Theorem 5, Xω is the disjoint union of
the set of numbers with an unmixed spectrum (UM) and the set of numbers with a
non-excessive spectrum (NE). According to Theorem 3,

UM(n) =
{

2αk : 0 ≤ α ≤ log2 n, k odd, k ≤ min
{

2α+1, n/2α
}}

.

Note that

min{2α+1, n/2α} =
{

2α+1 0 ≤ α ≤ log2

√
n/2

n/2α log2

√
n/2 < α ≤ log2 n

and k is odd. Therefore, there are at most

(4.1) ∑
0≤α≤log2

√
n/2

2α+1

2
< 2log2

√
n/2+1 =

√
2n

elements of UM(n) with 0 ≤ α ≤ log2

√
n/2. Likewise, the number of elements of

UM(n) with log2

√
n/2 < α ≤ log2 n is at most

∑
log2
√

n/2<α≤log2 n

[ n
2α + 1

2

]
< ∑

log2
√

n/2<α≤log2 n

n
2α+1 +

1
2

< ∑
0≤α≤log2

√
2n

√
2n

2α+1 +
1
2
(log2

√
2n + 1) ≤

√
2n +

1
2
(log2

√
2n + 1).

Thus,

|UM(n)| ≤ 2
√

2n +
1
2
(log2

√
2n + 1) = O(

√
n)

and so δ(UM) = 0. Next we compute δ(NE). First note that

Lemma 1. The set NE is the disjoint union of the following two sets

G = {`p : ` ≥ 1, p > 2`} and

E = {`q2µ+1 : `, µ ≥ 1, q > 2`}.

Proof. First, G and E are disjoint since the power of the largest prime factor of any
element of G is 1 and that of any element of E is at least 3.

Suppose m ∈ NE. Let S = lspec(m). By Theorem 4 and 6, either m is of the form
(m0/2)p where p > m0 and so m ∈ G (with ` = m0/2) or m is of the form (m0/2)qµ+1

where qµ (µ ≥ 1) is the power of q in the prime factorization of m1 and E(S) = {qµ+1}.
By writing m0/2(= 2αm1) as `qµ where (`, q) = 1, we see that m is of the form `q2µ+1.
Since qµ+1 ∈ E(S), in particular qµ+1 > m0 = 2`qµ and so q > 2`. This shows that
NE ⊆ G ∪ E.
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Conversely, suppose m = `p ∈ G. Let ` = 2αk with α ≥ 0 and k odd, then since
p > 2` = 2α+1k, we have

(4.2) k2 < 2m = 2α+1kp < p2.

Note that the factors of kp are precisely the factors of k together with their p multiples.
It follows (1.1) and from the inequalities in (4.2) that the set of factors of k is exactly S1.
Therefore, lspec(m) is non-excessive. Now suppose m = `qµ+1 ∈ E. Again we write `
as 2αk with α ≥ 0 and k odd, since q > 2` = 2α+1k, we have

(4.3) k2q2µ < 2m = 2α+1kq2µ+1 < q2(µ+1).

The factors of kq2µ+1 are precisely the factors of kqµ and their qµ+1 multiples. So again
it follows from (1.1) and the inequalities in (4.3) that lspec(m) is non-excessive. This
shows that G ∪ E ⊆ NE and hence concludes the proof. �

The set E, like X2, is also sparsely distributed in N. If `q2µ+1 ∈ E(n), then by
the same analysis for X2, we conclude that the number of possible pairs of (q, µ) is
bounded above by π( 3

√
n)(log3 n)/2 = O( 3

√
n) and since ` < q/2 ≤ 3

√
n/2, therefore

|E(n)| = O(n2/3). Thus, δ(E) = 0.
Now, we estimate |G(n)|. Since G(n) = {`p : 1 ≤ ` ≤ min{n/p, p/2}},

(4.4) |G(n)| = ∑
3≤p≤n

[
min

{
n
p

,
p
2

}]
= ∑

3≤p<
√

2n

p− 1
2

+ ∑√
2n<p≤n

[
n
p

]
Again, by Chebyshev’s upper estimate of π(x),

(4.5) ∑
3≤p<

√
2n

p− 1
2
≤
√

n
2

π(
√

2n) = O
(

n
log(n)

)
.

We conclude from Mertens’ second theorem ([1, Lemma 4.10]), ∑p≤x 1/p ∼ log log x,
that

(4.6) ∑√
2n<p≤n

n
p
∼ n(log log n− log log

√
2n) ∼ n log 2.

Moreover,

(4.7) ∑√
2n<p≤n

n
p
−
[

n
p

]
≤ ∑√

2n<p≤n

1 = O
(

n
log n

)
.

The asymptotic relation in (4.6) and the bound in (4.7) together imply the second term
in the sum in Equation (4.4) is asymptotic to n log 2. Putting all these together, we have
δ(NE) = δ(G) + δ(E) = δ(G) = log 2 and δ(X1) = 1− δ(NE) = 1− log 2. Thus, the
probability of guessing a randomly chosen number from its spectrum is

δ(X1) +
δ(X2)

2
= δ(X1) = 1− log 2 =

1
2
− 1

3
+

1
4
− . . .

≈ 0.306852819440055.
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5. The average order of length spectra

It was first proved by LeVeque that [4, Theorem 2] 2

(5.1)
1
n

n

∑
m=1
| lspec(m)| = log n

2
+

2γ + log 2− 1
2

+ O
(

1√
n

)
where γ is the Euler–Mascheroni constant. We give a quick deduction of this result
from Dirichlet’s well-known estimation [1, Corollary 3.32]:

(5.2) ∑
m≤n

τ(m) = n log n + (2γ− 1)n + O(
√

n),

where τ(m) is the number of factors of m. Note that | lspec(m)|, the number of odd
factors of m, can be conveniently expressed as τ(m)− τ(m/2) with τ(m/2) = 0 when
m is odd. Thus,

∑
m≤n
| lspec(m)| = ∑

m≤n
τ(m)− ∑

m≤n
τ(m/2) = ∑

m≤n
τ(m)− ∑

k≤n/2
τ(k)

= n log n + (2γ− 1)n− n
2

log
n
2
− (2γ− 1)

n
2
+ O(

√
n)

=
n
2

log n +
n
2
(2γ + log 2− 1) + O(

√
n).

Now, one obtains Equation (5.1) immediately by dividing n on both sides.

6. Some explicit bounds

In this last section we provide some loose but nonetheless explicit bounds of the
sizes of various sets that appear in this article. The tools involved are some explicit
estimations of π(x) and ∑p≤x 1/p.

Corollary 5.2 in [2] gives several explicit bounds of π(x). One of them is that for
x > 1,

(6.1) π(x) ≤ (1.2551)
x

log(x)
.

It follows directly from (6.1) and our estimations on |X2(n)| and |E(n)| that

(6.2) |X2(n)| ≤ 2
√

n
2

log3 n
2

π( 3
√

n) ≤ 3.7653√
2 log 3

n5/6 < 2.4235n5/6,

and that

(6.3) |E(n)| ≤
3
√

n
2

log3 n
2

π( 3
√

n) ≤ 3.7653
4 log 3

n2/3 < 0.8569n2/3.

2In [4], | lspec(m)|, the number of representations of m as sum of consecutive natural numbers, is
denoted by γ(m).
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From Equation (4.4), we have

∑
3≤p≤

√
2n

p
2n

+ ∑√
2n<p≤n

1
p
− log 2− π(n)

n
≤ |G(n)|

n
− log 2

≤ ∑
3≤p≤

√
2n

p
2n

+ ∑√
2n<p≤n

1
p
− log 2.

Thus,

(6.4)
∣∣∣∣ |G(n)|

n
− log 2

∣∣∣∣ ≤ ∑
p≤
√

2n

p
2n

+

∣∣∣∣∣∣ ∑√
2n<p≤n

1
p
− log 2

∣∣∣∣∣∣+ π(n)
n

.

Let c1 ≈ 0.261497 be the Meissel-Mertens constant. Theorem 1.10 in [7] states that the
constant in the Landau symbol in Merten’s second theorem

∑
p≤x

1
p
= log log(x) + c1 + O

(
1

log x

)
(x ≥ 2)

can be chosen ≤ 2(1 + log 4) < 5. Therefore,

(6.5)

∣∣∣∣∣∣ ∑√
2n<p≤n

1
p
− log 2

∣∣∣∣∣∣ ≤ 15
log n

+ log log 2n− log log n ≤ 15 + log(2)
log n

.

Finally, it follows from (6.1),(6.4) and the trivial bound ∑p≤x p ≤ xπ(x) that∣∣∣∣ |G(n)|
n
− log 2

∣∣∣∣ ≤
√

2n
2n

π(
√

2n) +
15 + log(2)

log n
+

π(n)
n

≤ 3(1.2551)
log n

+
15 + log(2)

log n
≤ 20

log n
.

(6.6)
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